
Transport Layer and Data Center
TCP

Hakim Weatherspoon
Assistant Professor, Dept of Computer Science

CS 5413: High Performance Systems and Networking
September 5, 2014

Slides used and adapted judiciously from Computer Networking, A Top-Down Approach

Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control,
timeouts

• Congestion control

• Data Center TCP
– Incast Problem

 provide logical communication
between app processes
running on different hosts

 transport protocols run in end
systems
 send side: breaks app

messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

 more than one transport
protocol available to apps
 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer: Services/Protocols

Transport Layer: Services/Protocols

network layer:
logical
communication
between hosts
transport layer:

logical
communication
between processes
 relies on, enhances,

network layer
services

12 kids in Ann’s house
sending letters to 12 kids in
Bill’s house:

• hosts = houses
• processes = kids
• app messages = letters in

envelopes
• transport protocol = Ann

and Bill who demux to in-
house siblings

• network-layer protocol =
postal service

household analogy:

Transport vs Network Layer

• reliable, in-order
delivery (TCP)
– congestion control
– flow control
– connection setup

• unreliable, unordered
delivery: UDP
– no-frills extension of

“best-effort” IP
• services not available:

– delay guarantees
– bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Transport Layer: Services/Protocols

TCP service:
• reliable transport between

sending and receiving
process

• flow control: sender won’t
overwhelm receiver

• congestion control: throttle
sender when network
overloaded

• does not provide: timing,
minimum throughput
guarantee, security

• connection-oriented: setup
required between client and
server processes

UDP service:
• unreliable data transfer

between sending and
receiving process

• does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup,

Q: why bother? Why is there
a UDP?

Transport Layer: Services/Protocols

Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control,
timeouts

• Congestion control

• Data Center TCP
– Incast Problem

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical
link
network

P2P1

transport

application

physical
link
network

P4

transport

application

physical
link
network

P3

Transport Layer
Sockets: Multiplexing/Demultiplexing

Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control,
timeouts

• Congestion control

• Data Center TCP
– Incast Problem

source port # dest port #

32 bits

application
data
(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

 no connection establishment
(which can add delay)

 simple: no connection state
at sender, receiver

 small header size
 no congestion control: UDP

can blast away as fast as
desired

why is there a UDP?

UDP: Connectionless Transport
UDP: Segment Header

UDP: Connectionless Transport

sender:
• treat segment contents,

including header fields,
as sequence of 16-bit
integers

• checksum: addition
(one’s complement
sum) of segment
contents

• sender puts checksum
value into UDP checksum
field

receiver:
• compute checksum of received

segment
• check if computed checksum

equals checksum field value:
– NO - error detected
– YES - no error detected.

But maybe errors
nonetheless? More later ….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

UDP: Checksum

Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control,
timeouts

• Congestion control

• Data Center TCP
– Incast Problem

 important in application, transport, link layers
 top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of reliable data transfer
protocol (rdt)

Principles of Reliable Transport

 characteristics of unreliable channel will determine complexity of reliable data transfer
protocol (rdt)

 important in application, transport, link layers
 top-10 list of important networking topics!

Principles of Reliable Transport

 characteristics of unreliable channel will determine complexity of reliable data transfer
protocol (rdt)

 important in application, transport, link layers
 top-10 list of important networking topics!

Principles of Reliable Transport

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Principles of Reliable Transport

 full duplex data:
 bi-directional data flow in

same connection
 MSS: maximum segment

size
 connection-oriented:
 handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange

 flow controlled:
 sender will not

overwhelm receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte
steam:
– no “message

boundaries”

• pipelined:
– TCP congestion and flow

control set window size

TCP: Transmission Control Protocol
RFCs: 793,1122,1323, 2018, 2581

TCP: Reliable Transport

source port # dest port #

32 bits

application
data
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not
used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

TCP: Reliable Transport
TCP: Segment Structure

sequence numbers:
–byte stream “number” of

first byte in segment’s
data

acknowledgements:
–seq # of next byte

expected from other side
–cumulative ACK

Q: how receiver handles out-
of-order segments
–A: TCP spec doesn’t say, -

up to implementor
source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

TCP: Reliable Transport
TCP: Sequence numbers and Acks

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

TCP: Reliable Transport
TCP: Sequence numbers and Acks

 full duplex data:
 bi-directional data flow in

same connection
 MSS: maximum segment

size
 connection-oriented:
 handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange

 flow controlled:
 sender will not

overwhelm receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte
steam:
– no “message

boundaries”

• pipelined:
– TCP congestion and flow

control set window size

TCP: Transmission Control Protocol
RFCs: 793,1122,1323, 2018, 2581

TCP: Reliable Transport

before exchanging data, sender/receiver “handshake”:
• agree to establish connection (each knowing the other willing

to establish connection)
• agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

Socket clientSocket =
newSocket("hostname","port
number");

Socket connectionSocket =
welcomeSocket.accept();

Connection Management: TCP 3-way handshake

TCP: Reliable Transport

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data received ACK(y)

indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state
LISTEN

server state
LISTEN

TCP: Reliable Transport
Connection Management: TCP 3-way handshake

closed

Λ

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =
newSocket("hostname","port
number");

SYN(seq=x)

Socket connectionSocket =
welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)
create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)
ACK(ACKnum=y+1)ACK(ACKnum=y+1)

Λ

TCP: Reliable Transport
Connection Management: TCP 3-way handshake

client, server each close their side of connection
 send TCP segment with FIN bit = 1

respond to received FIN with ACK
 on receiving FIN, ACK can be combined with own FIN

simultaneous FIN exchanges can be handled

TCP: Reliable Transport
Connection Management: Closing connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

TCP: Reliable Transport
Connection Management: Closing connection

 full duplex data:
 bi-directional data flow in

same connection
 MSS: maximum segment

size
 connection-oriented:
 handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange

 flow controlled:
 sender will not

overwhelm receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte
steam:
– no “message

boundaries”

• pipelined:
– TCP congestion and flow

control set window size

TCP: Transmission Control Protocol
RFCs: 793,1122,1323, 2018, 2581

TCP: Reliable Transport

data rcvd from app:
 create segment with

seq #
 seq # is byte-stream

number of first data
byte in segment

 start timer if not already
running
 think of timer as for

oldest unacked segment
 expiration interval:
TimeOutInterval

timeout:
 retransmit segment that

caused timeout
 restart timer
ack rcvd:
 if ack acknowledges

previously unacked
segments
 update what is known to

be ACKed
 start timer if there are

still unacked segments

TCP: Reliable Transport

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

TCP: Reliable Transport
TCP: Retransmission Scenerios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

TCP: Reliable Transport
TCP: Retransmission Scenerios

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

TCP ACK generation [RFC 1122, 2581]
Reliable Transport

time-out period often
relatively long:
 long delay before

resending lost packet
detect lost segments

via duplicate ACKs.
 sender often sends

many segments back-
to-back

 if segment is lost,
there will likely be
many duplicate ACKs.

if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
 likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

TCP: Reliable Transport
TCP Fast Retransmit

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut ACK=100

ACK=100
ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

TCP: Reliable Transport
TCP Fast Retransmit

Q: how to set TCP
timeout value?

 longer than RTT
 but RTT varies

too short: premature
timeout, unnecessary
retransmissions

too long: slow
reaction to segment
loss

Q: how to estimate RTT?
• SampleRTT: measured

time from segment
transmission until ACK
receipt
– ignore retransmissions

• SampleRTT will vary, want
estimated RTT “smoother”
– average several recent

measurements, not just
current SampleRTT

TCP: Reliable Transport
TCP: Roundtrip time and timeouts

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

 exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value: α = 0.125

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

TCP: Reliable Transport
TCP: Roundtrip time and timeouts

time (seconds)

• timeout interval: EstimatedRTT plus “safety
margin”
– large variation in EstimatedRTT -> larger safety margin

• estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-β)*DevRTT +

β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

TCP: Reliable Transport
TCP: Roundtrip time and timeouts

 full duplex data:
 bi-directional data flow in

same connection
 MSS: maximum segment

size
 connection-oriented:
 handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange

 flow controlled:
 sender will not

overwhelm receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte
steam:
– no “message

boundaries”

• pipelined:
– TCP congestion and flow

control set window size

TCP: Transmission Control Protocol
RFCs: 793,1122,1323, 2018, 2581

TCP: Reliable Transport

application
process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

TCP: Reliable Transport
Flow Control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
• receiver “advertises” free

buffer space by including
rwnd value in TCP header of
receiver-to-sender segments
– RcvBuffer size set via

socket options (typical default
is 4096 bytes)

– many operating systems
autoadjust RcvBuffer

• sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

• guarantees receive buffer will
not overflow

receiver-side buffering

TCP: Reliable Transport
Flow Control

Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control,
timeouts

– Congestion control

• Data Center TCP
– Incast Problem

congestion:
• informally: “too many sources sending too much

data too fast for network to handle”

• different from flow control!
• manifestations:

– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

Principles of Congestion Control

two broad approaches towards congestion control:

end-end congestion
control:

 no explicit feedback
from network

 congestion inferred
from end-system
observed loss, delay

 approach taken by
TCP

network-assisted
congestion control:

routers provide
feedback to end systems
 single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)
explicit rate for sender

to send at

Principles of Congestion Control

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should
have average rate of R/K

TCP connection 1

bottleneck
router
capacity RTCP connection 2

TCP Congestion Control
TCP Fairness

 approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs
 additive increase: increase cwnd by 1 MSS every

RTT until loss detected
multiplicative decrease: cut cwnd in half after loss

c
w
n
d
:

TC
P

se
nd

er

co
ng

es
tio

n
w

in
do

w
 s

iz
e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

TCP Congestion Control
TCP Fairness: Why is TCP Fair?
AIMD: additive increase multiplicative decrease

 sender limits transmission:

 cwnd is dynamic, function of
perceived network congestion

TCP sending rate:
roughly: send cwnd

bytes, wait RTT for
ACKS, then send more
bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-
LastByteAcked

< cwnd

sender sequence number space

rate ~~
cwnd
RTT

bytes/sec

TCP Congestion Control

two competing sessions:
 additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

TCP Congestion Control
TCP Fairness: Why is TCP Fair?

Fairness and UDP
multimedia apps often

do not use TCP
 do not want rate

throttled by
congestion control

 instead use UDP:
 send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

application can open
multiple parallel
connections between two
hosts

web browsers do this
e.g., link of rate R with 9

existing connections:
 new app asks for 1 TCP, gets rate

R/10
 new app asks for 11 TCPs, gets R/2

TCP Congestion Control
TCP Fairness

when connection begins,
increase rate exponentially
until first loss event:
 initially cwnd = 1 MSS
 double cwnd every RTT
 done by incrementing cwnd

for every ACK received

 summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
TT

Host B

time

TCP Congestion Control
Slow Start

TCP Congestion Control

 loss indicated by timeout:
 cwnd set to 1 MSS;
 window then grows exponentially (as in slow start) to threshold, then grows

linearly
 loss indicated by 3 duplicate ACKs: TCP RENO

 dup ACKs indicate network capable of delivering some segments
 cwnd is cut in half window then grows linearly

 TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

Detecting and Reacting to Loss

Q: when should the
exponential increase
switch to linear?

A: when cwnd gets to
1/2 of its value before
timeout.

Implementation:
 variable ssthresh
 on loss event, ssthresh is

set to 1/2 of cwnd just
before loss event

TCP Congestion Control
Switching from Slow Start to

Congestion Avoidance (CA)

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

Λ
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

Λ
cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

TCP Congestion Control

• avg. TCP thruput as function of window size, RTT?
– ignore slow start, assume always data to send

• W: window size (measured in bytes) where loss occurs
– avg. window size (# in-flight bytes) is ¾ W
– avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 3
4

W
RTT bytes/sec

TCP Throughput

TCP over “long, fat pipes”

• example: 1500 byte segments, 100ms RTT, want
10 Gbps throughput

• requires W = 83,333 in-flight segments
• throughput in terms of segment loss probability, L

[Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L =
2·10-10 – a very small loss rate!

• new versions of TCP for high-speed

TCP throughput = 1.22 . MSS
RTT L

Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control,
timeouts

– Congestion control

• Data Center TCP
– Incast Problem

Slides used judiciously from “Measurement and Analysis of TCP Throughput Collapse in Cluster-
based Storage Systems”, A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and S. Seshan. Proc. of USENIX File and Storage Technologies (FAST), February 2008.

TCP Throughput Collapse
What happens when TCP is “too friendly”?
E.g.
• Test on an Ethernet-based storage cluster

• Client performs synchronized reads

• Increase # of servers involved in transfer
– SRU size is fixed

• TCP used as the data transfer protocol
Slides used judiciously from “Measurement and Analysis of TCP Throughput Collapse in Cluster-
based Storage Systems”, A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and S. Seshan. Proc. of USENIX File and Storage Technologies (FAST), February 2008.

Cluster-based Storage Systems

Client Switch

Storage Servers

R
R

R
R

1

2

Data Block

Server
Request Unit
(SRU)

3

4

Synchronized Read

Client now sends
next batch of requests

1 2 3 4

Presenter
Presentation Notes
Cluster-based storage systems are becoming increasingly popular. (both in research and in the industry)

Data is striped across multiple servers for reliability (coding/replication) and performance. Also aids in incremental scalability.

Client separated from servers by a hierarchy of switches – one here for simplicity
	- high b/w, low latency network
	- high b/w (1 Gbps), low latency (10s to 100 micro seconds)

Synchronized reads !
	- describe block, SRU
	- mention that this setting is simplistic
		- could have multiple clients, multiple outstanding blocks,

Link idle time due to timeouts

Client Switch

R
R

R
R

1

2

3

4

Synchronized Read

4

Link is idle until server experiences a timeout

1 2 3 4 Server
Request Unit
(SRU)

Presenter
Presentation Notes
Given this background of TCP timeouts, let us revisit the synchronized reads scenario to understand why timeouts cause link idle time (and hence throughput collapse).

Setting: SRU contains only one packet worth of information.
If 4 is dropped, when server 4 is timing out, the link is idle – no one is utilizing the available bandwidth.

TCP Throughput Collapse: Incast

• [Nagle04] called this Incast
• Cause of throughput collapse: TCP timeouts

Collapse!

Presenter
Presentation Notes
Setup:
	client---HP---server
	SRU size = 256K
	increase number of servers

X axis - # servers
Y axis – Goodput (throughput as seen by the application)

Order of magnitude drop for as low as 7 servers

Initially reported in a paper by Nagle et al. (Panasas) – called this Incast
Also observed before in research systems (NASD)

Cause – TCP timeouts (due to limited buffer space) + synchronized reads

With the popularity of iSCSI devices and companies selling cluster based storage file-systems, this throughput collapse is not a good thing.

If we want to play the blame game: if you wear the systems had you can easily say “Hey, this is the networks fault – networking guys fix it!”. If you wear the networking hat you would say “Well, TCP has been tried and tested over time in the wide area, and was designed to perform well and saturate the available bandwidth in settings like this one – so you must not be doing the right thing, like you might want to fine tune your TCP stack for performance”
Infact, Problem shows up only in synchronized read settings
 - Nagle et al. ran netperf and showed that the problem did not show-up

In this paper, we perform an in-depth analysis of the effectiveness of possible “network-level” solutions.

TCP: data-driven loss recovery

Sender Receiver

1
2
3
4
5

Ack 1

Ack 1

Ack 1

Ack 1

3 duplicate ACKs for 1
(packet 2 is probably lost)

2

Seq #

Retransmit packet 2
immediately

In SANs
recovery in usecs
after loss.

Ack 5

Presenter
Presentation Notes
The sender waits for 3 duplicate ACKs because
	- it thinks that packets might have been reordered in the network and that the receiver might have received pkt 2 after 3 and 4
	- but it can’t wait forever (hence a limit – 3 duplicate ACKs)

TCP: timeout-driven loss recovery

Sender Receiver

1
2
3
4
5

1

Retransmission
Timeout
(RTO)

Ack 1

Seq #

• Timeouts are
expensive

(msecs to recover
after loss)

Presenter
Presentation Notes
Timeouts are expensive because
	- you have to wait for 1 RTO before realizing that a retransmission is required
	- RTO is estimated based on the round trip time
	- estimating RTO – tricky (timely response vs premature timeouts)
	- minRTO value in ms (orders of magnitude greater than the)

TCP: Loss recovery comparison

Sender Receiver

1
2
3
4
5

Ack 1

Ack 1
Ack 1
Ack 1

Retransmit
2

Seq #

Ack 5

Sender Receiver

1
2
3
4
5

1

Retransmission
Timeout
(RTO)

Ack 1

Seq #

Timeout driven recovery is
slow (ms)

Data-driven recovery is
super fast (us) in SANs

Presenter
Presentation Notes
The sender waits for 3 duplicate ACKs because
	- it thinks that packets might have been reordered in the network and that the receiver might have received pkt 2 after 3 and 4
	- but it can’t wait forever (hence a limit – 3 duplicate ACKs)

TCP Throughput Collapse Summary
• Synchronized Reads and TCP timeouts cause TCP

Throughput Collapse

• Previously tried options
– Increase buffer size (costly)
– Reduce RTOmin (unsafe)
– Use Ethernet Flow Control (limited applicability)

• DCTCP (Data Center TCP)
– Limited in-network buffer (queue length) via both in-

network signaling and end-to-end, TCP, modifications

Presenter
Presentation Notes
In conclusion …

Most solutions we have considered have drawbacks
Reducing the RTO_min value and EFC for single switches seem to be the most effective solutions.

Datacenter Ethernet (enhanced EFC)

Ongoing work: Application level solutions
Limit number of servers or throttle transfers
Globally schedule data transfers

 principles behind transport
layer services:
 multiplexing,

demultiplexing
 reliable data transfer
 flow control
 congestion control

 instantiation, implementation
in the Internet
 UDP
 TCP

Next time:
• Network Layer
• leaving the network

“edge” (application,
transport layers)

• into the network
“core”

Perspective

Before Next time
• Project Proposal

– due in one week
– Meet with groups, TA, and professor

• Lab1
– Single threaded TCP proxy
– Due in one week, next Friday

• No required reading and review due
• But, review chapter 4 from the book, Network Layer

– We will also briefly discuss data center topologies
–

• Check website for updated schedule

	Transport Layer and Data Center TCP
	Goals for Today
	Transport Layer: Services/Protocols
	Transport Layer: Services/Protocols
	Transport Layer: Services/Protocols
	Transport Layer: Services/Protocols
	Goals for Today
	Transport Layer
	Goals for Today
	UDP: Connectionless Transport
	UDP: Connectionless Transport
	Goals for Today
	Principles of Reliable Transport
	Principles of Reliable Transport
	Principles of Reliable Transport
	Principles of Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	TCP: Reliable Transport
	Goals for Today
	Principles of Congestion Control
	Principles of Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	TCP Throughput
	TCP over “long, fat pipes”
	Goals for Today
	TCP Throughput Collapse
	Cluster-based Storage Systems
	Link idle time due to timeouts
	TCP Throughput Collapse: Incast
	TCP: data-driven loss recovery
	TCP: timeout-driven loss recovery
	TCP: Loss recovery comparison
	TCP Throughput Collapse Summary
	Perspective
	Before Next time

