
CS 5220

Graph Algorithms

David Bindel

2024-11-21

1

Logistics

Remaining meetings

• Nov 26: Async iterations / final outline
• Dec 3 and 5: Project presentations

2

Course eval

• Open Dec 2-12
• Completion counts toward participation

3

Final deadline

Midnight on 12/19 (must be after 4:30 PM per university)

4

Final outline

• Think “outline of my paper”
• Should include

• Basics of what you want to do
• Evaluation setup (workload, etc)
• Planned (or finished) performance experiments
• Possibly a timeline

• Can represent reconfigured group

5

Project presentations

• Logistics
• Think 3-5 minutes
• Not everyone needs to talk!
• Slides via Zoom share

• Contents
• What you want to do / have done
• Evaluation and performance plans

• Does not have to be finished!

6

Notes

• Care most about final report
• I don’t want to stare at your code!

• Outline/presentation help me give feedback
• Emphasis is performance analysis and tuning

• Think about benchmarks and baselines
• Think about strong/weak scaling experiments
• … and check for correctness as well

• Get something done, fine to speculate on next steps

7

Lecture

Plan

• Some background on graphs
• Applications and building blocks
• Basic parallel graph algorithms
• Representations and performance
• Graphs and LA
• Frameworks

8

Graphs

Mathematically: 𝐺 = (𝑉 , 𝐸) where 𝐸 ⊂ 𝑉 × 𝑉

• Convention: |𝑉 | = 𝑛 and |𝐸| = 𝑚
• May be directed or undirected
• May have weights 𝑤𝑉 ∶ 𝑉 → ℝ or 𝑤𝐸 ∶ 𝐸 ∶→ ℝ
• May have other node or edge attributes as well
• Path is [(𝑢𝑖, 𝑢𝑖+1)]ℓ𝑖=1 ∈ 𝐸∗, sum of weights is length
• Diameter is max𝑠,𝑡∈𝑉 𝑑(𝑠, 𝑡)

9

Generalizations

• Hypergraph (edges in 𝑉 𝑑)
• Multigraph (multiple copies of edges)

10

Types of graphs

11

Types of graphs

12

Types of graphs

13

Types of graphs

14

Types of graphs

15

Types of graphs

16

Types of graphs

Many possible structures:

• Lines and trees
• Completely regular grids
• Planar graphs (no edges need cross)
• Low-dimensional Euclidean
• Power law graphs
• ...

Algorithms are not one-size-fits-all!

17

Ends of a spectrum

Planar Power law

Vertex degree Uniformly small 𝑃(deg = 𝑘) ∼ 𝑘−𝛾

Radius Ω(√𝑛) Small
Edge sep 𝑂(√𝑛) nothing small
Linear solve Direct OK Iterative
Apps PDEs Social networks

Calls for different methods!

18

Applications: Routing and shortest paths

Figure 1: image
19

Applications: Traversal, ranking, clustering

• Web crawl / traversal
• PageRank, HITS
• Clustering similar documents

20

Applications: Sparse solvers

Figure 2: image

• Ordering for sparse factorization
• Partitioning
• Coarsening for AMG

21

Applications: Dimensionality reduction

Figure 3: image

22

Common building blocks

• Traversals
• Shortest paths
• Spanning tree
• Flow computations
• Topological sort
• Coloring
• ...

... and most of sparse linear algebra.

23

Over-simple models

Let 𝑡𝑝 = idealized time on 𝑝 processors

• 𝑡1 = work
• 𝑡∞ = span (or depth, or critical path length)

Don’t bother with parallel DFS! Span is Ω(𝑛).
Let’s spend a few minutes on more productive algorithms...

24

Serial BFS

• Push seed node onto queue and mark
• While Q nonempty

• Pop node from queue
• Visit node
• Push unmarked neighbors on queue
• Mark all neighbors

25

Parallel BFS

Simple idea: parallelize across frontiers

• Pro: Simple to think about
• Pro: Lots of parallelism with small radius?
• Con: What if frontiers are small?

26

Parallel BFS: Ullman-Yannakakis

Assuming a high-diameter graph:

• Form set 𝑆 with start + random nodes, |𝑆| = Θ(√𝑛 log 𝑛)
• long shortest paths go through 𝑆 w.h.p.

• Take
√𝑛 steps of BFS from each seed in 𝑆

• Form aux graph for distances between seeds
• Run all-pairs shortest path on aux graph

OK, but what if diameter is not large?

27

Serial BFS: Bottom-up

• Set 𝑑[𝑣] = ∞ for all vertices
• Set 𝑑[𝑠] = 0 for seed 𝑠
• Until 𝑑 stops changing

• For each 𝑢 ∈ 𝑉
• 𝑑[𝑢] = min(𝑑[𝑢], min𝑤∈𝑁(𝑢) 𝑑[𝑤] + 1)

28

Parallel BFS

Key ideas:

• At some point, switch from top-down expanding frontier (“are you my
child?”) to bottom-up checking for parents (“are you my parent?”)

• Use 2D blocking of adjacency

29

Single-source shortest path

Classic algorithm: Dijkstra

• Dequeue closest point to frontier, expand frontier
• Update priority queue of distances (in parallel)
• Repeat

Or run serial Dijkstra from different sources for APSP.

30

Alternate idea: label correcting

Initialize 𝑑[𝑢] with distance over-estimates to source

• 𝑑[𝑠] = 0
• Repeatedly relax 𝑑[𝑢] ∶= min(𝑣,𝑢)∈𝐸 𝑑[𝑣] + 𝑤(𝑣, 𝑢)

Converges (eventually) as long as all nodes visited repeatedly, updates
are atomic. If serial sweep in a consistent order, call it Bellman-Ford.

31

Single-source shortest path: Δ-stepping

Alternate approach: hybrid algorithm

• Process a “bucket” at a time
• Relax “light” edges (wt < Δ), might add to bucket
• When bucket empties, relax “heavy” edges a la Dijkstra

32

Maximal independent sets (MIS)

• 𝑆 ⊂ 𝑉 independent if none are neighbors.
• Maximal if no others can be added and remain independent.
• Maximum if no other MIS is bigger.
• Maximum is NP-hard; maximal is easy (serial)

33

Simple greedy MIS

• Start with 𝑆 empty
• For each 𝑣 ∈ 𝑉 sequentially, add 𝑣 to 𝑆 if possible.

34

Luby’s algorithm

• Init 𝑆 ∶= ∅
• Init candidates 𝐶 ∶= 𝑉
• While 𝐶 ≠ ∅

• Label each 𝑣 with a random 𝑟(𝑣)
• For each 𝑣 ∈ 𝐶 in parallel, if 𝑟(𝑣) < min𝒩(𝑣) 𝑟(𝑢)

• Move 𝑣 from 𝐶 to 𝑆
• Remove neighbors from 𝑣 to 𝐶

Very probably finishes in 𝑂(log 𝑛) rounds.

35

Luby’s algorithm (round 1)

7.89

7.153.89

4.77 0.54

0.77

7.69

2.27

4.04
6.64

4.29

36

Luby’s algorithm (round 2)

7.02

8.414.37

6.13 4.97

5.41

5.32

3.46

5.59
8.29

4.00

37

A fundamental problem

Many graph ops are

• Computationally cheap (per node or edge)
• Bad for locality

Memory bandwidth as a limiting factor.

38

Big data?

Consider:

• 323 million in US (fits in 32-bit int)
• About 350 Facebook friends each
• Compressed sparse row: about 450 GB

Topology (no metadata) on one big cloud node...

39

Graph rep: Adj matrix

Pro: efficient for dense graphs
Con: wasteful for sparse case...

40

Graph rep: Coordinate

• Tuples: (𝑖, 𝑗, 𝑤𝑖𝑗)
• Pro: Easy to update
• Con: Slow for multiply

41

Graph rep: Adj list

• Linked lists of adjacent nodes
• Pro: Still easy to update
• Con: May cost more to store than coord?

42

Graph rep: CSR

1 4 2 5 3 6 4 5 1 6 *

1 3 5 7 8 9 11

Adata

col

ptr

Pro: traversal? Con: updates

43

Graph rep: implicit

• Idea: Never materialize a graph data structure
• Key: Provide traversal primitives
• Pro: Explicit rep’n sometimes overkill for one-off graphs?
• Con: Hard to use canned software (except NLA?)

44

Graph algorithms and LA

• Really is standard LA
• Spectral partitioning and clustering
• PageRank and some other centralities
• “Laplacian Paradigm” (Spielman, Teng, others...)

• Looks like LA
• Floyd-Warshall
• Breadth-first search?

45

Graph algorithms and LA

Semirings have ⊕ and ⊗ s.t.

• Addition is commutative+associative with a 0
• Multiplication is associative with identity 1
• Both are distributive
• 𝑎 ⊗ 0 = 0 ⊗ 𝑎 = 0
• But no subtraction or division

Technically modules over semirings

46

Graph algorithms and LA

Example: min-plus

• ⊕ = min and additive identity 0 ≡ ∞
• ⊗ = + and multiplicative identity 1 ≡ 0
• Useful for shortest distance: 𝑑 = 𝐴 ⊗ 𝑑

47

Graph BLAS

http://www.graphblas.org/

• Version 2.1.0 (final) as of Dec 2023
• (Opaque) internal sparse matrix data structure
• Allows operations over misc semirings

48

http://www.graphblas.org/

Graph frameworks

Several to choose from!

• Pregel, Apache Giraph, Stanford GPS, ...
• GraphLab family

• GraphLab: Original distributed memory
• PowerGraph: For “natural” (power law) networks
• GraphChi: Chihuahua – shared mem vs distributed

• Outperformed by Galois, Ligra, BlockGRACE, others
• But... programming model was easy
• GraphIt - best of both worlds?

49

Graph frameworks

• “Think as a vertex”
• Each vertex updates locally
• Exchanges messages with neighbors
• Runtime actually schedules updates/messages

• Message sent at super-step 𝑆 arrives at 𝑆 + 1
• Looks like BSP

50

At what COST?

“Scalability! But at what COST?”
McSherry, Isard, Murray, HotOS 15

You can have a second computer once you’ve shown you know
how to use the first one.
– Paul Barham (quoted in intro)

• Configuration that Outperforms a Single Thread
• Observation: many systems have unbounded COST!

51

	Logistics
	Lecture

