
Optimizing 
TincVPN
Derek Chiang, Jasdeep Hundal, Jisun Jung



Motivation

● Supercloud requires a performant 
networking solution
○ Tinc is easy to configure, but slow



Tinc Architecture

Tinc DaemonUser Application

Tinc Virtual NIC (Paravirtualized) Host NIC

User 

To Network
 

Kernel 



Tinc Architecture Continued

TCP Packet (from User)

UDP Header + Seq # + Data
Split 

UDP Header + Seq # + Data

UDP Header + Seq # + Data
send()

To kernel

Called on each packet



Tinc Architecture Continued

● Network topology

● Host configuration

● Packet reassembly



Profiling - Kernel Calls w/o Tinc



Profiling - Kernel Calls w/ Tinc



Profiling - Tinc Function Calls



Potential Optimizations

● sendmsg -> sendmmsg (buffering)
● select -> epoll
● more efficient algorithms / data structures
● event loop -> multithreading
● use more efficient socket implementation



Actual Optimizations

● sendmsg -> sendmmsg (buffering)
● select -> epoll 



Buffered Architecture

Data (from User)
Header + Seq # + DataSplit 

Header + Seq # + Data

Header + Seq # + Datasendmmsg()

To kernel

Called once

Buffer



Optimizations Continued

● Parallelized send did not work

● Switch from using select to using epoll



Results

● epoll: consistently about 5% faster

● sendmmsg: single host test was promising



Future Work

● Improve ‘one button’ testability

● Increase MTU

● Take advantage of multicore systems

● In-kernel VPN



Demo!

● Script for performance profiling between two 
hosts running tinc


