
Abstract
Cloud storage is becoming increasingly popular and
cheap. It is convenient for companies to simply store
their data online so that they don’t have to buy a large
amount of storage, set it up, and pay people to
maintain it. Companies such as Netflix store as much
as 3 petabytes of information in the cloud (typical
home computers can store up to 1-2 terabytes of
information and 1 petabyte is 1024 terabytes). When
storing such a volume of data the client is susceptible
to being locked in with a provider due to the high
costs of transferring data out of the cloud and
relatively low cost of actually storing the data. This
report discusses the feasibility of storing files evenly
over multiple providers in a system called Redundant
Array of Cloud Storage (RACS). First I will discuss RACS’
evolution and then I will explain the current version of
RACS and finally compare the performance of two
versions of RACS.

1. Introduction
 Relying on a single provider can be risky.
Customers can experience vendor lock-in where the
client becomes bound to the provider due to cost
reasons. Figure 1 reveals that the cost to transfer data

out of the cloud is significantly more than storage
itself. Users typically also have to pay for each request
they issue, but these prices are normally negligible.
Most cloud providers don’t charge for in data transfer.
While providers have 99.99+% availability for data, the
.01% of the time when data is inaccessible are
normally large chunks consisting of multiple
hours/days. So 99.99% availability isn’t the data
becoming unavailable for a few minutes every week,
but rather large windows of unavailability. This could
halt business for a whole day for companies that rely
on the cloud. Some providers, such as Microsoft,
realize this and allow users to upload to two separate
places for slightly less than double the cost of a single
upload. RACS aims to mitigate this effect while
keeping costs down by evenly distributing your data
among multiple providers. Cloud providers also lessen
their prices when you store more data to prevent
users from distributing files, but the price drops are
only around %20.

2. History
The original RACS set out with the following goals:
 Tolerating Outages: When a provider is
unavailable, a user should still be able to get the data

RACS: Extended Version in Java
Gary Zibrat

gdz4

Figure 1: Shows the prices of cloud storage for

three popular and cheap providers.

using RACS.
 Tolerating Data Loss: It is rare for providers to
lose data but it does happen. Using the same
techniques as handling Outages, RACS can handle
some data loss.
 Adapting to Price Changes: Since data is
spread out evenly over multiple providers, if one
provider lowers prices users of RACS benefit.

RACS was designed to a have a simple
interface that mimicked Amazon’s cloud storage
interface. There were a few functions that are self-
explanatory: GET – takes in a file name and returns
the data associated with the file, PUT – takes in a file
name and a file and uploads it the cloud providers,
DELETE – takes in a file name and deletes the file on
the cloud. It also has some non-familiar functions:
LOCATE – finds which cloud provider RACS decided to
put your data in, PUTAT – allows the user to put the
data in a specific provider. Racs-EV adds a new
function called PUTS which allows users to upload
multiple files in a single transaction.

The original RACS accomplished the goals by
splitting up a file into smaller fixed sized chunks and
sending them evenly to the cloud providers. Using
erasure coding on the chunks allows RACS to generate
an additional chunk that can be used to recover one
other missing chunk of the real file.

Some users of RACS may wish to do cloud
computation, or use computers in the same data
center as the storage to do operations and
computation on the files stored in the cloud. This is
beneficial because transfer data from the storage
computers to the computation computers is normally
free as long as they are both provided by the same

provider. This is a problem for the original RACS since
each file is spread up in little chunks all over the cloud.
Doing a computation on one file requires accessing
most of the other providers in order to reconstruct
the file.

2.1 RACS-EV
 RACS-EV was designed to solve the problem of
reconstruction of files for cloud computation. Instead
of files being split up into little pieces whole files are
stored in a single provider. To allow for erasure
coding, files are group by size and the erasure coding
is computed on whole files. These groups of files are
called object groups. Each object group has exactly 1
file in each provider and one of those files is a erasure
coding file.
 This solution introduces a whole new set of
problems. Before a file was split up and put into every
repository and this time a file is in only one repository.
So now there needs to be a way to track which
repository a file is in. RACS stores this mapping in
object groups. Furthermore a file also belongs to an
object group so there needs a mapping from file to
object group. These two mappings are stored in
ZooKeeper. In order to a PUT operation, RACS needs
to do a few addition actions. First, the file needs to
find a free object group to join (making one if
needed). Then the object group’s erasure coding
needs to be updated which requires downloading the
erasure file from the cloud first and re-uploading it
afterwards. The file may have already been uploaded
in the past, so now some old stale mappings exist
which need to be cleaned up. The old file has to be
downloaded and then deleted from the cloud and the

public abstract class Repository {

 boolean put(String key, String Bucket,
 InputStream data, int size) throws Exception;

 InputStream get(String key,
 String Bucket) throws Exception;

 boolean remove(String key,
 String bucket) throws Exception;

 Iterator<String> getKeys(String bucket)
 throws Exception;
}

Figure 3: Shows the basic setup of RACS. Clients

send data to RACS, and then RACS uses a

program called ZooKeeper to synchronize access

between RACS servers and finally uploads the

data to the repositories

Figure 2: In order to add a new repository only

this simply interface must be extended.

old erasure file needs to be downloaded to computer
a new erasure and then re-uploaded. On top of all
these things that need to be updated, the RACS server
could lose connection at any second and leave data in
an inconsistent state. For example, RACS could update
the object group to include a new file, but then lose
connection during the actual uploading of either the
erasure file or the file itself.
 RACS has typically used distributed locks to
help deal with inconsistency issues, but locks don’t
help all that much. A ZooKeeper lock can be lost at any
point during execution meaning that any changes
being made could be conflicting with another RACS
server that has now obtained the lock.
 Python, while a powerful simple language,
isn’t naturally suited for RACS. Python doesn’t allow
parts of the same program to run concurrently which
inhibits the ability to compute multiple erasure files at
the same time. Python also generally runs CPU bound
(computation tasks) tasks slower than most languages.
(Of course, python can be augmented with native C
libraries, but then again so can other faster languages)

Figure 4: Shows the slowdown of Python vs. Java in

computing the bitwise Xor (an operation used in erasure

coding) of two 16 MB files. Python is nearly 700x slower.

Numpy, a third party extension for Python, gets only a 10x

slow down. With larger file sizes, Python quickly runs out

of memory.

Figure 5 (bottom): This is RACS being run on small EC2
instance at the highest load it could handle before running
out of memory. A large chunk of time turned out to be
waiting fully for the file to be received before actually
doing any work (RECV).
Racs used to do this:
data = socket.recv()
efile = socket2.recv()
compute_erasure(data, efile)
It is more efficient to compute the data as it becomes
available:
while(more data)
 data = socket.recv(4096) # read in chunks
 efile = socket.recv(4096)
 erasure_file += compute_erasure(data, efile)
(Various chunk sizes could be experimented with)

Figure 5 (top): Since I believed the receive time could be
masked, the top graph shows where the large chunks of
time were going. Computing the parity (erasure file) and
trying to find an object group with a free slot ate up huge
amounts of time, so these are the areas I targeted with
RACS-Java.
The unmeasured time for small data, is mostly that of
system time (context switch, page faults).

2.2 RACS-JAVA
RACS Java sets out to fix a few things with RACS-EV
relating mostly to correctness and speed.
Locks:

Locks can be lost at any time during execution.
In order to update meta-data relating to a key a
versioning system must be used. The system is
detailed in Figure 6. Anytime we wish to update the
object group for the key to object group mapping we
must use this versioning scheme to have coherent
data.
Objectgroup Freelist:
 Finding a free group (group with empty slots
available for new files) in the previous RACS took a
while under heavy loads due to contention of locks.
RACS servers all tried to access the same free groups
in the same order. RACS Java takes a much more
liberal approach. The order in the groups are
accessed is random. Unlike RACS Python, when getting
the lock on a group tryLock is used instead of
Fault Handling

Eight different things must be updated in a single
put operation. Crashing in between any step could
result in an unrecoverable error or a very hard to find
error. The following is the order in which RACS-Java
does updates.

1. Data on cloud
2. Objectgroup
3. Parity File
4. Object group freelist (keeps track of groups

with available space)
5. Key to object group mapping

6. Previous key objectgroup (remove key from
group)

7. Previous key data on cloud (remove it)
8. Previous parity file

In order explain this process in more depth the steps
of a put will be detailed:

1. The Lock is obtained on the file name
2. A free group is found and locked
3. The provider is chosen for the file
4. The intent to write to the specified repo and

object group is put into ZooKeeper along with
the parity file’s unique id and the file’s unique
id. (each instance of the same parity file and
file name have unique IDs)

5. The file is uploaded to the cloud with a unique
key. If anything goes wrong, no data will be
overwritten and worse there will be an
orphaned file (file on the cloud without a
ZooKeeper mapping)

6. New erasure is computed and uploaded with a
unique name.

7. The updated object group is put into
Zookeeper using the versioning system.

8. The object group is placed back on the free
list.

9. Atomically (all or nothing) – The intent to
write is deleted. The intent to delete the old
key is written. (A backup thread sees this and
simply takes care of deleting later. Since the
intent is on Zookeeper another less busy RACS
server could do the cleanup.

10. Release the lock.

Figure 6: Shows how versioning works. In order to update

mappings relating to files in Zookeeper, we must obtain

the lock on the mapping, download the mapping, record

the version, modify the mapping, upload the mapping

with the version, if the version is the same, we still have

the lock, otherwise someone else may have the lock.

Failures can be handled at each step with relative
ease. Fail after:

1. The lock is lost and nothing could go wrong.
2. The lock is lost and nothing could go wrong

since the group remains on the free list.
3. This is all local so nothing can go wrong.
4. The intent is written to Zookeeper (with a

unique key so no intents can be overwritten).
5. If a failure happens hear or later the cleanup

thread will simply lock on the key and group
abd check the erasure file to see if it has
mapping for the file name (erasure files
duplicate the object mapping and keep track
of the file’s length). If it does the erasure is
recomputed and uploaded (or deleted if the
object group has a different erasure file
unique ID). Then the cleaner must check to
see if the object group in the intent file has
the mapping to the file name (remember each
instance of a file name has a unique ID, so a
file with the same name can’t be mistaken for
the failed file). Then the object group is
updated (using the versioning system). Lastly,
since the erasure file has been updated we
can safely remove the file from the cloud (if
we removed the file first, we couldn’t remove
the changes made to the erasure file. After all
of this is complete the original intent to write
is deleted. If the cleaner fails, the intent is still
there for another cleaner on another RACS
server to investigate.

6. See 5
7. See 5
8. See 5
9. See 5
10. Releasing the lock can fail due to the

versioning system
Caching Erasure Files
 RACS JAVA caches parity files temporarily so
that they don’t have to be fetched from cloud storage
as often. The current system of caching holds free
(don’t have to be completely free) groups after they
have been used for roughly 5 seconds. If the cached
group is selected for use a lock is obtained (using
tryLock – if it fails you can assume the local cached
group is invalid) and then the version of the cached

object group is compared to the version of the global
copy. If they are the same the object group is useable.
The cache right now has a 10% hit ratio while yielding
small speedups (5%) in the computation of cache
groups vs. non cached groups. I suspect this speed up
would be greater if the providers used in the
benchmark were a little more spread out over the
world/country since fetching a parity file would take
much longer. (see benchmark setup)

Get:
 Get work in a similar fashion to RACS-EV. A get
is first tried without a lock and then with a lock. If both
of those fail then a degraded get is performed. This
means that the erasure file is fetched along with all
other files in the object group.

The chart above shows that degraded gets are slower
than regular gets. This test repeats the regular GET
benchmark but with a deleted repository (so roughly
2/3 of the GET operations are still non degraded) This
is expected since more data has to be fetched. The
graph probably doesn’t show how much slower
degraded gets would be in practice since once again
fetches from the cloud are fast since the cloud storage
and the computation computers running RACS servers
are all in the same geographical area and the amount
of RACS servers was only 3. So there were at most 2
things to fetch.

PUTS
 PUTS is extremely similar to put, but it allows
multiple files to be uploaded in the same transaction.
Because of this, the erasure file is guaranteed to be
generated completely locally (no fetches or uploads in
between in each additional file). The files intents are

atomically deleted so the files either all fail or all
succeed.

3. Results

This figures show that JRacs can obtain a nice speedup over the python version especially for large files

Set up:
3 client computers in CSUG running Intel i7-4770 with
4 cores and 2 threads per core at 3.40 GHZ and 12 GB
Ram. Each client computer can then run multiple
threads. In the cases of the benchmark each ran an
equal number of threads.

3 virtual machines running on us-east EC2 on m1.large
instances. (2 cores. 2 threads/core at 1.7 GHZ, 8 GB
RAM)
3 Repositories on S3 us-east1.

The client threads each send 20 files of each size with
some overlapping file names to create conflicts. The
clients send one request at a time and wait for a
response before going on.

Conclusion
Java RACS provides a nice speedup over the python
version mainly due to its ability to compute the parity
faster and actually run multithreaded. My goal in this
project was to increase the performance and safety of
RACS and I believe I have accomplished that goal.
Other discussions include how cost effective RACS
actually is. Transfer fees are the killing cost and RACS
requires many more transfers than direct cloud usage.
A PUT could potentially incur a charge for

downloading the erasure file from another provider.
On top of this a GET could also become two transfer
fees since providers normally charge for data leaving
the computation computer as well as the cloud
storage. First the GET has to download the file from
another provider and then send it out. The other
future topic for RACS is getting the computation side
of it working. The ability to send code to a cloud
computer that would only operate on files in the same
provider could provide to be quite fast and cost
effective.
Other groups have done things similar to RACS. But
they don’t focus on the reliability, cost, and potential
cloud computation part of RACS. They normally focus
on performance, which I think RACS has drifted away
from since the file striping that the original RACS did
probably could provide more performance. One such
idea is commercial product:
https://www.multcloud.com/

Finding Free is the time spent looking for a group for the file. This now takes nearly no time compared to the overall
time.

Uploading File is the time spent actually uploading the file.
Parity includes calling recv on the socket (these parts are sort of inseparable now), computing the parity, and

uploading the parity. This is the dominating factor which is should be. This shows that the Java version is being more
efficient with the other parts of the program (non-parity parts).

