CS 5430:

Information Flow
Part |I: Dynamic Enforcement

Fred B. Schneider

Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University
Ithaca, New York 14853
U.S.A.

Cornell CIS _
Computer Science

Enforcement of FBAC

FLI imposes restrictions on each statement.
vow = ['(v) ET'(w)
e Static Enforcement
— Compiler ensures type-correct programs satisfy
restrictions.
e Dynamic Enforcement

— run-time checks ensure program execution satisfies
restrictions.

— changes to labels mean program execution satisfies
restrictions.

Why Dynamic Enforcement?

e Static enforcement: Rejects program if any execution could violate
Flow-Label invariant.

e Dynamic enforcement: Blocks after partial execution when Flow-
Label invariant could be violated.

if 0 = 0 then x;, := 2 else xy, := xy fi

Why Dynamic Enforcement?

e Static enforcement: Rejects program if any execution could violate
Flow-Label invariant.

e Dynamic enforcement: Blocks after partial execution when Flow-
Label invariant could be violated.

Type error!

if 0 = 0 then x;, := 2 else|x;, = xy/fi

Why Dynamic Enforcement?

e Static enforcement: Rejects program if execution could violates
Flow-Label invariant

e Dynamic enforcement: Blocks after partial execution when Flow-
Label invariant could be violated.

check:
ctx UT(2) ET(x1)?

if 0 = 0,then x;, := 2 elsex;, = xy, fi

Y I

ctx = L check:
ctx U I'(xy) E I'(x1)?

Why Dynamic Enforcement?

e Static enforcement: Rejects program if execution could violates
Flow-Label invariant

e Dynamic enforcement: Blocks after partial execution when Flow-
Label invariant could be violated.

check:
ctx UT(2) EI'(xy)?

—
if 0 = 0,then x;, := 2 else x;, := xy, fi

Y

ctx = L

Implementing Dynamic Enforcement

Conjecture: To implement dynamic enforcement:
— Precede x := Expr with check: “ctx U T'(Expr) E I'(x)?"
— Block execution if check fails.

Implementing Dynamic Enforcement

Conjecture: To implement dynamic enforcement:
— Precede x := Expr with check: “ctx U T'(Expr) E I'(x)?"
— Block execution if check fails

g = 0 ['(B) U T(Expr) T I'(x)?

if B then *x; := Expr
else sKip
fi

Implementing Dynamic Enforcement

Conjecture:
— Precede x := Expr with check: “ctx U T'(Expr) E I'(x)?"
— Block execution if check fails

['(B) U T(Expr) T I'(x)?

XL, = ()

if B then *x; := Expr
else sKip
fi

But... when stop on check:

— ... B=true leaks!
— Result: implemented RNI (=termination insensitive) only

Solution: Hybrid Enforcement

XL, = 0
if Bthen x; := Expr

else skip
fi

e B — x; whether or not x; := Expr executes.

— For I'(B) = H, could exist memories M and M’ with different H
values causing termination with x; having different values.

Solution: Hybrid Enforcement

XL = 0 I
if B then [Xy, = ExXpr

else 1 skip
fi
—

e B — x; whether or not x; := Expr executes.

— For I'(B) = H, could exist memories M and M’ with different H
values causing termination with x; having different values.

— FLI requires I'(B) C xi,
= Before if -or- Within then and within else -or- After if

— FLI also requires I'(Expr) E x;, before x; := Expr

10

Solution: Hybrid Enforcement

XL = 0 I
if B then [Xy, = ExXpr

else 1 skip
fi
—

e B — x; whether or not x; := Expr executes.

— For I'(B) = H, could exist memories M and M’ with different H
values causing termination with x; having different values.

— FLI requires I'(B) C xi,
= Before if -or- Within then and within else -or- After if

— FLI also requires I'(Expr) E x;, before x; := Expr
o Whatif Bis xy # x4 ?

11

Hybrid Enforcement. Summary

if B then C; else C, fi

e Insert check I'(Expr) E I'(x) before execution of
each "x := Expr”in C; or C,.

e Insert check I'(B) E I'(x) within execution of
both C, and C, if “x == ..."” appears anywhere
within C; or within C..

12

Flow-Sensitive Labels

A given variable might be given different flow-
sensitive labels during execution.

Example:
X :=Hval;, x:=0; xp:=x
Observe:
— If I'(x) = H then program does not type check.

13

Flow-Sensitive Labels

A given variable might be given different flow-
sensitive labels during execution.

Example:
x = Hval;, x:=0; xp;:=x
red given label H; green given label L

Program does type check and satisfies:
vow=TI(v) ET(w)

14

Flow Sensitive Labels + Dynamic?

x:=0 {T(x) = L}

if h > 0 then

else
fi

x = 2; {I'(x) =T(h) = H}
skip

e h > 0 istrue: After fiI'(x) = H
e h > 0 isfalse: AfterfiI'(x) =L

Problem: h - x but I'(h) Z I'(x)

15

Flow Sensitive + ... Soln 1

Rule: Block execution from entering conditional
commands with high guards and lower targets.

= — Stop here!

ifh>0then x :=2
else skip

fi

16

Flow Sensitive + ...

Rule: Update labels of target variables in
untaken branches to capture implicit flow.

X =0

ifh >0then x =2; I'(x) :=T(h)
else skip; I'(x) :=T'(h)

fi

Soln 2

17

Leaks thru Flow-Sensitive Labels

Suppose: I'(m) =M and LEME H

if m > 0 then w := hi else w := lo fi

18

Leaks thru Flow-Sensitive Labels

Suppose: I'(m) =M and LEME H

false M

if m '> 0 then w := hi else w =]lo fi

19

Leaks thru Flow-Sensitive Labels

Suppose: I'(m) =M and LEME H

false M

if m :> 0 then w := hi else w = lo fi

true H

e Value of m leaks to label (M vs H) of w.

20

Avoiding Leaks thru Flow Sensitive 1

Rule: Use the same flow-sensitive label for
an assignment target, independent of

guard.

Example
if m > 0 then w := hi else w :=lo fi

1 1
(Sound but conservative.)

21

Avoiding Leaks thru Flow Sensitive 2

Rule: Associate a metalabel with each label.
Example:

false (M,M)
if m. > (0 then W = hi else W := lo fi

true (H,M)

Labels for meta-labels?

22

Summary

FLI: vow = TI(v)ET(Ww)

e Static enforcement
— Conservative

e Dynamic enforcement

— Insert tests
= Mind the untaken assignment!

— Change labels
= Static
= Dynamic: Leaks thru labels

23

