CS 5220

Graph Algorithms

David Bindel 2024-11-21

Logistics

Remaining meetings

- · Nov 26: Async iterations / final outline
- Dec 3 and 5: Project presentations

Course eval

- · Open Dec 2-12
- \cdot Completion counts toward participation

Final deadline

Midnight on 12/19 (must be after 4:30 PM per university)

Final outline

- · Think "outline of my paper"
- · Should include
 - · Basics of what you want to do
 - · Evaluation setup (workload, etc)
 - · Planned (or finished) performance experiments
 - · Possibly a timeline
- · Can represent reconfigured group

Project presentations

- · Logistics
 - Think 3-5 minutes
 - · Not everyone needs to talk!
 - · Slides via Zoom share
- Contents
 - · What you want to do / have done
 - · Evaluation and performance plans
 - · Does not have to be finished!

Notes

- · Care most about final report
 - · I don't want to stare at your code!
- · Outline/presentation help me give feedback
- · Emphasis is performance analysis and tuning
 - · Think about benchmarks and baselines
 - · Think about strong/weak scaling experiments
 - · ... and check for correctness as well
- \cdot Get something done, fine to speculate on next steps

Lecture

Plan

- · Some background on graphs
- · Applications and building blocks
- Basic parallel graph algorithms
- Representations and performance
- Graphs and LA
- Frameworks

Graphs

Mathematically: G=(V,E) where $E\subset V\times V$

- \cdot Convention: |V|=n and |E|=m
- May be directed or undirected
- · May have weights $w_V:V\to\mathbb{R}$ or $w_E:E:\to\mathbb{R}$
- · May have other node or edge attributes as well
- · Path is $[(u_i,u_{i+1})]_{i=1}^\ell \in E^*$, sum of weights is length
- · Diameter is $\max_{s,t \in V} d(s,t)$

Generalizations

- · Hypergraph (edges in V^d)
- · Multigraph (multiple copies of edges)

Many possible structures:

- · Lines and trees
- Completely regular grids
- · Planar graphs (no edges need cross)
- · Low-dimensional Euclidean
- · Power law graphs
- ...

Algorithms are not one-size-fits-all!

Ends of a spectrum

	Planar	Power law
Vertex degree	Uniformly small	$P(\deg = k) \sim k^{-\gamma}$
Radius	$\Omega(\sqrt{n})$	Small
Edge sep	$O(\sqrt{n})$	nothing small
Linear solve	Direct OK	Iterative
Apps	PDEs	Social networks

Calls for different methods!

Applications: Routing and shortest paths

Figure 1: image

Applications: Traversal, ranking, clustering

- · Web crawl / traversal
- · PageRank, HITS
- · Clustering similar documents

Applications: Sparse solvers

Figure 2: image

- · Ordering for sparse factorization
- Partitioning
- Coarsening for AMG

Applications: Dimensionality reduction

Figure 3: image

Common building blocks

- Traversals
- · Shortest paths
- Spanning tree
- Flow computations
- · Topological sort
- · Coloring
- ...

... and most of sparse linear algebra.

Over-simple models

Let $t_p={\it idealized\ time\ on\ }p$ processors

- $\cdot t_1 = work$
- \cdot $t_{\infty}=$ span (or depth, or critical path length)

Don't bother with parallel DFS! Span is $\Omega(n)$.

Let's spend a few minutes on more productive algorithms...

Serial BFS

- · Push seed node onto queue and mark
- While Q nonempty
 - · Pop node from queue
 - · Visit node
 - · Push unmarked neighbors on queue
 - · Mark all neighbors

Parallel BFS

Simple idea: parallelize across frontiers

- · Pro: Simple to think about
- Pro: Lots of parallelism with small radius?
- · Con: What if frontiers are small?

Parallel BFS: Ullman-Yannakakis

Assuming a high-diameter graph:

- Form set S with start + random nodes, $|S| = \Theta(\sqrt{n} \log n)$
 - \cdot long shortest paths go through S w.h.p.
- \cdot Take \sqrt{n} steps of BFS from each seed in S
- Form aux graph for distances between seeds
- · Run all-pairs shortest path on aux graph

OK, but what if diameter is not large?

Serial BFS: Bottom-up

- · Set $d[v] = \infty$ for all vertices
- $\cdot \, \operatorname{Set} d[s] = 0 \operatorname{for} \operatorname{seed} s$
- \cdot Until d stops changing
 - $\cdot \ \, \text{For each} \, u \in V$
 - $\cdot \ d[u] = \min(d[u], \min_{w \in N(u)} d[w] + 1)$

Parallel BFS

Key ideas:

- At some point, switch from top-down expanding frontier ("are you my child?") to bottom-up checking for parents ("are you my parent?")
- Use 2D blocking of adjacency

Single-source shortest path

Classic algorithm: Dijkstra

- · Dequeue closest point to frontier, expand frontier
- Update priority queue of distances (in parallel)
- · Repeat

Or run serial Dijkstra from different sources for APSP.

Alternate idea: label correcting

Initialize d[u] with distance over-estimates to source

- $\cdot d[s] = 0$
- · Repeatedly relax $d[u] := \min_{(v,u) \in E} d[v] + w(v,u)$

Converges (eventually) as long as all nodes visited repeatedly, updates are atomic. If serial sweep in a consistent order, call it Bellman-Ford.

Single-source shortest path: Δ -stepping

Alternate approach: hybrid algorithm

- · Process a "bucket" at a time
- \cdot Relax "light" edges (wt < Δ), might add to bucket
- · When bucket empties, relax "heavy" edges a la Dijkstra

Maximal independent sets (MIS)

- $\cdot S \subset V$ independent if none are neighbors.
- · Maximal if no others can be added and remain independent.
- · Maximum if no other MIS is bigger.
- · Maximum is NP-hard; maximal is easy (serial)

Simple greedy MIS

- $\cdot\,$ Start with S empty
- For each $v \in V$ sequentially, add v to S if possible.

Luby's algorithm

- · Init $S := \emptyset$
- · Init candidates C := V
- · While $C \neq \emptyset$
 - · Label each v with a random r(v)
 - · For each $v \in C$ in parallel, if $r(v) < \min_{\mathcal{N}(v)} r(u)$
 - · Move v from C to S
 - · Remove neighbors from v to C

Very probably finishes in $O(\log n)$ rounds.

Luby's algorithm (round 1)

Luby's algorithm (round 2)

A fundamental problem

Many graph ops are

- · Computationally cheap (per node or edge)
- · Bad for locality

Memory bandwidth as a limiting factor.

Big data?

Consider:

- · 323 million in US (fits in 32-bit int)
- · About 350 Facebook friends each
- Compressed sparse row: about 450 GB

Topology (no metadata) on one big cloud node...

Graph rep: Adj matrix

Pro: efficient for dense graphs Con: wasteful for sparse case...

Graph rep: Coordinate

- · Tuples: (i,j,w_{ij})
- · Pro: Easy to update
- · Con: Slow for multiply

Graph rep: Adj list

- · Linked lists of adjacent nodes
- · Pro: Still easy to update
- · Con: May cost more to store than coord?

Graph rep: CSR

Pro: traversal? Con: updates

Graph rep: implicit

- · Idea: Never materialize a graph data structure
- Key: Provide traversal primitives
- · Pro: Explicit rep'n sometimes overkill for one-off graphs?
- · Con: Hard to use canned software (except NLA?)

Graph algorithms and LA

- · Really is standard LA
 - · Spectral partitioning and clustering
 - PageRank and some other centralities
 - · "Laplacian Paradigm" (Spielman, Teng, others...)
- · Looks like LA
 - · Floyd-Warshall
 - · Breadth-first search?

Graph algorithms and LA

Semirings have \oplus and \otimes s.t.

- · Addition is commutative+associative with a 0
- · Multiplication is associative with identity 1
- · Both are distributive
- $\cdot a \otimes 0 = 0 \otimes a = 0$
- · But no subtraction or division

Technically modules over semirings

Graph algorithms and LA

Example: min-plus

- $\cdot \oplus = \min$ and additive identity $0 \equiv \infty$
- $\cdot \otimes = +$ and multiplicative identity $1 \equiv 0$
- Useful for shortest distance: $d=A\otimes d$

Graph BLAS

http://www.graphblas.org/

- · Version 2.1.0 (final) as of Dec 2023
- (Opaque) internal sparse matrix data structure
- · Allows operations over misc semirings

Graph frameworks

Several to choose from!

- · Pregel, Apache Giraph, Stanford GPS, ...
- GraphLab family
 - · GraphLab: Original distributed memory
 - · PowerGraph: For "natural" (power law) networks
 - · GraphChi: Chihuahua shared mem vs distributed
- · Outperformed by Galois, Ligra, BlockGRACE, others
- · But... programming model was easy
- Graphit best of both worlds?

Graph frameworks

- · "Think as a vertex"
 - Each vertex updates locally
 - Exchanges messages with neighbors
 - · Runtime actually schedules updates/messages
- Message sent at super-step S arrives at $S+1\,$
- · Looks like BSP

At what COST?

"Scalability! But at what COST?"

McSherry, Isard, Murray, HotOS 15 You can have a second computer once you've shown you know how to use the first one.

- Paul Barham (quoted in intro)
- · Configuration that Outperforms a Single Thread
- Observation: many systems have unbounded COST!