
CS 5220

Load balancing

David Bindel

2024-11-07

1



Inefficiencies in parallel code

Poor single processor performance

• Typically in the memory system
• Saw this in matrix multiply assignment

2



Inefficiencies in parallel code

Overhead for parallelism

• Thread creation, synchronization, communication
• Saw this in shallow water assignment

3



Inefficiencies in parallel code

Load imbalance

• Different amounts of work across processors
• Different speeds / available resources
• Insufficient parallel work
• All this can change over phases

4



Where does the time go?

• Load balance looks like large sync cost
• ... maybe so does ordinary sync overhead!
• And spin-locks may make sync look like useful work
• And ordinary time sharing can confuse things more
• Can get some help from profiling tools

5



Many independent tasks

• Simplest strategy: partition by task index
• What if task costs are inhomogeneous?
• Worse: all expensive tasks on one thread?

• Potential fixes
• Many small tasks, randomly assigned
• Dynamic task assignment

• Issue: what about scheduling overhead?

6



Variations on a theme

How to avoid overhead? Chunks!
(Think OpenMP loops)

• Small chunks: good balance, large overhead
• Large chunks: poor balance, low overhead

7



Variations on a theme

• Fixed chunk size (requires good cost estimates)
• Guided self-scheduling (take ⌈(tasks left)/𝑝⌉ work)
• Tapering (size chunks based on variance)
• Weighted factoring (GSS with heterogeneity)

8



Static dependency

• Graph 𝐺 = (𝑉 , 𝐸) with vertex and edge weights
• Goal: even partition, small cut (comm volume)
• Optimal partitioning is NP complete – use heuristics
• Tradeoff quality vs speed
• Good software exists (e.g. METIS)

9



The limits of graph partitioning

What if

• We don’t know task costs?
• We don’t know the comm/dependency pattern?
• These things change over time?

May want dynamic load balancing?

Even in regular case: not every problem looks like an undirected graph!

10



Dependency graphs

So far: Graphs for dependencies between unknowns.

For dependency between tasks or computations:

• Arrow from 𝐴 to 𝐵 means that 𝐵 depends on 𝐴
• Result is a directed acyclic graph (DAG)

11



Longest Common Substring

Goal: Longest sequence of (not necessarily contiguous) characters
common to strings 𝑆 and 𝑇 .

Recursive formulation:

LCS[𝑖, 𝑗] =

{max(LCS[𝑖 − 1, 𝑗], LCS[𝑗, 𝑖 − 1]), 𝑆[𝑖] ≠ 𝑇 [𝑗]
1 + LCS[𝑖 − 1, 𝑗 − 1], 𝑆[𝑖] = 𝑇 [𝑗]

Dynamic programming: Form a table of LCS[𝑖, 𝑗]

12



Dependency graphs

Process in any order consistent with dependencies.
Limits to available parallel work early on or late!

13



Dependency graphs

Partition into coarser-grain tasks for locality?

14



Dependency graphs

Dependence between coarse tasks limits parallelism.

15



Alternate perspective

Two approaches to LCS:

• Solve subproblems from bottom up
• Solve top down, memoize common subproblems

Parallel question: shared memoization (and synchronize) or independent
memoization (and redundant computation)?

16



Load balancing and task-based parallelism

0

1 1

2 2 2 2

3 3

• Task DAG captures data dependencies
• May be known at outset or dynamically generated
• Topological sort reveals parallelism opportunities

17



Basic parameters

• Task costs
• Do all tasks have equal costs?
• Known statically, at creation, at completion?

• Task dependencies
• Can tasks be run in any order?
• If not, when are dependencies known?

• Locality
• Tasks co-located to reduce communication?
• When is this information known?

18



Task costs

Figure 1: Easy: equal unit cost tasks (branch-free loops)

Figure 2: Harder: different, known times (sparse MVM)

? ? ? ? ? ? ? ?

Figure 3: Hardest: costs unknown until completed (search)

19



Dependencies

Figure 4: Easy: dependency-free loop (Jacobi sweep)

Figure 5: Harder: tasks have predictable structure (some DAG)

? ? ?

? ?

Figure 6: Hardest: structure is dynamic (search, sparse LU)

20



Locality/communication

When do you communicate?

• Easy: Only at start/end (embarrassingly parallel)
• Harder: In a predictable pattern (PDE solver)
• Hardest: Unpredictable (discrete event simulation)

21



A spectrum of solutions

Depending on cost, dependency, locality:

• Static scheduling
• Semi-static scheduling
• Dynamic scheduling

22



Static scheduling

• Everything known in advance
• Can schedule offline (e.g. graph partitioning)
• Example: Shallow water solver

23



Semi-static scheduling

• Everything known at start of step (for example)
• Use offline ideas (e.g. Kernighan-Lin refinement)
• Example: Particle-based methods

24



Dynamic scheduling

• Don’t know what we’re doing until we’ve started
• Have to use online algorithms
• Example: most search problems

25



Search problems

• Different set of strategies from physics sims!
• Usually require dynamic load balance
• Example:

• Optimal VLSI layout
• Robot motion planning
• Game playing
• Speech processing
• Reconstructing phylogeny
• ...

26



Example: Tree search

? ? ?

? ?

• Tree unfolds dynamically during search
• Common problems on different paths (graph)?
• Graph may or may not be explicit in advance

27



Search algorithms

Generic search:

• Put root in stack/queue
• while stack/queue has work

• remove node 𝑛 from queue
• if 𝑛 satisfies goal, return
• mark 𝑛 as searched
• queue viable unsearched children
(Can branch-and-bound)

DFS (stack), BFS (queue), A∗ (priority queue), ...

28



Simple parallel search

0

0 1 2 3

0 0 0 3

0 0 0 0

Static load balancing:

• Each new task on a proc until all have a subtree
• Ineffective without work estimates for subtrees!
• How can we do better?

29



Centralized scheduling

Worker 0 Worker 1

Next?

Worker 2 Worker 3

Idea: obvious parallelization of standard search

• Locks on shared data structure (stack, queue, etc)
• Or might be a manager task

30



Centralized scheduling - problem?

• Queue root and fork
• obtain queue lock
• while queue has work

• remove node 𝑛 from queue
• release queue lock
• process 𝑛, mark as searched
• obtain queue lock
• enqueue unsearched children

• release queue lock

• join

31



Centralized scheduling

• Put root in queue; workers active = 0; fork
• obtain queue lock
• while queue has work or workers active > 0

• remove node 𝑛 from queue; workers active ++
• release queue lock
• process 𝑛, mark as searched
• obtain queue lock
• enqueue unsearched children; workers active –

• release queue lock

• join

32



Centralized task queue

• Called self-scheduling when applied to loops
• Tasks might be range of loop indices
• Assume independent iterations
• Loop body has unpredictable time (or do it statically)

• Pro: dynamic, online scheduling
• Con: centralized, so doesn’t scale
• Con: high overhead if tasks are small

33



Beyond centralized task queue

Worker 0 Worker 1 Worker 2 Worker 3

Yoink! Next?

34



Beyond centralized task queue

Basic distributed task queue idea:

• Each processor works on part of a tree
• When done, get work from a peer
• Or if busy, push work to a peer
• Asynch communication useful

Also goes by work stealing, work crews...

35



Picking a donor

Could use:

• Asynchronous round-robin
• Global round-robin (current donor ptr at P0)
• Randomized – optimal with high probability!

36



Diffusion-based balancing

• Problem with random polling: communication cost!
• But not all connections are equal
• Idea: prefer to poll more local neighbors

• Average out load with neighbors ⟹ diffusion!

37



Mixed parallelism

• Today: mostly coarse-grain task parallelism
• Other times: fine-grain data parallelism
• Why not do both? Switched parallelism.

38



Takeaway

• Lots of ideas, not one size fits all!
• Axes: task size, task dependence, communication
• Dynamic tree search is a particularly hard case!
• Fundamental tradeoffs

• Overdecompose (load balance) vs
keep tasks big (overhead, locality)

• Steal work globally (balance) vs
steal from neighbors (comm. overhead)

• Sometimes hard to know when code should stop!

39


