
CS 5412/LECTURE 1
TOPICS IN CLOUD COMPUTING

Ken Birman
Spring, 2019

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 1

CLOUD COMPUTING

CS5412 is…

 A deep study of a big topic.

 In spring 2019 our focus will be on “smart farming” in Azure IoT Edge.

 The farming focus leverages a Cornell and Microsoft
interest (and an Azure product area) and makes it real.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 2

Today… people like you

Tomorrow… Bessie!

Fog computing!

250 PB/DAY!

DATA IN THE CLOUD

1 Exabyte of data is 1,073,741,824 GB.
(Your hard disk probably holds 64GB, but is
way too slow by data-center standards)

The Internet has about 2B websites, and of
these, 644M have “active content”

… and all of this is “pre Internet of Things”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 4

YOU TELL ME…
• 2 GB/day

• 400 Exobytes

• 1B

• 100 Gbps
per fiber

• 322 Tbps

Total size of all the digital information acquired about you per day?

Total amount of stored data in the Internet?

How many web sites in the Internet today?

Speed of an Internet backbone link?

Speed of an Internet backbone router?

CLOUD PROVIDERS NEED TO THINK “BIG”!

Google: 40,000 queries per second (1.2 Trillion per year)

YouTube: 1.9B active users per month, viewing 5B videos per day

Facebook: 2.23B active users, 8B video views,15M photos uploaed per day

Cloud: Nearly 4B of the world’s 7B accessed cloud resources in 2018

… the scale of computing to support these stories is just surreal!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 6

… AND THEY NEED TO THINK “PARALLEL”

At these scales, no computer can keep up.

By the nature of the cloud, it has to be massively parallel!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 7

YOU TELL ME…
How much DRAM in a datacenter server?
How fast is a single CPU in a NUMA machine?
How many cores does a NUMA server hold?
How many threads per core when hyperthreading is enabled?
How many servers per rack?
How many servers total in a datacenter?
How deep is a typical datacenter COS/SPINE routing tree?
How fast is a datacenter network today?
How big is 1-way node to node latency (due purely to the network)?
What is a typical round-trip latency for a datacenter RPC?

• 512GB-12TB
• 1.8Ghz
• 72 cores
• 2
• 48
• ~500,000
• 6 layers
• 56Gbps
• 1.25us
• 100us-25ms

YOU TELL ME…
How much storage capacity in a server’s RAID SSD drive?

How much in a RAID configuration?

How much storage in a cutting edge rotating disk (HDD)?

How much capacity in a memory-mapped Optane drive?

Peak PCIe bus data transfer speeds, per bus?

… peak transfer rate for an single SSD unit?

… access delay for a block of SSD storage?

Seek time for an HDD?

• 800 GB
• 100 TB
• 15 TB
• 16 GB
• 8.5GB/s
• 200 MB/s
• 100us
• 2.5-10ms

YOU TELL ME…
Size of one email in HTML encoding?

… a typical raw photo?

… that same typical photo, in a compressed format?

… a typical encoded 3-5 minute music video?

… a full length movie?

Maximum standard IP packet size?

Jumbo frame size?

• 10KB
• 4MB
• 250KB
• 10MB/min
• 4GB

• 1KB
• 8KB

HOW DID TODAY’S CLOUD EVOLVE?

Prior to ~2005, we had “data centers designed for high availability”.

Amazon had especially large ones, to serve its web requests
 This is all before the AWS cloud model

 The real goal was just to support online shopping

Their system wasn’t very reliable and the core problem was scaling

 Like a theoretical complexity growth issue.

 Amazon’s computers were overloaded and often crashed

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 11

YAHOO EXPERIMENT

At Yahoo, they tried an “alpha/beta” experiment

Customers who saw fast web page rendering (below 100ms) were happy.

For every 100ms delay, purchase rates noticeably dropped.

Speed at scale determines revenue, and revenue shapes technology: an
arms race to speed up the cloud.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 12

A sprint to render your web page!

STARTING AROUND 2006, AMAZON LED IN
REINVENTING DATA CENTER COMPUTING
Amazon reorganized their whole approach:

 Requests arrived at a “first tier” of very lightweight servers.

 These dispatched work requests on a message bus or queue.

 The requests were selected by “micro-services” running in relastic pools.

 One web request might involve tens or hundreds of µ-services!

They also began to guess at your next action and precompute what they
would probably need to answer your next query or link click.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 13

OLD APPROACH (2005)
Product List

Computers were mostly desktops

Internet routing was
pretty static, except
for load balancing

Web Server
built the page… in Seattle

Image Database

Billing and Account Info

Databases held the real
product inventory

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 14

NEW APPROACH (2008)
Product List

Computers became lightweight,
yet faster

Image Database

Billing and Account Info

Databases held the real
product inventory

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 15

Web Server built the page…
ten miles from the users

NEW APPROACH (2008)
Product List

Computers became lightweight,
yet faster

Image Database

Billing and Account Info

Databases held the real
product inventory

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 16

Web Server built the page…
ten miles from the users

More and more mobile apps

NEW APPROACH (2008)

Desktops with
snappier response

More and more mobile apps HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 17

Message Bus

Racks of highly parallel workers do much of
the data fetching and processing, ideally

ahead of need… The old databases are split
into smaller and highly parallel services.

Web Server becomes simpler
and does less of the real work

GeoReplication

TIER ONE / TIER TWO

We often talk about the cloud as a “multi-tier” environment.

Tier one: programs that generate the web page you see.

Tier two: services that support tier one. We will see one later
(DHT/KVS storage used to create a massive cache)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 18

TODAY’S CLOUD

Tier one runs on very lightweight servers:

 They use very small amounts of computer memory

 They don’t need a lot of compute power either

 They have limited needs for storage, or network I/O

Tier two µ-Services specialize in various aspects of the content delivered to
the end-user. They may run on somewhat “beefier” computers.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 19

Social Network

End-to-end Microservices (from Christina Delimitrou)

Media Service

End-to-end Microservices (from Christina Delimitrou)

EACH MICROSERVICE IS A PARALLEL “POOL”!

Every one of those little nodes is itself a small elastic pool of processes

A microservice (µ-service) is a kind of program designed so that the data
center can run one instance… or many instances, “elastically”, to deal with
dynamically varying demand.

The idea here is that any instance can handle any request equally well, so
there is no need for very careful “routing” of specific requests to specific
instances. This lets the data center adapt to changing loads easily!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 22

THESE POOLS ARE
MANAGED AUTOMATICALLY
In Azure, for example, there is a tool called the “App Service” (we’ll use it!)

The App Service manages a big collection of compute resources in the
cloud. Developers can install your own services in it (as “containers”).
Configuration files tell it when to launch them for you, automatically.

Among the features is a way for it to watch the queue of requests and
automatically add instances or shut instances down to match loads.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 23

Advantages of µ-services:
Modular  easier to understand
 Speed of development & deployment
On-demand provisioning, elasticity
 Language/framework heterogeneity

Motivation for µ-services (Delimitrou)

webserver

databases

recommender

ads
photos

posts

ads
posts

photos
recommender

webserver databases

Monolith Microservices

Brings many benefits… but complicates cluster management & performance debugging

Dependencies cause cascading QoS violations

Difficult to isolate root cause of performance unpredictability

Performance management (Delimitrou)

Netflix Twitter Amazon

Dependencies cause cascading QoS violations

Empirical performance debugging  too slow,
bottlenecks propagate

Long recovery times for performance

Performance visualization

AmazonNetflix

Social Network

WHAT DID WE JUST SEE?

The cloud scheduler watched each µ-service pool (each is shown as one dot, with
color telling us how long the task queue was, and the purple circle showing how
CPU loaded it is).

The picture didn’t show how many instances were active – that makes it too hard
to render. But each pool had varying numbers of instances. The App Server
was automatically creating and removing instances.

Each time the scheduler realized that it should add instances to a slow service,
some of the “deadline violations” went away.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 27

WHAT DOES IT MEAN TO “ADD INSTANCES”?

For some applications (ones with NUMA threading for parallelism) we add
instances by launching new threads on additional cores.

For others, we literally run two or more identical copies of the same
program, on different computers! They use a “load balancer” to send
requests to the least loaded instances.

And you can even combine these models…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 28

SCALABILITY ISSUES ARISE EVEN INSIDE A
SINGLE µ-SERVICE INSTANCE
We’ve been acting as if each µ-service is a set of “processes” but ignoring
how those processes were built.

In fact they will use parallel programming of some form because modern
computers have NUMA architectures.

How do cloud developers think about this form of parallelism?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 29

DEEP DIVE: BEST WAY TO LEVERAGE
PARALLELISM

Not every way of scaling is equally effective. Pick poorly and you might
make less money!

To see this, we’ll spend a minute on just one example.

This may feel like a small detour but actually is typical of CS5412

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 30Slight digression

TIER-ONE FOCUSES ON EASY STORIES

Which is better:
One multithreaded server, per node?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 31Slight digression

TIER-ONE FOCUSES ON EASY STORIES

Which is better:
Multithreaded servers?
Or multiple single-threaded servers?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 32Slight digression

WHAT YOU LEARNED IN O/S COURSE

Probably, you just took a class where the big focus was concurrency and
threaded programs, and probably they taught you to go for multithreading

The story you heard was something like this:
 Because of Moore’s law, modern computers are NUMA multiprocessors.
 To leverage that power, create lots of threads, link with a library like

“pthreads”, and request that your program be allocated multiple cores.
 Use thread synchronization/critical sections to ensure correctness.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 33Slight digression

BUT IS THIS THE RIGHT CHOICE?

First, we should identify other design options, even ones that look dumb at
first glance.

Then we can evaluate based on a variety of considerations:

 Expected speed and scaling (more is good)

 Complexity of the solution (more is bad)

 Cost of the solution (more is bad)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 34

WHAT YOU LEARNED IN O/S COURSE

Another thing you learned about was the virtual machine approach.

With true virtualization, programs run on private virtual machines.

Today, a recent alternative is “containers”, which give the illusion of a
private virtual machine in a Linux process address space, not a true VM.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 35Slight digression

… EVEN OUR “EASY” CLOUD POSES CHOICES!

Are those threads?
… Linux processes?
… virtual machines?
… Linux containers?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 36

Are those threads?

Slight digression

HOW WOULD YOU DECIDE BETWEEN THEM?

Basically, we have four options:

1. Keep my server busy by running one multithreaded application on it

2. Keep it busy by running N unthreaded versions of my application as
virtual machines, sharing the hardware

3. Keep it busy by running N side by side processes, but don’t virtualize

4. Keep it busy by running N side by side processes using containers

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 37Slight digression

CHOICES AS A TABLE

Option Speed Complexity Costs

1. Multithreaded
server

Poor Poor Development: expensive. Use of resources:
best. But may be hard to administer.

2. Single-thread +
VM

Poor Good Inexpensive development, but inefficient use
of memory resources, high overheads

3. Single-threaded
process model

Very good if
interference can
be avoided

Least complex! Inexpensive development, but administering
to ensure that the processes won’t somehow
interfere can be tricky.

4. Single-threaded,
containers

Best of all. Just like a single-
threaded process
model.

Inexpensive development. The approach
helps by protecting containerized apps
from most forms of interference.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 38Slight digression

WHY CONTAINER MODEL “WINS”…

We want the edge of the cloud to be as cost-effective as possible.

Development and management complexity is one kind of cost.

Also think about CPU load, memory, and context switching overheads:

 Best would be a single program with multiple threads

 Containers offer isolation and can share code pages, saving memory

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 39Slight digression

Slight digression

WHY DOESN’T A MULTI-THREADED SOLUTION
PERFORM BEST?
This is almost always a surprise to CS5412 students. To appreciate the
issue, we need to understand more about modern server hardware

Early days of the web were before we fell off Moore’s curve. Today’s
servers are NUMA machines with many cores.

32-core Intel Aubrey
chip. Some servers

have as many as 128
cores today!

40HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP

NUMA ARCHITECTURE

A NUMA computer is really a small rack of computers on a chip
Each has its own L2 cache, and small groups of them share DRAM.
With, say, 12 cores you might have 4 DRAM modules serving 3 each.
 Accessing your nearby DRAM is rapid
 Accessing the other DRAM modules is much slower, 15x or more

NUMA hardware provides cache consistency and locking, but costs can be
quite high if these features have much work to do.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 41Slight digression

MULTITHREADING ON A NUMA.

On a NUMA architecture, many threaded programs slow down on > 1
cores! Many reasons:
 Locking and NUMA memory coherency,
 Weak control over “placement” (which memory is on which DRAM?),
 Higher scheduling delays,
 Issues of reduced L2 cache hit rate

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 42Slight digression

DEEP DIVE ON THAT QUESTION

What about true virtualization?

 In effect, we will have perhaps 12 VMs. Our programs might still have
threads, but we will mostly use just one core per program (or per VM)

 Now we won’t have memory contention: each program is isolated.
On the other hand, we use more memory, because sharing is harder.

 But the virtualization layer causes page-table translation slowdown,
and I/O operations might also be slower. DMA might not work.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 43Slight digression

CONTAINERS WIN!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 44

A container is a normal Linux process with a library that mimics a full VM.
 The system looks “private” but without full virtualization.
 Eliminates the 10% or so performance overheads seen with true VMs.
 Also, containers launch and shut down much faster than a full VM,

because we don’t need to load the whole OS.
 We won’t see NUMA memory contention problems.
 Security and “isolation” are nearly as good as for VMs.

Popular options? Kubenetes and Docker.

Slight digression

AHA!

45

Build single threaded server, optimized to run on behalf of a single client.

Run lots of copies on each NUMA server (perhaps hundreds).

Use containers for isolation, container O/S smart about DRAM memory issues.

 Share read-only pages only between cores that share the same DRAM

 Make one copy per DRAM for read-only shared data, like code pages!

Slight digression HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP

SECONDARY QUESTION THIS POSES

If we have a huge number of “separate” tasks running, in distinct containers,
maybe different servers, how consistent should the data they use be?

Strong consistency: The tasks should share a single database

Weaker consistency:
 The tasks have some kind of read-only data, computed “last night”.
 They can also enqueue update tasks for offline processing.
 The tasks might also guess at the effect of the updates, but the offline

version will “win” if a conflict occurs.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 46

IN THE CLOUD, NOT EVERY SUBSYSTEM
NEEDS THE STRONGEST GUARANTEES

At Berkeley, Eric Brewer captured this insight with a “theorem”

CAP stands for “Consistency, Availability and Partition Tolerance”

Basically, Eric argues that:

 The theoretically “best” solution often brings heavy costs.
 Consistency is one example: conflicting database updates can be forced into

an agreed order, but this takes time and involves node-node dialog (hence ¬P).

 Remember that to earn the most money, you need the fastest possible responses.
Eric concluded that this means you might have to relax consistency: CAP.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 47

DEFINITIONS (SLIGHTLY INFORMAL!)

Consistency: The system responds using the most current values (updates).
Conflicting updates are performed in some system-selected order by all replicas.
Queries thus will see a “single system” and will be up to date.

Availability: The system is rapidly responsive, and will self-repair if some single
component fails, restoring normal functionality asap. Of course fault-tolerance
isn’t always possible: if too many components fail all at once, availability is lost.

Partition Tolerant: A data center can have network issues, or entire services can
be down. Yet as seen from outside, the cloud should continue to respond even if its
first-tier services are temporarily unable to talk to some inner services they would
normally depend upon.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 48

IN THE CLOUD, NOT EVERY SUBSYSTEM
NEEDS THE STRONGEST GUARANTEES

At Berkeley, Eric Brewer captured this insight with a “theorem”

CAP is short for “Consistency, Availability and Partition Tolerance”

Basically, Eric argues that:

 The theoretically “best” solution often brings heavy costs.
 Consistency is one example: conflicting database updates can be forced into

an agreed order, but this takes time and involves node-node dialog (hence ¬P).

 Remember that to earn the most money, you need the fastest possible responses.
Eric concluded that this means you might have to relax consistency: CAP.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 49

\

ERIC BREWER’S CAP THEOREM

 Relax consistency (C),
 Gain faster response (A).
 Generate responses even when unable to talk to

back-end servers (P).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 50

BASE METHODOLOGY

Invented at eBay, adopted by Amazon and others
 Basic Availability, Soft State and Eventual Consistency

“Use CAP. You can clean up later.”

How BASE works: cache data but don’t worry about cache entries
getting stale (hey, they were valid a little while ago).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 51

BASE ≡ “CAP in practice”

TODAY’S CLOUD IS A CAP+BASE “WORLD”

By and large, cloud systems try to manage with weak consistency.

But for IoT this may not be good enough! We will see why in future lectures

So one of our primary challenges will be to understand when we need
stronger properties, and how to obtain the needed guarantees at the
lowest cost! Fortunately, there are good options today.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 52

… CLOUD COMPUTING ISN’T AN O/S COURSE

Even so, we need to keep doing these deep dives to understand how to
make the best use of a large data center to do cloud computing cost-
effectively at massive scale.

In the two examples we’ve looked at today, we saw how these goals can
lead to an O/S choice.

We will dip down into many “technology areas” this spring, but always
driven by this need to understand cost-effective scalable computing.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 53

HOW MANY IOT DEVICES? HOW MUCH DATA?

23.5B connected devices today, will rise to 75B by 2025.

A single camera or video could generate GB/s of “new data”. An
microphone capturing high-quality audio produces hundreds of MB/s. We
definitely can’t transfer all of this to the cloud, or process all of it.

So the world of IoT will require “new ideas” simply because the bulk of the
information resides out on the edge and not in the cloud.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 54

PUZZLE THIS CREATES

IoT is introducing new dimensions of scalability never seen before!

These force us to think about shifting some tasks, like deciding which data
is interesting, from deep inside today’s cloud to the edge.

But will that shift break the things that make the cloud scalable?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 55

SOME TOPICS WE WILL TALK ABOUT

Azure’s IoT Edge

 Sensors and actuators: what are they?

 How smart are they likely to be?

 Customizing the IoT Edge

 Filtering and transforming data

Fault Tolerance

Challenges of dealing with real-time data

 Time synchronization, temporal storage

 Concepts of consistency for the cloud edge

Azure’s Intelligent IoT Cloud

 Details of the µ-services concept

 Customizing the intelligent cloud

 Roles played by edge µ-services

 Hardware accelerators for intelligence

Big data analytics to support IoT use cases

 The Apache ecosystem: Zookeeper,
Hadoop, Pig, Hive, HBase, etc.

 Spark and its RDD model.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 56

ORGANIZATIONAL STUFF Spring 2019

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 57

ORGANIZATIONAL TOPICS/FAQ

Projects and pairing with digital agriculture
students/scenarios.

Prelim

Wait -list for getting in

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 58

CS5999 (MENG PROJECT CREDITS)

Some people expand their CS5412 projects by adding 3 credits of
CS5999, which allows them to count the project towards MEng project
credits.

But this means six hours more work per week, starting this week!

Those projects are always more ambitious, harder to build, and we closely
monitor to make sure that they extra hours really were reflected in extra
accomplishments.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 59

MEETING PEOPLE

We’ll have a few “meet and match” events in the first weeks.

Many projects are done by people who only know each other in passing.
But this is true in industry as well!

The best teams often bring people together with very different
specializations because doing so gives you coverage of more aspects.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 60

WHY ARE WE FOCUSED ON AZURE?

Microsoft is leading among companies with high quality, professional
products for cloud + IoT, so this drives a focus on their platform.

If you love AWS for some reason, you can do similar things, but will often
find yourself looking to see how Microsoft did it, then trying to copy them.

So we will emphasize Azure, used from Linux (not Windows).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 61

WHY NOT AWS OR GOOGLE?

Actually, we don’t mind if you prefer to use some other cloud, but we are
trying to offer some concrete help, and we can’t help with three cloud
options all at once.

These days Azure is just using a standard Ubuntu Linux as its default and
we can create prebuilt containers for you to run with the software we want
you to use already installed.

You can still code in whatever language you prefer.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 62

WHAT ABOUT PROGRAMMING LANGUAGES?

These days, C++ 17 is probably the first choice for IoT application
development, among people who care about performance.

But you can work in any language you like, at a slight cost.

For our class, we won’t tell you what language to use.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 63

HOW TO LEARN AZURE?

As it turns out, Azure is “recipe-oriented”:
 There is a standard way to build scalable applications, and there is

a form-fill style of programming to match this standard approach.
 You can create new µ-services, but it takes a bit more sophistication.
 Only the recommended styles of programming will give good outcomes.
 Experts can do anything, but nobody is an expert after six weeks!

Sounds, nasty, right?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 64

VISUAL STUDIO 2017 AND VS CODE

We use cloud-oriented interactive development environments (IDEs).

For Azure, Visual Studio 2017 or a related editor called Visual Studio
Code are best (VS Code is a good choice if you favor C++ in one of the
Azure/Linux options, while Visual Studio is best for the Windows .NET)

In both editors, you can edit, compile, run, debug, profile, etc. But the key
thing is that both have built-in templates for common patterns!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 65

EXAMPLES?

In Visual Studio 2017, you can just tell it to create a C# program that will:

… accept RPC requests over the Internet (via Windows Comm. Framework,
WCF, which can use a built-in message format, or SOAP/REST)

… create a client program that can issue those RPC requests.

… implement a function to run in the Azure IoT Edge Function Server,
or the Azure Intelligent Edge for IoT.

… etc (the list is very long)

Using these tools, they provide the template and you just fill in the blanks!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 66

CAN I USE JAVA+ECLIPSE?

Yes, but it might be harder.

Microsoft and Amazon each favor their own IDEs, as noted (Cloud 9” is the
preferred IDE option on Amazon AWS). Both already understand cloud
programming.

With Eclipse you might have to find and install the relevant “templates”
more or less one by one, and this takes more expertise. But if you prefer
this approach you can find instructions easily on the web.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 67

	 CS 5412/Lecture 1 �Topics in Cloud Computing
	Cloud Computing
	250 PB/Day!
	Data in the cloud
	You tell me…
	Cloud Providers need to think “big”!
	… and they need to think “parallel”
	You tell me…
	You tell me…
	You tell me…
	How did today’s Cloud evolve?
	Yahoo Experiment
	Starting around 2006, Amazon led in reinventing data center computing
	Old Approach (2005)
	New Approach (2008)
	New Approach (2008)
	New Approach (2008)
	Tier one / Tier Two
	Today’s Cloud
	Slide Number 20
	Slide Number 21
	Each microservice is a parallel “pool”!
	These pools are �managed automatically
	Slide Number 24
	Slide Number 25
	Slide Number 26
	What did we just see?
	What does it mean to “add instances”?
	Scalability issues arise even inside a single -service instance
	Deep Dive: Best Way to Leverage Parallelism
	Tier-One focuses on easy stories
	Tier-One focuses on easy stories
	What you learned in O/S course
	But is this the right choice?
	What you learned in O/S course
	… even our “easy” cloud poses choices!
	How would you decide between them?
	Choices as a table
	Why container model “wins”…
	Why doesn’t a multi-threaded solution perform best?
	NUMA architecture
	Multithreading on a NUMA.
	Deep Dive On that Question
	Containers Win!
	Aha!
	Secondary question this poses
	In the cloud, not every subsystem �needs the strongest guarantees
	Definitions (Slightly informal!)
	In the cloud, not every subsystem �needs the strongest guarantees
	Eric Brewer’s Cap Theorem
	BASE Methodology
	Today’s Cloud is a CAP+BASE “world”
	… cloud computing isn’t An O/S course
	How many IoT devices? How much data?
	Puzzle this creates
	Some topics we will talk about
	Organizational Stuff
	Organizational topics/FAQ
	CS5999 (MEng ProjecT Credits)
	Meeting people
	Why are we focused on Azure?
	Why not AWS or Google?
	What about programming languages?
	How to learn Azure?
	Visual Studio 2017 and VS Code
	Examples?
	Can I use Java+Eclipse?

