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 A week ago we discussed RON and Chord: typical 

examples of P2P network tools popular in the cloud 

 

 Then we shifted attention and peeked into the data 

center itself.  It has tiers (tier 1, 2, backend) and a 

wide range of technologies 

 

 Many of those use a DHT “concept” and would be 

build on a DHT.  But we can’t use Chord here! 



Today’s focus 
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 How can we create distributed hash tables 

optimized for use in cloud computing settings? 

 

 If you look deeply into systems like the ones we 

discussed last time, you’ll find DHT technology at the 

base.  So with a DHT you can layer fancier things 

on top… but the DHT determines the speed! 



First problem with Chord: Cost 
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 Internal to a cloud data center a DHT needs to be 

blindingly fast 

 Put operation should have cost no higher than 1 RPC 

directly to the nodes where the data will live 

 Get operation could have a cost of 1 RPC 

 

 In Chord with as few as 1000 participants, costs can 

include 9 routing hops.  So this is unacceptable 



Another problem : Hot spots 
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 As conditions in a network change 

 Some items may become far more popular than others 

and be referenced often; others rarely: hot/cold spots 

 Members may join that are close to the place a finger 

pointer should point... but not exactly at the right spot 

 Churn could cause many of the pointers to point to 

nodes that are no longer in the network, or behind 

firewalls where they can’t be reached 

 This has stimulated work on “adaptive” overlays 



Today look at three examples 
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 Beehive: A way of extending Chord so that average 

delay for finding an item drops to a constant: O(1) 

 

 Pastry: A different way of designing the overlay so 

that nodes have a choice of where a finger pointer 

should point, enabling big speedups 

 

 Kelips: A simple way of creating an O(1) overlay 

that trades extra memory for faster performance 



File systems on overlays 
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 If time permits, we’ll also look at ways that overlays 

can “host” true file systems 

 

 CFS and PAST: Two projects that used Chord and 

Pastry, respectively, to store blocks 

 OceanStore: An archival storage system for 

libraries and other long-term storage needs 



Insight into adaptation 
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 Many “things” in computer networks exhbit Pareto 

popularity distributions 

 This one graphs 

frequency by category 

for problems with 

cardboard shipping 

cartons 

 Notice that a small subset 

of issues account for most problems 



Beehive insight 
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 Small subset of keys will get the majority of Put and 

Get operations 

 Intuition is simply that everything is Pareto! 

 By replicating data, we can make the search path 

shorter for a Chord operation 

 ... so by replicating in a way proportional to the 

popularity of an item, we can speed access to 

popular items! 



In this example, by replicating a (key,value) 

tuple over half the ring, Beehive is able to 

guarantee that it will always be found in at 

most 1 hop.  The system generalizes this 

idea, matching the level of replication to the 

popularity of the item. 

Beehive: Item replicated on N/2 nodes 

 If an item isn’t on “my side” of the Chord ring it must 

be on the “other side” 
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Beehive strategy 
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 Replicate an item on N nodes to ensure O(0) lookup 

 Replicate on N/2 nodes to ensure O(1) lookup 

. . . 

 Replicate on just a single node (the “home” node) 

and worst case lookup will be the original O(log n) 

 

 So use popularity of the item to select replication 

level 



Tracking popularity  
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 Each key has a home node (the one Chord would pick) 

 Put (key,value) to the home node 

 Get by finding any copy.  Increment access counter 

 Periodically, aggregate the counters for a key at the home 
node, thus learning the access rate over time 

 A leader aggregates all access counters over all keys, then 
broadcasts the total access rate 

 ... enabling Beehive home nodes to learn relative rankings of items 

they host 

 ... and to compute the optimal replication factor for any target 

O(c) cost! 

 



Notice interplay of ideas here 
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 Beehive wouldn’t work if every item was equally 

popular: we would need to replicate everything 

very aggressively.  Pareto assumption addresses this 

 Tradeoffs between parallel aspects (counting, 

creating replicas) and leader-driven aspects 

(aggregating counts, computing replication factors) 

 We’ll see ideas like these in many systems 

throughout CS5412 



Pastry 
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 A DHT much like Chord or Beehive 

 

 But the goal here is to have more flexibility in 

picking finger links 

 In Chord, the node with hashed key H must look for the 

nodes with keys H/2, H/4, etc.... 

 In Pastry, there are a set of possible target nodes and 

this allows Pastry flexibility to pick one with good 

network connectivity, RTT (latency), load, etc 



Pastry also uses a circular number space 

 Difference is in how the 

“fingers” are created 

 Pastry uses prefix 

match rather than 

binary splitting 

 More flexibility in 

neighbor selection 

 

d46a1c 

Route(d46a1c) 

d462ba 

d4213f 

d13da3 

65a1fc 

d467c4 
d471f1 
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Pastry routing table (for node 65a1fc) 

Pastry nodes also have 

a “leaf set” of 

immediate neighbors up 

and down the ring 

 

Similar to Chord’s list of 

successors 
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Pastry join 

 X = new node, A = bootstrap, Z = nearest node 

 A finds Z for X 

 In process, A, Z, and all nodes in path send state tables to X 

 X settles on own table 

 Possibly after contacting other nodes 

 X tells everyone who needs to know about itself 

 Pastry paper doesn’t give enough information to understand how 

concurrent joins work 

 18th IFIP/ACM, Nov 2001 
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Pastry leave 

 Noticed by leaf set neighbors when leaving node doesn’t 
respond 

 Neighbors ask highest and lowest nodes in leaf set for new 
leaf set 

 Noticed by routing neighbors when message forward fails 

 Immediately can route to another neighbor 

 Fix entry by asking another neighbor in the same “row” for 
its neighbor 

 If this fails, ask somebody a level up 
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For instance, this neighbor fails 
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Ask other neighbors 

Try asking some neighbor in 

the same row for its 655x 

entry 

If it doesn’t have one, try 

asking some neighbor in the 

row below, etc. 
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CAN, Chord, Pastry differences 

 CAN, Chord, and Pastry have deep similarities 

 Some (important???) differences exist 

CAN nodes tend to know of multiple nodes that 
allow equal progress 

 Can therefore use additional criteria (RTT) to pick next 
hop 

 Pastry allows greater choice of neighbor 

 Can thus use additional criteria (RTT) to pick neighbor 

 In contrast, Chord has more determinism 

 How might an attacker try to manipulate system? 
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Security issues 

 In many P2P systems, members may be malicious 

 If peers untrusted, all content must be signed to 
detect forged content 

 Requires certificate authority 

 Like we discussed in secure web services talk 

 This is not hard, so can assume at least this level of 
security 
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Security issues:  Sybil attack 

 Attacker pretends to be multiple system 

 If surrounds a node on the circle, can potentially arrange to capture all 
traffic 

 Or if not this, at least cause a lot of trouble by being many nodes 

 Chord requires node ID to be an SHA-1 hash of its IP address 

 But to deal with load balance issues, Chord variant allows nodes to 
replicate themselves 

 A central authority must hand out node IDs and certificates to go with 

them 

 Not P2P in the Gnutella sense 
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General security rules 

 Check things that can be checked 

 Invariants, such as successor list in Chord 

 Minimize invariants, maximize randomness 

 Hard for an attacker to exploit randomness 

 Avoid any single dependencies 

 Allow multiple paths through the network 

 Allow content to be placed at multiple nodes 

 But all this is expensive… 
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Load balancing 

 Query hotspots: given object is popular 

 Cache at neighbors of hotspot, neighbors of neighbors, etc. 

 Classic caching issues 

 Routing hotspot: node is on many paths 

 Of the three, Pastry seems most likely to have this problem, 
because neighbor selection more flexible (and based on 
proximity) 

 This doesn’t seem adequately studied 
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Load balancing 

 Heterogeneity (variance in bandwidth or node 
capacity 

 Poor distribution in entries due to hash function 
inaccuracies 

 One class of solution is to allow each node to be 
multiple virtual nodes 

 Higher capacity nodes virtualize more often 

 But security makes this harder to do 
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Chord node virtualization 

10K nodes, 1M objects  

20 virtual nodes per node has much better 

load balance, but each node requires ~400 

neighbors!   
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Fireflies 
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 Van Renesse uses this same trick (virtual nodes) 

 In his version a form of attack-tolerant 

agreement is used so that the virtual nodes can 

repell many kinds of disruptive attacks 

 We won’t have time to look at the details 

today 



Another major concern: churn 

 Churn: nodes joining and leaving frequently 

 Join or leave requires a change in some number of links 

 Those changes depend on correct routing tables in other 
nodes 

 Cost of a change is higher if routing tables not correct 

 In chord, ~6% of lookups fail if three failures per 
stabilization 

 But as more changes occur, probability of incorrect routing 
tables increases 
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Control traffic load generated by churn 

 Chord and Pastry appear to deal with churn differently 

 Chord join involves some immediate work, but repair is done 

periodically 

 Extra load only due to join messages 

 Pastry join and leave involves immediate repair of all effected 

nodes’ tables 

 Routing tables repaired more quickly, but cost of each join/leave goes 

up with frequency of joins/leaves 

 Scales quadratically with number of changes??? 

 Can result in network meltdown??? 
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Kelips takes a different approach 

 Network partitioned into N “affinity groups” 

 Hash of node ID determines which affinity group a node 

is in 

 Each node knows: 

 One or more nodes in each group 

 All objects and nodes in own group 

 But this knowledge is soft-state, spread through peer-to-

peer “gossip” (epidemic multicast)! 
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Rationale? 
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 Kelips has a completely predictable behavior under 

worst-case conditions 

 It may do “better” but won’t do “worse” 

 Bounded message sizes and rates that never exceed 

what the administrator picks no matter how much churn 

occurs 

 Main impact of disruption: Kelips may need longer 

before Get is guaranteed to return value from prior Put 

with the same key 



Kelips 

0 1 2 

30 

110 

230 202 

Affinity Groups: 

peer membership thru 

consistent hash 

1 N - 

Affinity group 

pointers 

N 

members 

per affinity 

group 

id hbeat rtt 

30 234 90ms 

230 322 30ms 

Affinity group view 

110 knows about 

other members – 

230, 30… 
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Affinity Groups: 

peer membership thru 

consistent hash 

Kelips 

0 1 2 

30 

110 

230 202 

1 N - 

Contact 

pointers 

N 

members 

per affinity 

group 

id hbeat rtt 

30 234 90ms 

230 322 30ms 

Affinity group view 

group contactNode 

… … 
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Contacts 

202 is a “contact” 

for 110 in group 

2 
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Affinity Groups: 

peer membership thru 

consistent hash 

Kelips 

0 1 2 

30 

110 

230 202 

1 N - 

Gossip protocol 

replicates data 

cheaply 

N 

members 

per affinity 

group 

id hbeat rtt 

30 234 90ms 

230 322 30ms 

Affinity group view 

group contactNode 

… … 

2 202 

Contacts 

resource info 

… … 

cnn.com 110 

Resource Tuples 

 

“cnn.com” maps to group 2.  So 

110 tells group 2 to “route” 

inquiries about cnn.com to it. 
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How it works 

 Kelips is entirely gossip based! 

 Gossip about membership 

 Gossip to replicate and repair data 

 Gossip about “last heard from” time used to discard 

failed nodes 

 Gossip “channel” uses fixed bandwidth 

 … fixed rate, packets of limited size 
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Gossip 101 

 Suppose that I know something 

 I’m sitting next to Fred, and I tell him 

 Now 2 of us “know” 

 Later, he tells Mimi and I tell Anne 

 Now 4 

 This is an example of a push epidemic 

 Push-pull occurs if we exchange data 
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Gossip scales very nicely 

 Participants’ loads independent of size 

 Network load linear in system size 

 Information spreads in log(system size) time 
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Time  
CS5412 Spring 2015 (Cloud Computing: Birman) 

38 



Gossip in distributed systems 

 We can gossip about membership 

 Need a bootstrap mechanism, but then discuss failures, 

new members 

 Gossip to repair faults in replicated data 

 “I have 6 updates from Charlie” 

 If we aren’t in a hurry, gossip to replicate data too 
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Gossip about membership 

 Start with a bootstrap protocol 

 For example, processes go to some web site and it lists a 

dozen nodes where the system has been stable for a long 

time 

 Pick one at random 

 Then track “processes I’ve heard from recently” and 

“processes other people have heard from recently” 

 Use push gossip to spread the word 
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Gossip about membership 

 Until messages get full, everyone will known when 

everyone else last sent a message 

 With delay of log(N) gossip rounds… 

 But messages will have bounded size 

 Perhaps 8K bytes 

 Then use some form of “prioritization” to decide what 

to omit – but never send more, or larger messages 

 Thus: load has a fixed, constant upper bound except on 

the network itself, which usually has infinite capacity 
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Affinity Groups: 

peer membership thru 

consistent hash 

Back to Kelips: Quick reminder 
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How Kelips works 

 Gossip about everything 

 Heuristic to pick contacts: periodically ping contacts to check 
liveness, RTT… swap so-so ones for better ones. 

Node 102 

Gossip data stream 

Hmm…Node 19 looks like a 

much better contact in 

affinity group 2 

175 

19 

Node 175 is a 

contact for Node 

102 in some affinity 

group 
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Replication makes it robust 

 Kelips should work even during disruptive episodes 

 After all, tuples are replicated to N nodes 

 Query k nodes concurrently to overcome isolated 
crashes, also reduces risk that very recent data could 
be missed 

 … we often overlook importance of showing that 
systems work while recovering from a disruption 
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Control traffic load generated by 

churn 

Kelips 

None 

O(Changes  

x Nodes)? O(changes) 

Chord Pastry 
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Summary 
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 Adaptive behaviors can improve overlays 

 Reduce costs for inserting or looking up information 

 Improve robustness to churn or serious disruption 

 

 As we move from CAN to Chord to Beehive or 

Pastry one could argue that complexity increases 

 

 Kelips gets to a similar place and yet is very simple, 

but pays a higher storage cost than Chord/Pastry 


