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1 Key Management

So far, you have seen an overview of the basic cryptographic protocols that are used to
secure a variety of modern systems. In 5430, you talked about symmetric encryption (e.g.,
AES), asymmetric encryption (e.g., RSA, El Gamal), hybrid encryption, MACs, digital
signatures, and key agreement protocols. This means you are now familiar with many of
the essential cryptographic building blocks that are used to design secure systems.

However, successfully security a system using cryptographic tools inherently pre-
sumes successful key management. Key management is the problem of managing cryp-
tographic keys in a system; this includes key generation, storage, use, and replacement.
A failure in any of these areas can introduce a vulnerability that might result in compro-
mised security.

1.1 Key Generation

There are two primary decisions to be made regarding key generation. First, what keys
should you generate? You need to decide on an algorithm and (if applicable) a key length.
And second, where are you going to find the randomness needed to generate those keys?

To answer the first question, we turn to the National Institute of Standards and
Technology (NIST), a unit of the United States Commerce Department responsible for
maintaining and promoting measurements and standards. NIST gives recommendations
for appropriate algorithms and key sizes depending on the function and the security func-
tion of the key and the security life of the data. These recommendations are summarized
in Table 1. Recommendations are given in terms of bits of security, logically speaking a
cryptographic scheme with n bits of security means that an adversary needs to perform
2n operations to break it.

Security Symmetric
RSA

Elliptic Curve
HMAC NIST Rec.

(in bits) Enc. Crypto
≤ 80 2TDEA k = 1024 f = 160-223 No
112 3TDEA k = 2048 f = 224-255 until 2030
128 AES-128 k = 3072 f = 256-383 SHA-1 Yes

≥ 256 AES-256 k = 15360 f = 512+ SHA-256 Yes

Table 1: NIST Key Length Recommendations

Failure to generate the right sorts of keys can result in embarrassing vulnerabilities.

5-1



After Yahoo! revealed that attackers had stolen account information for more than
a billion accounts in August 2013, it also revealed that it had stored passwords for
those accounts using the outdated MD5 hashing algorithm. It is assumed that most of
those passwords were therefore successfully recovered by the attackers, and all users were
advised to change their passwords for their Yahoo account and for any other accounts
that used the same password.

To answer the second question, we consider the available resources. In Unix-type sys-
tems, there are two special files that serve as sources of pseudorandomness: /dev/random
and /dev/urandom. /dev/random is a blocking pseudorandom number generator (PRG)
that collects environmental noise from device drivers and other sources and generates
pseudorandom bits. Historically, Linux systems used a hash-based PRG, but since 2014
most current implementations have used a stream cipher called chacha20; macOS and
iOS continue to use a SHA-1 based PRG. If there a process requests more bits than are
currently available in /dev/random, the call blocks until more entropy has been collected.
/dev/urandom is an “unlimited” nonblocking pseudorandomnumber generator that uses
stream ciphers to produce as much randomness as needed; there are no known attacks
based on systems using /dev/urandom instead of /dev/random. In Java, this means you
should use SecureRandom (on Linux systems it generally returns random bytes from
directly from /dev/random or /dev/urandom depending on the system defaults and the
input parameters. You should not use Java.util.Random for cryptographic key genera-
tion; Java.util.Random is implemented as a linear congruential pseudorandom number
generator with a 48-bit seed and does not provide enough entropy.

As we discussed last week, insufficient entropy during key generation can undermine
the security of your system and render in vulnerable to a variety of attacks.

1.2 Key Storage

There are two approved techniques for storing cryptographic keys. Keys can either be
stored remotely or in a cryptographic module.

Remote key storage is appropriate for high-value keys that are not frequently needed.
The remote storage location is assumed to be secure (for example, because it is air-
gapped). In many cases, remotely stored key are stored as secret shares. Secret shares
are logically pieces of the key with the property that an n out of the k shares can be used
to reconstruct the original key. Such a scheme provides redundancy—it is not vulnerable
to the loss or corruption of a single share—and defense in depth—the adversary must
successfully compromise n shares in order to reconstruct the key. One simple secret-
sharing protocol encodes shares as points on a polynomial and the secret as the value
f(0); a (n − 1)-degree polynomial is uniquely defined by any n points, so a n out of k
secret sharing can be achieved by defining k points on such a polynomial.

The alternative technique, which is useful for keys that are used more frequently—is
to store the keys in a cryptographic module. Intuitively, this just means that plaintext
keys are only available in memory; an adversary who does not have access to memory can-
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Key Type
Cryptoperiod

Originator (OUP) Recipient
Private Signature Key 1 to 3 years -
Public Signature-Verification Key Several years (depends on key size)
Symmetric Authentication Key ≤ 2 years ≤ OUP + 3 years
Private Authentication Key 1 to 2 years
Public Authentication Key 1 to 2 years
Symmetric Data Encryption Keys ≤ 2 years ≤ OUP + 3 years
Symmetric Key Wrapping Key ≤ 2 years ≤ OUP + 3 years
Symmetric Master Key About 1 year
Private Key Transport Key ≤ 2 years
Public Key Transport Key 1 to 2 years
Symmetric Authorization Key ≤ 2 years
Private Authorization Key ≤ 2 years
Public Authorization Key ≤ 2 years

Table 2: NIST Cryptoperiod Recommendations

not retrieve the keys. Java provides a variety of cryptographic module implementations
as Java Keystores.

1.3 Key Use and Replacement

In general, a single key should only be used for a single purpose. For example, the same
key should never be used for both encryption and signing. This limits the damage if a
key is compromised, precludes the possibility of key leakage from the other protocol, and
enables prompt key destruction when appropriate. Plaintext keys stored on disk or in
memory should be zeroed out after use (not just deallocated)

Keys should only be used for a limited period of time, known as a cryptoperiod.
This practice limits the time and data available for cryptanalysis, limits the exposure
if a single key is compromised, and enables prompt adoption of new algorithms when
appropriate. The appropriate length for a cryptoperiod depends on the strength of the
cryptographic mechanism, the operating environment, the security life of the data, the
security function (e.g., encryption, signing, key protection), the key update process, and
the threat model. Cryptoperiods are typically shorter for encrypting communications
than for encrypting stored date, due to the overhead of re-encryption.
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2 Alternative Cryptographic Approaches

A system that relies on standard public-key (asymmetric) encryption, private-key (sym-
metric) encryption, or hybrid encryption is inherently going to have to deal with the
problem of key management. This, unfortunately, includes a lot of opportunities to
make mistakes and to thereby introduce vulnerabilities. Modern cryptographers have
therefore developed techniques for simplifying key management.

2.1 Password-Based Encryption

Password-based encryption (PBE) grew out of the observation that key management
could be simplified if the secret keys didn’t have to be stored anywhere because users
just remembered them. Of course, it is not reasonable to expect your users to remember
large strings of random bytes (or large random primes), but it is (perhaps) reasonable to
assume that users can remember passwords. The idea behind password-based encryption
is basically to derive encryption keys from user passwords. A naive password-based
encryption algorithm could use the password as the seed for a pseudorandom number
generator or hash function and use the output as the secret key.

Of course, there are problems with using passwords to generate keys. Most notably,
password are less random than randomly chosen encryption keys. Last time, we discussed
some of the vulnerabilities that arise when RSA keys are generated with insufficient ran-
domness; our naive password-based encryption protocol would inherently be vulnerable
to this type of attack. But how bad would it be in practice? Well, a uniformly generated
AES key has 128 bits of entropy. A 2048-bit RSA key has 112 bits of entropy. A uniformly
generated 8-character password composed of keyboard characters has about 52 bits of
entropy. But users don’t choose their passwords uniformly at random. For example,
SplashData’s annual survey of leaked passwords indicates that the top five passwords
in 2016 were (1) 123456, (2) password, (3) 12345, (4) 12345678, and (5) football. In
fact, according to NIST estimates, a typical user-chosen 8-character password has 18-24
bits of entropy, depending on whether the user is required to include particular types of
characters. This is low enough to make our naive password-based encryption protocol
vulnerable not only to the types of insecure-randomness attacks we discussed last week
but also to guessing or dictionary attacks.

There are two general approaches to mitigating this vulnerability in our naive password-
based encryption scheme. The first technique is to make computation slow by using
repeated iterations of the pseudorandom number generator (generally implemented with
a secure hash function such as SHA-256). Current practice uses about 10,000 iterations.
NIST recommends a minimum of 1000 iterations and up to 10 million iterations for
security-critical applications where performance is not critical. However, slowing down
the computation of a key does not prevent an adversary from compiling a pre-computed
“dictionary” of keys derived from common passwords.

The second approach is to augment the key with random bytes known as a salt.
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The salt is randomly generated anew for each value encrypted. The random bytes are
combined with the password to increase the entropy of the derived key; the salt is then
stored alongside the ciphertext so that it can be decrypted in the future. Note that in
order to be effective, the salt must be chosen with high-quality randomness. In Java,
this means you should use SecureRandom (on Linux systems it generally draws directly
from the native PRG, that is it returns random bytes from /dev/random (blocking) or
/dev/urandom (nonblocking, uses a stream cipher), both of which generate bits from en-
vironmental noise collected from devise drivers and other sources), not Java.util.Random
(which is implemented as a linear congruential pseudorandom number generator with a
48-bit seed).

One common way to combine these techniques into a secure password-based en-
cryption scheme—standardized as PKCS12—is as follows: (1) select a fresh salt value
uniformly at random, (2) append the password to the salt and also append a counter
value, initialized to 1, (3) calculate a secure hash of the concatenated value, (4) repeat
steps (2)-(3) with the output for the prescribed number of iterations, incrementing the
counter with each iteration. A variant of this protocol designed to produce variable-
length keys—PKCS5v2, sometimes referred to as PBKDF2—is approach is believed to
offer the best available security for password-based encryption. A schematic for PBKDF2
is shown in Figure 1. Note that Java provides built in password-based encryption ciphers;
however, these implementations rely on insecure underlying algorithms. Stronger ciphers
are supported by Bouncy Castle.

Password-based encryption is commonly used in cases where a single user wants
to secure the confidentiality of data stored for later retrieval. This is commercially
available as a variety of full-disk encryption tools (e.g., FileVault, Bitlocker, TrueCrypt),
and more recently incorporated directly into a variety of niche cloud storage services
(e.g., SpiderOak, Wuala, Tresorit, Mega). A variant of PBE designed for establishing
secure connections, known as password authenticated connection establishment (PACE)
is currently in development. A protocol is specified in RFC 6631, but it is not an Internet
Standards Track specification.

2.2 ID-based Encryption

A standard problem with encryption is how to solve the key distribution problem. That
is, how do users discover the secret key associated with a principal. On the Internet, this
problem is solved by deploying certificate authorities, hierarchies of trusted authorities
that attest to certificate chains containing public keys. However, this scheme assumes
both that the intended recipient is online when the communication occurs and that the
PKI infrastructure will scale to support the number of authenticated principals. If a
system design calls for sending encrypted messages directly to a user—instead of only
using keys to authenticate servers—these assumptions might not hold.

The idea behind ID-based encryption (IBE) is that in many applications, each user
has an identifier (a username, an email address, etc) that is known to the principals that
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Figure 1: Schematic of the PBKDF2 password-based encryption protocol.

want to send messages to that user. ID-based encryption simply uses this identifier as
the public key associated with that user.

Existing IBE protocols work with the aide of a highly-trusted principal called the
key generator. The key generator generates a master public key and a master private key.
The master public key is published and used to encrypt ciphertexts under an identifier.
The master private key is used to derive individual private keys for each user; to learn
their private key, each user must contact the key generator and prove their identity.

Feasible IBE protocols have been known since 2001. A preliminary IBE standard is
specified in RFC 5091; it is not an accepted Internet Standard. However, IBE protocols
tend to have higher overhead than standard encryption techniques, and the trust model
is not always appropriate for particular systems; IBE is not generally deployed in existing
commercial products.

Generalizations of ID-based encryption have also been proposed, most notably attribute-
based encryption (ABE). ABE is a form a public-key encryption in which the secret key
of a user is dependent on attributes associated with that user (e.g., role in the system,
country of residence). ID-based encryption can be viewed as a special case of ABE in
which the identifier is the only attribute each user has. ABE schemes have be proposed
by cryptographic researchers, but none are sufficiently efficient to have been standardized
or deployed in commercial products.
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