
CS 5430:
Information Flow

Part II: Dynamic Enforcement

Fred B. Schneider
Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University

Ithaca, New York 14853
U.S.A.

Enforcement of FBAC

FLI imposes restrictions on each statement.
v → w ⟹ Γ(v) ⊑ Γ(w)

● Static Enforcement
– Compiler ensures type-correct programs satisfy

restrictions.

1

Why Dynamic Enforcement?

● Static enforcement: Rejects program if any execution could violate
Flow-Label invariant.

● Dynamic enforcement: Blocks after partial execution when Flow-
Label invariant could be violated.

!" 0 = 0 %&'(x* ≔ 2 '-.' x* ≔ x/ "!

2

Why Dynamic Enforcement?

● Static enforcement: Rejects program if any execution could violate
Flow-Label invariant.

● Dynamic enforcement: Blocks after partial execution when Flow-
Label invariant could be violated.

!" 0 = 0 %&'(x* ≔ 2 '-.' x* ≔ x/ "!

3

Type error!

Why Dynamic Enforcement?

● Static enforcement: Rejects program if execution could violates
Flow-Label invariant

● Dynamic enforcement: Blocks after partial execution when Flow-
Label invariant could be violated.

!" 0 = 0 %&'(x* ≔ 2 '-.' x* ≔ x/ "!

4

check:
ctx ⊔ Γ 2 ⊑ Γ(x*)?

check:
ctx ⊔ Γ x8 ⊑ Γ(x*)?

ctx = L

Why Dynamic Enforcement?

● Static enforcement: Rejects program if execution could violates
Flow-Label invariant

● Dynamic enforcement: Blocks after partial execution when Flow-
Label invariant could be violated.

!" 0 = 0 %&'(x* ≔ 2 '-.' x* ≔ x/ "!

5

check:
ctx ⊔ Γ 2 ⊑ Γ(x*)?

ctx = L

Implementing Dynamic Enforcement

Conjecture: To implement dynamic enforcement:
– Precede x ≔ Expr with check: “ctx ⊔ Γ Expr ⊑ Γ x ?”
– Block execution if check fails.

6

Implementing Dynamic Enforcement

Conjecture: To implement dynamic enforcement:
– Precede x ≔ Expr with check: “ctx ⊔ Γ Expr ⊑ Γ x ?”
– Block execution if check fails

x+ ≔ 0
-. B 0123 x+ ≔ Expr

2452 56-7
.-

7

Γ B ⊔ Γ Expr ⊑ Γ x+ ?

Implementing Dynamic Enforcement

Conjecture:
– Precede x ≔ Expr with check: “ctx ⊔ Γ Expr ⊑ Γ x ?”
– Block execution if check fails

x+ ≔ 0
-. B 0123 x+ ≔ Expr

2452 56-7
.-

But… when stop on check:
– … B=true leaks!
– Result: implemented RNI (=termination insensitive) only

8

Γ B ⊔ Γ Expr ⊑ Γ x+ ?

Solution: Hybrid Enforcement

x" ≔ 0
%& B ()*+ x" ≔ Expr

/0 01%2
&%

● B → x" whether or not x" ≔ Expr executes.
– For Γ B = H, could exist memories M and M’ with different H

values causing termination with x" having different values.
– FLI requires Γ 8 ⊑ :;

§ Before if
§ Within then and within else
§ After if

9

Solution: Hybrid Enforcement

x" ≔ 0
%& B ()*+ x" ≔ Expr

/0 01%2
&%

● B → x" whether or not x" ≔ Expr executes.
– For Γ B = H, could exist memories M and M’ with different H

values causing termination with x" having different values.
– FLI requires Γ B ⊑ x"

§ Before if				-or- Within then and within else					-or- After if
– FLI also requires Γ Expr ⊑ x" before x" ≔ Expr

● What if B is xD ≠ xD ?
10

Solution: Hybrid Enforcement

x" ≔ 0
%& B ()*+ x" ≔ Expr

/0 01%2
&%

● B → x" whether or not x" ≔ Expr executes.
– For Γ B = H, could exist memories M and M’ with different H

values causing termination with x" having different values.
– FLI requires Γ B ⊑ x"

§ Before if				-or- Within then and within else					-or- After if
– FLI also requires Γ Expr ⊑ x" before x" ≔ Expr

● What if B is xD ≠ xD ?
11

Hybrid Enforcement: Summary

!" B $%&' C) &*+& C, "!

● Insert check Γ Expr ⊑ Γ(x) before execution of
each “x ≔ Expr” in C) or C,.

● Insert check Γ B ⊑ Γ(x) within execution of
both C) and C, if “x ≔ ... ” appears anywhere
within C) or within C,.

12

Flow-Sensitive Labels

A given variable might be given different flow-
sensitive labels during execution.

Example:
x ≔ Hval; x ≔ 0; x) ≔ x

Observe:
– If Γ x = H then program does not type check.
– If Γ , is flow sensitive then all assignments are legal.
– Program type checks with flow sensitive labels

13

Flow-Sensitive Labels

A given variable might be given different flow-
sensitive labels during execution.

Example:
x ≔ Hval; x ≔ 0; x) ≔ x

red given label H; green given label L

Program does type check and satisfies:
v → w ⇒ Γ v ⊑ Γ w

14

Flow Sensitive Labels + Dynamic?

x ≔ 0 {Γ x = L}
)* h > 0 -./0 x ≔ 2; {Γ x = Γ h = H}

/45/ 56)7
*)

● h > 0 is true: After fi Γ x = H
● h > 0 is false: After fi Γ x = L

Problem: h → x but Γ h ⋢ Γ x

15

Flow Sensitive + … Soln 1

Rule: Block execution from entering conditional
commands with high guards and lower targets.

x ≔ 0
$% h > 0 ()*+ x ≔ 2

-. ./$0
%$

16

Stop here!

Flow Sensitive + … Soln 2

Rule: Update labels of target variables in
untaken branches to capture implicit flow.

x ≔ 0
$% h > 0 ()*+ x ≔ 2; Γ x ≔ Γ(h)

12 23$4; Γ x ≔ Γ(h)
%$

17

Leaks thru Flow-Sensitive Labels

Suppose: Γ m = M and		L ⊑ M ⊑ H

,- m > 0 0123 w ≔ hi 2892 w ≔ lo -,

18

false

true H

M

Leaks thru Flow-Sensitive Labels

Suppose: Γ m = M and		L ⊑ M ⊑ H

,- m > 0 0123 w ≔ hi 2892 w ≔ lo -,

19

false

true H

M

Leaks thru Flow-Sensitive Labels

Suppose: Γ m = M and		L ⊑ M ⊑ H

,- m > 0 0123 w ≔ hi 2892 w ≔ lo -,

● Value of m leaks to label (M vs H) of w.

20

false

true H

M

Avoiding Leaks thru Flow Sensitive 1

Rule: Use the same flow-sensitive label for
an assignment target, independent of
guard.

Example
!" m > 0 &'() w ≔ hi (./(w ≔ lo "!

H H
(Sound but conservative.)

21

Avoiding Leaks thru Flow Sensitive 2

Rule: Associate a metalabel with each label.
Example:

false																																					⟨ M,M ⟩

+, m > 0 0123 w ≔ hi 2892 w ≔ lo ,+

true													⟨ H,M ⟩
Labels for meta-labels?

22

Summary

FLI: v → w ⟹ Γ(v) ⊑ Γ(w)
● Static enforcement

– Conservative
● Dynamic enforcement

– Insert tests
§ Mind the untaken assignment!

– Change labels
§ Static
§ Dynamic: Leaks thru labels

23

