
CS5625 Interactive Computer Graphics

Steve Marschner

Spring 2022

01 Introduction

Feel free to explore the rooms in the Ohyay space! 
We’ll start a few minutes late to allow for login/access issues.

Introductions

Steve Marschner
• instructor, Professor of CS specializing in graphics

Joy Zhang
• PhD TA, expert on physics simulation for graphics, game developer and C++ hacker

Andrei Shpilenok
• ugrad TA, 5625 veteran, Linux and post-OpenGL API enthusiast

Ruby Min
• ugrad TA, 5625 veteran, CS/ECE double major

Inclusion

I want you here in this class, with your own distinct…
…voice

…perspective

…needs

…differences

I and the course staff promise to always do our best
to create an environment where you know you belong
and can have fun learning about graphics—but please
let us know if we are not succeeding; we want to
know how to do better.

Applications

Rockstar Games—Red Dead Redemption 2 (2018)

CD Projekt RED—Cyberpunk 2077 (2020)

Naughty Dog—The Last of Us (Remastered, 2014)

Valve—Portal (2007)

Ubisoft—Child of Light (2014)

Meta Quest 2 — Oculus VR

Oculus VR

Oculus VR

NASA

[J
oh

n
C.

 S
to

ne
, U

IU
C]

University of Calgary

Au
to

de
sk

 R
ev

It
Ar

ch
ite

ct
ur

e
20

15

Au
to

de
sk

 F
us

io
n

36
0

Breakout

Practice with breakout mechanics…
• Choose a small group room (each fits up to 6). Some interst keywords to help you pick

- 1. Art/Design	 5. Animation

- 2. Machine vision	 6. High performance code

- 3. Math	 7. Realism

- 4. PhD/MS/Meng student	 8. Non-CS major

• Feel free to move between rooms if you feel like it!

• Introduce yourselves with name, major/field/year, and something you thought was fun about

your previous graphics course (probably 4620 for most people)

• I’ll call you back here after 5 or 10 minutes

History

How To Draw a Triangle, c. 1985

Transform vertices to screen coordinates

Find all the pixels covered by the triangle

Fill all the pixels with the triangle’s color

How To Draw a Triangle, c. 1988

Perform lighting calculations to find vertex colors

Transform vertices to screen coordinates

Find all the pixels covered by the triangle

Fill all unoccluded pixels with the interpolated vertex colors 
and depth

How To Draw a Triangle, c. 1992

Perform lighting calculations to find vertex colors

Transform vertices to screen coordinates

Find all the pixels covered by the triangle

Look up a texture map value

Fill all unoccluded pixels with a function of the texture and the interpolated
vertex colors, as well as the depth

How To Draw a Triangle, c. 1999

Perform elaborate lighting calculations to find vertex colors

Transform vertices to screen coordinates

Find all the pixels covered by the triangle

Look up a value from one or more 1D, 2D, or 3D texture maps

Fill all unoccluded pixels with a complicated, adjustable function of the
textures and the interpolated vertex colors, as well as the depth

NVIDIA GeForce2 tech demo (2001) recoded by GameForest (YouTube)

https://www.youtube.com/watch?v=6MmiaqK342c

NVIDIA GeForce2 tech demo (2001) recoded by GameForest (YouTube)

https://www.youtube.com/watch?v=6MmiaqK342c

Pixar—Monsters Inc. (2001)

How To Draw a Triangle in 2001

Execute a vertex program over all the vertices

Find all the pixels covered by the triangle

Execute a fragment program over all those pixels

Fill all unoccluded pixels with the resulting color and depth

How To Draw a Triangle in 2007

Execute a vertex program over all the vertices

Execute a geometry program over all primitives

Find all the pixels covered by the triangle

Execute a fragment program over all those pixels

Fill all unoccluded pixels with the resulting color and depth

How To Draw a Triangle in 2010

Execute a vertex program over all the vertices

Execute tesselation programs to refine primitives

Execute a geometry program over refined primitives

Find all the pixels covered by the triangle

Execute a fragment program over all those pixels

Fill all unoccluded pixels with the resulting color and depth

NVIDIA tech demo (c.2016) recoded by GameForest (YouTube)

https://www.youtube.com/watch?v=6MmiaqK342c

NVIDIA tech demo (c.2016) recoded by GameForest (YouTube)

https://www.youtube.com/watch?v=6MmiaqK342c

How To Draw a Triangle in 2020

Execute a vertex program over all the vertices

Execute tesselation programs to refine primitives

Execute a geometry program over refined primitives

Find all the pixels covered by the triangle

Execute a fragment program over all those pixels

Fill all unoccluded pixels with the resulting color and depth

Integrate rasterized results with GPU ray tracing as needed

Minecraft RTX (2019) demo by PC Centric (YouTube)

https://www.youtube.com/watch?v=S6obKcaUB4w

Minecraft RTX (2019) demo by PC Centric (YouTube)

https://www.youtube.com/watch?v=S6obKcaUB4w

How to draw a triangle in 2025?

Hit it with a ray

Execute a ray-hit shader that computes a Monte Carlo estimate

Denoise the result with learned filters

NVIDIA / Omniverse RTX tech demo (2020) (YouTube) (SIGGRAPH presentation)

https://www.youtube.com/watch?v=NgcYLIvlp_k
https://developer.nvidia.com/siggraph/2020/video/sigg05

NVIDIA / Omniverse RTX tech demo (2020) (YouTube) (SIGGRAPH presentation)

https://www.youtube.com/watch?v=NgcYLIvlp_k
https://developer.nvidia.com/siggraph/2020/video/sigg05

Breakout

Questions for discussion:
• What are some projects you’ve worked on where interactive graphics was part of the tools?

• What was bad about the graphics that made your life harder?  

How could it be improved?

After we come back I’ll encourage you to let us know about some of the
examples you came up with

Course mechanics

About CS5625

Prereqs
• introductory graphics course (e.g. 4620) or instructor permission

• some familiarity with C/C++, or the time to learn on the fly

Resources
• Course materials on website

- schedule (very much subject to change!)

- lecture slides, notes, readings

• Ohyay space for virtual interaction (experimental and very changeable — give us feedback!)

- Lecture for first two weeks

- Office hours, help sessions, hanging out to work on projects

• Handins and grades on CMS

• Ed Discussions for discussion and questions

Recommended texts

Real-time Rendering
• Akenine-Moller, Haines, Hoffman

• encyclopedia of raster tricks

• available via library

Physically-Based Rendering
• Pharr, Jakob, Humphries

• Oscar winning book on ray tracing

• available via pbr-book.org

Various other readings

http://pbr-book.org

Grading

Course breakdown
• 60% from assignments

• 30% from final project

• 10% from participation

Grading
• Holistic grading based on what you show us

• Grading principle: you prove to us what your code can do

- written project report

- Demo sessions or video demos

Academic Integrity

Don’t copy code from Web without careful attribution
• small snippets of, e.g. OpenGL boilerplate OK with attribution

Collaboration
• do: help each other out, dispense advice, chat about design, help track down memory bugs

• don’t: tell other students exactly what to put in their code

• don’t: paste someone else’s code into yours

Always cite sources of code and ideas
• think carefully about who and what contributed to your work

• if you tell me what is going on, there is never any AI problem

Topics

Shading and light reflection

Cu (α = 0.1) Al (anisotropic)

W
en

ze
l J

ak
ob

 /
M

ist
ub

a

Ray Tracing

Illumination

area lights
environment light

Er
ic

He
itz

Shadow algorithms

Approximate soft illumination

Morgan McGuire

Post-processing effects

Figure 14: Two highway scenes before and after the scotopic glare

algorithm. The orientation of the headlights is made obvious by the

degree of glare.

Figure 15: An indoor simulation before and after the mesopic glare

algorithm..

Figure 16: The Sun showing through leaves before and after the

photopic glare algorithm. The location of the Sun is obvious only

after the glare is added. Note that there is no lenticular halo because

the pupil of the viewer is contracted.

333

Figure 14: Two highway scenes before and after the scotopic glare

algorithm. The orientation of the headlights is made obvious by the

degree of glare.

Figure 15: An indoor simulation before and after the mesopic glare

algorithm..

Figure 16: The Sun showing through leaves before and after the

photopic glare algorithm. The location of the Sun is obvious only

after the glare is added. Note that there is no lenticular halo because

the pupil of the viewer is contracted.

333

Greger et al. SIGGRAPH 2005

Mesh animation

Game Programming Wiki (gpwiki.org)

Panozzo & Jacobson, libigl tutorial (libigl.github.io/libigl)

http://gpwiki.org
http://libigl.github.io/libigl

Mesh animation

STAR: A Sparse Trained Articulated Human Body Regressor 
Osman, Bolkart, and Black, ECCV 2020

Mesh animation

STAR: A Sparse Trained Articulated Human Body Regressor 
Osman, Bolkart, and Black, ECCV 2020

CS 5625 Coursework

3 projects (working in pairs recommended)

• mostly implementation, sometimes written problems to work out math

• style is ground-up: we provide libraries but you write main()

• C++ and OpenGL

• topics: ray tracing, monte carlo, illumination, shading, texturing, shadows, mesh animation

Final project (groups of 3–5)
• project proposal

• milestone presentations and evaluation

• final project demos, presentations, writeup

Final project

An interactive 3D environment with fancy graphics
• many groups build something game-like

• other kinds of proposals also welcomed

Open ended, needs to have technically impressive results

Ways to impress
• rendering: shading, shadows, global illumination, …

• modeling: splines, subdivision surfaces, procedural generation, …

• animation: character motion, collision detection, simulation, …

• imaging: flare, antialiasing, noise filtering, …

Focus is on graphics, not gameplay

Final project examples 
2015 – 2019

Natalie Diebold, Hani Altwaijry | Portal-ish

Natalie Diebold, Hani Altwaijry | Portal-ish

Natalie Diebold, Hani Altwaijry | Portal-ish

Victoria Dye, Joshua Reichler | White-Out 2k17: The Snowening

Fight your way through the zombie fairies to rescue Orin!

Ari Karo, Christopher Yu, Jonathan Behrens, Jeremy Cytryn | Subterranean Arsonism

Ar
i K

ar
o,

 C
hr

ist
op

he
r Y

u,
 J

on
at

ha
n

Be
hr

en
s,

 J
er

em
y

Cy
try

n
| S

ub
te

rra
ne

an
 A

rs
on

ism

Ryan Lefkowitz, Meredith Young-Ng, Erika Yu | Open World Driver

Daniel Konviser, Lily Lin, Sitian Chen | Jump!

