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Abstract—The physical and data link layer of the network
stack contain valuable information. SoNIC (Software-defined
Network Interface Card) provides software access to these
layers by implementing them in software. It provides complete
control over network stack in real-time. With SoNIC, we are
able to perform precise network measurements. Also, GENI
(Global Environment for Network Innovations) provides a virtual
laboratory for networking and distributed system research and
education. Therefore, we can gather valuable information, in
particular, available bandwidth estimation, on GENI using SoNIC
and perform corresponding analysis.

Index Terms—SoNIC, Available bandwidth estimation,
Pathload, Probe

I. INTRODUCTION

For different uses of network, people have strict require-
ment on available bandwidth estimation, like designing high
performance network system, improving network protocol and
building distributed system. However, bandwidth estimation
is a problematic measurement where accuracy is difficult to
achieve, particularly in high-speed network.

Current way for active available bandwidth estimation fall
into one main idea, which is sending a train of probe packets
through a network path to destination point, then analyzing
the data receiving end from probe packets timestamps of
gap. To its credit, it makes full use of the flexibility of
user space control and compatibility of current bandwidth
estimation. However, there are several problems in this es-
timation approaches. Firstly, creating explicit probe packet
that consume extra bandwidth and CPU resource. Besides, the
probe packet which is created in user space, due to the design
of operating system, are often perturbed in level activities.
Lack of precise timestamp, the accuracy will be affected.
Lastly, bursty cross network traffic will also make a passive
effect on the estimation approach.

This paper presents an approach to address the above
problems. While keeping the advantage of approaches above,
we can reduce the negative effect on explicit probing packets
through using the existing application packets running in the
network path, and avoiding the perturbed activities in operating
system. Finally, operating in the user space provides users
more flexible to control the whole measurement and make
an immediate improvement when finding problems during the
estimation.

As we know, the physical and data link layers of the network
stack contain valuable information. Through controlling over
the physical and data link layers, we can control over the entire
network stack in real-time. SoNIC (Software-defined Network
Interface Card) provide us an possibility to access to these

two layers in software by implementing them in software. With
SoNIC, we are able to perform precise network measurements,
accurately characterizing network component such as routers,
switch and network interface cards. SoNIC is able to change
Idle characters, accurately measure inter-packet delays.

In this paper, we implement the approach we raised and
test it in several environments. we run experiments on syslab
machines that are equipped with SoNIC boards. Under differ-
ent topologies in local, we get efficient and useful experiment
data to complete and automate data analysis process. Also,
we use this approach to estimate the available bandwidth on
GENI. GENI provides a virtual laboratory for networking and
distributed system research and education. we load script and
re-run the above experiments.

All tests are run successfully on the different environment,
including crossing traffic, and we got plenty useful and de-
tailed data from it. Through analyzing the data and improving
parameter in the experiment, we can make whole and accurate
understanding of the network performance. Especially, this
approach allow program in user space to accurately measure
the available bandwidth of high speed, 10Gbps, network.

II. BACKGROUND

Bandwidth estimation techniques, specifically available
bandwidth estimation algorithms, measure network
throughput, which is closely related to congestion. Like
the experiment on cross traffic, we need to make an accurate
analysis on that. To deal with the problem mentioned above,
we make a full use of the feature of SoNIC to characterize
the pattern in packet chains, while SoNIC provide us a way
to access the packet without affecting the accuracy. GENI
allow us make full test and improvement on the estimation
way on different environment.

In this section, we introduce and discuss some key ideas
and tools underlying existing, which play important role in
this paper, including GENI, SoNIC and some methods on
bandwidth estimation. And through those analysis, we can
make a whole picture on the approach design following.

A. GENI

GENI is a facility concept being explored by the United
States computing community and its goal is to enhance exper-
iment research in computer network and distributed system.
Based on its design, it is useful in experiment to obtain
compute resource from location around United States and
control how network switches in their experiment handle



traffic flows. It is a large-scale experiment infrastructure, which
provide us with more resources than is typically found in one
lab. In our experiment, one of important part is using the GENI
to make bandwidth estimation, in which we made connections
between eastern coast and west coast, UC Davis to NC Chapel
Hill, which can make a full evaluation on the current network
situation.

B. SoNIC

SoNIC, Software-defined Network Interface Card, which
provides access to the physical and data link layers in soft-
ware by implement them in software. So SoNIC provides
complete control over the entire network stack in real time.
As we known, the physical and data link layers are usually
implemented in hardware and not easily accessible to system
programmers, while handling PHY enables highly accurate
traffic analysis and replay capabilities. Indeed, SoNIC allows
us to measure on network by generate packets at full data rate
with minimal inter packet delay. Importantly, SoNIC accu-
rately captures incoming packets at any data rate by handling
idle characters from PHY. This brings us a useful method to
use the application packets in the network rather than creating
new packets, which reduces efficiently negative impact on
the conflict of the OS perturbed activities. Moreover SoNIC
be capable of improving the accuracy of packet timestamp,
which can change the rate of the forwarding packet as the
need in the experiment through changing the number and
position of idle in the physical layers. At the receiver side,
this feature brings us a way to profile network components
and create timing channels that are undetectable from software
application, which is accurate and stable analyzing way. Thus,
SoNIC allows cross-network-layer research explorations by
systems programmers.

C. Current Methods

An end-to-end approach is the main idea in many current
available bandwidth estimation methods. As mentioned above,
trains of probe packets are sent to destination side. Through
observing and analyzing the change in some packets char-
acteristics at the destination side, we can get the bandwidth
information because the gaps between first packet and the last
packet will be change, which is queuing delay, if the probing
rate exceeds the available bandwidth. Some estimation tools
such as Spruce, which samples the arrival rate at the arrival
rate at the bottleneck by sending pairs of packets spaced so
that the second probe packet arrives at a bottleneck queue
then calculate the number of bytes between two probes at the
receiver.

III. RELATED WORK

For the bandwidth estimation, there are some active and
famous works, like IGI, Spruce, which are differ in the size
and temporal structure of probe stream, while using the main
idea by analyzing the receiving packets. Spruce uses dozens of
packet pairs having a certain input rate defined to be roughly
around to the capacity of the path and the packets are located

with exponential intervals in order to emulate a poissonian
sampling process. Comparing with Spruce, IGI makes a use
of sequence of 60 spaced packets as probe packets. The gap
between two consecutive packets is increased until the average
output and initial gaps match. Through the analysis of the
gaps pattern, the bandwidth can be learnt. And the Pathload
use constant rate streams and change the sending rate every
round, which varies the probing rate using a binary search
structure.

Most of those approaches compared the performance against
other approaches in their solution so that they work better
than other in some how, for example, Pathload focus on
a controlled environment and Spruce raises its performance
over hundreds of real Internet paths. The above mentioned
experiments have also been performed considering different
environment and test configuration, so the various results are
hard to comparable.

IV. DESIGN

Our measurement achieved high-fidelity by direct access to
the physical layer in realtime using SoNIC. First, we describe
the characteristic of 10 Gigabit Ethernet(GbE)and how SoNIC
help the measurement take advantage of access to the physical
layer.

A. 10 GbE Physical Layer

According to IEEE 802.3 standard, when 10Gb Ethernet
are passed to physical layer, the data will be reformatted. The
physical layer encode every 64bits into a 66 bits block with
two bit synchronization header (sync-header). So actually the
10GbE link are working at 10.3125 Gb (10Gb x 66/64). The
10GbE always sends 10.3125Gb per second(Gbps), encoding
the raw data (10Gb)with the header and scrambles each
block, then , pass the packet to the stack to be transmitted.
The receiver? physical layer remove the two-bits header and
de-scrambles each block.

There are some special symbols, Idle symbols(/I/), fill
the gaps between any two packets. Since the 10GbE always
sends the 10.3125Gbps, when there are no packets need to be
transmitted, the physical layer continuously adds idle symbols
to fill the 10.3125Gbps. To be specific, the standard require
at least 12 /I/s after every packets. An idle symbol can be
7 or 8 bits depending on Ethernet frame and physical layer
alignment. More importantly, SoNIC can access to physical
layer and thus, control the Idle symbols, which enables
high-fidelity control of the network traffic.

B. High Fidelity Measurement

That our measurement can achieves high-fidelity is because
its direct access to the physical layer, controlling the /I/
characters by the SoNIC. In specific, our measurement can
measure(count) and generate(insert and remove) exact number
of /I/ characters between each packets to get exact interpacket
gap, which leads to the exact rate of traffic. Further more, if
two subsequent probe packets are separated by packets from
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different flow(cross traffic), the gap between probe packets
will include /I/ characters and also the data characters of
the cross traffic, but the measurement can still be exact.
However, before the SoNIC platform was created, this kind
of precise measurement could never be created because /I/
characters were typically inaccessible from higher layer,
since they are discarded by hardware and definitely were
not accessible in software. In traditionally computer, an end
host may timestamp packets in user-space, kernel or network
interface hardware which will come up with significant noise.
None of the traditional method provides enough precision
for high-fidelity network measurement. As a result, many
existing bandwidth measurement tools are not accurate.

Our measurement leverages the facility of SoNIC, which
control the physical layer traffic by insert or remove /I/
characters from the original traffic. In particular, two
variables of the traffic are of interest: The gap between
packets and the overall rate of packets trains. The SoNIC
provide API to user-space program that can specify the
number /I/ characters between two packets, allowing user
space programs to perform high-fidelity pacing.

C. Generalized Probe Model

Fig. 1 shows a generalized probe model that able to emulate
a number of existing bandwidth estimation algorithms and
used for the rest of the paper. The horizontal dimension is time.
the Vertical dimension is the probe rate. Each pulse(we call it
train) contains multiple probe packets sent at particular rate, as
depicted by height. In specific, the parameter N represents the
number of packets in a probe train. R stands for the probe rate
of the train, we control the probe rate R by place exact number
of inter-packet gap (/I/ characters) between N packets. Packet
sizes are also considered in computing the probe rate. The
gap between probe train are specified by parameter G(inter-
train gap). Finally, the measurement can also be consisted of
several probe samples(a set of probe trains with increasing
probe rate) and the distance between the two measurement
sample are calculated by D(inter sample distance). With these
four parameter we can emulate most of the probe traffic of
existing algorithm. For example, to emulate Spruce probes,
we can set the parameters (N,R,G,D) as (2, 500Mbps, 1.2ns,
48us) Similarly, we can reproduce IGI experiment probe with
(N,R,G,D) equals to (60,[0.1:0.1:9.6]Gbps, 30s, 30s). Most
types of existing probe trains can be emulated with our
generalized probe model.

In the following sections, we will use a parameterization
which is similar to Pathload with parameters (N,R,G,D) as (20,
[0.1:0.1:9.6], G, D). G and D are variable can be decided by
user. In Pathload algorithm, we estimate available bandwidth
based on the increasing one-way delay(OWD) in probe trains.
The basic idea is if the available bandwidth of the bottleneck
link is larger than the probe trains, the gap between probe
packets suppose to be remain the same as what is sent. On the
contract, the probe train will induce congestion in the network

Fig. 1: Probe Train Model

so that the last packet of the probe train will experience longer
queuing delays compared to the first packet of the same probe
train. The difference between the OWD of the last packet
and the first packet can be used to compute the increasing
OWD in the probe train. For our measurement, we generate the
increasing rate of probe train and where the OWD increases
could be used to estimate the available bandwidth.

A bandwidth estimation algorithm based on Pathload needs
to compute the increased OWD between the first packet and
the last packet in a probe train. Since we can measure the gaps
between subsequent packets, it is easy to proove that the in-
crease in the OWD of a probe train Qn−Q1 =

∑
Gi−

∑
Hi,

H is the sending gaps between the packets in the probe train,
G is the receiving gaps between the packets.

V. EVALUATION

In this section, we discuss our environment setup, algorithm
that we are using to estimate available bandwidth, and show
the results with the corresponding algorithm.

A. Environment Setup

To get familiar with SoNIC and a better understanding of
current available bandwidth measurement process, we have
first set up a topology using a Fractus node. The topology is
configured into a simple loopback, which is demonstrated in
Fig. 2. Two of the Fractus ports are connected to a switch,
with port 0 generating packets (pkt gen mode) and port 1
capturing packets (pkt cap mode). With this topology, the
Fractus machine is able to generate and transfer packets out
of port 0, but port 1 is not able to receive any such packets.
We tested the topology also with UDP packets, which are not
being forwarded by the switch to any of the other machines
connected. Therefore, we have concluded that the switch is
not forwarding packets correctly, and could not figure out the
cause of such problem. As a result, we have decided to migrate
our experiments onto a set of SoNIC machines in system lab.

We obtained access to three SoNIC machines, sonic1,
sonic2, and sonic3 in system lab. We had the topology set
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Fig. 2: Fractus loopback topology

up as shown in Fig. 3. In between the machines are two
virtual switches. Port 1 of sonic1 is connected to port 20
of vlan2. Port 0 of sonic2 is connected to port 18 of vlan2.
Port 0 of sonic 3 is connected to port 23 of vlan3. The two
virtual switches vlan2 and vlan3 are connected via port 24 and
port 45 respectively. Machine sonic2 was used as the sender
that passes the generated probe packets to sonic3 through
port 0 using pkt rpt mode. The switch can also be accessed
with sonic3 to view and update the switch configuration, such
as mac address table. Because of the ease of access and
management and the problems with GENI described below,
most of our experiments have been run on the system lab
machines.

Fig. 3: syslab machines topology

For our topology on GENI, we have decided to use two
nodes, one in University of California - Davis, and one in
University of North Carolina - Chapel Hill. Since GENI is
a virtual laboratory for networking and distributed system
research, it is easy to set up different topologies for research
purpose for the selected nodes. However, in our case, whenever
we want to connect the two selected nodes, the link has to pass
through a switch called ION. The request has always failed

on this switch. We think that such problem is caused because
ION switch is managed by Internet2, and a request for such
is needed. As a result, we have decided to instead use two
nodes that are both on the west coast (two nodes in University
of California - Davis). In this case, the topology did not
include the above mentioned switches, and was successfully
set up as illustrated in Fig. 4 (b). The two selected nodes are
connected through a switch. We were able to successfully run
experiments with this topology. However, the experiments are
limited because the GENI is often under maintenance, and we
have a little less control over the network as with the SoNIC
machines in system lab.

(a) GENI topology: UC Davis & UNC

(b) GENI topology: two nodes in UC Davis

B. Algorithm

We generated a probe pattern with the parameterization that
is similar to Pathload, which estimates available bandwidth
based on the increasing one-way delay (OWD). The probe
train will induce congestion in the network if the rate of this
probe train is larger than the available bandwidth. Therefore,
we are interested in the difference in the one-way delay
between the first and last packet of the same probe train. If
the probe train is greater than the available bandwidth, the last
packet will have longer queuing delays compared to the first
packet. The difference in the OWD can be used to compute
the increasing OWD in the probe train. The lowest probe train
rate where such queuing delay increases is approximately the
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available bandwidth of the bottleneck link.
In our algorithm, we chose the parameters of (N, R, G, D)

to be (20, [0.1:0.1:9.6]Gbps, 120,000Bytes, variable). To be
specific, there are 60 packets in each probe train. The rate of
the probe train starts from 0.1Gbps, and increases to 9.6Gbps
with 0.1Gbps increment each time. Also, the gaps between
successive probe trains are defined to be 120,000Bytes, and
use some selected value for the distance in time between each
measurement sample.

To verify our algorithm and evaluate the estimations, we
also want to limit the available bandwidth to some values
of our choice to see if our algorithm successfully estimate
each available bandwidth. To achieve the goal of limiting the
available bandwidth, we have written a script to generate cross
traffic with corresponding rate. In our script, we compute the
number of idle characters of corresponding rates that need to
be inserted into the traffic and the number of such packets in
order to span the entire time of our experiment.

After generating the cross traffic, we use sonic1 to pass the
cross traffic to the switch with the pkt rpt mode, to sonic5
in Fig. 3. Therefore, the cross traffic is not received by the
receiver, which is sonic3 in our case.

After received the packets, we also implemented a user
friendly scripts to summary and estimate the available band-
width by the received packets. In particular, we process the
packets and compute the idle and translate idles to OWD.The
script also draw an image, which display the whole OWD
changes of this experiment. While calculate the estimated
point of where OWD significantly increased, we use both
Least mean squares (LMS) algorithms and the Random sample
consensus (RANSAC).

C. Results

We have run the experiments for cross traffic rate ranging
from 1Gbps to 10Gbps with 1Gbps increments. Fig. 5 shows
the results of four of them for our experiments. It states the
cross traffic rate, and thus the actual available bandwidth is
the difference between 10Gbps and the stated cross traffic
rate. However, from our experiments, we actually saw that
the available bandwidth should be around 7.8Gbps because
the sum of the estimated available bandwidth (reading roughly
from the graph or use our script to calculate the lowest probe
train rate) and the corresponding cross traffic rate adds up to
this value. We have yet found a reasonable explanation for
this problem. In future work, we will try to use other method
to estimate the actual available bandwidth, think about the
possible influences the cross traffic could bring to the network,
and discuss with Han about this situation.

VI. DISCUSSION

In this section, we discuss the challenges and issues we
encountered in this project and the possible future work related
to our current project. In addition, we explain the portion of
the project that are dedicated for our M.Eng project.
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(a) 2Gbps Cross Traffic
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(b) 4Gbps Cross Traffic
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(c) 6Gbps Cross Traffic
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(d) 8Gbps Cross Traffic

Fig. 5: Results With Cross Traffic on syslab Machines

A. Challenges

During the process of our project, we have found that SoNIC
is a little difficult to deploy. First, in order to load SoNIC,
certain kernel version requirements must be met. Previously,
the Fractus machine that we were using had a newer kernel
version, and the SoNIC is not compatible with such version
and thus cannot be compiled or loaded. It only got to work
when Han downgraded the kernel version of the machine.
Second, switch configuration can affect the use of SoNIC.
As described in Environment Setup section, with the Fractus
node, the switch was not able to forward packets generated by
SoNIC.

Moreover, SoNIC is a little unstable. Our same experiments
work some time, and do not some other time. Since the
hardware can be unstable, it is also a little hard to debug this
unstable situation.

We have also spotted a SoNIC script issue in the SoNIC
code provided. For pkt rpt command, the user space con-
figuration only works for port 0. The configuration cannot
be changed to port 1 unless in kernel space. This problem
thwarted our cross traffic experiments for a long time as we
could not understand why the packets are not being passed
through.

Estimation measurement application is built upon the lower
layers. Since the lower layers already has too much problem
to deal with, and are somewhat unstable, we think it is hard
to build such an estimation measurement application without
the lower layers working properly.

B. M.Eng Portion

We are also using this project as our M.Eng project. In ad-
dition to the course project, we will also run more experiments
with additional algorithms such as Pathchirp and IGI, and
use their corresponding analysis methods to estimate available
bandwidth. Moreover, we will try to improve our estimation
algorithm, to provide a more accurate estimation.
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C. Future Work

For future works, since our focus is mainly on the network
analysis on GENI, more experiments need to be run on GENI.
These experiments could be adjusting cross traffic rate and
characteristics, using different algorithms, and adjusting the
topologies to run similar experiments.

Currently, we are still injecting probe packets into the
network to estimate available bandwidth. To address the in-
trusive issue that we discussed in introduction, we want to
use application packets for such measurement, and have the
middle box filter the packets to determine which ones to use
for the bandwidth estimation.

Lastly, it is always good to have a user space measurement
application. We would still want to explore the possibility and
feasibility of building such an application in user space.

VII. CONCLUSION

After the struggle we had with the environment set up, we
have successfully set up a working environment on system lab
machines. We have written a script to generate cross traffic
packets, and completed the automation for the process of
data analysis. On the machines, we have also successfully
conducted the experiments with cross traffic to estimate the
available bandwidth. Moreover, we also have a working GENI
topology that is able to perform similar experiment and where
we intend to run more experiments. There are still a few
tasks to complete over the winter break, which includes
running more experiment over GENI, and exploring more
algorithms. However, overall, we have come a long way, and
have overcome many of the problems.

VIII. REFERENCES

1

Steven J. Murdoch and Stephen Lewis. 2005. Embedding
covert channels into TCP/IP. In Proceedings of the 7th
international conference on Information Hiding (IH’05),
Mauro Barni, Jordi Herrera-Joancomart, Stefan Katzenbeisser,
and Fernando Prez-Gonzlez (Eds.). Springer-Verlag, Berlin,
Heidelberg

2

Emanuele Goldoni and Marco Schivi. 2010. End-to-end
available bandwidth estimation tools, an experimental
comparison. In Proceedings of the Second international
conference on Traffic Monitoring and Analysis (TMA’10),
Fabio Ricciato, Marco Mellia, and Ernst Biersack (Eds.).
Springer-Verlag, Berlin, Heidelberg

3

Han Wang, Ki Suh Lee, Erluo Li, Chiun Lin Lim, Ao Tang,
and Hakim Weatherspoon. 2014. Timing is Everything:
Accurate, Minimum Overhead, Available Bandwidth
Estimation in High-speed Wired Networks. In Proceedings of

the 2014 Conference on Internet Measurement Conference
(IMC ’14). ACM, New York, NY, USA

4

Hao Jiang and Constantinos Dovrolis. 2005. Why is the
internet traffic bursty in short time scales?. In Proceedings
of the 2005 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems
(SIGMETRICS ’05). ACM, New York, NY, USA

5

M. Jain, ”Pathload: A measurement tool for end-to-
end available bandwidth,” in Proc. Passive and Active
Measurements (PAM) Workshop, Mar. 2002, pp. 14-25

6

Jacob Strauss, Dina Katabi, and Frans Kaashoek. 2003. A
measurement study of available bandwidth estimation tools.
In Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement (IMC ’03). ACM, New York, NY, USA

6


