Defending Computer Networks
Lecture 8: More Port Scanning

Stuart Staniford
Adjunct Professor of Computer Science

Quiz

e Reminder, closed book:
— No notes
— No laptops/tablets
— No phones
— Write name/net-id on top right.

Logistics

* HW2 up on website later today.
— Will be due a week Friday.

New Assigned Reading

e Staniford et al Practical Automated Detection
of Stealthy Portscans

http://webpages.cs.luc.edu/~pld/courses/
intrusion/fall05/hoagland spade.pdf
— Through section 3.1

Latest News

1,000,000 SCADA and control systems devices on the Internet?

Project SHINE development started mid-2008 and began ingesting raw data in mid-
April 2012. It was initiated to determine a baseline of just how many SCADA/ICS
devices and software products are directly connected to the Internet. At the time we
started, many people said that the answer to our question would be “very few, if any.”
To date, we have not reached a baseline (aka, "the bottom") in the total number of
devices we discovered. The average number of new SCADA/ICS devices found every
day is typically between 2000 and 8000. So far we have collected over 1,000,000
unique IP addresses that appear to belong to either SCADA and control systems
devices or related software products.

These devices include the traditional SCADA/ICS equipment, such as RTUs, PLCs,
IEDs/sensor equipment, SCADA/HMI servers, and DCS. Non-traditional SCADA/ICS
devices include:

e maedical devices

e traffic management systems

e automotive control

e traffic light control (includes red-light and speeding cameras)

¢ HVAC/environment control

e power regulators/UPSs

e security/access control (includes CCTV and webcams)

e serial port servers (many of which include Allen-Bradley DF1 capable protocols)
e and data radios (point-to-point 2.4/5.8/7.8 GHz direct-connected radios)

http://www.tofinosecurity.com/blog/project-shine-1000000-internet-connected-scada-and-ics-systems-and-counting

And In Other News

Cyber Security Firm FireEye Enjoys
Smoking-Hot Debut

Matt Egan

3.

!

=

- - |
e
S
‘___b

g

ol ¢

o=

e

==

'
- s -

=

O
MK

P e)
[\ G-
. -

K
- o=

E

- - - KK
4 AO»—3——*K Y
OO0

AT

30%*%
>OE;O

SO
D,__L
o

S
._;OH
Al

>

- ==

Print FireEye (FEYE) sizzled in its debut on the Nasdaq Stock Market on

Email Friday as the cyber security company instantly doubled its initial
public offering price.

2 Share

»~ 0 Comments The strong demand for shares of the Milpitas, Calif.-based company

Flike 2 highlights Wall Street's focus on security due to increasingly
complex and powerful cyber attacks on companies and
governments around the world.

http://www.foxbusiness.com/technology/2013/09/20/cyber-security-firm-fireeye-enjoys-smoking-hot-debut/

3 Tweet <0

Main Goals for Today

 TCP Portscanning (retry on demos)
e Detection of Portscanning

Visualizing Scans

Port

\p Addre¢ss /44— ——m—-r-—----- o — >

Let’s try it

* sudo nmap -n—-sS-T4 10.0.0.2

What’s Happening on The Wire

e sudo tcpdump -n -i en0
 sudo nmap -n—sS$10.0.0.2

Let’s try these and compare

tcpdump -n -i en0

nmap -n —sS volunteer-ip
nmap -n —sF volunteer-ip
If time

— nmap -n —=sX volunteer-ip
— nmap -n —=sN volunteer-ip

Let’s look at everything nmap can do

* Just for kicks
e sudo nmap -n—A-T410.0.0.2

Then we need a data structure

* Simplest possible thing is a hash table
— keyed on client IP
— With per-connection counts of relevant stuff
— Eg just count syns

— Portscanners will issue more syns than average.
* Alert when count goes over threshold
e But what’s likely to go wrong?

Keep track of unique dests/src?

* Now have to have a way to know
— what is a unique dst for that src?

B —>
—>—
‘ i i

Better Idea

Key off the idea that port-scanners make a lot
of failed connections.

Legit users make only a few
— So keep track of “failed-succeed” count

— Alert when goes over threshold.
How can the attacker game this?

Doesn’t work in the presence of packet-filter/
firewalls.

Another Idea

e Learn the probability of a syn (say) being to a
destination:
— P(D)
— Popular servers will have high P(D) (say 5% or 1%)
— Non-servers will have very low P(D) (1 in 10° or 10°)

— Take —log(P(D)) and accumulate that in hash table
* Anomaly score

— Portscanners will accumulate a lot of anomaly score
e Alert if over a threshold

— Harder for attackers to game — don’t know P(D)
* Otherwise wouldn’t need to portscan

Extending the basic idea

* Keep flow table state
 Know when we see things like unexpected F
* Give that a high anomaly score

>l o

—>sa

