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Enforcement of FBAC

FLI imposes restrictions on each statement.
v → w ⟹ Γ(v) ⊑ Γ(w)

● Static Enforcement
– Compiler ensures type-correct programs satisfy 

restrictions.
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Why Dynamic Enforcement?

● Static enforcement:  Rejects program if any execution could violate 
Flow-Label invariant.  

● Dynamic enforcement:  Blocks after partial execution when Flow-
Label invariant could be violated.

!" 0 = 0 %&'( x* ≔ 2 '-.' x* ≔ x/ "!
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Type error!
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Implementing Dynamic Enforcement

Conjecture:  To implement dynamic enforcement:
– Precede x ≔ Expr with check:  “ctx ⊔ Γ Expr ⊑ Γ x ?” 
– Block execution if check fails.
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Implementing Dynamic Enforcement

Conjecture:  To implement dynamic enforcement:
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Γ B ⊔ Γ Expr ⊑ Γ x+ ?



Implementing Dynamic Enforcement

Conjecture:
– Precede x ≔ Expr with check:  “ctx ⊔ Γ Expr ⊑ Γ x ?” 
– Block execution if check fails

x+ ≔ 0
-. B 0123 x+ ≔ Expr

2452 56-7
.-

But… when stop on check:
– … B=true leaks!
– Result:  implemented RNI (=termination insensitive) only
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Γ B ⊔ Γ Expr ⊑ Γ x+ ?



Solution:  Hybrid Enforcement

x" ≔ 0
%& B ()*+ x" ≔ Expr

*/0* 01%2
&%

● B → x" whether or not   x" ≔ Expr executes.
– For Γ B = H, could exist memories M and M’ with different H 

values causing termination with x" having different values.
– FLI requires Γ 8 ⊑ :;

§ Before if
§ Within then and within else
§ After if
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Hybrid Enforcement:  Summary

!" B $%&' C) &*+& C, "!

● Insert check Γ Expr ⊑ Γ(x) before execution of 
each “x ≔ Expr” in C) or C,.

● Insert check Γ B ⊑ Γ(x) within execution of 
both C) and C, if “x ≔ ... ” appears anywhere 
within C) or within C,.
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Flow-Sensitive Labels

A given variable might be given different flow-
sensitive labels during execution.

Example:
x ≔ Hval; x ≔ 0; x) ≔ x

Observe:
– If Γ x = H then program does not type check.
– If Γ , is flow sensitive then all assignments are legal.
– Program type checks with flow sensitive labels
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Flow-Sensitive Labels

A given variable might be given different flow-
sensitive labels during execution.

Example:
x ≔ Hval; x ≔ 0; x) ≔ x

red given label H;  green given label L

Program does type check and satisfies:
v → w ⇒ Γ v ⊑ Γ w
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Flow Sensitive Labels + Dynamic?

x ≔ 0 {Γ x = L}
)* h > 0 -./0 x ≔ 2; {Γ x = Γ h = H}

/45/ 56)7
*)

● h > 0 is true:  After fi Γ x = H
● h > 0 is false:  After fi Γ x = L

Problem:  h → x but  Γ h ⋢ Γ x
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Flow Sensitive + …                 Soln 1

Rule:  Block execution from entering conditional 
commands with high guards and lower targets.

x ≔ 0
$% h > 0 ()*+ x ≔ 2

*-.* ./$0
%$
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Stop here!



Flow Sensitive + …                 Soln 2

Rule:  Update labels of target variables in 
untaken branches to capture implicit flow.

x ≔ 0
$% h > 0 ()*+ x ≔ 2; Γ x ≔ Γ(h)

*12* 23$4; Γ x ≔ Γ(h)
%$
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Leaks thru Flow-Sensitive Labels

Suppose:  Γ m = M and		L ⊑ M ⊑ H

,- m > 0 0123 w ≔ hi 2892 w ≔ lo -,
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Leaks thru Flow-Sensitive Labels

Suppose:  Γ m = M and		L ⊑ M ⊑ H

,- m > 0 0123 w ≔ hi 2892 w ≔ lo -,

● Value of m leaks to label (M vs H) of w.
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Avoiding Leaks thru Flow Sensitive 1

Rule:  Use the same flow-sensitive label for 
an assignment target, independent of 
guard.

Example
!" m > 0 &'() w ≔ hi (./( w ≔ lo "!

H               H
(Sound but conservative.)
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Avoiding Leaks thru Flow Sensitive 2

Rule:  Associate a metalabel with each label.
Example:

false																																					⟨ M,M ⟩

+, m > 0 0123 w ≔ hi 2892 w ≔ lo ,+

true													⟨ H,M ⟩
Labels for meta-labels?
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Summary

FLI: v → w ⟹ Γ(v) ⊑ Γ(w)
● Static enforcement

– Conservative
● Dynamic enforcement

– Insert tests
§ Mind the untaken assignment!

– Change labels
§ Static
§ Dynamic:  Leaks thru labels
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