
CS5412: TIER 2 OVERLAYS

Ken Birman

1 CS5412 Spring 2015 (Cloud Computing: Birman)

Lecture VI

Recap

CS5412 Spring 2015 (Cloud Computing: Birman)

2

 A week ago we discussed RON and Chord: typical

examples of P2P network tools popular in the cloud

 Then we shifted attention and peeked into the data

center itself. It has tiers (tier 1, 2, backend) and a

wide range of technologies

 Many of those use a DHT “concept” and would be

build on a DHT. But we can’t use Chord here!

Today’s focus

CS5412 Spring 2015 (Cloud Computing: Birman)

3

 How can we create distributed hash tables

optimized for use in cloud computing settings?

 If you look deeply into systems like the ones we

discussed last time, you’ll find DHT technology at the

base. So with a DHT you can layer fancier things

on top… but the DHT determines the speed!

First problem with Chord: Cost

CS5412 Spring 2015 (Cloud Computing: Birman)

4

 Internal to a cloud data center a DHT needs to be

blindingly fast

 Put operation should have cost no higher than 1 RPC

directly to the nodes where the data will live

 Get operation could have a cost of 1 RPC

 In Chord with as few as 1000 participants, costs can

include 9 routing hops. So this is unacceptable

Another problem : Hot spots

CS5412 Spring 2015 (Cloud Computing: Birman)

5

 As conditions in a network change

 Some items may become far more popular than others

and be referenced often; others rarely: hot/cold spots

 Members may join that are close to the place a finger

pointer should point... but not exactly at the right spot

 Churn could cause many of the pointers to point to

nodes that are no longer in the network, or behind

firewalls where they can’t be reached

 This has stimulated work on “adaptive” overlays

Today look at three examples

CS5412 Spring 2015 (Cloud Computing: Birman)

6

 Beehive: A way of extending Chord so that average

delay for finding an item drops to a constant: O(1)

 Pastry: A different way of designing the overlay so

that nodes have a choice of where a finger pointer

should point, enabling big speedups

 Kelips: A simple way of creating an O(1) overlay

that trades extra memory for faster performance

File systems on overlays

CS5412 Spring 2015 (Cloud Computing: Birman)

7

 If time permits, we’ll also look at ways that overlays

can “host” true file systems

 CFS and PAST: Two projects that used Chord and

Pastry, respectively, to store blocks

 OceanStore: An archival storage system for

libraries and other long-term storage needs

Insight into adaptation

CS5412 Spring 2015 (Cloud Computing: Birman)

8

 Many “things” in computer networks exhbit Pareto

popularity distributions

 This one graphs

frequency by category

for problems with

cardboard shipping

cartons

 Notice that a small subset

of issues account for most problems

Beehive insight

CS5412 Spring 2015 (Cloud Computing: Birman)

9

 Small subset of keys will get the majority of Put and

Get operations

 Intuition is simply that everything is Pareto!

 By replicating data, we can make the search path

shorter for a Chord operation

 ... so by replicating in a way proportional to the

popularity of an item, we can speed access to

popular items!

In this example, by replicating a (key,value)

tuple over half the ring, Beehive is able to

guarantee that it will always be found in at

most 1 hop. The system generalizes this

idea, matching the level of replication to the

popularity of the item.

Beehive: Item replicated on N/2 nodes

 If an item isn’t on “my side” of the Chord ring it must

be on the “other side”

CS5412 Spring 2015 (Cloud Computing: Birman)

10

Beehive strategy

CS5412 Spring 2015 (Cloud Computing: Birman)

11

 Replicate an item on N nodes to ensure O(0) lookup

 Replicate on N/2 nodes to ensure O(1) lookup

. . .

 Replicate on just a single node (the “home” node)

and worst case lookup will be the original O(log n)

 So use popularity of the item to select replication

level

Tracking popularity

CS5412 Spring 2015 (Cloud Computing: Birman)

12

 Each key has a home node (the one Chord would pick)

 Put (key,value) to the home node

 Get by finding any copy. Increment access counter

 Periodically, aggregate the counters for a key at the home
node, thus learning the access rate over time

 A leader aggregates all access counters over all keys, then
broadcasts the total access rate

 ... enabling Beehive home nodes to learn relative rankings of items

they host

 ... and to compute the optimal replication factor for any target

O(c) cost!

Notice interplay of ideas here

CS5412 Spring 2015 (Cloud Computing: Birman)

13

 Beehive wouldn’t work if every item was equally

popular: we would need to replicate everything

very aggressively. Pareto assumption addresses this

 Tradeoffs between parallel aspects (counting,

creating replicas) and leader-driven aspects

(aggregating counts, computing replication factors)

 We’ll see ideas like these in many systems

throughout CS5412

Pastry

CS5412 Spring 2015 (Cloud Computing: Birman)

14

 A DHT much like Chord or Beehive

 But the goal here is to have more flexibility in

picking finger links

 In Chord, the node with hashed key H must look for the

nodes with keys H/2, H/4, etc....

 In Pastry, there are a set of possible target nodes and

this allows Pastry flexibility to pick one with good

network connectivity, RTT (latency), load, etc

Pastry also uses a circular number space

 Difference is in how the

“fingers” are created

 Pastry uses prefix

match rather than

binary splitting

 More flexibility in

neighbor selection

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

CS5412 Spring 2015 (Cloud Computing: Birman)

15

Pastry routing table (for node 65a1fc)

Pastry nodes also have

a “leaf set” of

immediate neighbors up

and down the ring

Similar to Chord’s list of

successors

CS5412 Spring 2015 (Cloud Computing: Birman)

16

Pastry join

 X = new node, A = bootstrap, Z = nearest node

 A finds Z for X

 In process, A, Z, and all nodes in path send state tables to X

 X settles on own table

 Possibly after contacting other nodes

 X tells everyone who needs to know about itself

 Pastry paper doesn’t give enough information to understand how

concurrent joins work

 18th IFIP/ACM, Nov 2001

CS5412 Spring 2015 (Cloud Computing: Birman)

17

Pastry leave

 Noticed by leaf set neighbors when leaving node doesn’t
respond

 Neighbors ask highest and lowest nodes in leaf set for new
leaf set

 Noticed by routing neighbors when message forward fails

 Immediately can route to another neighbor

 Fix entry by asking another neighbor in the same “row” for
its neighbor

 If this fails, ask somebody a level up

CS5412 Spring 2015 (Cloud Computing: Birman)

18

For instance, this neighbor fails

CS5412 Spring 2015 (Cloud Computing: Birman)

19

Ask other neighbors

Try asking some neighbor in

the same row for its 655x

entry

If it doesn’t have one, try

asking some neighbor in the

row below, etc.

CS5412 Spring 2015 (Cloud Computing: Birman)

20

CAN, Chord, Pastry differences

 CAN, Chord, and Pastry have deep similarities

 Some (important???) differences exist

CAN nodes tend to know of multiple nodes that
allow equal progress

 Can therefore use additional criteria (RTT) to pick next
hop

 Pastry allows greater choice of neighbor

 Can thus use additional criteria (RTT) to pick neighbor

 In contrast, Chord has more determinism

 How might an attacker try to manipulate system?

CS5412 Spring 2015 (Cloud Computing: Birman)

21

Security issues

 In many P2P systems, members may be malicious

 If peers untrusted, all content must be signed to
detect forged content

 Requires certificate authority

 Like we discussed in secure web services talk

 This is not hard, so can assume at least this level of
security

CS5412 Spring 2015 (Cloud Computing: Birman)

22

Security issues: Sybil attack

 Attacker pretends to be multiple system

 If surrounds a node on the circle, can potentially arrange to capture all
traffic

 Or if not this, at least cause a lot of trouble by being many nodes

 Chord requires node ID to be an SHA-1 hash of its IP address

 But to deal with load balance issues, Chord variant allows nodes to
replicate themselves

 A central authority must hand out node IDs and certificates to go with

them

 Not P2P in the Gnutella sense

CS5412 Spring 2015 (Cloud Computing: Birman)

23

General security rules

 Check things that can be checked

 Invariants, such as successor list in Chord

 Minimize invariants, maximize randomness

 Hard for an attacker to exploit randomness

 Avoid any single dependencies

 Allow multiple paths through the network

 Allow content to be placed at multiple nodes

 But all this is expensive…

CS5412 Spring 2015 (Cloud Computing: Birman)

24

Load balancing

 Query hotspots: given object is popular

 Cache at neighbors of hotspot, neighbors of neighbors, etc.

 Classic caching issues

 Routing hotspot: node is on many paths

 Of the three, Pastry seems most likely to have this problem,
because neighbor selection more flexible (and based on
proximity)

 This doesn’t seem adequately studied

CS5412 Spring 2015 (Cloud Computing: Birman)

25

Load balancing

 Heterogeneity (variance in bandwidth or node
capacity

 Poor distribution in entries due to hash function
inaccuracies

 One class of solution is to allow each node to be
multiple virtual nodes

 Higher capacity nodes virtualize more often

 But security makes this harder to do

CS5412 Spring 2015 (Cloud Computing: Birman)

26

Chord node virtualization

10K nodes, 1M objects

20 virtual nodes per node has much better

load balance, but each node requires ~400

neighbors!

CS5412 Spring 2015 (Cloud Computing: Birman)

27

Fireflies

CS5412 Spring 2015 (Cloud Computing: Birman)

28

 Van Renesse uses this same trick (virtual nodes)

 In his version a form of attack-tolerant

agreement is used so that the virtual nodes can

repell many kinds of disruptive attacks

 We won’t have time to look at the details

today

Another major concern: churn

 Churn: nodes joining and leaving frequently

 Join or leave requires a change in some number of links

 Those changes depend on correct routing tables in other
nodes

 Cost of a change is higher if routing tables not correct

 In chord, ~6% of lookups fail if three failures per
stabilization

 But as more changes occur, probability of incorrect routing
tables increases

CS5412 Spring 2015 (Cloud Computing: Birman)

29

Control traffic load generated by churn

 Chord and Pastry appear to deal with churn differently

 Chord join involves some immediate work, but repair is done

periodically

 Extra load only due to join messages

 Pastry join and leave involves immediate repair of all effected

nodes’ tables

 Routing tables repaired more quickly, but cost of each join/leave goes

up with frequency of joins/leaves

 Scales quadratically with number of changes???

 Can result in network meltdown???

CS5412 Spring 2015 (Cloud Computing: Birman)

30

Kelips takes a different approach

 Network partitioned into N “affinity groups”

 Hash of node ID determines which affinity group a node

is in

 Each node knows:

 One or more nodes in each group

 All objects and nodes in own group

 But this knowledge is soft-state, spread through peer-to-

peer “gossip” (epidemic multicast)!

CS5412 Spring 2015 (Cloud Computing: Birman)

31

Rationale?

CS5412 Spring 2015 (Cloud Computing: Birman)

32

 Kelips has a completely predictable behavior under

worst-case conditions

 It may do “better” but won’t do “worse”

 Bounded message sizes and rates that never exceed

what the administrator picks no matter how much churn

occurs

 Main impact of disruption: Kelips may need longer

before Get is guaranteed to return value from prior Put

with the same key

Kelips

0 1 2

30

110

230 202

Affinity Groups:

peer membership thru

consistent hash

1 N -

Affinity group

pointers

N

members

per affinity

group

id hbeat rtt

30 234 90ms

230 322 30ms

Affinity group view

110 knows about

other members –

230, 30…

CS5412 Spring 2015 (Cloud Computing: Birman)

33

Affinity Groups:

peer membership thru

consistent hash

Kelips

0 1 2

30

110

230 202

1 N -

Contact

pointers

N

members

per affinity

group

id hbeat rtt

30 234 90ms

230 322 30ms

Affinity group view

group contactNode

… …

2 202

Contacts

202 is a “contact”

for 110 in group

2

CS5412 Spring 2015 (Cloud Computing: Birman)

34

Affinity Groups:

peer membership thru

consistent hash

Kelips

0 1 2

30

110

230 202

1 N -

Gossip protocol

replicates data

cheaply

N

members

per affinity

group

id hbeat rtt

30 234 90ms

230 322 30ms

Affinity group view

group contactNode

… …

2 202

Contacts

resource info

… …

cnn.com 110

Resource Tuples

“cnn.com” maps to group 2. So

110 tells group 2 to “route”

inquiries about cnn.com to it.

CS5412 Spring 2015 (Cloud Computing: Birman)

35

How it works

 Kelips is entirely gossip based!

 Gossip about membership

 Gossip to replicate and repair data

 Gossip about “last heard from” time used to discard

failed nodes

 Gossip “channel” uses fixed bandwidth

 … fixed rate, packets of limited size

CS5412 Spring 2015 (Cloud Computing: Birman)

36

Gossip 101

 Suppose that I know something

 I’m sitting next to Fred, and I tell him

 Now 2 of us “know”

 Later, he tells Mimi and I tell Anne

 Now 4

 This is an example of a push epidemic

 Push-pull occurs if we exchange data

CS5412 Spring 2015 (Cloud Computing: Birman)

37

Gossip scales very nicely

 Participants’ loads independent of size

 Network load linear in system size

 Information spreads in log(system size) time

%
 i
n
fe

ct
e
d

0.0

1.0

Time 
CS5412 Spring 2015 (Cloud Computing: Birman)

38

Gossip in distributed systems

 We can gossip about membership

 Need a bootstrap mechanism, but then discuss failures,

new members

 Gossip to repair faults in replicated data

 “I have 6 updates from Charlie”

 If we aren’t in a hurry, gossip to replicate data too

CS5412 Spring 2015 (Cloud Computing: Birman)

39

Gossip about membership

 Start with a bootstrap protocol

 For example, processes go to some web site and it lists a

dozen nodes where the system has been stable for a long

time

 Pick one at random

 Then track “processes I’ve heard from recently” and

“processes other people have heard from recently”

 Use push gossip to spread the word

CS5412 Spring 2015 (Cloud Computing: Birman)

40

Gossip about membership

 Until messages get full, everyone will known when

everyone else last sent a message

 With delay of log(N) gossip rounds…

 But messages will have bounded size

 Perhaps 8K bytes

 Then use some form of “prioritization” to decide what

to omit – but never send more, or larger messages

 Thus: load has a fixed, constant upper bound except on

the network itself, which usually has infinite capacity

CS5412 Spring 2015 (Cloud Computing: Birman)

41

Affinity Groups:

peer membership thru

consistent hash

Back to Kelips: Quick reminder

0 1 2

30

110

230 202

1 N -

Contact

pointers

N

members

per affinity

group

id hbeat rtt

30 234 90ms

230 322 30ms

Affinity group view

group contactNode

… …

2 202

Contacts

CS5412 Spring 2015 (Cloud Computing: Birman)

42

How Kelips works

 Gossip about everything

 Heuristic to pick contacts: periodically ping contacts to check
liveness, RTT… swap so-so ones for better ones.

Node 102

Gossip data stream

Hmm…Node 19 looks like a

much better contact in

affinity group 2

175

19

Node 175 is a

contact for Node

102 in some affinity

group

CS5412 Spring 2015 (Cloud Computing: Birman)

43

Replication makes it robust

 Kelips should work even during disruptive episodes

 After all, tuples are replicated to N nodes

 Query k nodes concurrently to overcome isolated
crashes, also reduces risk that very recent data could
be missed

 … we often overlook importance of showing that
systems work while recovering from a disruption

CS5412 Spring 2015 (Cloud Computing: Birman)

44

Control traffic load generated by

churn

Kelips

None

O(Changes

x Nodes)? O(changes)

Chord Pastry

CS5412 Spring 2015 (Cloud Computing: Birman)

45

Summary

CS5412 Spring 2015 (Cloud Computing: Birman)

46

 Adaptive behaviors can improve overlays

 Reduce costs for inserting or looking up information

 Improve robustness to churn or serious disruption

 As we move from CAN to Chord to Beehive or

Pastry one could argue that complexity increases

 Kelips gets to a similar place and yet is very simple,

but pays a higher storage cost than Chord/Pastry

