
CS5413: HIGH PERFORMANCE SYSTEMS AND NETWORKING

SUPER CLOUD STORAGE MEASUREMENT
STUDY AND OPTIMIZATION

December 23, 2014

Sneha Prasad (sh824@cornell.edu)

Lu Yang (ly77@cornell.edu)

Cornell University

Contents

1 Introduction . 3
1.1 Virtualization . 3
1.2 Types of Virtualization . 3
1.3 Xen . 4

2 Background . 4
3 Design and Measurement Tools . 5

3.1 Test Plan . 5
3.2 DD command . 5
3.3 IOZone tool . 6
3.4 RACS . 6

4 Environment . 6
4.1 Local Storage . 6
4.2 RACS . 6

5 Evaluation . 6
5.1 Setup . 6
5.2 Result . 8

5.2.1 DD . 8
5.2.2 IOZone . 10
5.2.3 RACS . 16

5.3 Observation and Interpretation . 16
5.3.1 DD . 16
5.3.2 IOZone . 16
5.3.3 RACS . 17

6 References . 18
7 Appendix 1 System Configuration . 19
8 Appendix 2 Detailed Results (DD command) 19
9 Appendix 3 Detailed Results (IOZone command) 22

1

Sneha Prasad; Lu Yang Cornell University

10 Appendix 4 How to setup stack for testing Supercloud Storage 25

Page 2 of 26

Sneha Prasad; Lu Yang Cornell University

1 INTRODUCTION

Over the last few years a significant number of organisations have chosen to host their data
and services with a few cloud service providers. These cloud providers act in capacity of
both producers and distributors of cloud services, meaning that that they control the whole
ecosystem of proprietary interfaces that are not compatible across different cloud providers.
A customer of one cloud service provider cannot shift vendors without incurring significant
expensive downtimes, he/she is said to be ’Locked-In’ by the vendor.

In this context, it becomes very important to control and regulate these cloud providers to
prevent vendor lock-ins. Supercloud is a system proposed by [1] It decouples providers and
distributers by providing a uniform cloud service interface/ layer of abstraction layered on top
of resources obtained from several diverse infrastructure-as-a-service (IaaS) cloud resource
providers. Top layer of supercloud provides a uniform interface to customers, while the bottom
layer talks to different service providers. Decoupling customers from cloud providers provides
customers the flexibility to migrate across providers without incurring cost of starting from
scratch again and again. Decoupling and layering of OS is acheived primarily through virtual-
ization.

In the next section we will introduce Virtualization, its types, benefits and draw out its
advantages that enable Supercloud architecture.

1.1 Virtualization

Virtualization primarily allows multiple OS’s to run concurrently on shared physical resources.
These OS instances called as virtual machines are managed through a Virtual Machine Manager
or hypervisor. Virtualization provides isolation, decentralization, security and efficient utilization
of the physical resources.

1.2 Types of Virtualization

Hypervisors can provide a fully emulated version of the hardware called ’full virtualization’, but
it is extremely complex to get it right. Another approach is for Hypervisor to spawn a copy of
the Host OS, this is called ’lightweight virtualization’, this approach while simple is constrained
by inflexibility. Guest OS must be the same version as that of host OS, other types of of OS are

Page 3 of 26

Sneha Prasad; Lu Yang Cornell University

not supported.

Drawing a middle ground between these two approaches is ’Para Virtualization’ where it
does not try to emulate the hardware but obtains access to it with help of a slightly altered OS.
This approach is leads to a optimized ’full virtualization’.

1.3 Xen

Supercloud leverages the Xen-Blanket, a nested virtualization system that can transform any
provider specific virtual machine instance into a unified, distributor-specified one.Xen can be
enabled primarily because of Intel Virtualization Technology.

2 BACKGROUND

Server virtualization is inefficient without corresponding support from storage. A 2010 study by
William Blair and Company, a Chicago-based investment bank, found that companies involved
in server virtualization projects typically spend $2 to $3 on storage for every $1 they spend on
server virtualization.
Server virtualization decouples a virtual machine (VM) from the physical hardware on which
it runs, meaning it decouples the VM from the underlying storage, it is very storage resource
hungry as standard images may spin up VM’s with far more storage space than needed.
In a datacenter environment as we spin up more VMs, we get an increase in demand for storage
capacity, but also as VMs move around a virtualized infrastructure it can make sequential
accesses random. Random I/O stresses performance and capacity of storage systems.
Biggest challenges posed by server virtualization is handling the high levels of I/O that multiple
VMs running on a single physical host can generate, all going through a single hypervisor
running on the host.
The above stated issues get amplified in a nested virtualization environment required to setup
Supercloud storage. Now I/O has to pass through 2 layers of Hypervisors running on Host and
Guest.Performance is expected to take a hit due to added complexity. Performance that matches
existing cloud systems will be a key factor in success of Supercloud.
Therefore, we need a performance benchmarking / measurement study to asses the impact
of nested virtualization, to identify bottlenecks if any and design a solution to optimize this
performance.

Page 4 of 26

Sneha Prasad; Lu Yang Cornell University

3 DESIGN AND MEASUREMENT TOOLS

3.1 Test Plan

We conduct a storage performance measurement study in a nested virtualization environment.
Our test cases are carried out at three levels: from bottom to top, there are baremetal server,
Guest VM, and Nested Guest VM. At each level, we measure read/write throughput for local
and RACS storage. For local storage, we use dd command to measure raw disk performance
and IOZone to measure filesystem performance. For RACS, we write a test script to measure
PUT/GET performance for both single client and multi-client. See Figure 1 for more details.

Figure 1: Test Plan

3.2 DD command

DD stands for "Data Description"; it is usually used for copying and converting data sources.
Caveat for using dd for disk benchmarking is that it only tests filesystem access to get more
accurate results we used a disk benchmark is tools specifically geared towards this.

Page 5 of 26

Sneha Prasad; Lu Yang Cornell University

3.3 IOZone tool

Iozone is a filesystem benchmark tool that generates and measures a variety of file operations.
Iozone is useful for determining a broad filesystem analysis of a computer platform. The
benchmark tests file I/O performance for the following operations. Read, write, re-read, re-write,
read backwards, read strided, fread, fwrite, random read/ write, pread/pwrite variants, aio_read,
aio_write, and mmap.

3.4 RACS

Redundant Array of Cloud Storage is a storage service that stripes data across multiple providers
to prevent vendor lock-in and data loss if one provider goes down. RACS exposes an interface
with 4 generic operations LIST, DELETE, GET, PUT. We will test throughput on all of these
operations with RACS through its Amazon S3 like interface.

4 ENVIRONMENT

In this section we describe our experimental setup to test local storage via DD and Iozone, and
test RACS setup on Amazon S3.

4.1 Local Storage

We set up a two-node OpenStack topology to run our tests on cloudlab.us setup at University of
Utah. Our baremetal server is Ubuntu 12.04 and we use CentOS 6.5 for guest VMs. On top of
the Level 1 Guest VM, we installed Xen-blanket to homogenize cloud infrastructures.

4.2 RACS

RACS was setup on local Ubuntu connected to Amazon s3 and local filesystem repositories

5 EVALUATION

5.1 Setup

We run 10 dd commands for each level and measure the average throughput for 4M and 8M.
The count size for 8M is 250, for 4M is 500. A simple command to do real-world disk write test
in linux:

Page 6 of 26

Sneha Prasad; Lu Yang Cornell University

Figure 2: Environment for Level 0, 1 and 2

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=8M count=250 oflag=direct

250+0 records in

250+0 records out

2097152000 bytes (2.1 GB) copied, 20.9896 s, 99.9 MB/s

We run all 13 IOZone tests and vary the file size from 64KB to 524288KB and record length
from 4KB to 16384KB. -a flag allows us to run all 13 tests. We add -b flag to write the test
output in binary format to a spreadsheet, so that we can construct 3D graphs from the spreadsheet
later.

./iozone -a -b test.xls

Page 7 of 26

Sneha Prasad; Lu Yang Cornell University

5.2 Result

5.2.1 DD

Page 8 of 26

Sneha Prasad; Lu Yang Cornell University

Page 9 of 26

Sneha Prasad; Lu Yang Cornell University

5.2.2 IOZone

Page 10 of 26

Sneha Prasad; Lu Yang Cornell University

Page 11 of 26

Sneha Prasad; Lu Yang Cornell University

Page 12 of 26

Sneha Prasad; Lu Yang Cornell University

Page 13 of 26

Sneha Prasad; Lu Yang Cornell University

Page 14 of 26

Sneha Prasad; Lu Yang Cornell University

Page 15 of 26

Sneha Prasad; Lu Yang Cornell University

5.2.3 RACS

On RACS we tested following for 10 iterations.This test was constructed as part of Unit testing
in RACS setup provided by Ji Yong Shin. fs exists 49 fs listdir 6 fs mkdir 1 fs open 26 fs
remove 16 fs rmdir 2 fsrepo deletebucket 3 fsrepo deleteobject 10 fsrepo getallbuckets 4 fsrepo
getbucketcontents 2 fsrepo getobject 3 fsrepo head 1 fsrepo putobject 9 s3repo wrapper 68
fsrepo createbucket 16

5.3 Observation and Interpretation

5.3.1 DD

• DD for block size of 8M from level 0 to level 1 throughput drops by 2.5 times, from level
1 to 2 drops by 1/2, from level 0 to level 2 drops by 1/5.

• For block size of 4M, results are not stable

5.3.2 IOZone

• The area that touches the floor of the graph(with record size from 4KB to 32KB and file
size from 32768KB to 524288KB) is not measured, because it is very time consuming to
test this area.

Page 16 of 26

Sneha Prasad; Lu Yang Cornell University

• Write, re-write, and random write performance tend to increase steadily as record size
increases, while read, re-read and random read performance increase from 64KB and
1024KB, and then take a drop for record length larger than 1024KB.

• The peaks are resulted from CPU cache effect.

• The performance of write is lower than the performance of re-write due to metadata
overhead.

• The performance of read is lower than the performance of re-read, because the file system
maintains a cache of the data in order to improve the throughput.

5.3.3 RACS

1. GET and PUT for fs repo and s3 repo, all iterations are all the same fsrepo: GET s3 repo:
GET fsrepo: PUT s3repo: PUT 262646.25 300071.4286 116746.1111 123574.1177

2. for GET and pUT, fsrepo has worse performance than s3repo. For DELETE, however,
fsrepo takes less time than s3 repo

3. In addition, performance operation delete object for fsrepo is pretty stable, but for s3 repo
each iteration yields different results. fsrepo: DELETE s3repo: DELETE 0.0001 0.06822
0.00009 0.07597 0.00011 0.11095 0.0001 0.07941 0.0001 0.0608 0.00009 0.07994
0.00011 0.06937 0.00012 0.08113 0.0002 0.08288 0.00011 0.06328

Page 17 of 26

Sneha Prasad; Lu Yang Cornell University

6 REFERENCES

1. IOZone Filesystem Benchmark. Available at:<http://www.iozone.org/docs/IOzone_
msword_98.pdf> [Accessed 21 December 2014]
2. D.Williams,H.Jamjoom, and H. Weatherspoon. "Plug into the Supercloud," Internet Com-
puting, IEEE, vol.17, no.2, 2013, pp.28- 34. Available at <http://ieeexplore.ieee.org.
proxy.library.cornell.edu/stamp/stamp.jsp?tp=&arnumber=6365162&isnumber=6488666>
[Accessed 22 December 2014]
3. D.Williams,H.Jamjoom, and H. Weatherspoon. "The Xen-Blanket: Virtualize Once, Run Ev-
erywhere," Proc. ACM EuroSys, ACM, 2012. pp. 113âĂŞ126. Available at <http://www.cs.
cornell.edu/courses/CS5412/2014sp/papers/xen_blanket_eurosys_2012.pdf> [Ac-
cessed 22 December 2014]

Page 18 of 26

Sneha Prasad; Lu Yang Cornell University

7 APPENDIX 1 SYSTEM CONFIGURATION

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 32

On-line CPU(s) list: 0-31

Thread(s) per core: 2

Core(s) per socket: 8

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuineIntel

CPU family: 6

Model: 62

Stepping: 4

CPU MHz: 1200.000

BogoMIPS: 5199.94

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 20480K

NUMA node0 CPU(s): 0-7,16-23

NUMA node1 CPU(s): 8-15,24-31

Disk /dev/sda: 1000.2 GB, 1000204886016 bytes

255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x90909090

8 APPENDIX 2 DETAILED RESULTS (DD COMMAND)

###level 0 :

Page 19 of 26

Sneha Prasad; Lu Yang Cornell University

##for 8M I reduced count to 250

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=8M count=250 oflag=direct

250+0 records in

250+0 records out

2097152000 bytes (2.1 GB) copied, 20.9896 s, 99.9 MB/s

root@pc26:/users/weijia#

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=8M count=250 oflag=direct

250+0 records in

250+0 records out

2097152000 bytes (2.1 GB) copied, 22.2949 s, 94.1 MB/s

root@pc26:/users/weijia#

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=8M count=250 oflag=direct

250+0 records in

250+0 records out

2097152000 bytes (2.1 GB) copied, 20.3902 s, 103 MB/s

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=8M count=250 oflag=direct

250+0 records in

250+0 records out

2097152000 bytes (2.1 GB) copied, 21.2067 s, 98.9 MB/s

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=8M count=250 oflag=direct

250+0 records in

250+0 records out

2097152000 bytes (2.1 GB) copied, 21.1149 s, 99.3 MB/s

root@pc26:/users/weijia#

level 0

for 4M count is still 500

root@pc26:/users/weijia#

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=4M count=500 oflag=direct

500+0 records in

500+0 records out

2097152000 bytes (2.1 GB) copied, 20.0025 s, 105 MB/s

root@pc26:/users/weijia#

Page 20 of 26

Sneha Prasad; Lu Yang Cornell University

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=4M count=500 oflag=direct

500+0 records in

500+0 records out

2097152000 bytes (2.1 GB) copied, 21.1274 s, 99.3 MB/s

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=4M count=500 oflag=direct

500+0 records in

500+0 records out

2097152000 bytes (2.1 GB) copied, 20.5618 s, 102 MB/s

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=4M count=500 oflag=direct

500+0 records in

500+0 records out

2097152000 bytes (2.1 GB) copied, 20.9734 s, 100 MB/s

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=4M count=500 oflag=direct

500+0 records in

500+0 records out

2097152000 bytes (2.1 GB) copied, 20.1158 s, 104 MB/s

root@pc26:/users/weijia# dd if=/dev/zero of=out bs=4M count=500 oflag=direct

500+0 records in

500+0 records out

2097152000 bytes (2.1 GB) copied, 20.5397 s, 102 MB/s

root@pc26:/users/weijia#

Page 21 of 26

Sneha Prasad; Lu Yang Cornell University

9 APPENDIX 3 DETAILED RESULTS (IOZONE COMMAND)

Page 22 of 26

Sneha Prasad; Lu Yang Cornell University

Page 23 of 26

Sneha Prasad; Lu Yang Cornell University

Page 24 of 26

Sneha Prasad; Lu Yang Cornell University

10 APPENDIX 4 HOW TO SETUP STACK FOR TESTING SU-
PERCLOUD STORAGE

1. Obtain account on cloudlab, get it linked to an existing account such as the supercloud project, or create a new independent study.

2. Choose Open Stack profile and start experiment.

3. Login to the servers through browser interface, setup ssh keys on the server

cp your_public_key to ~/.ssh/authorized_keys

4. SSH into servers - compute and controller nodes.

5. Install VNC on the servers.

6. Login through VNC

7. Install KVM.

8. Verify installation and check if libvirtd daemon is running.

8. Launch a virtual machine, using weijia’s script or through VNC.

9. login to guest VM, check network connectivity. if network is not up, start DHCP client through dhclient -v command.

10. Install KVM on guest VM

11. Install Xen-Blanket on guest VM, manually or through script provided by Zhiming Shen.

12. launch VM on the guest VM, check if it can connect to internet.

Page 25 of 26

Sneha Prasad; Lu Yang Cornell University

13. Supercloud stack ready!

Page 26 of 26

