TincVPN Optimization
Derek Chiang, Jasdeep Hundal, Jisun Jung
Abstract

We explored ways to improve the performance for tincVPN, a virtual private network (VPN)
implementation. VPN’s are typically used for creating a (usually private) network between
computers connected by the public Internet. TincVPN is noted for being easy to configure, but
is about 5 - 15 times slower at sending data between two machines that are otherwise linked
together by a sufficiently a fast connection, including virtual servers running on the same
physical host.

In this paper we first detail the design and architecture of tincVPN and how it relates to the
observed performance issues. Then we propose two key optimizations, buffering the data
packets that tincVPN sends and switching the mechanism by which tincVPN decides whether
there is incoming data available to be read from the Linux system call select to the the system
call epoll. Finally, we compare the performance profiles of the unoptimized and optimized
versions of tincVPN and discuss areas for further improvement. Unfortunately, we have not
seen the gains expected from our implemented optimizations because of tinc’s administrative
packet overhead.

Introduction

This project was initially motivated by the SuperCloud project at Cornell University, which has
the goal of enabling users to flexibly shift the virtual servers (and other resources) that they
are using across different cloud providers (for example, Amazon’s Elastic Compute Cloud and
Microsoft's Azure). SuperCloud initially used tincVPN as its solution for establishing a network
between two different cloud providers. It was chosen because it is incredibly easy to
configure, which allows for increased development speed, especially for rapid testing between
different networking configurations for varying numbers of servers across the provider clouds.
The drawback with using tincVPN is its performance. When testing between any two hosts,
the tincVPN interface achieved about 20% of the data rate when compared to the standard
host interface, whether it was physical or virtualized. Typically the performance of the former
was only about 10% of the latter.

Though the creators of SuperCloud have shifted away from using a VPN based solution to set
up networking between virtual servers, this project is still valuable because VPN'’s see
widespread use despite their typical inefficiency. Even of most users have an emphasis on
the “private” side of the private network a VPN provides and our work is on the “network” side,
it is likely that any low level networking gains will preserve the privacy features while making
the VPN experience more responsive and enjoyable.



In this project, we install and test tincVPN, analyzing it's architecture and performance profiles
to identify likely optimizations. Then we implement chosen optimizations and observe if any
significant performance gains are realized.

Related Work

The obvious alternative to using tincVPN would be to use another VPN implementation that
has better performance characteristics. Some implementations likely manage and send data
packets more efficiently than tincVPN, which may be a worthwhile tradeoff even if they are
harder to configure. One possible future direction for this project would be to benchmark
competing VPN solutions and perhaps overhaul tincVPN’s low level sending routines based
on the best implementations seen. However, most Linux VPN'’s, including the popular
OpenVPN, are implemented in user space and would eventually suffer the same context
switch ceiling.

Another solution is to use a virtualized network switch instead of a VPN, and this was the
option chosen by the Supercloud project that originally inspired this work. Using a virtual
switch has significant advantages. A virtualized network switch is does not need to modify
incoming data packets and the one chosen by the SuperCloud project, OpenVSwitch
implements large parts of its data path as a kernel module, which reduces the amount of
kernel switches needed to send data through the switch. Additionally, machines that send
data to the switch do not need to install anything or modify their networking configuration in
any special way. The disadvantage of virtual switches is that they are not as easily configured
as VPN'’s, though advances in software-defined networking are closing the gap.

Background/Tinc Architecture

We begin with a discussion of the generic architecture of most Linux VPN solutions and move
to a discussion of Tinc specific portions and compare its performance profile to a standard
networking interface.

Linux VPN’s are typically implemented such that they present themselves as a network
interface to user applications that want VPN access. The diagram on the following page
illustrates this setup and applies to OpenVPN and other implementations as much as it does
to tinc.



User Application Tinc Daemon

User

Kernel
To Network

N

[ )

v

Tinc Virtual NIC (Paravirtualized) Host NIC

The diagram shows one limitation of VPN’s: as they are typically not implemented as kernel
modules, sending a packet from the user application requires two system calls. One happens
in the user application, and the other in the VPN daemon that directs the user’s data to the
correct host and interface for the virtual network IP address that the user specified by sending
the right bits to an actual network interface card on the host. Different VPN implementations
differ in how they manage the set of virtual IP’s for the virtual network, how they make routing
decisions to direct data to the appropriate hosts, and how they fragment and reassemble user
data. However, the path that the user application’s data flows through usually looks exactly
like the above.

This indicates that one possible improvement for tincVPN could be to move significant bits of
the tincVPN daemon to kernel space as a kernel module, thus eliminating one very expensive
context switch. However, if these system calls were the bottleneck, we would notice that
tincVPN would likely achieve close to 50% of the data rate of a standard interface, but this
was not the case.

One specific design choice that was discovered was that tincVPN splits large data packets
from user applications into UDP packets with a sequence number that are sized to the
maximum transmission unit for the network path that the tincVPN packets take. It then
transmits these packets through individual calls to send. This means that for every system call
that a user application performs to send large packets tincVPN is performing several send
system calls to forward data to the real network interface, likely adding a significant amount of
overhead to the operation of the VPN. The following diagram illustrates this process.



UDP Header + Seq # + Data
Split

TCP Packet (from User) —

UDP Header + Seq # + Data

/,/v UDP Header + Seq # + Data
send()

Called on each packet

To kernel

Analysis of Tinc Performance

We created a test setup to confirm that the send calls were consuming lots of time. The test
setup consisted of two virtual machines running on a single host, both with tincVPN installed.
The tool ‘netperf’ was used to generate a large amount of traffic as 16384 bytes packets from
one of the virtual machines to the other.

Netperf consistently achieved a data rate of about 1800 MBits/s between the standard
networking interfaces and about 200 MBits/s between the tincVPN interfaces. Considering a
single send call as one packet transfer, this reflects a packet rate of approximately 13,700
packets/s for the standard interface and approximately 15,625 packets/s for tincVPN. The
latter is achieving a slightly higher rate for system calls, but since the packet size here
matches the maximum transmission unit of 1600 bytes, the overall data rate is much lower.

The kernel profiling tool ‘perf’ was used to generate flame graphs of time spent in various
kernel calls for the netperf tests for both the standard interface and the tincVPN interface. The
results are seen below.

System Wide Kernel Calls w/o Tinc (using perf)

Flame Graph

H 7| | B mwait idle | |
]



System Wide Kernel Calls w/ Tinc (using perf)

Flame Graph

|
EUID M 11 iowrite 16 [0 TN
(DO _sendio nocancel

I 1

| eS| @ mwai ide 98 Lurcnown] | )
C@swapper - ... ted
e eeeeaaaaaaE s s ee,e————SS—S—S——————B—E—————————————

The flame graphs confirm the findings of the code review, showing that tincVPN spends far
greater amounts of time in the ___sendto_nocancel call that is called along the path of the
userspace send system call. In fact, sending data with netperf through the standard interface
barely spends time in any kernel function, instead idling the vast majority of the time.

Further confirmation came through running a tincVPN daemon attached to Google’s
performance profiling tools (gperftools). This generates data by samples the process to see
which system call it is in at any given point in time. Gperftools gives us the call graph below
which shows the percentage of time that the tincVPN daemon spent in various systems calls.
The send/sendto system call dominated, though the time spent in the select call was also
significant, giving us another route for optimization.

Tinc Profiling (using gperftools)

Ntined
Total samples: 1363
Focusil 3

write_nocancel

166 (12.2%)




Design and Implementation of Optimizations

From the analysis above, we first decided to attempt to reduce the number of send system
calls. The solution is to buffer the packets generated by tincVPN, sending a filled buffer as
part of one system call. We would like our layer for sending packets to reflect the diagram
below, as opposed to the per-packet send send calls seen before.

Split Header + Seq # + Data

Data (from User) —

Header + Seq # + Data

sendmmsg() /// Header + Seq # + Data

Called once

Buffer

To kernel

Newer versions of Linux include a send_mmsg system call that allows for exactly this
implementation. The optimized tinc code takes a few new steps. At initialization it sets up
space for a buffer of packets, allocating an array of vpn_packet _t, the same struct that
tincVPN splits larger packets into. On an call to send one of these small packets, it is instead
typically copied (via memcpy) to the next free space in the buffer. When the buffer is filled by
the last packet added to it, a helper function is called to parse the individual packets in the
buffer into a series of msghdr structs representing the individual packets to be sent. These are
then added to a mmsghadr struct that is passed into the send_mmsg system call which actually
sends the packets.

The other optimization done as a result of the call graph analysis was to switch from using the
select system call to the epoll system call. This was more straightforward because their
semantics are nearly the same. However, though select took a significant amount of time as
indicated by the samples gathered by gperftools, the benefit of this switch is likely to be small
since epoll is only slightly more efficient than select.



Evaluation

The following figures are the results from the optimized TincVPN implementation.

Kernel Flame Graph - Optimized TincVPN

- \|||||'|---- -m
4 -%---m-nm- b

—===gi




System Call Graph - Optimized TincVPN

Jtined

Total samples: 400

Focusing on: 400

Dropped nodes with <= 2 abs(samples)
Dropped edges with <= 0 samples

read_nocancel
14 (3.5%)

wrie_packet
2059
of 48 (1229}

an
Dinoy
o)

29

i oum
100
of 19 (R

e __select_nocancel
of 246 (61.5%) 19 (4.8%)

1{0.2%)
o S54138%)

GI___sendmmsg
110 (27.5%)

]

o@a)
iy

_IO_vfprintt_internal
10 (2.5%)
of 108 (27.2%)

__write_nocancel
134 (33.5%)

strchrnul
64 (16.0%)




The flame graph and call graph show a slight shift in the performance profile, but it turned out
that the performance was worse in the optimized code. Initially we used a very simple
buffering mechanism where a buffer was flushed only on being filled, but this prevented
tincVPN from sending through administrative packets used for establishing its routes and
confirming receipt of chunks of data because these operations require a response. This was
discovered through tincVPN'’s own logging as well as custom logging added where necessary.
The final implementation included a coarse grained marking of packets as administrative or
not, forcing a flush of the packet buffer whenever an administrative packet was sent. It turned
out that the flushing happened far too often to make up for the overhead of copying the
packets in memory.

Future Work

We have identified a few major areas left for improvement. The first is making benchmarking
more automated. We have implemented a script to generate a flame graph, but we have to
generate the call graph separately as gperftools cannot be run on a detached process.
Combining these two would cut the testing process time in half. Additionally, the configuration
of the VM'’s to use tincVPN, though simple, is still a manual process, making it hard to switch
operating systems details like the level of hardware virtualization.

An easy test for justifying properly implemented buffering would be to increase the MTU
available on the interfaces in the virtual machines used for testing. Though tricky to get right,
switching from standard Ethernet frames to jumbo frames would significantly reduce the
number of send calls be case of the 500% increase in possible packet size. Once this
improvement is verified, a finer grained separation of tincVPN’s administrative and data
packets can be attempted to further reduce the number of overall send calls.

TincVPN runs in single event loop and does not exploit the parallelism possible on modern
machines. An initial attempt was made to parallelize send calls, but it was discovered that
Linux serializes send calls to the same interface, so no performance improvement was
observed. There are other ways to use multiple cores and this should be explored.

Finally, writing pieces of TincVPN as a kernel module once current bottlenecks are resolved
may allow it to come close to matching the performance of the standard network interface as
it will be able to avoid the current minimum of two system calls on every packet send.

Conclusion

For this project, we familiarized ourselves with the design and architecture of tincVPN to

reason about its performance issues. After studying these, we came up with several ways to
improve performance and implemented some of them. Our optimizations were buffering the
data packets to reduce the number of sends tincVPN invokes and changing the way it reads
incoming data from using select to epoll. We then compared the performance evaluations of



tincVPN with and without these changes. Although we were unable to achieve significant
performance improvement by implementing these optimizations, we have discussed future
work that might result in greater performance gain.

Appendix
The OPTIMIZATION_README.md in the attached source details how to configure tincVPN
across two machines and then the run the profiling tools.



