
SoNIC over 1G

Adithya Venkatesh, Nandini Nagaraj, Rafael Farias Marinheiro and Han Wang
Cornell University

Abstract—In standard environments, both Data Link and the
Physical (PHY) layers are defined in the Network Interface Cards
(NIC) and they cannot be accessed in real-time via software.
However, these lower layers contain valuable information that
can be used to measure and to improve the performance of
the network. Recently, SoNIC [1] was proposed to provide real-
time access to the Physical Layer and it was used to accurately
measure the performance of a high-speed wired complex network
[2]. Current SoNIC design and implementation only operates in
10 GbE (Gigabit Ethernet) devices. In this project, we present a
SoNIC design for 1GbE devices as an effort to extend the SoNIC
ecosystem.

I. INTRODUCTION

In standard environments, both Data Link and the Physical
(PHY) layers are defined in the Network Interface Cards
(NIC) and they cannot be accessed in real-time via software.
However, these lower layers contain valuable information that
can be used to measure and to improve the performance of
the network. Recently, SoNIC [1] was proposed to provide
real-time access to the Physical Layer and it was used to
accurately measure the performance of a high-speed wired
complex network [2]. However, current SoNIC design and
implementation only operates in 10 GbE (Gigabit Ethernet)
devices. In this project, we present a SoNIC design for 1GbE
devices as an effort to extend the SoNIC ecosystem.

II. BACKGROUND

According to the IEEE 802.3 standard [3], the PHY of the
1000BASE-X standard consists of three sublayers: the Physical
Coding Sublayer (PCS), the Physical Medium Attachment
(PMA) sublayer, and the Physical Medium Dependent (PMD)
sublayer (see figure 1). The PMD sublayer is responsible
for transmitting and receiving symbols from the medium.
The PMA sublayer is responsible for clock recovery and for
serializing and deserializing the bitstream. The PCS sublayer
comprises the encoding and decoding scheme used in the
1000BASE-X standard. In order to support different Gigabit
technologies, the PCS communicates with the Gigabit Media
Independent Interface (GMII). The IEEE 802.3 Clause 36
explains the PCS sublayer in further detail, but we summarize
it below.

When Ethernet frames are passed from the data link layer
to the PHY, they are reformatted before being sent accross
the physical medium. On the transmit (TX) path, the PCS
encodes every octet of an Ethernet frame into a 10-bit code
group using the 8B/10B transmission code (specified in clause
36.2.4). In order to achieve DC balance1, the 8B/10B codec
uses two different code groups (RD- and RD+) for the same
octet and uses a state machine to define which code group

1A Direct Current (DC) balanced signal has a similar number of 0’s and
1’s. It is used to prevent bit errors in circuits.

IEEE Std 802.3-2012
IEEE STANDARD FOR ETHERNET SECTION THREE

Copyright © 2012 IEEE. All rights reserved. 55

physical instantiation of the PMA Service Interface has also been defined (see 36.3.3). It is adapted from

ANSI Technical Report TR/X3.18-1997 (Fibre Channel—10-bit Interface). Figure 36–2 depicts the

relationship and mapping of the services provided by all of the interfaces relevant to 1000BASE-X.

It is important to note that, while this specification defines interfaces in terms of bits, octets, and code-

groups, implementors may choose other data path widths for implementation convenience. The only

exceptions are a) the GMII, which, when implemented at an observable interconnection port, uses an

octet-wide data path as specified in Clause 35, b) the PMA Service Interface, which, when physically

implemented as the TBI (Ten-Bit Interface) at an observable interconnection port, uses a 10-bit wide data

path as specified in 36.3.3, and c) the MDI, which uses a serial, physical interface.

36.1.6 Functional block diagram

Figure 36–2 provides a functional block diagram of the 1000BASE-X PHY.

36.1.7 State diagram conventions

The body of this standard is comprised of state diagrams, including the associated definitions of variables,

constants, and functions. Should there be a discrepancy between a state diagram and descriptive text, the

state diagram prevails.

LX MDI

1000BASE-LX
(PCS, PMA, and LX-PMD)

LX-PMD

MEDIUM

SX MDI CX MDI

MDI=MEDIUM DEPENDENT INTERFACE
GMII=GIGABIT MEDIA INDEPENDENT INTERFACE
PCS=PHYSICAL CODING SUBLAYER

∗ GMII is optional.

PMA=PHYSICAL MEDIUM ATTACHMENT

PHY=PHYSICAL LAYER DEVICE

NOTE—The PMD sublayers are mutually independent.

LAN
CSMA/CD

LAYERS

LLC (LOGICAL LINK CONTROL) OR OTHER MAC CLIENT

MAC—MEDIA ACCESS CONTROL

RECONCILIATION

HIGHER LAYERS

1000BASE-X

∗ GMII

To 1000 Mb/s Baseband

PHY

1000BASE-SX
(PCS, PMA, and SX-PMD)

1000BASE-CX
(PCS, PMA, and CX-PMD)

SX-PMD CX-PMD

PCS

MEDIUM

Figure 36–1—Relationship of 1000BASE-X and the PMDs

PMA

PMD=PHYSICAL MEDIUM DEPENDENT

MAC CONTROL (OPTIONAL)PRESENTATION

APPLICATION

SESSION

TRANSPORT

NETWORK

 DATA LINK

 PHYSICAL

OSI
 REFERENCE

MODEL
LAYERS

Repeater Set or to
1000BASE-X PHY
(point-to-point link)

MEDIUM

LX-PMD=PMD FOR FIBER—LONG WAVELENGTH, Clause 38
SX-PMD=PMD FOR FIBER—SHORT WAVELENGTH, Clause 38

CX-PMD=PMD FOR 150 Ω BALANCED COPPER CABLING, Clause 39

Fig. 1. 1000-BASEX standard

should be used. The entire 10-bit code-group is transmitted
over a physical medium. On the receive (RX) path, the PCS
decodes the 10-bit code-group into the octet and then sends it
to the layer above.

III. DESIGN

In order to provide real-time access to the PHY layer in
software, the user must have direct access to the PCS layer.
In our solution, the functionalities of the PCS layer must be
implemented in software while the transmission and reception
of bits can be handled by the hardware. In figure 2, we present
our design.

In this design, the PMD and the PMA sublayers are
implemented in hardware. The PMA layer stores data in and
receives data from the ring buffers. A Direct Memory Access
(DMA) engine must also be used to transfer the data from
the hardware layer to the kernel implementation. The PCS
and the upper layers are implemented in software. The PCS
is implemented in kernel space to access the shared memory
region between the hardware and software.

In order to achieve the full line-rate of 1Gbps, the software
implementation must be able to process and transfer data at
1.25Gbps, due to the 8B/10B encoding. While this does present
some challenges, it is worth pointing out that this rate is much
less than the 10.3125Gbps required by the 10GbE standard.

SFP+

1000Base-X Transceiver

TX Ring RX Ring

DMA and PCI Engine

1000Base-X Transceiver

PCS Encoder PCS Decoder

PMA

PCS

PMD

Hardware

Kernel

Fig. 2. SoNIC over 1G Architecture

IV. IMPLEMENTATION

A. Hardware

To implement the hardware part of the design, we planned
to use the Altera Stratix IV FPGA as our platform. The board
is already equipped with SFP+ (Small Form-factor Pluggable)
ports and it is equipped with 11.3 Gbps transceivers that can
easily perform the 1 GbE PMA at line-speed.

We have implemented the PMA sublayer and the Buffer
Rings in Verilog. We didn’t manage to implement the DMA
engine in hardware, but we can easily reuse the original SoNIC
DMA implementation to transfer data between the Hardware
Layer and the Software Layer.

B. 8B/10B Transmission Code

1G SoNIC requires an 8B/10B encoder/decoder to be
available to the Physical Coding Sublayer (PCS). The 8B/10B
encoder converts an octet input into a 10-bit code group,
the decoder does the opposite. Valid inputs to the codec are
available in the [3], and each octet input maps to one of
two 10-bit outputs depending on the running disparity of the
codec (difference between the number of set and unset bits in
each input to the encoder). The 8B/10B Codec for 1G SoNIC
was implemented in C. The software implementation works
as follows. It has two 3/4 lookup tables and two 5/6 lookup
tables, one for the positive running disparity and the other
for the negative running disparity, containing 8 and 32 entries
respectively. The decoder works with a reverse lookup table
and does not have to keep track of the running disparity.

Decoding happens between the PCS and the Gigabit Media
Independent Interface (GMII). Encoding happens between the
PCS and the Physical Medium Attachment (PMA). The codec
is required to allow the clock to recover between states. This
relaxation is provided by adding the 2 extra bits which increase
the time required to process by 25%.

While the implementation was straight-forward it was
necessary to ensure that the codec adhered to the 1Gbps line-
rate of the device. The initial implementation used the right

Fig. 3. Encoder

shift operator in C to count the number of bits set to 1 in
the 8-bit input, however this proved to be too computationally
expensive to let the codec meet the 1Gbps line-rate. The builtin
popcount method, provided by GCC combined with compiler
optimizations, proved to be the key for efficient computation
of the number of bits in the input byte and let the program
meet the line-rate requirements.

V. EVALUATION AND VALIDATION

A. Hardware Implementation

We have tested our hardware implementation against a
testbench available in [4]. Our implementation passed all tests
provided.

B. 8B/10B Transmission Code

1) Performance: The 8B/10B codec was evaluated to mea-
sure the rate at which it processes data and to ensure that it
met the 1Gbps requirement. The encoder takes an 8-bit input,
1Gb is 10243 = 1073741824 bits, or 134217728 bytes. An
encoder that meets the line-rate requirement would process this
amount of data withing a 1 second window. In the same vein,
a decoder that performs at line-rate would process 107374183
10-bit inputs within this 1 second. The encoder and decoder
were both tested for varying input sizes in increments of 1Gb
for each test and the results are available in figure 4 and in
figure 5.

2) Correctness: A correct codec would process data as
specified in the Table 36 of the IEEE Standard for Ethernet [3],
this could be tested with a simple script. Moreover when run
in this sequence y ← encode(x) followed by z ← decode(y),
a correct encoder would produce z such that x = z, if x 6= z
- the codec is performing incorrectly. The codec passed both
tests with the value of running disparity being hard coded to
+1&−1. The codec also exposes a function self test 8b10b
that accepts two parameters, an array of 8-bit values and the
length of the array, that fails if the encoder fails to perform
correctly.

VI. CONCLUSION

In this project, we have designed a 1GbE version of SoNIC.
We have developed a working implementation of the encod-
ing/decoding of the physical layer of 1GbE in the software and
also a partial working implementation of the hardware layer.

Fig. 4. Encoder Performance

Fig. 5. Decoder Performance

We hope that this effort contributes to the extension the SoNIC
ecosystem, allowing more system programmers to use it as a
valuable tool for cross-network-layer research.

REFERENCES

[1] K. S. Lee, H. Wang, and H. Weatherspoon, “Sonic: Precise realtime
software access and control of wired networks.” in NSDI, 2013, pp. 213–
225.

[2] H. Wang, K. S. Lee, E. Li, C. L. Lim, A. Tang, and H. Weatherspoon,
“Timing is everything: Accurate, minimum overhead, available band-
width estimation in high-speed wired networks,” in Proceedings of the
2014 Conference on Internet Measurement Conference. ACM, 2014,
pp. 407–420.

[3] “Ieee standard for ethernet - section 3,” IEEE Std 802.3-2012 (Revision
to IEEE Std 802.3-2008), pp. 1–0, Dec 2012.

[4] “1000base-x ieee 802.3-2008 clause 36/37 - pcs testbench,”
http://opencores.org/websvn,filedetails?repname=1000base-x&path=
%2F1000base-x%2Ftrunk%2Ftestbench%2FREADME&rev=6,
accessed: 2014-12-12.

