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Logistics



Remaining meetings

• Nov 26: Async iterations / final outline
• Dec 3 and 5: Project presentations
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Course eval

• Open Dec 2-12
• Completion counts toward participation
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Final deadline

Midnight on 12/19 (must be after 4:30 PM per university)
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Final outline

• Think “outline of my paper”
• Should include

• Basics of what you want to do
• Evaluation setup (workload, etc)
• Planned (or finished) performance experiments
• Possibly a timeline

• Can represent reconfigured group
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Project presentations

• Logistics
• Think 3-5 minutes
• Not everyone needs to talk!
• Slides via Zoom share

• Contents
• What you want to do / have done
• Evaluation and performance plans

• Does not have to be finished!
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Notes

• Care most about final report
• I don’t want to stare at your code!

• Outline/presentation help me give feedback
• Emphasis is performance analysis and tuning

• Think about benchmarks and baselines
• Think about strong/weak scaling experiments
• … and check for correctness as well

• Get something done, fine to speculate on next steps
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Lecture



Plan

• Some background on graphs
• Applications and building blocks
• Basic parallel graph algorithms
• Representations and performance
• Graphs and LA
• Frameworks
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Graphs

Mathematically: 𝐺 = (𝑉 , 𝐸) where 𝐸 ⊂ 𝑉 × 𝑉

• Convention: |𝑉 | = 𝑛 and |𝐸| = 𝑚
• May be directed or undirected
• May have weights 𝑤𝑉 ∶ 𝑉 → ℝ or 𝑤𝐸 ∶ 𝐸 ∶→ ℝ
• May have other node or edge attributes as well
• Path is [ (𝑢𝑖, 𝑢𝑖+1) ]ℓ𝑖=1 ∈ 𝐸∗, sum of weights is length
• Diameter is max𝑠,𝑡∈𝑉 𝑑(𝑠, 𝑡)
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Generalizations

• Hypergraph (edges in 𝑉 𝑑)
• Multigraph (multiple copies of edges)
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Types of graphs
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Types of graphs
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Types of graphs
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Types of graphs
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Types of graphs
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Types of graphs
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Types of graphs

Many possible structures:

• Lines and trees
• Completely regular grids
• Planar graphs (no edges need cross)
• Low-dimensional Euclidean
• Power law graphs
• ...

Algorithms are not one-size-fits-all!
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Ends of a spectrum

Planar Power law

Vertex degree Uniformly small 𝑃(deg = 𝑘) ∼ 𝑘−𝛾

Radius Ω(√𝑛) Small
Edge sep 𝑂(√𝑛) nothing small
Linear solve Direct OK Iterative
Apps PDEs Social networks

Calls for different methods!
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Applications: Routing and shortest paths

Figure 1: image
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Applications: Traversal, ranking, clustering

• Web crawl / traversal
• PageRank, HITS
• Clustering similar documents
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Applications: Sparse solvers

Figure 2: image

• Ordering for sparse factorization
• Partitioning
• Coarsening for AMG
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Applications: Dimensionality reduction

Figure 3: image
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Common building blocks

• Traversals
• Shortest paths
• Spanning tree
• Flow computations
• Topological sort
• Coloring
• ...

... and most of sparse linear algebra.
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Over-simple models

Let 𝑡𝑝 = idealized time on 𝑝 processors

• 𝑡1 = work
• 𝑡∞ = span (or depth, or critical path length)

Don’t bother with parallel DFS! Span is Ω(𝑛).
Let’s spend a few minutes on more productive algorithms...
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Serial BFS

• Push seed node onto queue and mark
• While Q nonempty

• Pop node from queue
• Visit node
• Push unmarked neighbors on queue
• Mark all neighbors
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Parallel BFS

Simple idea: parallelize across frontiers

• Pro: Simple to think about
• Pro: Lots of parallelism with small radius?
• Con: What if frontiers are small?
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Parallel BFS: Ullman-Yannakakis

Assuming a high-diameter graph:

• Form set 𝑆 with start + random nodes, |𝑆| = Θ(√𝑛 log 𝑛)
• long shortest paths go through 𝑆 w.h.p.

• Take
√𝑛 steps of BFS from each seed in 𝑆

• Form aux graph for distances between seeds
• Run all-pairs shortest path on aux graph

OK, but what if diameter is not large?
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Serial BFS: Bottom-up

• Set 𝑑[𝑣] = ∞ for all vertices
• Set 𝑑[𝑠] = 0 for seed 𝑠
• Until 𝑑 stops changing

• For each 𝑢 ∈ 𝑉
• 𝑑[𝑢] = min(𝑑[𝑢], min𝑤∈𝑁(𝑢) 𝑑[𝑤] + 1)
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Parallel BFS

Key ideas:

• At some point, switch from top-down expanding frontier (“are you my
child?”) to bottom-up checking for parents (“are you my parent?”)

• Use 2D blocking of adjacency
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Single-source shortest path

Classic algorithm: Dijkstra

• Dequeue closest point to frontier, expand frontier
• Update priority queue of distances (in parallel)
• Repeat

Or run serial Dijkstra from different sources for APSP.
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Alternate idea: label correcting

Initialize 𝑑[𝑢] with distance over-estimates to source

• 𝑑[𝑠] = 0
• Repeatedly relax 𝑑[𝑢] ∶= min(𝑣,𝑢)∈𝐸 𝑑[𝑣] + 𝑤(𝑣, 𝑢)

Converges (eventually) as long as all nodes visited repeatedly, updates
are atomic. If serial sweep in a consistent order, call it Bellman-Ford.
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Single-source shortest path: Δ-stepping

Alternate approach: hybrid algorithm

• Process a “bucket” at a time
• Relax “light” edges (wt < Δ), might add to bucket
• When bucket empties, relax “heavy” edges a la Dijkstra
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Maximal independent sets (MIS)

• 𝑆 ⊂ 𝑉 independent if none are neighbors.
• Maximal if no others can be added and remain independent.
• Maximum if no other MIS is bigger.
• Maximum is NP-hard; maximal is easy (serial)
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Simple greedy MIS

• Start with 𝑆 empty
• For each 𝑣 ∈ 𝑉 sequentially, add 𝑣 to 𝑆 if possible.
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Luby’s algorithm

• Init 𝑆 ∶= ∅
• Init candidates 𝐶 ∶= 𝑉
• While 𝐶 ≠ ∅

• Label each 𝑣 with a random 𝑟(𝑣)
• For each 𝑣 ∈ 𝐶 in parallel, if 𝑟(𝑣) < min𝒩(𝑣) 𝑟(𝑢)

• Move 𝑣 from 𝐶 to 𝑆
• Remove neighbors from 𝑣 to 𝐶

Very probably finishes in 𝑂(log 𝑛) rounds.
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Luby’s algorithm (round 1)

7.89

7.153.89

4.77 0.54

0.77

7.69

2.27

4.04
6.64

4.29
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Luby’s algorithm (round 2)

7.02

8.414.37

6.13 4.97

5.41

5.32

3.46

5.59
8.29

4.00
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A fundamental problem

Many graph ops are

• Computationally cheap (per node or edge)
• Bad for locality

Memory bandwidth as a limiting factor.
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Big data?

Consider:

• 323 million in US (fits in 32-bit int)
• About 350 Facebook friends each
• Compressed sparse row: about 450 GB

Topology (no metadata) on one big cloud node...
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Graph rep: Adj matrix

Pro: efficient for dense graphs
Con: wasteful for sparse case...
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Graph rep: Coordinate

• Tuples: (𝑖, 𝑗, 𝑤𝑖𝑗)
• Pro: Easy to update
• Con: Slow for multiply
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Graph rep: Adj list

• Linked lists of adjacent nodes
• Pro: Still easy to update
• Con: May cost more to store than coord?
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Graph rep: CSR

1 4 2 5 3 6 4 5 1 6 *

1 3 5 7 8 9 11

Adata

col

ptr

Pro: traversal? Con: updates
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Graph rep: implicit

• Idea: Never materialize a graph data structure
• Key: Provide traversal primitives
• Pro: Explicit rep’n sometimes overkill for one-off graphs?
• Con: Hard to use canned software (except NLA?)
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Graph algorithms and LA

• Really is standard LA
• Spectral partitioning and clustering
• PageRank and some other centralities
• “Laplacian Paradigm” (Spielman, Teng, others...)

• Looks like LA
• Floyd-Warshall
• Breadth-first search?
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Graph algorithms and LA

Semirings have ⊕ and ⊗ s.t.

• Addition is commutative+associative with a 0
• Multiplication is associative with identity 1
• Both are distributive
• 𝑎 ⊗ 0 = 0 ⊗ 𝑎 = 0
• But no subtraction or division

Technically modules over semirings
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Graph algorithms and LA

Example: min-plus

• ⊕ = min and additive identity 0 ≡ ∞
• ⊗ = + and multiplicative identity 1 ≡ 0
• Useful for shortest distance: 𝑑 = 𝐴 ⊗ 𝑑
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Graph BLAS

http://www.graphblas.org/

• Version 2.1.0 (final) as of Dec 2023
• (Opaque) internal sparse matrix data structure
• Allows operations over misc semirings
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Graph frameworks

Several to choose from!

• Pregel, Apache Giraph, Stanford GPS, ...
• GraphLab family

• GraphLab: Original distributed memory
• PowerGraph: For “natural” (power law) networks
• GraphChi: Chihuahua – shared mem vs distributed

• Outperformed by Galois, Ligra, BlockGRACE, others
• But... programming model was easy
• GraphIt - best of both worlds?
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Graph frameworks

• “Think as a vertex”
• Each vertex updates locally
• Exchanges messages with neighbors
• Runtime actually schedules updates/messages

• Message sent at super-step 𝑆 arrives at 𝑆 + 1
• Looks like BSP
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At what COST?

“Scalability! But at what COST?”
McSherry, Isard, Murray, HotOS 15

You can have a second computer once you’ve shown you know
how to use the first one.
– Paul Barham (quoted in intro)

• Configuration that Outperforms a Single Thread
• Observation: many systems have unbounded COST!
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