
HoneyPi
A distributed Honeypot on Raspberry Pis



Motivation
● Building a distributed honeypot
● Evaluating Raspberry Pi performance and 

scalability
● Programming a switch to route packets
● Possible CS 3410 project



Architecture Diagram

Packet 
Generator Switch

192.168.1.XXX

192.168.2.3

192.168.2.4

Pi

Pi

Raspberry Pi

Switch Rules:
192.168.1.0/26 -> 192.168.2.4
192.168.1.64/26 -> 192.168.2.3
192.168.1.128/26 -> 192.168.2.4
192.168.1.192/26 -> 192.168.2.3

Netfilter Hook
Network Driver

USB
NIC

P
ac

ke
ts

S
um

m
ar

y

User Space
Command Packets

Other 
Pis

Total Statistics Aggregator 
Server



Architecture Explanation
Packet Generator- generates command and data packets, and sends them to 
randomized IP addresses
Switch- uses IP routing to partition the IP space among the Pis, dividing the 
packets between them
Honeypot Kernel Module- uses a netfilter hook to intercept packets and analyze 
them, sends captured data to user space program that aggregates statistics
Honeypot Read- reads packets from the kernel module, aggregates statistics in 
hashtables, and broadcasts received command packets to the other Pis
Statistics Aggregator- clients send their local statistics to the server, which 
combines them



Raspberry Pi vs Laptop Hash 
Benchmarks



Raspberry Pi CPU Usage



Honeypot Results



Evaluation
● Kernel module could not run at line rate (100 mbps)- even without 

hashing the packet!
● Pi uses all of the CPU for the NIC (not even at line rate) without 

kernel module loaded
● You could hang a Pi just by sending it packets!
● SHA256 hashing was not working in kernel, so we used djb2 

instead
● Packet generator scales very well on modest systems (over 

500mpbs on a laptop), just need extra routing table entries on 
switch to add more Pis



Future Work
● Further optimization to the kernel module 

(packet capturing pre sk_buff, a-la NetMap)
● Creating a skeleton that could be used as a 

CS 3410 project
● Switching to the SHA256 hash function
● Porting to a more powerful board (ODroid)
● Scaling with more Pis



Conclusion
● Working distributed honeypot!
● Raspberry Pis are slow- both CPU and NIC
● But, the system can scale very easily and 

cheaply


