
Racs-EV-Java
Gary Zibrat (gdz4)

Motivation

● Large organizations want to
store data in the cloud (e.g.
Library of Congress, Netflix,
Reddit)

● Not only does do users pay
per byte of data currently in the
cloud, but also per byte of data
transferred to and from.

Current Prices

Storage Transfer out Put Request Get Request

Microsoft $0.024 per
GB/month

$0.080 per GB $0.000036 per
1,000
transactions

$0.000036 per
1,000
transactions

Amazon $0.0290 per
GB/month

$.080 per GB $0.005 per
1,000 requests

$0.0004 per
1,000 requests

Google $0.026 per
GB/month
(flat rate)

$0.080 per GB $0.01 per
1,000 requests

$0.001 per
1,000 requests

Current Prices Example (500TB)

Storage Transfer out
(all data)

Put Request Get Request

Microsoft $147456 per
year

$491520 ~0 ~0

Amazon $178176 per
year

$491520 ~0 ~0

Google $159744 per
year

$491520 ~0 ~0

Moving from Amazon to Microsoft would cost roughly 2.75 years worth of storage! Large
customers can’t leave due to slight price increases.

Original Racs

EBOOK
1

EBOOK
2

R
A
C
S

Original Racs

E
B
O
O
K
2

R
A
C
S E

B
O
O
K
1

E
B
O
O
K
1

E
B
O
O
K
1

E
B
O
O
K
2

E
B
O
O
K
2

Original Racs

E
B
O
O
K
2

R
A
C
S E

B
O
O
K
1

E
B
O
O
K
1

E
B
O
O
K
1

E
B
O
O
K
2

E
B
O
O
K
2

Since files are split up,
cloud computation
requires reassembling
the files. Only part of
the file may be in the
same provider as
where a user wishes
to do cloud
computation.

Cloud
Compute
on EBOOK
1

Cloud
Compute
on EBOOK
2

Racs-EV

EBOOK
1

EBOOK
2

R
A
C
S

EBOOK
3

Racs-EV

EBOOK
1

EBOOK
2

R
A
C
S EBOOK

3

Racs-EV

EBOOK
1

EBOOK
2

R
A
C
S

Now the files are still
distributed evenly, but
don’t need to be
reassembled for cloud
computation which
saves on transfer fees
and transfer time.

EBOOK
3

Cloud
Compute
on EBOOK
1

Cloud
Compute
on EBOOK
2

Cloud
Compute
on EBOOK
3

Racs-EV

EBOOK
1

EBOOK
2

R
A
C
S Parity

of 1 and
2

Current Prices Example (625TB)

Storage Transfer out
(all data)

Storage(625)-
Storage(500)

Microsoft $184320 per
year

$491520 $36864 per
year

Amazon $222720 per
year

$491520 $44544 per
year

Google $199680 per
year

$491520 $39936 per
year

Costs are for RACS with 5 providers and the parity file turned on.
Transfer out doesn’t include extra 125 TB since parities aren’t transfer.

Overview - Multiple Proxies

C1

C2

C3

R1

R2

R3

RepositoriesClients

RACS
Proxy

RACS
Proxy

ZooKeeper

ZooKeeper is a distributed coordination system. For RACS, it is used to get
locks and reliably store meta-data.

RACS-EV API

PUT (Bucket, Key, Data)
GET (Bucket, Key)
PUTAT (Bucket, Key, Data, Repo)
LOCATE(Bucket, Key)
DELETE (Bucket, Key)
PUTS(Buckets...,Keys…,Datas…)
GETS(Buckets…,Keys…)

Simplified Put

C1 R1

R2

R3

RepositoriesClients

RACS
Proxy

RACS
Proxy

ZooKeeperC2

C3

Simplified Put

F1 F2

F3F4 P2

P1

Files are grouped by size (in object groups) to reduce overhead of parity
object. Group size is the same as the number of repositories.

C1

C2

C3

R1

R2

R3

RepositoriesClients

RACS
Proxy

RACS
Proxy

ZooKeeper

Simplified Put

F1

F2

F3

F4

P2

P1

Each repository will contain only one object from
each group to allow for fault tolerance.

C1

C2

C3

R1

R2

R3

RepositoriesClients

RACS
Proxy

RACS
Proxy

ZooKeeper

Problems with RACS(-EV)

String Xor for 16 MB string

Problems with RACS(-EV)

String Xor for 16 MB string
(x) denotes number of threads

String Xor for 16 MB and 128 MB strings on 4 core 2 threads machine.
Regular Python crashed with memory problems (Numpy did too on 32 cores)

Challenges with RACS-EV

● Eight different objects to modify on put
○ Data on cloud
○ Objectgroup
○ Parity File
○ Objectgroup freelist (keeps track of groups with space)
○ Key to object group mapping
○ Previous key objectgroup (remove key from group)
○ Previous key data on cloud (remove it)
○ Previous parity file

Solution

● Eight different objects to modify on put
○ Data on cloud
○ Objectgroup
○ Parity File
○ Objectgroup freelist (keeps track of groups with space)
○ Key to object group mapping
○ Previous key objectgroup (remove key from group)
○ Previous key data on cloud (remove it)
○ Previous parity file

Solution (or not)

● Locking alone doesn’t solve the problems
○ Could lose connection at any point
○ The lock could be lost at any point.
○ if(lock.isAcquired()) then modifyData() isn’t atomic
○ Similar problems to updating hard drive

■ Things have to be done in a particular order

Solutions with RACS-EV
1. Turns out this order is pretty good

a. Data on cloud
b. Objectgroup
c. Parity File
d. Objectgroup Freelist (keeps track of groups with space)
e. Key to object group mapping
f. Previous key objectgroup (remove key from group)

g. Previous key data on cloud (remove it)
h. Previous parity file

Solutions with RACS-EV
1. Turns out this order is pretty good

■ Register Intent
b. Data on cloud
c. Objectgroup
d. Parity File
e. Objectgroup Freelist (keeps track of groups with space)
f. Key to object group mapping

■ (Deregister Intent, Register Intent to delete, and part f) atomically
g. Previous key objectgroup (remove key from group)
h. Previous key data on cloud (remove it)
i. Previous parity file

if(lock.isAcquired()) then ...

● This isn’t atomic.
○ Requires versioning

Download Note
versionLock Modify

Upload
with
version

Version
same:
Success

Version
different:
Failure

Unlock

The Data

● 3 Repos
● 3 EC2 Instances

○ 2 cores
○ 2 threads/core
○ 1.7 GHz
○ 8 GB ram

● Clients:
○ 9 Clients
○ 20 Files of each size

per client
○ Clients send then

wait for response

The Data Part 2

● 3 Repos
● 3 EC2 Instances

○ 2 cores
○ 2 threads/core
○ 1.7 GHz
○ 8 GB ram

● Clients:
○ 18 Clients
○ 20 Files of each size

per client
○ Clients send then

wait for response

Future Plans

● Always room for optimization to faster
● Cloud computation

Future Plans - Cloud Computation

C1

R1

R2

R3

RACS
Proxy

RACS
Proxy

RACS
Proxy

Send same
computation request to
all proxies

Zookeeper not shown; Connections from each R to each RACS not shown

Future Plans - Cloud Computation

C1

R1

R2

R3

RACS
Proxy

RACS
Proxy

RACS
Proxy

Proxy will see which requests belong
to ‘its’ repo

Zookeeper not shown; Connections from each R to each RACS not shown

Future Plans - Cloud Computation

C1

R1

R2

R3

RACS
Proxy

RACS
Proxy

RACS
Proxy

Proxy will see which requests belong
to ‘its’ repo

Zookeeper not shown; Connections from each R to each RACS not shown

Future Plans - Cloud Computation

C1

R1

R2

R3

RACS
Proxy

RACS
Proxy

RACS
Proxy

Client will receive back
the results

Zookeeper not shown; Connections from each R to each RACS not shown

Demo/Questions

