
TCP Over SoNIC

Xuke Fang
Cornell University

XingXiang Lao
Cornell University

ABSTRACT
SoNIC [1], a Software-defined Network Interface
Card, which provides the access to the physical
layer and data link layers in software by implement-
ing them in software, provides complete control
over network in real time; Hence it gives system
programmers unprecedented precision for network
measurements and researches. However, SoNIC
only supports UDP transmission protocol for now.
In this paper, we present the implementation of
TCP over SoNIC and evaluation of TCP through-
put over different configurations.

1. INTRODUCTION
Physical layer(PHY) is often implemented in the
hardware and is neither accessible to systems pro-
gramer nor to operating systems. Hence it is of-
ten viewed as a black box for systems programmer.
However, with the network growing faster, the op-
timization on the top network layers hits a bot-
tleneck, and increasing number of researchers has
started to focus on the optimizing PHY. There are
few tools available for accessing PHY, like BiFocals
[2] and SoNIC. BiFocals uses physical equipment,
including a laser and an oscilloscope. SoNIC, on
the other hand, is another powerful tool that gives
systems programmers and researchers the access to
the PHY and data link layer by implementing the
PHY in the software. SoNIC is able to generate
packets at full data rate with minimal inter-packet
delay. It also provides fine control over the incom-
ing packets with sub-nanosecond granularity. With
the access to PHY from software, SoNIC gives re-
searchers untapped potential to develop new appli-
cations which are not feasible before. For instance,
SoNIC can precisely measure the available band-
width by measuring the number of idle packets be-
tween two packets, increase the TCP throughput

Proceedings of the 2011 Midstates Conference on Undergraduate Research

in Computer Science and Mathematics

and characterize network traffic.

Unfortunately, with all the benefits that SoNIC
could provide, before this paper, SoNIC is only op-
timized to generate UDP packets. In other words,
the limitation to UDP packets narrows the applica-
tion of SoNIC to support only unreliable transmis-
sions. As the result, we implemented TCP network
stack on top of SoNIC in order to fully extend the
power of SoNIC. Implementing TCP over SoNIC
is quite challenging because TCP has to maintain
a state machine while still satisfying real time con-
straints at line rate. In this paper, we will present
our implementation of TCP over SoNIC in detail
and its throughput in different tests.

2. BACKGROUND
The FPGA board that SoNIC is using is equipped
with two physical 10 GbE ports. Above the PHY
layer is the Media Access Control (MAC) sublayer
of the data link layer. MAC communicates with
the PCS sublayer of the PHY layer with a queue
style data structure called FIFO. On the TX path
MAC puts the information of the packets it wants
to send in order into FIFO and PCS fetch and send
them. On the RX path, it is the opposite direction.
The same as the current UDP implementation over
SoNIC, our TCP implementation will also be in the
MAC layer.

Generating TCP packets is more challenging than
generating UDP packets because it requires main-
taining a state machine. Also to ensure that no
packet loss and packet disorder will occur packet
resend can not be avoided. Resending packets is
a main factor that affects the data transmission
speed. To reach a high data transmission speed,
a feature called âĂIJwindowâĂİ must be imple-
mented in an elegant way. How we implemented
the window feature will be mentioned later.



Figure 1: State Machine for the TCP imple-
mentation

3. DESIGN
3.1 TCP state machine:
As mentioned above, sending tcp packets requires
maintaining a state machine. [Figure 1] is a graph
of our TCP state machine.The initial state of server
is WAITING FOR SYN and client will turn into
its initial state WAITING FOR SYNACK after it
sends the first SYN packet. There will be no dif-
ference between a server and a client after both
of them turn into state CONNECTED. In state
WAITING FOR SYNACK, a SYN packet will be
resent if SYNACK is not received in time. The re-
sending schemes of SYNACK, FIN and data pack-
ets are similar.

3.2 TCP data transmission and window size:
To reach a high TCP transmission speed we applied
the window feature to our TCP design. To make
sure every packet gets delivered to the destination,
TCP requires the receiver to reply the sender with
an ACK packet every time it receives a data packet.
And the sender cannot send the next data packet
before it sees the ACK packet corresponding to the
last data packet it sent. This enforces the sender
to send one packet at a time, which is very slow.
To improve the speed of transmission we added the
âĂIJwindowâĂİ feature to our TCP design. Win-
dow is the number of packets that can be sent at a

time. In other words, the sender is allowed to send
window size number of data packets and before it
starts to listen to the corresponding ACK packets.
The window size is not required to be fixed. In our
implementation, the sender sends idle packets for
0.3 milliseconds after it finishes sending a window
number of packets. Then it checks whether it has
received the ACK packet corresponding to the last
packet it sent. If it has received it, then it means
all data packets sent previously have been received.
It will increase the window size by a constant and
start to send the next window size number of pack-
ets. If the sender didn not receive the ack it was
supposed to received, then it means we may have
lost some packets during the transmission or the
transmission speed, the window size, is too big for
the current network environment to handle. Then
It decreases the window size by half.

4. IMPLEMENTATION
4.1 Filling packets contents and unmarshalling

the packet
For each packet, we fill in the Ethernet header first
and fill in the ip header in the ethernet frame pay-
load. And at last we fill in the TCP header in the
ip packet payload and fill in the TCP payload.

To unmarshall the packet we unmarshall Ethernet
header, ip header, tcp header in order.

4.2 Sending and receiving packets
Thread MAC TX puts packets into the FIFO for
PCS TX to fetch and send. PCS RX receives pack-
ets and forwards them for MAC RX to process.
Figure 2 shows how port 0 sends a data packet to
port1 through MAC TX0, PCS TX0, PCS RX1,
MAC RX1 and port 1 replies port 0 with a re-
sponse packet through MAC TX1, PCS TX1, PCS RX0,
MAC RX0. .

4.3 TCP state machine
The receive thread(sonic mac rx loop) checks the
flag of the packet received and the current state
to decide whether the packet needs a response and
whether the state needs to be changed.

The send thread(sonic mac pkt generator loop) sends
packets corresponding to the current state. We
added a timeout after each packet or window size
of packets have been sent. After the timeout we
check the current state to see whether we need to
resend to the packet or to send next the packet
indicated by the state machine described above.



Figure 2: Schematic of SoNIC Implementa-
tion

4.4 Timeouts
The physical layer of SoNIC requires MAC TX to
keep feeding it with packets to send, which means
we cannot use blocking calls like sleep to act as a
timeout timer. Instead, we are using sonic gen idles()
to generate idle packets that take a certain time to
be sent by the physical layer. For example, af-
ter the client sends the first SYN packet we call
sonic gen idles() to generate idle packets that will
be sent in 0.1 milliseconds and check whether we
received the SYNACK response after the generated
idles packets have been sent.

4.5 Seq, Ack and Window
The sender keeps the current seq number and re-
ceiver keeps the current ack number. When the
sender receives an ACK packet it sets the current
sequence number to be the ack number of the ACK
packet if it is larger than the current seq num-
ber. When receiver receives a data packet it checks
whether the sequence number is the same as its
current ack number. If yes, then update the ack
number, else, do nothing because in this case this
data packet is either a duplicate or we have not
received all data packets before it.

To implement the window feature, now the sender
sends a window size of packets starting from the
packet with the current seq number but it only
checks whether the ACK packet corresponding to
the last packet sent in the last window has been
received or not and adjust the window size.

4.6 What we have not done
For now the algorithm used to change window size
is very simple. Our window size always increases
linearly and decreases by half.

5. EVALUATION
In this section, we present the throughput of the
TCP implementation on top of SoNIC with a loop-
back configuration. Here, the loopback configu-
ration means that TCP connection is established
between two ports of same SoNIC board. In ad-
dition, we also present the technique that we used
to improve the maximum throughput of TCP con-
nections.

In order to improve the performance(throughput)
of TCP connection, understanding of the limit-
ing factors of the TCP throughput is necessary.
One trivial limitation is the maximum bandwidth
of the slowest link in the path. However, since
the TCP is sending and receiving the packets in a
loopback configuration and the bandwidth between
these two ports are much larger than the through-
put. Hence, the bandwidth is not the bottleneck
of the throughput. The equation below shows the
maximum throughput is bounded by the maximum
segment size (MSS), round trip time(RTT) and
possibility of packet loss (Ploss).

Througput ≤ MSS

RTT ·
√
Ploss

(1)

However, since the TCP is running in loopback
configuration and the packet loss is so rare that
the TCP window becomes regularly fully extended,
this formula also doesn’t apply. This leads us to
the following equation:

Througput ≤ RWIN

RTT
(2)

Where RWIN represents the TCP receive window
size and RTT represents the round trip time. Even
with no packet loss, the receive window size still
has a significant impact on the TCP throughput.
This is because that sender will keep sending data
to the receiver until the it reaches the window size
before waiting for the acknowledgement from the
receiver. Then if the sender does not receive the ac-
knowledgement from the receiver for a certain pe-
riod of time, it retransmits the data to the receiver.
This will cause a significantly decrease on the TCP
throughput. The round trip time is another fac-
tor that can significantly impact the throughput as



Figure 3: Time versus Receive Window Size
[retransmission timeout = 0.2ms; 100000
pkts]

shown in the equation. However, we are not able to
tune the RTT since it is a physical limitation im-
posed by the wire length, available bandwidth and
etc. But we are able to tune the retransmission
timeout to generate the maximum throughput.

Firstly, the receive window size keeps increasing
linearly if sender can receive the highest acknowl-
edge number of the packets that were sent in time.
If sender does not receive the highest acknowledge
number before the retransmission timeouts, sender
will retransmit data to the receiver and decrease
the receive window size. Figure 3 shows the be-
haviour of the window size. As mentioned be-
fore, retransmission will significantly impact the
throughput. Hence ideally, window size should keep
increase and never drop. The main reason causes

window size to drop is that the retransmission time-
out is too short and the sender is not able to re-
ceive the corresponding acknowledgement in time.
Therefore, we try to increase the retransmission
timeout and plot versus throughput, which is shown
in the Figure 4. As shown in the figure, the through-
put initially increases as the retransmission time-
out increases before it hits a plateau, then the
throughput becomes around 1.4 Gbps. The ini-
tial increase of throughput is caused by decreas-
ing the number of data retransmission. When the
retransmission timeout is long enough that there
is no retransmission needed, the throughput flat-
tens. Theoretically, throughput should decrease as
the retransmission timeout keeps increasing after it
hits the highest point. However, since the retrans-
mission timeout is so small comparing to time to
transfer the actual data, the increase on retrans-

Figure 4: Throughput versus Retransmis-
sion timeout [100000 pkts]

mission timeout has little impacts on the overall
throughput. As mentioned before, the configura-
tion is loopback; hence the characteristic of the net-
work traffic and topology is predetermined. There-
fore, the window size can be preconfigured to the
maximum window size that the network can han-
dle before running the test and then run the test
with this maximum window size throughout the
test. This should yield the maximum throughput.
However, the result throughput is approximately
equal to the throughput that was obtained when
increase the window size linearly. Hence, we con-
clude that the bottleneck of the throughput is not
the window size and uture research is needed to
improve the throughput.

6. CONCLUSION
In this paper, we presented the TCP implemen-
tation over SoNIC and the techniques we used to
improve the maximum throughput. The TCP im-
plementation is robust and is able to transmit data
between two SoNIC ports reliably. Also we were
able to achieve the maximum throughput of TCP
connection to be around 1.3 Gbps. This is still
lower than the theoretical maximum throughput.
Hence, future research is needed to achieve the the-
oretical maximum throughput.

7. FUTURE WORK
For the future work, we need to improve perfor-
mance of the TCP throughput to ideally 10 Gbps .
Also we have to measure performance of TCP with
different characteristics

8. ACKNOWLEDGMENT
We are grateful to the following people for resources,
discussions and suggestions: Prof. Hakim Weath-
erproof, Ki Suh Lee.



9. REFERENCE
[1]. Lee, Ki Suh, Han Wang, and Hakim Weath-
erspoon. ”SoNIC: Precise Realtime Software Ac-
cess and Control of Wired Networks.” 1 Jan. 2013.
Web. 13 Dec. 2014. <https://www.usenix.org/system/files/conference/nsdi13/nsdi13-
final138.pdf>.

[2]. D. A. Freedman, T. Marian, J. H. Lee, K.
Birman, H. Weather- spoon, and C. Xu. Exact
temporal characterization of 10 Gbps optical wide-
area network. In Proceedings of the 10th ACM
SIG- COMM conference on Internet measurement,
2010.


	Introduction
	Background
	Design
	TCP state machine:
	TCP data transmission and window size:

	Implementation
	Filling packets contents and unmarshalling the packet
	Sending and receiving packets
	TCP state machine
	Timeouts
	Seq, Ack and Window
	What we have not done

	Evaluation
	Conclusion
	Future Work
	Acknowledgment
	Reference

