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Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control, 
timeouts

• Congestion control

• Data Center TCP
– Incast Problem



 provide logical communication
between app processes 
running on different hosts

 transport protocols run in end 
systems 
 send side: breaks app 

messages into segments, 
passes to  network layer

 rcv side: reassembles 
segments into messages, 
passes to app layer

 more than one transport 
protocol available to apps
 Internet: TCP and UDP
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Transport Layer: Services/Protocols



Transport Layer: Services/Protocols

network layer:
logical 
communication 
between hosts
transport layer:

logical 
communication 
between processes
 relies on, enhances, 

network layer 
services

12 kids in Ann’s house 
sending letters to 12 kids in 
Bill’s house:

• hosts = houses
• processes = kids
• app messages = letters in 

envelopes
• transport protocol = Ann 

and Bill who demux to in-
house siblings

• network-layer protocol = 
postal service

household analogy:

Transport vs Network Layer



• reliable, in-order 
delivery (TCP)
– congestion control 
– flow control
– connection setup

• unreliable, unordered 
delivery: UDP
– no-frills extension of 

“best-effort” IP
• services not available: 

– delay guarantees
– bandwidth guarantees
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TCP service:
• reliable transport between 

sending and receiving 
process

• flow control: sender won’t 
overwhelm receiver 

• congestion control: throttle 
sender when network 
overloaded

• does not provide: timing, 
minimum throughput 
guarantee, security

• connection-oriented: setup 
required between client and 
server processes

UDP service:
• unreliable data transfer

between sending and 
receiving process

• does not provide: reliability, 
flow control, congestion 
control, timing, throughput 
guarantee, security, or 
connection setup, 

Q: why bother?  Why is there 
a UDP?

Transport Layer: Services/Protocols



Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control, 
timeouts

• Congestion control

• Data Center TCP
– Incast Problem



process

socket

use header info to deliver
received segments to correct 
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical
link
network

P2P1

transport

application

physical
link
network

P4

transport

application

physical
link
network
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Transport Layer
Sockets: Multiplexing/Demultiplexing



Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control, 
timeouts

• Congestion control

• Data Center TCP
– Incast Problem



source port # dest port #

32 bits

application
data 
(payload)

UDP segment format

length checksum

length, in bytes of 
UDP segment, 

including header

 no connection establishment 
(which can add delay)

 simple: no connection state 
at sender, receiver

 small header size
 no congestion control: UDP 

can blast away as fast as 
desired

why is there a UDP?

UDP: Connectionless Transport
UDP: Segment Header



UDP: Connectionless Transport

sender:
• treat segment contents, 

including header fields,  
as sequence of 16-bit 
integers

• checksum: addition 
(one’s complement 
sum) of segment 
contents

• sender puts checksum 
value into UDP checksum 
field

receiver:
• compute checksum of received 

segment
• check if computed checksum 

equals checksum field value:
– NO - error detected
– YES - no error detected. 

But maybe errors 
nonetheless? More later ….

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment

UDP: Checksum



Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control, 
timeouts

• Congestion control

• Data Center TCP
– Incast Problem



 important in application, transport, link layers
 top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of reliable data transfer 
protocol (rdt)

Principles of Reliable Transport
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 characteristics of unreliable channel will determine complexity of reliable data transfer 
protocol (rdt)

 important in application, transport, link layers
 top-10 list of important networking topics!

Principles of Reliable Transport



send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 
unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by 
rdt to deliver data to upper

Principles of Reliable Transport



 full duplex data:
 bi-directional data flow in 

same connection
 MSS: maximum segment 

size
 connection-oriented:
 handshaking (exchange of 

control msgs) inits sender, 
receiver state before data 
exchange

 flow controlled:
 sender will not 

overwhelm receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte 
steam:
– no “message 

boundaries”

• pipelined:
– TCP congestion and flow 

control set window size

TCP: Transmission Control Protocol
RFCs: 793,1122,1323, 2018, 2581

TCP: Reliable Transport



source port # dest port #

32 bits

application
data 
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not
used

options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)

TCP: Reliable Transport
TCP: Segment Structure



sequence numbers:
–byte stream “number” of 

first byte in segment’s 
data

acknowledgements:
–seq # of next byte 

expected from other side
–cumulative ACK

Q: how receiver handles out-
of-order segments
–A: TCP spec doesn’t say, -

up to implementor
source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent 
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not 
yet sent

not 
usable

window size
N

sender sequence number space 

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

TCP: Reliable Transport
TCP: Sequence numbers and Acks



User
types

‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

TCP: Reliable Transport
TCP: Sequence numbers and Acks



 full duplex data:
 bi-directional data flow in 

same connection
 MSS: maximum segment 

size
 connection-oriented:
 handshaking (exchange of 

control msgs) inits sender, 
receiver state before data 
exchange

 flow controlled:
 sender will not 

overwhelm receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte 
steam:
– no “message 

boundaries”

• pipelined:
– TCP congestion and flow 

control set window size

TCP: Transmission Control Protocol
RFCs: 793,1122,1323, 2018, 2581

TCP: Reliable Transport



before exchanging data, sender/receiver “handshake”:
• agree to establish connection (each knowing the other willing 

to establish connection)
• agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client 

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client 

application

network

Socket clientSocket =   
newSocket("hostname","port 
number");

Socket connectionSocket = 
welcomeSocket.accept();

Connection Management: TCP 3-way handshake

TCP: Reliable Transport



SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data received ACK(y) 

indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state
LISTEN

server state
LISTEN

TCP: Reliable Transport
Connection Management: TCP 3-way handshake



closed

Λ

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =   
newSocket("hostname","port 
number");

SYN(seq=x)

Socket connectionSocket = 
welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)
create new socket for 
communication back to client

SYNACK(seq=y,ACKnum=x+1)
ACK(ACKnum=y+1)ACK(ACKnum=y+1)

Λ

TCP: Reliable Transport
Connection Management: TCP 3-way handshake



client, server each close their side of connection
 send TCP segment with FIN bit = 1

respond to received FIN with ACK
 on receiving FIN, ACK can be combined with own FIN

simultaneous FIN exchanges can be handled

TCP: Reliable Transport
Connection Management: Closing connection



FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

TCP: Reliable Transport
Connection Management: Closing connection



 full duplex data:
 bi-directional data flow in 

same connection
 MSS: maximum segment 

size
 connection-oriented:
 handshaking (exchange of 

control msgs) inits sender, 
receiver state before data 
exchange

 flow controlled:
 sender will not 

overwhelm receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte 
steam:
– no “message 

boundaries”

• pipelined:
– TCP congestion and flow 

control set window size

TCP: Transmission Control Protocol
RFCs: 793,1122,1323, 2018, 2581

TCP: Reliable Transport



data rcvd from app:
 create segment with 

seq #
 seq # is byte-stream 

number of first data 
byte in  segment

 start timer if not already 
running 
 think of timer as for 

oldest unacked segment
 expiration interval: 
TimeOutInterval

timeout:
 retransmit segment that 

caused timeout
 restart timer
ack rcvd:
 if ack acknowledges 

previously unacked 
segments
 update what is known to 

be ACKed
 start timer if there are  

still unacked segments

TCP: Reliable Transport



lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92,  8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

TCP: Reliable Transport
TCP: Retransmission Scenerios



X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120,  15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

TCP: Reliable Transport
TCP: Retransmission Scenerios



event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that 
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative 
ACK, ACKing both in-order segments 

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

TCP ACK generation [RFC 1122, 2581]
Reliable Transport



time-out period  often 
relatively long:
 long delay before 

resending lost packet
detect lost segments 

via duplicate ACKs.
 sender often sends 

many segments back-
to-back

 if segment is lost, 
there will likely be 
many duplicate ACKs.

if sender receives 3 
ACKs for same data
(“triple duplicate ACKs”),
resend unacked 
segment with smallest 
seq #
 likely that unacked 

segment lost, so don’t 
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

TCP: Reliable Transport
TCP Fast Retransmit



X

fast retransmit after sender 
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut ACK=100

ACK=100
ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

TCP: Reliable Transport
TCP Fast Retransmit



Q: how to set TCP 
timeout value?

 longer than RTT
 but RTT varies

too short: premature 
timeout, unnecessary 
retransmissions

too long: slow 
reaction to segment 
loss

Q: how to estimate RTT?
• SampleRTT: measured 

time from segment 
transmission until ACK 
receipt
– ignore retransmissions

• SampleRTT will vary, want 
estimated RTT “smoother”
– average several recent

measurements, not just 
current SampleRTT

TCP: Reliable Transport
TCP: Roundtrip time and timeouts



RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T 

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

 exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value: α = 0.125

RT
T 

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

TCP: Reliable Transport
TCP: Roundtrip time and timeouts

time (seconds)



• timeout interval: EstimatedRTT plus “safety 
margin”
– large variation in EstimatedRTT -> larger safety margin

• estimate SampleRTT deviation from EstimatedRTT: 
DevRTT = (1-β)*DevRTT +

β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

TCP: Reliable Transport
TCP: Roundtrip time and timeouts



 full duplex data:
 bi-directional data flow in 

same connection
 MSS: maximum segment 

size
 connection-oriented:
 handshaking (exchange of 

control msgs) inits sender, 
receiver state before data 
exchange

 flow controlled:
 sender will not 

overwhelm receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte 
steam:
– no “message 

boundaries”

• pipelined:
– TCP congestion and flow 

control set window size

TCP: Transmission Control Protocol
RFCs: 793,1122,1323, 2018, 2581

TCP: Reliable Transport



application
process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may 
remove data from 

TCP socket buffers …. 

… slower than TCP 
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so 
sender won’t overflow 
receiver’s buffer by transmitting 
too much, too fast

flow control

TCP: Reliable Transport
Flow Control



buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
• receiver “advertises” free 

buffer space by including 
rwnd value in TCP header of 
receiver-to-sender segments
– RcvBuffer size set via 

socket options (typical default 
is 4096 bytes)

– many operating systems 
autoadjust RcvBuffer

• sender limits amount of 
unacked (“in-flight”) data to 
receiver’s rwnd value 

• guarantees receive buffer will 
not overflow

receiver-side buffering

TCP: Reliable Transport
Flow Control



Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control, 
timeouts

– Congestion control

• Data Center TCP
– Incast Problem



congestion:
• informally: “too many sources sending too much 

data too fast for network to handle”

• different from flow control!
• manifestations:

– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

Principles of Congestion Control



two broad approaches towards congestion control:

end-end congestion 
control:

 no explicit feedback 
from network

 congestion inferred 
from end-system 
observed loss, delay

 approach taken by 
TCP

network-assisted 
congestion control:

routers provide 
feedback to end systems
 single bit indicating 

congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM)
explicit rate for sender 

to send at

Principles of Congestion Control



fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should 
have average rate of R/K

TCP connection 1

bottleneck
router
capacity RTCP connection 2

TCP Congestion Control
TCP Fairness



 approach: sender increases transmission rate (window 
size), probing for usable bandwidth, until loss occurs
 additive increase: increase  cwnd by 1 MSS every 

RTT until loss detected
multiplicative decrease: cut cwnd in half after loss 

c
w
n
d
:

TC
P 

se
nd

er
 

co
ng

es
tio

n 
w

in
do

w
 s

iz
e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

TCP Congestion Control
TCP Fairness: Why is TCP Fair? 
AIMD: additive increase multiplicative decrease



 sender limits transmission:

 cwnd is dynamic, function of 
perceived network congestion

TCP sending rate:
roughly: send cwnd 

bytes, wait RTT for 
ACKS, then send more 
bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte 
sent

cwnd

LastByteSent-
LastByteAcked

< cwnd

sender sequence number space 

rate ~~
cwnd
RTT

bytes/sec

TCP Congestion Control



two competing sessions:
 additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

TCP Congestion Control
TCP Fairness: Why is TCP Fair?



Fairness and UDP
multimedia apps often 

do not use TCP
 do not want rate 

throttled by 
congestion control

 instead use UDP:
 send audio/video at 

constant rate, tolerate 
packet loss

Fairness, parallel TCP 
connections

application can open 
multiple parallel 
connections between two 
hosts

web browsers do this 
e.g., link of rate R with 9 

existing connections:
 new app asks for 1 TCP, gets rate 

R/10
 new app asks for 11 TCPs, gets R/2 

TCP Congestion Control
TCP Fairness



when connection begins, 
increase rate exponentially 
until first loss event:
 initially cwnd = 1 MSS
 double cwnd every RTT
 done by incrementing cwnd

for every ACK received

 summary: initial rate is 
slow but ramps up 
exponentially fast

Host A

R
TT

Host B

time

TCP Congestion Control
Slow Start



TCP Congestion Control

 loss indicated by timeout:
 cwnd set to 1 MSS; 
 window then grows exponentially (as in slow start) to threshold, then grows 

linearly
 loss indicated by 3 duplicate ACKs: TCP RENO

 dup ACKs indicate network capable of  delivering some segments 
 cwnd is cut in half window then grows linearly

 TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

Detecting and Reacting to Loss



Q: when should the 
exponential increase 
switch to linear? 

A: when cwnd gets to 
1/2 of its value before 
timeout.

Implementation:
 variable ssthresh
 on loss event, ssthresh is 

set to 1/2 of cwnd just 
before loss event

TCP Congestion Control
Switching from Slow Start to 

Congestion Avoidance (CA)



timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

Λ
cwnd > ssthresh

congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 
start

timeout
ssthresh = cwnd/2 
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

Λ
cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

TCP Congestion Control



• avg. TCP thruput as function of window size, RTT?
– ignore slow start, assume always data to send

• W: window size (measured in bytes) where loss occurs
– avg. window size (# in-flight bytes) is ¾ W
– avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 3
4

W
RTT bytes/sec

TCP Throughput



TCP over “long, fat pipes”

• example: 1500 byte segments, 100ms RTT, want 
10 Gbps throughput

• requires W = 83,333 in-flight segments
• throughput in terms of segment loss probability, L 

[Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L = 
2·10-10  – a very small loss rate!

• new versions of TCP for high-speed

TCP throughput = 1.22 . MSS
RTT L



Goals for Today
• Transport Layer

– Abstraction / services
– Multiplexing/Demultiplexing
– UDP: Connectionless Transport
– TCP: Reliable Transport

• Abstraction, Connection Management, Reliable Transport, Flow Control, 
timeouts

– Congestion control

• Data Center TCP
– Incast Problem

Slides used judiciously from “Measurement and Analysis of TCP Throughput Collapse in Cluster-
based Storage Systems”, A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger, 
G. A. Gibson, and S. Seshan. Proc. of USENIX File and Storage Technologies (FAST), February 2008.



TCP Throughput Collapse
What happens when TCP is “too friendly”?
E.g.
• Test on an Ethernet-based storage cluster

• Client performs synchronized reads

• Increase # of servers involved in transfer
– SRU size is fixed

• TCP used as the data transfer protocol
Slides used judiciously from “Measurement and Analysis of TCP Throughput Collapse in Cluster-
based Storage Systems”, A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger, 
G. A. Gibson, and S. Seshan. Proc. of USENIX File and Storage Technologies (FAST), February 2008.



Cluster-based Storage Systems

Client Switch

Storage Servers

R
R

R
R

1

2

Data Block

Server 
Request Unit
(SRU)

3

4

Synchronized Read

Client now sends
next batch of requests

1 2 3 4

Presenter
Presentation Notes
Cluster-based storage systems are becoming increasingly popular.  (both in research and in the industry)

Data is striped across multiple servers for reliability (coding/replication) and performance. Also aids in incremental scalability.

Client separated from servers by a hierarchy of switches – one here for simplicity
	- high b/w, low latency network
	- high b/w (1 Gbps), low latency (10s to 100 micro seconds)

Synchronized reads !
	- describe block, SRU
	- mention that this setting is simplistic
		- could have multiple clients, multiple outstanding blocks, 




Link idle time due to timeouts

Client Switch

R
R

R
R

1

2

3

4

Synchronized Read

4

Link is idle until server experiences a timeout

1 2 3 4 Server 
Request Unit
(SRU)

Presenter
Presentation Notes
Given this background of TCP timeouts, let us revisit the synchronized reads scenario to understand why timeouts cause link idle time (and hence throughput collapse).

Setting: SRU contains only one packet worth of information. 
If 4 is dropped, when server 4 is timing out, the link is idle – no one is utilizing the available bandwidth.




TCP Throughput Collapse: Incast

• [Nagle04] called this Incast
• Cause of throughput collapse: TCP timeouts

Collapse!

Presenter
Presentation Notes
Setup: 
	client---HP---server
	SRU size = 256K
	increase number of servers

X axis - # servers
Y axis – Goodput (throughput as seen by the application)

Order of magnitude drop for as low as 7 servers

Initially reported in a paper by Nagle et al. (Panasas) – called this Incast
Also observed before in research systems (NASD)

Cause – TCP timeouts (due to limited buffer space) + synchronized reads

With the popularity of iSCSI devices and companies selling cluster based storage file-systems, this throughput collapse is not a good thing.

If we want to play the blame game: if you wear the systems had you can easily say “Hey, this is the networks fault – networking guys fix it!”. If you wear the networking hat you would say “Well, TCP has been tried and tested over time in the wide area, and was designed to perform well and saturate the available bandwidth in settings like this one – so you must not be doing the right thing, like you might want to fine tune your TCP stack for performance”
Infact, Problem shows up only in synchronized read settings 
    - Nagle et al. ran netperf and showed that the problem did not show-up


In this paper, we perform an in-depth analysis of the effectiveness of possible “network-level” solutions.




TCP: data-driven loss recovery 

Sender Receiver

1
2
3
4
5

Ack 1

Ack 1

Ack 1

Ack 1

3 duplicate ACKs for 1
(packet 2 is probably lost)

2

Seq #

Retransmit packet 2 
immediately

In SANs
recovery in usecs
after loss.

Ack 5
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The sender waits for 3 duplicate ACKs because 
	- it thinks that packets might have been reordered in the network and that the receiver might have received pkt 2 after 3 and 4
	- but it can’t wait forever (hence a limit – 3 duplicate ACKs)



TCP: timeout-driven loss recovery

Sender Receiver

1
2
3
4
5

1

Retransmission
Timeout
(RTO)

Ack 1

Seq #

• Timeouts are 
expensive

(msecs to recover
after loss)
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Timeouts are expensive because 
	- you have to wait for 1 RTO before realizing that a retransmission is required
	- RTO is estimated based on the round trip time
	- estimating RTO – tricky (timely response vs premature timeouts)
	- minRTO value in ms (orders of magnitude greater than the )



TCP: Loss recovery comparison

Sender Receiver

1
2
3
4
5

Ack 1

Ack 1
Ack 1
Ack 1

Retransmit
2

Seq #

Ack 5

Sender Receiver

1
2
3
4
5

1

Retransmission
Timeout
(RTO)

Ack 1

Seq #

Timeout driven recovery is
slow (ms)

Data-driven recovery is
super fast (us) in SANs
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The sender waits for 3 duplicate ACKs because 
	- it thinks that packets might have been reordered in the network and that the receiver might have received pkt 2 after 3 and 4
	- but it can’t wait forever (hence a limit – 3 duplicate ACKs)



TCP Throughput Collapse Summary
• Synchronized Reads and TCP timeouts cause TCP 

Throughput Collapse

• Previously tried options
– Increase buffer size (costly)
– Reduce RTOmin (unsafe)
– Use Ethernet Flow Control (limited applicability)

• DCTCP (Data Center TCP)
– Limited in-network buffer (queue length) via both in-

network signaling and end-to-end, TCP, modifications

Presenter
Presentation Notes
In conclusion …

Most solutions we have considered have drawbacks
Reducing the RTO_min value     and     EFC for single switches  seem to be the most effective solutions.

Datacenter Ethernet (enhanced EFC)

Ongoing work: Application level solutions
Limit number of servers or throttle transfers
Globally schedule data transfers




 principles behind transport 
layer services:
 multiplexing, 

demultiplexing
 reliable data transfer
 flow control
 congestion control

 instantiation, implementation 
in the Internet
 UDP
 TCP

Next time:
• Network Layer
• leaving the network 

“edge” (application, 
transport layers)

• into the network 
“core”

Perspective



Before Next time
• Project Proposal

– due in one week
– Meet with groups, TA, and professor

• Lab1
– Single threaded TCP proxy
– Due in one week, next Friday

• No required reading and review due
• But, review chapter 4 from the book, Network Layer

– We will also briefly discuss data center topologies
–

• Check website for updated schedule
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