Page |i
Project Report on TCP over SoNIC

Project Report

TCP over SoNIC

Group Members

Name Email ID
Abhishek Kumar Maurya am2633(@cornell.edu
Amarinder Singh Bindra ab2546@cornell.edu

Gaurav Aggarwal ga286@cornell.edu

mailto:ab2546@cornell.edu
mailto:ga286@cornell.edu

Page |ii

Project Report on TCP over SoNIC

Table of Contents

1.
2.

4.
S.

PrOJECT SUMIMAIY ...ttt st senee iii
IMPIEMENTALION STAGES........cvieeieieeicieiee ettt iii
2.1, SONIC ATCRITECIUIE......eveiiieeieisee ettt nsns iii
2.2. TCP OVEr UDP iN USEI SPACEc.vvrieieeieeieisinsieieissssisssessesssssssssesss s ssssssssssssssssssssenes v
2.2.1 TCP SOCKEL ...eeeeeeiie ettt ettt e sbeaneesreesaeenee s
2.2.2 TCP CONNECT......coiiiiiieiiie ettt b e n e e e n e enneen
2.2.3 TCP BN ..ottt re e nnes
2.2.4 TCP LISEBIN .ttt ettt bbb nne s
2.2.5 TCP ACCEPT ..ottt
2.2.6 TCP SEIN ..ottt bbb nne s
2.2.7 TCP RECRIVE ..ceeete ettt sttt sttt re e sbeaneesreenbeenee s
2.3. Separate TX and RX TRIEAUSccccovevierieiecieeeieici sttt X
2.4. Cumulative ACK and Congestion Control.............cccoceeueeeereecieieeieeeeeeeeeeeee e, xi
2.5. TCP oVer SONIC: USEI SPACE......ccoveiiieirresesieteieeieie et sesesssesssssss s ssnes xii
2.6. TCP over SONIC: Kernel SPACE........c.ccceuruiirieriieieisissiese s sssessenes Xiv
FULUIE WOTK ...ttt XV
3.1, FaSt REIFANSIMIT ...ttt XV
3.2. Communication with general TCP SOCKELc.cccoveuievierieieeeeeesee e xvi
RETEIBNCES ...ttt bttt s s st ensns xvi
AAPPENAIX oottt sttt bbbttt bbbt s st xvii

5.1. TCP State Machine Implementation............cccceururieieinisinsnnee s xvii

Page |iii
Project Report on TCP over SoNIC

1. Project Summary

This project involves implementation of Transmission Control Protocol (TCP) layer on top of
Software-defined Network Interface Card (SoNIC). SoNIC currently is optimized to generate
UDP packets because of real-time constraint. Generating TCP traffic over SoNIC requires
maintaining a TCP state machine for tracking connection state and reliable transfer of data while
satisfying real-time constraints and line speed. We target to build a TCP layer on top of SoNIC
that operates at line speed.

2. Implementation Stages

Implementation Stages Status
Understand SoNIC Architecture and run UDP over SoNIC Done
Implement TCP over UDP in User Space (Reliable Data Transfer) Done
Implement separate TX and RX Threads Done
Implement Cumulative ACK and Congestion Control Done
Port to SONIC user space Done
Port to SONIC kernel space Done

2.1. SoNIC Architecture

We studied SoNIC related papers and went through SoNIC code in order to understand its
architecture. We studied the already existing implementation of UDP over SoNIC. A broad level
call graph of UDP over SoNIC implementation (generated via doxygen) is shown below:

Project Report on TCP over SoNIC

‘ sonic_init_cenfig_system_args

sonic_alloc_ports

sonic_print_config
_system_args

cre32init_le sonic_proc_init
__sonic_init sonic_fs_init
sonic_fs_exit

sonic_prec_exit

__sonic_exit
main

Page |iv

sonic_check_config
_system_args

sonic_free_ports

sonic_get_config_runtime_args
sonic_init_cenfig_runtime_args

sonic_check_config
_runtime_args

sonic_set_port_infos

sonic_set_port_info H sonic_str_to_mac

sonic_random
sonic_set_runtime_threads

J sonic_start_sonic '—bl sonic_start_port |

__sonic_run sonic_run_sonic

sonic_print_contig sonic_print_port_infos
_runtime_args

sonic_set_cpu

sonic_test_crc_value

sonic_rpt_helper

sonic_stop_sonic }—.I sonic_wait_sonic H sonic_wait_port

senic_merge_stats

sonic_print_port_info

cre32_bitwise

sonic_fill_frame

fast_crc cre32 le crc 32_body
fast_cre_nobr
orderzbytes power_of_two

We ran already existing UDP implementation over SONIC and tried tuning its various parameters
to understand their impact. We started with basic rxtx_idle mode to perform basic hardware
validation by sending and receiving idle packets. Later, we ran pkt_gencap mode in order to

develop deeper understanding. While running in

packet_gencap mode, TX side invokes

sonic_pcs_tx_loop thread which drains packets from sonic_app_cap_loop thread and puts
checksum using sonic_mac_pkt_generator_loop and RX side invokes sonic_pcs_rx_loop thread

which drains packets and supplies them to app.

As per our understanding so far, in order to implement TCP over SONIC we need to implement a
mode similar to pkt_gencap which in addition to its current capabilities, maintains a TCP state
machine to track connection state and uses acknowledgements and re-transmission to achieve

reliable packet transmission.

file:///D:/Cornell/HPSN/Project/sonic/driver/kernel/html/pcs_8c.html%23ab34d2a78de555b9dfb7bccf46e2efb10
file:///D:/Cornell/HPSN/Project/sonic/driver/kernel/html/app_8c.html%23aeb8dfbf498d03ffda23bfb646d829d5e
file:///D:/Cornell/HPSN/Project/sonic/driver/kernel/html/mac_8c.html%23a73fbf2b1254ee4cc0dd2b68264a77bea
file:///D:/Cornell/HPSN/Project/sonic/driver/kernel/html/pcs_8c.html%23ae3729b6ec2940f9714fead1ca308351c

Page |v
Project Report on TCP over SoNIC

Following are the logs which we captured while running existing UDP implementation over
SoNIC:

cs5413_netbusters@compute30:~/sonic/driver/kernel$ echo tester mode=pkt_gencap,pkt_gencap pkt_len=1518
duration=5 idle=13738 pkt_cnt=10000 wait=3 mac_src="00:60:dd:45:39:0d" mac_dst="00:60:dd:45:39:5a"
ip_src="192.168.4.12" ip_dst="192.168.4.13" port_src=5000 port_dst=5008 vlan_id=2200 gen_mode=0 >
/proc/sonic_tester

Oct 28 23:31:33 compute30 kernel: [5539.660616] SONIC: [sonic_run_sonic]

Oct 28 23:31:33 compute30 kernel: [5539.660621] SONIC: [sonic_start_sonic]

Oct 28 23:31:33 compute30 kernel: [5539.660983] SONIC: [sonic_run_thread] Thread rx_pcs0 is running on 10
Oct 28 23:31:33 compute30 kernel: [5539.661002] SONIC: [sonic_run_thread] Thread rx_pcs1 is running on 1
Oct 28 23:31:33 compute30 kernel: [5539.661015] SONIC: [sonic_run_thread] Thread tx_pcs1 is running on 4
Oct 28 23:31:33 compute30 kernel: [5539.661032] SONIC: [sonic_run_thread] Thread appl is running on 3
Oct 28 23:31:33 compute30 kernel: [5539.661044] SONIC: [sonic_run_thread] Thread tx_macl is running on 5
Oct 28 23:31:33 compute30 kernel: [5539.661056] SONIC: [sonic_run_thread] Thread app0 is running on 7
Oct 28 23:31:33 compute30 kernel: [5539.661069] SONIC: [sonic_run_thread] Thread tx_pcs0 is running on 8
Oct 28 23:31:33 compute30 kernel: [5539.661083] SONIC: [sonic_run_thread] Thread tx_macO0 is running on 9
Oct 28 23:31:33 compute30 kernel: [5539.661094] SONIC: [sonic_mac_pkt_generator_loop]

Oct 28 23:31:33 compute30 kernel: [5539.661101] SONIC: [sonic_mac_pkt _generator_loop]

Oct 28 23:31:33 compute30 kernel: [5540.193320] SONIC: [sonic_dma_tx] [p0] ??

Oct 28 23:31:38 compute30 kernel: [5544.658882] SONIC: [sonic_stop_sonic]

Oct 28 23:31:38 compute30 kernel: [5544.658884] SONIC: [sonic_wait_sonic]

cs5413_netbusters@compute30:~/sonic/driver/kernel$ Oct 28 23:31:38 compute30 kernel: [5544.659146] SONIC:
[sonic_run_sonic] DONE

Oct 28 23:31:38 compute30 kernel: [5544.659148] SONIC: [sonic_print_port_stat] ---Port [0] stats---

Oct 28 23:31:38 compute30 kernel: [5544.659150] SONIC: [sonic_print_pcs_stat] [tx_pcs0] time= 4999321111
pkts= 10000 blks= 732888467 err_states= 0 err_blks= 0 fifo= 0 dma= 92349

Oct 28 23:31:38 compute30 kernel: [5544.659152] SONIC: [sonic_print_mac_stat] [tx_mac0] time= 4996980683
pkts= 10000 err_crc= 0 err_len= 0 fifo= 0

Oct 28 23:31:38 compute30 kernel: [5544.659154] SONIC: [sonic_print_pcs_stat] [rx_pcsQ] time= 4999300677
pkts= 302691 blks= 745630848 err_states= 0 err_blks= 0 fifo= 0 dma= 187912

Oct 28 23:31:38 compute30 kernel: [5544.659155] SONIC: [sonic_print_mac_stat] [rx_mac0] time= 0 pkts= 0
err_crc=0 err_len=0 fifo=0

Oct 28 23:31:38 compute30 kernel: [5544.659157] SONIC: [sonic_print_app_stat] [app0] time= 4999281076 pkts=
302689 bytes= 459481902 fifo= 0

Oct 28 23:31:38 compute30 kernel: [5544.659158] SONIC: [sonic_print_port_stat] ---Port [1] stats---

Oct 28 23:31:38 compute30 kernel: [5544.659160] SONIC: [sonic_print_pcs_stat] [tx_pcs1] time= 4999368867
pkts= 302662 blks= 733727328 err_states= 0 err_blks= 0 fifo= 0 dma= 92455

Oct 28 23:31:38 compute30 kernel: [5544.659162] SONIC: [sonic_print_mac_stat] [tx_mac1] time= 4996971281
pkts= 302744 err_crc=0 err_len= 0 fifo=0

Oct 28 23:31:38 compute30 kernel: [5544.659163] SONIC: [sonic_print_pcs_stat] [rx_pcsl] time= 4999386322
pkts= 10000 blks= 743619072 err_states= 0 err_blks= 0 fifo= 0 dma= 187405

Oct 28 23:31:38 compute30 kernel: [5544.659165] SONIC: [sonic_print_mac_stat] [rx_mac1] time= 0 pkts= 0
err_crc=0 err_len=0 fifo=0

Oct 28 23:31:38 compute30 kernel: [5544.659167] SONIC: [sonic_print_app_stat] [appl] time= 4999305676 pkts=
10000 bytes= 15180000 fifo= 0

2.2. TCP over UDP in User Space

We have implemented a TCP layer over UDP in order to provide reliable communication
channel. We have implemented a TCP state machine to track connection state. We are able to

Page |vi
Project Report on TCP over SoNIC

successfully establish a connection using three-way handshake and are able to reliably transfer
data using acknowledgements and re-transmission.

We have written almost similar interface as actual TCP sockets provide so that the
implementation is transparent to application layer. We provide description of our various
components in the following sections:

2.2.1 TCP Socket

TCP Socket call creates a socket and returns a descriptor which is opaque to user and is used in
later calls.

Code Snippet:

int tcp_socket()
inti, free_fd, free_fd_found = 0;

for(i=0;i<MAX_SOCK _FDS && !free_fd_found; ++i)

{
if(socket_fds[next_fd].in_use == 0) //this socket fd is free
{
free_fd = next_fd;
free_fd_found =1;
}
next_fd++;
if(next_fd == MAX_SOCK_FDS) next_fd = 0;
}
if(free_fd_found)
{
tcp_socket_t *new_socket = malloc(sizeof(tcp_socket t));
/linitialize_created_socket
if (__init_socket(new_socket) <0)
{
free(new_socket);
return -1;
}
socket_fds[free_fd].in_use = 1;
socket_fds[free_fd].socket = new_socket;
}
else
{
return -1; //error - Could not allocate fd
}

return free_fd;

Page |vii
Project Report on TCP over SoNIC

2.2.2 TCP Connect

TCP connect call is used by a client in order to establish an active connection with the server.
Calling this results in the initiation of a three-way handshake.

Code Snippet:

int tcp_connect(int tcp_socket_fd, struct sockaddr *addr, socklen_t addrlen’)

{
char first_packet[TCP_PACKET _SIZE], sent_ack packet[TCP_PACKET_SIZE];

tcp_socket_t* socket = verify_sock fd(tcp_socket fd);
if(socket == NULL) return -1;

/Ipopulate destination information in socket
memcpy(&socket->conn.destination, addr, addrlen);

/Iprepare and send SYN packet and receive its ACK
__process_send_packet(socket, TCP_FLAG_SYN, first_packet);
if(__send_reliable(socket, first_packet, 0) ==-1)

{

}

if(socket->state == CLOSED) //incorrect packet or incorrect ack number

{

}

/lsend ACK

__process_send_packet(socket, TCP_FLAG_ACK, sent_ack_packet);

if(sendto(socket->udp_socket_fd, sent_ack_packet, sizeof(tcp_hdr_t), O,
(struct sockaddr*)(&socket->conn.destination),
sizeof(socket->conn.destination)) == -1)

return -1;

return -1;

{
}

[* return success */
return O;

return -1;

2.2.3 TCP Bind
TCP bind assigns the address specified by addr to the tcp socket created earlier using tcp_socket.

Code Snippet:

int tcp_bind(int tcp_socket_fd, const struct sockaddr *addr, socklen_t addrlen)
{

tcp_socket_t* socket = verify_sock fd(tcp_socket fd);

if(socket == NULL) return -1;

return bind(socket->udp_socket fd, addr, addrlen);

Page |vii
Project Report on TCP over SoNIC

[3

2.2.4 TCP Listen

TCP listen marks the socket referred to by tcp_socket_fd as a passive socket that is, as a socket
that will be used to accept incoming connection requests.

Code Snippet:

int tcp_listen(int tcp_socket fd, int tcp_backlog)
{
tcp_socket_t* socket = verify_sock fd(tcp_socket fd);
if(socket == NULL) return -1;
socket->state = LISTEN;
/ITODO - tcp_backlog is ignored currently
return O; //success
}

225 TCP Accept

TCP accept accepts a SYN packet from client and sends a SYN ACK packet in response to
establish a connection.

Code Snippet:

int tcp_accept(int tcp_socket_fd, struct sockaddr *addr, socklen_t *addrlen)
{
ssize_t num_bytes read = 0;
struct sockaddr client_addr;
socklen_t client_addrlen = sizeof(client_addr);
char first_packet] TCP_PACKET_SIZE], sent_synack_packet[TCP_PACKET_SIZE];

tcp_socket t* socket = verify_sock fd(tcp_socket fd);
if(socket == NULL) return -1;

num_bytes read = recvfrom(socket->udp_socket_fd, first_packet,
sizeof(first_packet), 0, &client_addr,
&client_addrlen);

if(num_bytes read == -1 || num_bytes read < sizeof(tcp_hdr_t))
{

}

/[create a new socket for communication with client

int client_tcp_socket fd = tcp_socket();

tcp_socket_t* client_socket = verify_sock_fd(client_tcp_socket fd);
if(client_socket == NULL) return -1;

return -1;

client_socket->state = LISTEN;
memcpy(&client_socket->conn.destination, &client addr, client_addrlen);

Project Report on TCP over SoNIC

Page |ix

/Iwe must have got a SYN packet here
__process_receive_packet(client_socket, first_packet);
if(client_socket->state == CLOSED)

{
¥

/lsend a syn_ack packet

__process_send_packet(client_socket, TCP_FLAG_SYN | TCP_FLAG_ACK,
sent_synack packet);

if(__send_reliable(client_socket, sent_synack_packet, 0) == -1)

return -1;

{
return -1;
}
if(client_socket->state == CLOSED)
{
return -1;
}

/lreturn new socket fd -- both client and server now can
/lcommunicate on this socket
return client_tcp_socket fd;

2.2.6 TCP Send
TCP Send reliably sends the data.

Code Snippet:

ssize_t tcp_send(int tcp_socket_fd, const void *buf, size_t len, int flags)

{
tcp_socket _t* socket = verify_sock fd(tcp_socket fd);

if(socket == NULL) return -1;

char send_packet[TCP_PACKET _SIZE];
ssize_t sent_bytes = 0;

/lallowed to send a packet?
if(socket->snd_nxt < socket->snd_una + socket->snd_wnd)

{
__process_send_packet(socket, TCP_FLAG_ACK, send_packet);
/l__insert_send_queue(socket, send_packet, strlen(buf));
if ((sent_bytes = send_reliable(socket, send_packet, 0)) == -1) {
return -1;

}

}

else

{

return -1;

Page |X
Project Report on TCP over SoNIC

}

return sent_bytes;

2.2.7 TCP Receive
TCP receive reads the data from tcp_sockect_fd.

Code Snippet:

ssize_t tcp_recv(int tcp_socket fd, char *buf, size_t len, int flags) {

tcp_socket t* socket = verify_sock fd(tcp_socket fd);
if(socket == NULL) return -1;

char recd_packet[TCP_PACKET _SIZE], sent_ack_packet[TCP_PACKET _SIZE];
ssize_t num_bytes read = 0, num_bytes_sent = 0;
socklen_t src_addrlen = sizeof(socket->conn.source);

num_bytes read = recvfrom(socket->udp_socket_fd, recd_packet,
sizeof(tcp_hdr_t) + len, flags,
(struct sockaddr*)&(socket->conn.source),
&src_addrlen);

/lupdate state mcahine
__process_receive_packet(socket, recd_packet);

/lsend ACK
__process_send_packet(socket, TCP_FLAG_ACK, sent_ack_packet);
num_bytes sent = sendto(socket->udp_socket_fd, sent_ack packet,

sizeof(tcp_hdr_t), O,
(struct sockaddr*) &(socket->conn.destination),
sizeof(socket->conn.destination));

/IACK sent successfully?
if(num_bytes sent == -1 || num_bytes_sent = sizeof(tcp_hdr_t))

{
}

return num_bytes_read;

return -1;

2.3. Separate TX and RX Threads

We have implemented separate TX and RX threads for both the sender and the receiver. The two
threads synchronize with each other in order to correctly update the TCP state machine and in
order to make sure that congestion window size is honored while sending data. This two threaded
implementation is in line with current SONIC implementation which has separate TX and RX
threads and therefore is easier to port to SoNIC.

Project Report on TCP over SoNIC

2.4. Cumulative ACK and Congestion Control

Page |xi

Additionally, we have implemented cumulative ACK in anticipation of improving performance

and we get following results as we vary the cumulative ACK timeout:

1.6

14|)

! L[]
1.2t 1 h ! A
\

10k h \\ h |

Throughput (Gbps)

0.8

0.6 !

0.4

0 5 10 15 20 25 30
Commulative ACK Timeout (miliseconds)

This behavior can be explained as follows:

35 40

- When the cumulative ACK timeout is less, throughput is less because more time is spent

in thread context switches.

- As we increase timeout, throughput increases because less time is wasted in thread

context switches.

- After a threshold value, throughput again starts decreasing because in the case of packet
loss, sender now has to wait for a longer time resulting in less bandwidth utilization.
Best throughput that we get with TCP over UDP implementation in user space is ~1.4-1.5Gbps.

We have implemented Go-Back-N protocol at TCP sender which sends all the unacknowledged
packets in the case of packet loss which is detected by missing acknowledgement. We have also
implemented congestion control mechanism which halves the congestion window size in the case
of packet loss (which indicates network congestion) and increases it linearly thereafter.
Following is the variation of congestion window size with time while sending around 1Gb data:

Page |xii
Project Report on TCP over SoNIC

25000

20000 | b ‘

15000

10000 7
.

Congestion Window Size

5000 +

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (miliseconds)

This behavior of congestion window size is as expected and in accordance with RFC.

2.5. TCP over SoNIC: User Space

Earlier we decided to skip this step and directly port our TCP over UDP implementation to
SoNIC kernel space but we ended up crashing kernel too many times and decided to make it
work in user space first. We have created two user space FIFO queues which are shared between
Tx and Rx threads of sender and receiver respectively. Below is the code snippet showing this
queue sharing:

static void sonic_set_fifo_tcp (struct sonic_port * port) {

struct sonic_fifo *tx_fifo = port->fifo[0];
struct sonic_fifo *rx_fifo = port->fifo[1];

#if ISONIC_KERNEL
#define SHARED_QUEUE 2
struct sonic_fifo * pipe = port->fifo[SHARED_ QUEUE];
struct sonic_port * other_port = port->sonic->ports[port->port_id ? 0:1];
#undef SHARED_QUEUE
#endif /*SONIC_KERNEL */

port->tx_mac->out_fifo = tx_fifo;
port->tx_pcs->in_fifo = tx_fifo;

port->rx_pcs->out_fifo = rx_fifo;
port->rx_mac->in_fifo = rx_fifo;

#if ISONIC_KERNEL
port->tx_pcs->out_fifo = pipe;
other_port->rx_pcs->in_fifo = pipe;

#endif

}

Page |xiii
Project Report on TCP over SoNIC

We measured the throughput by varying the inter packet gap (number of idle bits between
successive Ethernet frames) and got the following results:

10

W Actual

| ‘ m Ildeal
| | |||||||||I.|.|

1000 2500 4000 5000 6000 7000 10000 13738
Inter Packet Gap (bytes)

Throughput (Gbps)

9
8
7
6
5
4
3
2
1
0

Throughput decreases as we increase the Inter Packet Gap because more and more channel
bandwidth is consumed by idle packets. We got maximum throughput of 4.88 Gbps with inter
packet gap of 100 bytes. We also measured throughput by varying Ethernet frame size and got
the following results:

09

0.8

0.7

0.6

0.5

04

Throughput (Gbps)

0.3
0.2
0.1

0
0 200 400 600 800 1000 1200 1400 1600

Ethernet Frame Size (bytes)

Throughput increases by increasing Ethernet frame size as increasing frame size results in more
bandwidth utilization for sending data. We got maximum throughput of 0.79 Gbps with frame
size of 1518 bytes.

Page |xiv
Project Report on TCP over SoNIC

2.6. TCP over SoNIC: Kernel space

We also ported this TCP implementation to kernel space. We are using atomic variables for
synchronization and idle packet count for timeout detection. If we keep on receiving idle packets
for some amount of time, we treat this as timeout condition. We ran our implementation in
loopback mode in kernel space and got the following results while varying inter packet gap:

H Actual

M Ideal

Throughput (Gbps)
[en] = [a=] w =Y L (=] ~J oo o

1000 2500 4000 5000 6000 7000 10000 13738
Inter Packet Gap (bytes)

We got maximum throughput of 2.42 Gbps with inter packet gap of 100 bytes. We also measured
throughput with different Ethernet frame sizes keeping inter packet gap 13738 bytes and got the
following results:

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

Throughput (Gbps)

0.1

0 200 400 600 800 1000 1200 1400 1600

Ethernet Frame Size (bytes)

We got maximum throughput of 0.92 Gbps with Ethernet frame size of 1518 bytes. We also
made our implementation work across SONIC cards and got the following results while varying
inter packet gap:

Page |xv
Project Report on TCP over SoNIC

B Actual

M Ideal

Throughput (Gbps)
[en] = [a=] w =Y L (=] ~J oo o

1000 2500 4000 5000 6000 7000 10000 13738
Inter Packet Gap (bytes)

We got a maximum throughput of 2.44 Gbps with inter packet gap of 100 bytes. The graph
below shows throughput measurements with different Ethernet frame sizes and inter packet gap
of 13738 bytes:

0.7

Throughput (Gbps)

0 200 400 600 800 1000 1200 1400 1600
Ethernet Frame Size (bytes)

We got maximum throughput of 0.62 Gbps with Ethernet frame size of 1518 bytes.

3. Future Work

3.1. Fast Retransmit

TCP implements fast retransmit in order to quickly recover from one packet loss within a stream.
We are currently detecting packet loss via timeout while waiting for acknowledgement. We need
to implement packet loss detection via 3 duplicate ACKs and then perform fast recovery. The

Page |xvi
Project Report on TCP over SoNIC

idea behind assuming packet loss on receiving 3 duplicate ACK is that a sender often sends a
large number of segments back to back and if one segment is lost, there will be many back to
back duplicate acknowledgements.

We essentially need to implement a Finite State Machine for tracking TCP congestion state —
slow start, congestion avoidance and fast recovery.

3.2. Communication with general TCP socket

Current implementation of TCP over SoNIC is capable of communicating with another instance
of the same implementation running on the same or different machine. A good extension to it can
be to make it capable of communicating with a general TCP socket.

4. References

[1] SoNIC http://fireless.cs.cornell.edu/sonic/

[2] SoNIC: Precise Real-time Software Access and Control of Wired Networks
http://fireless.cs.cornell.edu/sonic/sonic_nsdi2013.pdf

[3] PHY Covert Channels: Can you see the Idles?
http://fireless.cs.cornell.edu/publications/chupja nsdi2014.pdf

[4] TCP RFC https://www.ietf.org/rfc/rfc793.txt

http://fireless.cs.cornell.edu/sonic/
http://fireless.cs.cornell.edu/sonic/sonic_nsdi2013.pdf
http://fireless.cs.cornell.edu/publications/chupja_nsdi2014.pdf
https://www.ietf.org/rfc/rfc793.txt

Project Report on TCP over SoNIC

5. Appendix

5.1. TCP State Machine Implementation

Page |xvi

#include "tcp_sm.h"
#include "tcp_hdr_util.h"
#include "sonic.h"

[* Transition Functions */
static tcp_state_t no_op(tcp_socket t* socket, packet_data_t* packet)
{

//noop

return CLOSED;

}

static tcp_state_t send_syn(tcp_socket_t* socket, packet_data_t* packet)
{

socket->snd_nxt += 1;

return SYN_SENT,;
}

static tcp_state_t syn_ack_in_syn_sent(tcp_socket_t* socket, packet data t* packet)

{

if(packet->ack != socket->snd_nxt)
{

/lincorrect ack?

return CLOSED;

}

socket->rcv_nxt = packet->seq + 1;

socket->snd_wnd += (packet->ack - socket->snd_una);
socket->snd_una = packet->ack;

return SYN_SENT,;

}

static tcp_state_tack_in_syn_sent(tcp_socket t* socket, packet data t* packet)

{
socket->snd_nxt += 1;
return ESTABLISHED;

}

static tcp_state_t syn_in_listen(tcp_socket t* socket, packet _data t* packet)

{

socket->rcv_nxt = packet->seq + 1;
return SYN_RCVD;
}

static tcp_state_t syn_ack_in_syn rcvd(tcp_socket t* socket, packet data t* packet)

{
socket->snd_nxt +=1;
return SYN_RCVD;

Xviii
Project Report on TCP over SoNIC

static tcp_state_tack_in_syn_rcvd(tcp_socket t* socket, packet_data t* packet)
{
if(packet->ack !'= socket->snd_nxt)
{
/lincorrect ack?
return CLOSED;

}

socket->rcv_nxt = packet->seq + 1;

socket->snd_wnd += (packet->ack - socket->snd_una);
socket->snd_una = packet->ack;

return ESTABLISHED;

}

static tcp_state_t ack_in_established(tcp_socket t* socket, packet data t* packet)

{
if(packet->dir == SEND)

{
}

else

{

socket->snd_nxt += (packet->pkt_count);

/* accept just next packet. In case of missing pkt discard all
* subsequent packets thereby enforcing sender to re-send */
if(packet->seq == socket->rcv_nxt)

socket->rcv_nxt = packet->seq + 1;

}

if(packet->ack - 1 >= socket->snd_una)

{
socket->snd_wnd += (2*(packet->ack - socket->snd_una));
socket->snd_una = packet->ack;

}

return ESTABLISHED;
}

/* Transition Lookup Table */
typedef tcp_state_t (*state_transition_fnptr_t)(tcp_socket t*, packet data t*);
typedef struct {
tcp_state_t next_state;
state_transition_fnptr_t action;
} tcp_transition_t;

tcp_transition_t tcp_state machine[MAX_STATES][MAX_PKT_TYPES] = {
/lclosed
{ CLOSED, send_syn }, //syn
{ CLOSED, no_op }, //fin
{ CLOSED, no_op }, //rst
{ CLOSED, no_op }, //ack

{ MNisten
{ CLOSED, syn_in_listen },
{ CLOSED, no_op },

Project Report on TCP over SoNIC

Xix

R

{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },

[Isyn_rcvd

{ CLOSED, no_op },

{ CLOSED, syn_ack_in_syn_rcvd },
{ CLOSED, no_op },

{ CLOSED, no_op },

{ CLOSED, ack_in_syn_rcvd },

[Isyn_sent

{ CLOSED, no_op },

{ CLOSED, syn_ack_in_syn_sent },
{ CLOSED, no_op },

{ CLOSED, no_op },

{ CLOSED, ack_in_syn_sent },

/lestablished

{ CLOSED, no_op },

{ CLOSED, no_op },

{ CLOSED, no_op },

{ CLOSED, no_op },

{ CLOSED, ack_in_established },

[ffin_wait_1

{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },

[fin_wait_2

{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },

/Iclosing

{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },

[ltime_wait

{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },

/lclose_wait
{ CLOSED, no_op },
{ CLOSED, no_op },

Page |xx
Project Report on TCP over SoNIC

{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },

/Nast_ack

{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },
{ CLOSED, no_op },

j

/* handle packet -- change the state of tcp state machine accordingly */
void process_packet(tcp_socket_t* socket, packet data t* packet)
{
packet type t pkt type =tcp_get packet type(packet->flags);
socket->state = tcp_state_machine[socket->state][pkt_type].action(socket, packet);

