
Abstract 
Cloud storage is becoming increasingly popular and 
cheap.  It is convenient for companies to simply store 
their data online so that they don’t have to buy a large 
amount of storage, set it up, and pay people to 
maintain it. Companies such as Netflix store as much 
as 3 petabytes of information in the cloud (typical 
home computers can store up to 1-2 terabytes of 
information and 1 petabyte is 1024 terabytes). When 
storing such a volume of data the client is susceptible 
to being locked in with a provider due to the high 
costs of transferring data out of the cloud and 
relatively low cost of actually storing the data. This 
report discusses the feasibility of storing files evenly 
over multiple providers in a system called Redundant 
Array of Cloud Storage (RACS). First I will discuss RACS’ 
evolution and then I will explain the current version of 
RACS and finally compare the performance of two 
versions of RACS. 

 

1. Introduction 
 Relying on a single provider can be risky. 
Customers can experience vendor lock-in where the 
client becomes bound to the provider due to cost 
reasons. Figure 1 reveals that the cost to transfer data 

out of the cloud is significantly more than storage 
itself.  Users typically also have to pay for each request 
they issue, but these prices are normally negligible. 
Most cloud providers don’t charge for in data transfer. 
While providers have 99.99+% availability for data, the 
.01% of the time when data is inaccessible are 
normally large chunks consisting of multiple 
hours/days. So 99.99% availability isn’t the data 
becoming unavailable for a few minutes every week, 
but rather large windows of unavailability. This could 
halt business for a whole day for companies that rely 
on the cloud. Some providers, such as Microsoft, 
realize this and allow users to upload to two separate 
places for slightly less than double the cost of a single 
upload. RACS aims to mitigate this effect while 
keeping costs down by evenly distributing your data 
among multiple providers. Cloud providers also lessen 
their prices when you store more data to prevent 
users from distributing files, but the price drops are 
only around %20. 
 

2. History 
The original RACS set out with the following goals: 
 Tolerating Outages: When a provider is 
unavailable, a user should still be able to get the data 
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Figure 1: Shows the prices of cloud storage for 

three popular and cheap providers. 



using RACS. 
 Tolerating Data Loss: It is rare for providers to 
lose data but it does happen. Using the same 
techniques as handling Outages, RACS can handle 
some data loss. 
 Adapting to Price Changes: Since data is 
spread out evenly over multiple providers, if one 
provider lowers prices users of RACS benefit. 
 

RACS was designed to a have a simple 
interface that mimicked Amazon’s cloud storage 
interface. There were a few functions that are self-
explanatory: GET – takes in a file name and returns 
the data associated with the file, PUT – takes in a file 
name and a file and uploads it the cloud providers, 
DELETE – takes in a file name and deletes the file on 
the cloud. It also has some non-familiar functions: 
LOCATE – finds which cloud provider RACS decided to 
put your data in, PUTAT – allows the user to put the 
data in a specific provider. Racs-EV adds a new 
function called PUTS which allows users to upload 
multiple files in a single transaction. 

The original RACS accomplished the goals by 
splitting up a file into smaller fixed sized chunks and 
sending them evenly to the cloud providers. Using 
erasure coding on the chunks allows RACS to generate 
an additional chunk that can be used to recover one 
other missing chunk of the real file.  

Some users of RACS may wish to do cloud 
computation, or use computers in the same data 
center as the storage to do operations and 
computation on the files stored in the cloud. This is 
beneficial because transfer data from the storage 
computers to the computation computers is normally 
free as long as they are both provided by the same 

provider. This is a problem for the original RACS since 
each file is spread up in little chunks all over the cloud. 
Doing a computation on one file requires accessing 
most of the other providers in order to reconstruct 
the file. 

2.1 RACS-EV 
 RACS-EV was designed to solve the problem of 
reconstruction of files for cloud computation. Instead 
of files being split up into little pieces whole files are 
stored in a single provider. To allow for erasure 
coding, files are group by size and the erasure coding 
is computed on whole files. These groups of files are 
called object groups. Each object group has exactly 1 
file in each provider and one of those files is a erasure 
coding file.  
 This solution introduces a whole new set of 
problems. Before a file was split up and put into every 
repository and this time a file is in only one repository. 
So now there needs to be a way to track which 
repository a file is in. RACS stores this mapping in 
object groups. Furthermore a file also belongs to an 
object group so there needs a mapping from file to 
object group. These two mappings are stored in 
ZooKeeper. In order to a PUT operation, RACS needs 
to do a few addition actions. First, the file needs to 
find a free object group to join (making one if 
needed). Then the object group’s erasure coding 
needs to be updated which requires downloading the 
erasure file from the cloud first and re-uploading  it 
afterwards.  The file may have already been uploaded 
in the past, so now some old stale mappings exist 
which need to be cleaned up. The old file has to be 
downloaded and then deleted from the cloud and the 

public abstract class Repository { 
 
  boolean put(String key, String Bucket, 
    InputStream data, int size) throws Exception; 
 
  InputStream get(String key, 
    String Bucket) throws Exception; 
  
  boolean remove(String key, 
    String bucket) throws Exception; 
  
  Iterator<String> getKeys(String bucket) 
    throws Exception;  
} 

Figure 3: Shows the basic setup of RACS. Clients 

send data to RACS, and then RACS uses a 

program called ZooKeeper to synchronize access 

between RACS servers and finally uploads the 

data to the repositories 

Figure 2: In order to add a new repository only 

this simply interface must be extended. 



old erasure file needs to be downloaded to computer 
a new erasure and then re-uploaded. On top of all 
these things that need to be updated, the RACS server 
could lose connection at any second and leave data in 
an inconsistent state. For example, RACS could update 
the object group to include a new file, but then lose 
connection during the actual uploading of either the 
erasure file or the file itself.  
 RACS has typically used distributed locks to 
help deal with inconsistency issues, but locks don’t 
help all that much. A ZooKeeper lock can be lost at any 
point during execution meaning that any changes 
being made could be conflicting with another RACS 
server that has now obtained the lock. 
 Python, while a powerful simple language, 
isn’t naturally suited for RACS. Python doesn’t allow 
parts of the same program to run concurrently which 
inhibits the ability to compute multiple erasure files at 
the same time. Python also generally runs CPU bound  
(computation tasks) tasks slower than most languages. 
(Of course, python can be augmented with native C 
libraries, but then again so can other faster languages) 
 

 
 

Figure 4: Shows the slowdown of Python vs. Java in 

computing the bitwise Xor (an operation used in erasure 

coding) of two 16 MB files. Python is nearly 700x slower. 

Numpy, a third party extension for Python, gets only a 10x 

slow down. With larger file sizes, Python quickly runs out 

of memory. 

Figure 5 (bottom): This is RACS being run on small EC2 
instance at the highest load it could handle before running 
out of memory. A large chunk of time turned out to be 
waiting fully for the file to be received before actually 
doing any work (RECV). 
Racs used to do this: 
data = socket.recv() 
efile  = socket2.recv() 
compute_erasure(data, efile) 
It is more efficient to compute the data as it becomes 
available: 
while(more data) 
  data = socket.recv(4096) # read in chunks 
  efile = socket.recv(4096) 
  erasure_file  += compute_erasure(data, efile) 
(Various chunk sizes could be experimented with) 
 
Figure 5 (top): Since I believed the receive time could be 
masked, the top graph shows where the large chunks of 
time were going. Computing the parity (erasure file) and 
trying to find an object group with a free slot ate up huge 
amounts of time, so these are the areas I targeted with 
RACS-Java. 
The unmeasured time for small data, is mostly that of 
system time (context switch, page faults). 
 



2.2 RACS-JAVA 
RACS Java sets out to fix a few things with RACS-EV 
relating mostly to correctness and speed. 
Locks: 

Locks can be lost at any time during execution. 
In order to update meta-data relating to a key a 
versioning system must be used.  The system is 
detailed in Figure 6. Anytime we wish to update the 
object group for the key to object group mapping we 
must use this versioning scheme to have coherent 
data. 
Objectgroup Freelist: 
 Finding a free group (group with empty slots 
available for new files) in the previous RACS took a 
while under heavy loads due to contention of locks. 
RACS servers all tried to access the same free groups 
in the same order. RACS Java takes a much more 
liberal approach.  The order in the groups are 
accessed is random. Unlike RACS Python, when getting 
the lock on a group tryLock is used instead of  
Fault Handling 

Eight different things must be updated in a single 
put operation. Crashing in between any step could 
result in an unrecoverable error or a very hard to find 
error. The following is the order in which RACS-Java 
does updates.  

1. Data on cloud 
2. Objectgroup 
3. Parity File 
4. Object group freelist (keeps track of groups 

with available space) 
5. Key to object group mapping 

6. Previous key objectgroup (remove key from 
group) 

7. Previous key data on cloud (remove it) 
8. Previous parity file 

In order explain this process in more depth the steps 
of a put will be detailed: 

1. The Lock is obtained on the file name 
2. A free group is found and locked 
3. The provider is chosen for the file 
4. The intent to write to the specified repo and 

object group is put into ZooKeeper along with 
the parity file’s unique id and the file’s unique 
id. (each instance of the same parity file and 
file name have unique IDs) 

5. The file is uploaded to the cloud with a unique 
key. If anything goes wrong, no data will be 
overwritten and worse there will be an 
orphaned file (file on the cloud without a 
ZooKeeper mapping) 

6. New erasure is computed and uploaded with a 
unique name. 

7. The updated object group is put into 
Zookeeper using the versioning system. 

8. The object group is placed back on the free 
list. 

9. Atomically (all or nothing) – The intent to 
write is deleted. The intent to delete the old 
key is written. (A backup thread sees this and 
simply takes care of deleting later. Since the 
intent is on Zookeeper another less busy RACS 
server could do the cleanup. 

10. Release the lock. 
 

Figure 6: Shows how versioning works. In order to update 

mappings relating to files in Zookeeper, we must obtain 

the lock on the mapping, download the mapping, record 

the version, modify the mapping, upload the mapping 

with the version, if the version is the same, we still have 

the lock, otherwise someone else may have the lock. 



 
 
Failures can be handled at each step with relative 
ease. Fail after: 

1. The lock is lost and nothing could go wrong. 
2. The lock is lost and nothing could go wrong 

since the group remains on the free list. 
3. This is all local so nothing can go wrong. 
4. The intent is written to Zookeeper (with a 

unique key so no intents can be overwritten). 
5. If a failure happens hear or later the cleanup 

thread will simply lock on the key and group 
abd check the erasure file to see if it has 
mapping for the file name (erasure files 
duplicate the object mapping and keep track 
of the file’s length). If it does the erasure is 
recomputed and uploaded (or deleted if the 
object group has a different erasure file 
unique ID).  Then the cleaner must check to 
see if the object group in the intent file has 
the mapping to the file name (remember each 
instance of a file name has a unique ID, so a 
file with the same name can’t be mistaken for 
the failed file). Then the object group is 
updated (using the versioning system). Lastly, 
since the erasure file has been updated we 
can safely remove the file from the cloud (if 
we removed the file first, we couldn’t remove 
the changes made to the erasure file. After all 
of this is complete the original intent to write 
is deleted. If the cleaner fails, the intent is still 
there for another cleaner on another RACS 
server to investigate. 

6. See 5 
7. See 5 
8. See 5 
9. See 5 
10. Releasing the lock can fail due to the 

versioning system 
Caching Erasure Files 
 RACS JAVA caches parity files temporarily so 
that they don’t have to be fetched from cloud storage 
as often. The current system of caching holds free 
(don’t have to be completely free) groups after they 
have been used for roughly 5 seconds. If the cached 
group is selected for use a lock is obtained (using 
tryLock – if it fails you can assume the local cached 
group is invalid) and then the version of the cached 

object group is compared to the version of the global 
copy. If they are the same the object group is useable. 
The cache right now has a 10% hit ratio while yielding 
small speedups (5%) in the computation of cache 
groups vs. non cached groups. I suspect this speed up 
would be greater if the providers used in the 
benchmark were a little more spread out over the 
world/country since fetching a parity file would take 
much longer. (see benchmark setup) 
 
Get: 
 Get work in a similar fashion to RACS-EV. A get 
is first tried without a lock and then with a lock. If both 
of those fail then a degraded get is performed. This 
means that the erasure file is fetched along with all 
other files in the object group. 

The chart above shows that degraded gets are slower 
than regular gets. This test repeats the regular GET 
benchmark but with a deleted repository (so roughly 
2/3 of the GET operations are still non degraded) This 
is expected since more data has to be fetched. The 
graph probably doesn’t show how much slower 
degraded gets would be in practice since once again 
fetches from the cloud are fast since the cloud storage 
and the computation computers running RACS servers 
are all in the same geographical area and the amount 
of RACS servers was only 3. So there were at most 2 
things to fetch. 
 
PUTS 
 PUTS is extremely similar to put, but it allows 
multiple files to be uploaded in the same transaction. 
Because of this, the erasure file is guaranteed to be 
generated completely locally (no fetches or uploads in 
between in each additional file). The files intents are 



atomically deleted so the files either all fail or all 
succeed. 
 

3. Results 
 

 
 

This figures show that JRacs can obtain a nice speedup over the python version especially for large files 



Set up: 
3 client computers in CSUG running Intel i7-4770 with 
4 cores and 2 threads per core at 3.40 GHZ and 12 GB 
Ram. Each client computer can then run multiple 
threads. In the cases of the benchmark each ran an 
equal number of threads. 
 
3 virtual machines running on us-east EC2 on m1.large 
instances. (2 cores. 2 threads/core at 1.7 GHZ, 8 GB 
RAM) 
3 Repositories on S3 us-east1. 
 
The client threads each send 20 files of each size with 
some overlapping file names to create conflicts. The 
clients send one request at a time and wait for a 
response before going on. 
 

Conclusion 
Java RACS provides a nice speedup over the python 
version mainly due to its ability to compute the parity 
faster and actually run multithreaded. My goal in this 
project was to increase the performance and safety of 
RACS and I believe I have accomplished that goal. 
Other discussions include how cost effective RACS 
actually is. Transfer fees are the killing cost and RACS 
requires many more transfers than direct cloud usage. 
A PUT could potentially incur a charge for 

downloading the erasure file from another provider. 
On top of this a GET could also become two transfer 
fees since providers normally charge for data leaving 
the computation computer as well as the cloud 
storage. First the GET has to download the file from 
another provider and then send it out.  The other 
future topic for RACS is getting the computation side 
of it working. The ability to send code to a cloud 
computer that would only operate on files in the same 
provider could provide to be quite fast and cost 
effective. 
Other groups have done things similar to RACS. But 
they don’t focus on the reliability, cost, and potential 
cloud computation part of RACS. They normally focus 
on performance, which I think RACS has drifted away 
from since the file striping that the original RACS did 
probably could provide more performance.  One such 
idea is commercial product: 
https://www.multcloud.com/ 

Finding Free is the time spent looking for a group for the file. This now takes nearly no time compared to the overall 
time. 

Uploading File is the time spent actually uploading the file. 
Parity includes calling recv on the socket (these parts are sort of inseparable now), computing the parity, and 

uploading the parity. This is the dominating factor which is should be. This shows that the Java version is being more 
efficient with the other parts of the program (non-parity parts). 


