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Motivation

● Supercloud requires a performant 
networking solution
○ Tinc is easy to configure, but slow



Tinc Architecture

Tinc DaemonUser Application

Tinc Virtual NIC (Paravirtualized) Host NIC
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Tinc Architecture Continued

TCP Packet (from User)

UDP Header + Seq # + Data
Split 

UDP Header + Seq # + Data

UDP Header + Seq # + Data
send()

To kernel

Called on each packet



Tinc Architecture Continued

● Network topology

● Host configuration

● Packet reassembly



Profiling - Kernel Calls w/o Tinc



Profiling - Kernel Calls w/ Tinc



Profiling - Tinc Function Calls



Potential Optimizations

● sendmsg -> sendmmsg (buffering)
● select -> epoll
● more efficient algorithms / data structures
● event loop -> multithreading
● use more efficient socket implementation



Actual Optimizations

● sendmsg -> sendmmsg (buffering)
● select -> epoll 



Buffered Architecture

Data (from User)
Header + Seq # + DataSplit 

Header + Seq # + Data

Header + Seq # + Datasendmmsg()

To kernel

Called once

Buffer



Optimizations Continued

● Parallelized send did not work

● Switch from using select to using epoll



Results

● epoll: consistently about 5% faster

● sendmmsg: single host test was promising



Future Work

● Improve ‘one button’ testability

● Increase MTU

● Take advantage of multicore systems

● In-kernel VPN



Demo!

● Script for performance profiling between two 
hosts running tinc


