Optimizing
TincVPN

Derek Chiang, Jasdeep Hundal, Jisun Jung

Motivation

e Supercloud requires a performant

networking solution
o Tinc is easy to configure, but slow

Tinc Architecture

User Application

User

Tinc Daemon

Kernel

Tinc Virtual NIC

To Network

N

[)

L4

(Paravirtualized) Host NIC

Tinc Architecture Continued

TCP Packet (from User)

Called on each packet

ﬂ

To kernel

UDP Header + Seq # + Data

UDP Header + Seq # + Data

UDP Header + Seq # + Data

send() /'

Tinc Architecture Continued

e Network topology
e Host configuration

e Packet reassembly

Profiling - Kernel Calls w/o Tinc

Flame Graph

Profiling - Kernel Calls w/ Tinc

Flame Graph

I
' . o
LI @A (0 iowrite16

10
; R)
l [dolsoftrg (@ mwaitjde [}t =
§swapper . cd
ey

Profiling - Tinc Function Calls

/tincd

Total samples: 1363

Focusing on: 1363

Dropped nodes with <= 6 abs(samples)
Dropped edges with <= 1 samples

elect_nocanc
212 (15.69%)

read_nocancel
1 (9.2%)

write_nocancel
166 (12.2%)

_TO_vfprintf_internal
67 (4.9%)
of 87 (6.4%)

Potential Optimizations

sendmsg -> sendmmsg (buffering)

select -> epoll

more efficient algorithms / data structures
event loop -> multithreading

use more efficient socket implementation

Actual Optimizations

e sendmsg -> sendmmsg (buffering)
e select -> epoll

Buffered Architecture

Split Header + Seq # + Data
Data (from User) [>

Header + Seq # + Data

sendmmsg() ' Header + Seq # + Data

Called once

ﬂ Buffer

To kernel

Optimizations Continued

e Parallelized send did not work

e Switch from using select to using epoll

Results

e epoll: consistently about 5% faster

e sendmmsg: single host test was promising

Future Work

e Improve ‘one button’ testability
e Increase MTU

e Take advantage of multicore systems

e |n-kernel VPN

Demo!

e Script for performance profiling between two
hosts running tinc

