

Overview: Cloud Datacenters II

Hakim Weatherspoon

Associate Professor, Dept of Computer Science
CS 5413: High Performance Systems and Networking
January 30, 2017

Background: The Internet

How do we get bits into and out of datacenters?

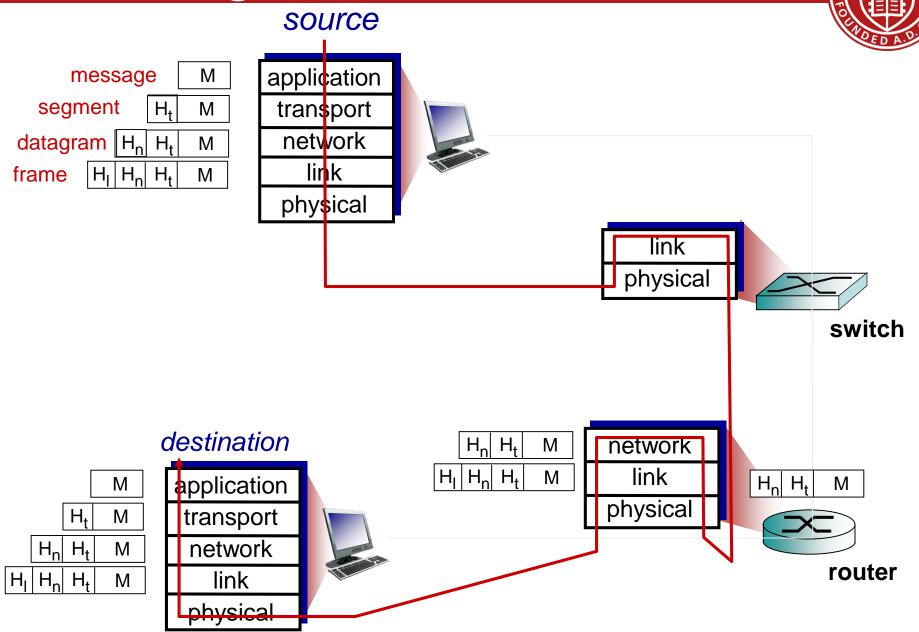
Background: The Internet

Internet Protocol / Internet Protocol Stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

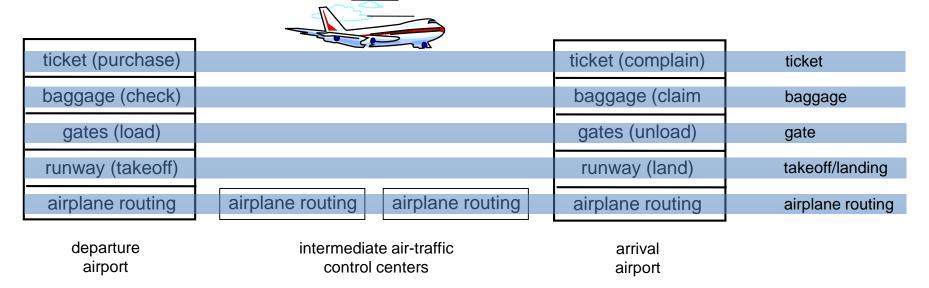
application

transport


network

link

physical


Background: The Internet

UNI

Network Protocol "Layers"

Network Protocol "Layers" similar to traveling protocol

layers: each layer implements a service

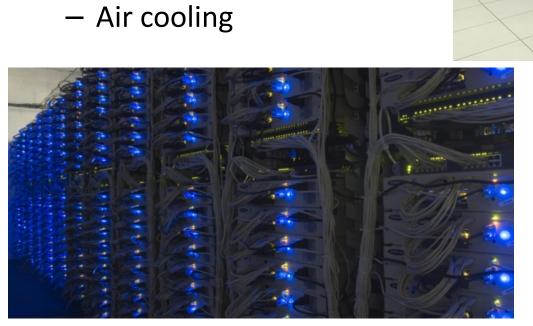
- via its own internal-layer actions
- relying on services provided by layer below

What does it take to build a million server datacenter?

- What does it take to build a million server datacenter?
- Challenges
 - Readily available (fiber-optic) networking
 - Abundant water
 - Inexpensive electricity
 - How much electricity?
 - 200W per server * 1M servers = 200MW!
 - Equivalent to 200k houses!
 - Management (e.g. installation, failures)
 - Environmental impact

■

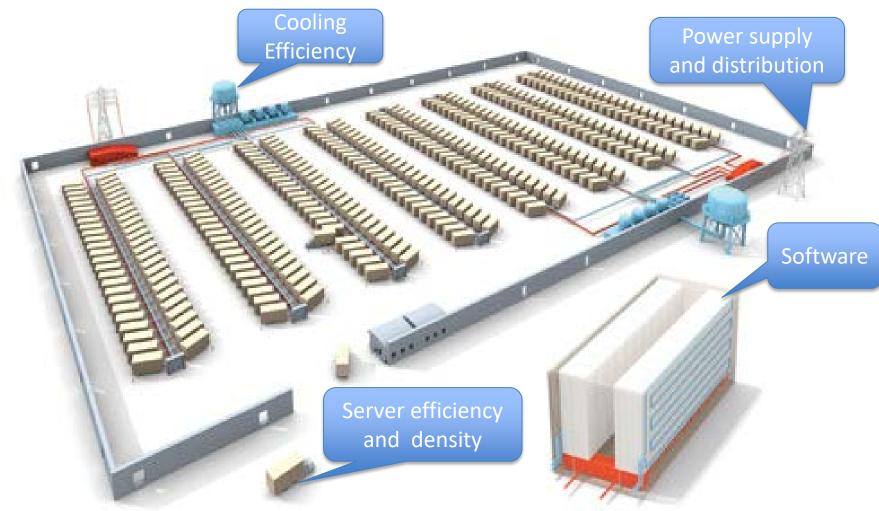
- What does it take to build a million server datacenter?
- Challenges
 - Readily available (fiber-optic) networking
 - Abundant water
 - Inexpensive electricity
 - How much electricity?
 - 200W per server * 1M servers = 200MW!
 - Equivalent to 200k houses!
 - Management (e.g. installation, failures)
 - Environmental impact
- Prior state of the art, dot-com era of 1990's to 2000's
 - 1k to 2k servers -> 1MW to 2MW
 - Setup and management was fairly manual


- What does it take to build a million server datacenter?
- Locations (power/cooling/water)

Titan tech boom, randy katz, 2008

- What does it take to build a million server datacenter?
- Server Utilization
 - 40x 200W pizza boxes
 - CPUs are 60% of power
 - 8 to 16kW per rack
 - $0.5 kW/m^2$

- Google/Microsoft
 - Better power mgmt.


 . Avg instead of peak
 - Better power supplies voltage regulators, fans
 - Remove GPU
 - Water cooling

- What does it take to build a million server datacenter?
- Containers (server, power, cooling efficiency)
 - 2500 to 3000 servers, instead of 40 to 80
 - Power and cooling efficiency
 - Power density, 16kW/m² instead of 0.5 kW/m²

What does it take to build a million server datacenter?

- What does it take to build a million server datacenter.
 - Power efficiency
 - Cooling efficiency
 - Server efficiency
 - Power proportionality
 - utilization
 - Power density
 - 0.5 kW/m² raised floor datacenter
 - 16 kW/m² containerized datacenter
 - Management/failure
 - Software masked failures
 - containerization

- Power efficiency
 - Tune power supply for average, not peak
 - Voltage regulators
 - Remove unnecessary components

- Cooling efficiency
 - HP "smart cooling"
 - Air-side economization
 - Containers

PUE

Total power consumption / total power used by consumers

Results

- Typical enterprise DC
 - 2007 2
 - 2011 1.7 (with optimizations may reach 1.3)
- Google DCs
 - Avg − 1.21
 - Best 1.15
- Microsoft
 - Chicago 1.22

- Virtualization
 - DCs run at 15% of their capacity without virtualization
 - DCs run at 80% with virtualization

- Other SW tools
 - Power usage control
 - Shared distributed data
 - Handle software failures

Perspective

- To build large and efficient datacenters
 - Better power efficiency
 - Better cooling efficiency
 - Specialized systems for datacenters

Before Next time

Finish Lab0 by Tuesday

Fill out survey to help form groups

- Create a project group
 - Start asking questions about possible projects
- Check website for updated schedule