CS 5220

Graph Algorithms

David Bindel
2024-11-21

Logistics

Remaining meetings

- Nov 26: Async iterations / final outline
- Dec 3 and 5: Project presentations

Course eval

- Open Dec 2-12
- Completion counts toward participation

Final deadline

Midnight on 12/19 (must be after 4:30 PM per university)

Final outline

- Think “outline of my paper”
- Should include
- Basics of what you want to do
- Evaluation setup (workload, etc)
- Planned (or finished) performance experiments
- Possibly a timeline

- Can represent reconfigured group

Project presentations

- Logistics
- Think 3-5 minutes
- Not everyone needs to talk!
- Slides via Zoom share
- Contents
- What you want to do / have done

- Evaluation and performance plans
- Does not have to be finished!

- Care most about final report
- | don't want to stare at your code!
- Qutline/presentation help me give feedback
- Emphasis is performance analysis and tuning
- Think about benchmarks and baselines
- Think about strong/weak scaling experiments

- ...and check for correctness as well

- Get something done, fine to speculate on next steps

Lecture

- Some background on graphs

- Applications and building blocks

- Basic parallel graph algorithms

- Representations and performance
- Graphs and LA

- Frameworks

Mathematically: G = (V,E)where ECV x V

- Convention: |[V| =mnand |E| =m

- May be directed or undirected

- May have weights wy, : V. = Rorwg : E:— R
- May have other node or edge attributes as well

+ Pathis [(u;, ui4q)]f:
- Diameter is max, ;. d(s,1)

L € E*, sum of weights is length

Generalizations

- Hypergraph (edges in V%)
- Multigraph (multiple copies of edges)

Types of graphs

"

Types of graphs

(%]
L=
o
©
=
on
Y
o
(%]
()]
s
=

13

Types of graphs

oo o
o0 o
[S oy
o0 0
o0 0
o0 0

14

Types of graphs

-

-

(%]
L=
o
©
=
on
Y
o
(%]
()]
s
=

16

Types of graphs

Many possible structures:

- Lines and trees

- Completely regular grids

- Planar graphs (no edges need cross)
- Low-dimensional Euclidean

- Power law graphs

Algorithms are not one-size-fits-all!

Ends of a spectrum

Planar Power law
Vertex degree Uniformly small P(deg = k) ~ k™7
Radius Q(y/n) Small
Edge sep O(y/n) nothing small
Linear solve Direct OK Iterative

Apps PDEs

Social networks

Calls for different methods!

Applications: Routing and shortest paths

[T ——

GoogleMaps Ithaca, New Vark oNew York Drve230miks, 4
-
- -

s~ o
M vial®1s andie0E ah
@ vaNvI7E ah1amin

@ vial81SandI78E 4h17min

Figure 1: image

19

Applications: Traversal, ranking, clustering

- Web crawl / traversal
- PageRank, HITS
- Clustering similar documents

20

Applications: Sparse solvers

Figure 2: image

- Ordering for sparse factorization
- Partitioning
- Coarsening for AMG

21

Applications: Dimensionality reduction

Figure 3: image

22

Common building blocks

- Traversals

- Shortest paths

- Spanning tree

- Flow computations
- Topological sort

- Coloring

.. and most of sparse linear algebra.

23

Over-simple models

Let £, = idealized time on p processors

- t; = work
- 1o, = span (or depth, or critical path length)

Don't bother with parallel DFS! Span is Q(n).
Let's spend a few minutes on more productive algorithms...

24

Serial BFS

- Push seed node onto queue and mark
- While Q nonempty
- Pop node from queue
- Visit node
- Push unmarked neighbors on queue
- Mark all neighbors

25

Parallel BFS

Simple idea: parallelize across frontiers

- Pro: Simple to think about
- Pro: Lots of parallelism with small radius?
- Con: What if frontiers are small?

26

Parallel BFS: Ullman-Yannakakis

Assuming a high-diameter graph:

- Form set S with start + random nodes, |\S| = ©(y/nlogn)
- long shortest paths go through S w.h.p.

- Take y/n steps of BFS from each seed in S
- Form aux graph for distances between seeds

- Run all-pairs shortest path on aux graph

OK, but what if diameter is not large?

27

Serial BFS: Bottom-up

- Set d[v] = oo for all vertices
- Setd[s] = 0 for seed s

- Until d stops changing
- Foreachu € V
- d[u] = min(d[u], min ¢ n,,) dw] 4+ 1)

28

Parallel BFS

Key ideas:

- At some point, switch from top-down expanding frontier (“are you my
child?”) to bottom-up checking for parents (“are you my parent?”)
- Use 2D blocking of adjacency

29

Single-source shortest path

Classic algorithm: Dijkstra

- Dequeue closest point to frontier, expand frontier
- Update priority queue of distances (in parallel)
- Repeat

Or run serial Dijkstra from different sources for APSP.

30

Alternate idea: label correcting

Initialize d[u] with distance over-estimates to source

- d[s]=0
+ Repeatedly relax d[u] := min, ,)ep d[v] + w(v, u)

Converges (eventually) as long as all nodes visited repeatedly, updates
are atomic. If serial sweep in a consistent order, call it Bellman-Ford.

31

Single-source shortest path: A-stepping

Alternate approach: hybrid algorithm

- Process a “bucket” at a time
- Relax “light” edges (wt < A), might add to bucket
- When bucket empties, relax “heavy” edges a la Dijkstra

32

Maximal independent sets (MIS)

- S C V independent if none are neighbors.

- Maximal if no others can be added and remain independent.
- Maximum if no other MIS is bigger.

- Maximum is NP-hard; maximal is easy (serial)

138

Simple greedy MIS

- Start with .S empty
- For each v € V sequentially, add v to S if possible.

34

Luby’s algorithm

< hitS =10
- Init candidates C :=V
- While C # ()
- Label each v with a random r(v)
- Foreach v € C'in parallel, if 7(v) < miny(, r(u)
- Move v from C'to S
- Remove neighbors from v to C'

Very probably finishes in O(logn) rounds.

35

Luby’s algorithm (round 1)

4.29
N
404 — o,

/ \ ’
227
4.77 054 =

C P .54 /

N
o 7.15 7.69
N 7 \

7.89 m— 0.77

3.89

36

Luby’s algorithm (round 2)

6.13 4.97 //
N

- 8.1
N7 N\

702 — 7,

4.37

37

A fundamental problem

Many graph ops are

- Computationally cheap (per node or edge)
- Bad for locality

Memory bandwidth as a limiting factor.

38

Consider:

- 323 million in US (fits in 32-bit int)
- About 350 Facebook friends each
- Compressed sparse row: about 450 GB

Topology (no metadata) on one big cloud node...

39

Graph rep: Adj matrix

Pro: efficient for dense graphs
Con: wasteful for sparse case...

40

Graph rep: Coordinate

- Tuples: (2, j, w)
- Pro: Easy to update
- Con: Slow for multiply

41

Graph rep: Adj list

- Linked lists of adjacent nodes
- Pro: Still easy to update
- Con: May cost more to store than coord?

42

Graph rep: CSR

-

N
n
(6)]
w
»
N
(6)]
=
(o]
.

82

o

w
o
~
[ee]
©
-
L=
T
=
=

§

Pro: traversal? Con: updates

43

Graph rep: implicit

- Idea: Never materialize a graph data structure

- Key: Provide traversal primitives

- Pro: Explicit rep’'n sometimes overkill for one-off graphs?
- Con: Hard to use canned software (except NLA?)

44

Graph algorithms and LA

- Really is standard LA

- Spectral partitioning and clustering

- PageRank and some other centralities

- “Laplacian Paradigm” (Spielman, Teng, others...)
- Looks like LA

- Floyd-Warshall

- Breadth-first search?

45

Graph algorithms and LA

Semirings have @ and ® s.t.

- Addition is commutative+associative with a 0
- Multiplication is associative with identity 1

- Both are distributive

ca®0=0®a=0

- But no subtraction or division

Technically modules over semirings

46

Graph algorithms and LA

Example: min-plus

- @ = min and additive identity 0 = oo
- ® = + and multiplicative identity 1 = 0
- Useful for shortest distance: d = A ® d

47

Graph BLAS

http://www.graphblas.org/

- Version 21.0 (final) as of Dec 2023
- (Opaque) internal sparse matrix data structure
- Allows operations over misc semirings

48

http://www.graphblas.org/

Graph frameworks

Several to choose from!

- Pregel, Apache Giraph, Stanford GPS, ...

- GraphLab family
- Graphlab: Original distributed memory
- PowerGraph: For “natural” (power law) networks
- GraphChi: Chihuahua - shared mem vs distributed

- Outperformed by Galois, Ligra, BlockGRACE, others
- But.. programming model was easy
- Graphlt - best of both worlds?

49

Graph frameworks

- “Think as a vertex”

- Each vertex updates locally

- Exchanges messages with neighbors

- Runtime actually schedules updates/messages
- Message sent at super-step S arrives at S + 1
- Looks like BSP

50

At what COST?

“Scalability! But at what COST?"

McSherry, Isard, Murray, HotOS 15
You can have a second computer once you've shown you know

how to use the first one.
- Paul Barham (quoted in intro)

- Configuration that Outperforms a Single Thread
- Observation: many systems have unbounded COST!

51

	Logistics
	Lecture

