
CS 5220

Floating Point

David Bindel

2024-11-19

1

Von Neumann and Goldstine

2

Von Neumann and Goldstine

“Numerical Inverting of Matrices of High Order” (1947)
... matrices of the orders 15, 50, 150 can usually be inverted with
a (relative) precision of 8, 10, 12 decimal digits less, respectively,
than the number of digits carried throughout.

3

Turing

4

Turing

“Rounding-Off Errors in Matrix Processes” (1948)

Carrying 𝑑 digits is equivalent to changing input data in the 𝑑th place
(backward error analysis).

5

Wilkinson

6

Wilkinson

“Error Analysis of Direct Methods of Matrix Inversion” (1961)
Modern error analysis of Gaussian elimination

For his research in numerical analysis to facilitiate the use of the
high-speed digital computer, having received special recognition
for his work in computations in linear algebra and “backward”
error analysis. — 1970 Turing Award citation

7

Kahan

8

Kahan

IEEE-754/854 (1985, revised 2008, 2018)
For his fundamental contributions to numerical analysis. One
of the foremost experts on floating-point computations. Kahan
has dedicated himself to “making the world safe for numerical
computations.” — 1989 Turing Award citation

9

IEEE floating point reminder

Normalized numbers:

(−1)𝑠 × (1.𝑏1𝑏2 … 𝑏𝑝)2 × 2𝑒

32-bit single, 64-bit double numbers consisting of

• Sign 𝑠
• Precision 𝑝 (𝑝 = 23 or 52)
• Exponent 𝑒 (−126 ≤ 𝑒 ≤ 126 or −1022 ≤ 𝑒 ≤ 1023)

Newer 16-bit formats: fp16 (𝑝 = 10); bfloat16 (𝑝 = 7)

10

Beyond normalized

• What if we can’t represent an exact result?
• What about 2𝑒max+1 ≤ 𝑥 < ∞ or 0 ≤ 𝑥 < 2𝑒min?
• What if we compute 1/0?
• What if we compute

√
−1?

11

Rounding

Basic ops (+, −, ×, /, √), require correct rounding

• As if computed to infinite precision, then rounded.
• Don’t actually need infinite precision for this!

• Different rounding rules possible:
• Round to nearest even (default)
• Round up, down, to 0 – error bds + intervals

• 754 recommends (does not require) correct rounding for a few
transcendentals as well (sine, cosine, etc).

12

Inexact

• If rounded result ≠ exact result, have inexact exception
• Which most people seem not to know about...
• ... and which most of us who do usually ignore

13

Denormalization and underflow

Denormalized numbers:

(−1)𝑠 × (0.𝑏1𝑏2 … 𝑏𝑝)2 × 2𝑒min

• Evenly fill in space between ±2𝑒min

• Gradually lose bits of precision as we approach zero
• Denormalization results in an underflow exception

• Except when an exact zero is generated

14

Infinity and NaN

Other things can happen:

• 2𝑒max + 2𝑒max generates ∞ (overflow exception)
• 1/0 generates ∞ (divide by zero exception)

• ... should really be called “exact infinity”

•
√

−1 generates Not-a-Number (invalid exception)

But every basic op produces something well defined.

15

Basic rounding model

Model of roundoff in a basic op:

fl(𝑎 ⊙ 𝑏) = (𝑎 ⊙ 𝑏)(1 + 𝛿), |𝛿| ≤ 𝜖.

• This model is not complete
• Misses overflow, underflow, divide by zero
• Also, some things are done exactly!
• Example: 2𝑥 exact, as is 𝑥 + 𝑦 if 𝑥/2 ≤ 𝑦 ≤ 2𝑥

• But useful as a basis for backward error analysis

16

Example: Horner’s rule

Evaluate 𝑝(𝑥) = ∑𝑛
𝑘=0 𝑐𝑘𝑥𝑘:

p = c(n)
for k = n-1 downto 0

p = x*p + c(k)

17

Example: Horner’s rule

Can show backward error result:

fl(𝑝) =
𝑛

∑
𝑘=0

̂𝑐𝑘𝑥𝑘

where | ̂𝑐𝑘 − 𝑐𝑘| ≤ (𝑛 + 1)𝜖|𝑐𝑘|.

Backward error + sensitivity gives forward error. Can even compute
running error estimates!

18

Hooray for the modern era!

• Everyone almost implements IEEE 754
• Old Cray arithmetic is essentially extinct

• We teach backward error analysis in basic classes
• Good libraries for LA, elementary functions

19

Back to the future?

• But GPUs have funky (low-precision) formats!
• Hard to write portable exception handlers
• Exception flags may be inaccessible
• Some features might be slow
• Compiler might not do what you expected

20

Back to the future?

• We teach backward error analysis in basic classes
• ... which are often no longer required!
• And anyhow, bwd error isn’t everything.

• Good libraries for LA, elementary functions
• But people will still roll their own.

21

Arithmetic speed

Single faster than double precision

• Actual arithmetic cost may be comparable (on CPU)
• But GPUs generally prefer single (or lower)
• And AVX instructions do more per cycle with single
• And memory bandwidth is lower

NB: FP16 originally intended for storage only!

22

Mixed-precision arithmetic

Idea: use double precision only where needed

• Example: iterative refinement and relatives
• Or use double-precision arithmetic between single-precision
representations (may be a good idea regardless)

23

Example: Mixed-precision iterative refinement

• Factor 𝐴 = 𝐿𝑈 : 𝑂(𝑛3) single-precision work
• Solve 𝑥 = 𝑈−1(𝐿−1𝑏): 𝑂(𝑛2) single-precision work
• 𝑟 = 𝑏 − 𝐴𝑥: 𝑂(𝑛2) double-precision work
• While ‖𝑟‖ too large

• 𝑑 = 𝑈−1(𝐿−1𝑟): 𝑂(𝑛2) single-precision work
• 𝑥 = 𝑥 + 𝑑: 𝑂(𝑛) single-precision work
• 𝑟 = 𝑏 − 𝐴𝑥: 𝑂(𝑛2) double-precision work

24

Example: Helpful extra precision

/*
* Assuming all coordinates are in [1,2), check on which
* side of the line through A and B is the point C.
*/

int check_side(float ax, float ay, float bx, float by,
float cx, float cy)

{
double abx = bx-ax, aby = by-ay;
double acx = cx-ax, acy = cy-ay;
double det = acx*aby-abx*aby;
if (det == 0) return 0;
if (det < 0) return -1;
if (det > 0) return 1;

}

This is not robust if the inputs are double precision!
25

Single or double?

What to use for:

• Large data sets? (single for performance, if possible)
• Local calculations? (double by default, except GPU?)
• Physically measured inputs? (probably single)
• Nodal coordinates? (probably single)
• Stiffness matrices? (maybe single, maybe double)
• Residual computations? (probably double)
• Checking geometric predicates? (double or more)

26

Simulating extra precision

What if we want higher precision than is fast?

• Double precision on a GPU?
• Quad precision on a CPU?

27

Simulating extra precision

Can simulate extra precision. Example:

// s1, s2 = two_sum(a, b) -- Dekker's version
if abs(a) < abs(b) { swap(&a, &b); }
double s1 = a+b; /* May suffer roundoff */
double s2 = (a-s1) + b; /* No roundoff! */

28

Simulating extra precision

Idea applies more broadly (Bailey, Bohlender, Dekker, Demmel, Hida,
Kahan, Li, Linnainmaa, Priest, Shewchuk, ...)

• Used in fast extra-precision packages
• And in robust geometric predicate code
• And in XBLAS

29

Exceptional arithmetic speed

Time to sum 1000 doubles on my laptop:

• Initialized to 1: 1.3 microseconds
• Initialized to inf/nan: 1.3 microseconds
• Initialized to 10−312: 67 microseconds

50× performance penalty for gradual underflow!

30

Exceptional arithmetic

Why worry? One reason:

if (x != y)
z = x/(x-y);

Also limits range of simulated extra precision.

31

Exceptional algorithms, take 2

A general idea (works outside numerics, too):

• Try something fast but risky
• If something breaks, retry more carefully

If risky usually works and doesn’t cost too much extra, this improves
performance.

(See Demmel and Li; Hull, Farfrieve, and Tang.)

32

Three problems

What goes wrong with floating point in parallel (or just high performance)
environments?

33

Problem 0: Mis-attributed Blame

To blame is human. To fix is to engineer. — Unknown

Three variants:

• “Probably no worries about floating point error.”
• “This is probably due to floating point error.”
• “Floating point error makes this untrustworthy.”

34

Problem 1: Repeatability

Floating point addition is not associative:

fl(𝑎 + fl(𝑏 + 𝑐)) ≠ fl(fl(𝑎 + 𝑏) + 𝑐)

So answers depends on the inputs, but also

• How blocking is done in multiply or other kernels
• Maybe compiler optimizations
• Order in which reductions are computed
• Order in which critical sections are reached

35

Problem 1: Repeatability

Worst case: with nontrivial probability we get an answer too bad to be
useful, not bad enough for the program to barf — and garbage comes out.

36

Problem 1: Repeatability

What can we do?

• Apply error analysis agnostic to ordering
• Write slower debug version with specific ordering
• Soon(?): Call the reproducible BLAS

37

Problem 2: Heterogeneity

• Local arithmetic faster than communication
• So be redundant about some computation
• What if redundant computations use different HW?

• Different nodes in the cloud?
• GPU and CPU?

• Problems
• Different exception handling on different nodes
• Different branches due to different rounding

38

Problem 2: Heterogeneity

What can we do?

• Avoid FP-dependent branches
• Communicate FP results affecting branches
• Use reproducible kernels

39

New World Order

Claim: DNNs robust to low precision!

• Overflow an issue (hence bfloat16)
• Same pressure has revived block FP?
• More experiments than analysis

40

Recap

So why care about the vagaries of floating point?

• Might actually care about error analysis
• Or using single precision for speed
• Or maybe just reproducibility
• Or avoiding crashes from inconsistent decisions!

41

References

• “What Every Computer Scientist Should Know About Floating Point
Arithmetic” (David Goldberg + addendum by Doug Priest)

• “Revisiting ‘What Every Computer Scientist Should Know About
Floating Point Arithmetic’ ” (Lafage)

• Numerical Computing with IEEE Floating Point Arithmetic (Overton)
• Handbook of Floating Point Arithmetic (Muller et al)
• Accuracy and Stability of Numerical Algorithms (Higham)

42

https://arxiv.org/pdf/2012.02492.pdf
https://arxiv.org/pdf/2012.02492.pdf

