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Sparsity and partitioning

A = 1 2 3 4 5

Matrix Graph

Want to partition sparse graphs so that

• Subgraphs are same size (load balance)
• Cut size is minimal (minimize communication)

Uses: sparse matvec, nested dissection solves, ...
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A common theme

Common idea: partition under static connectivity

• Physical network design (telephone, VLSI)
• Sparse matvec
• Preconditioners for PDE solvers
• Sparse Gaussian elimination
• Data clustering
• Image segmentation

Goal: Big chunks, small “surface area” between
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Graph partitioning

Given: 𝐺 = (𝑉 , 𝐸), possibly weights + coordinates.
We want to partition 𝐺 into 𝑘 pieces such that

• Node weights are balanced across partitions.
• Weight of cut edges is minimized.

Important special case: 𝑘 = 2.
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Vertex separator
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Edge separator
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Node to edge and back again

Can convert between node and edge separators

• Node to edge: cut edges from sep to one side
• Edge to node: remove nodes on one side of cut

Fine if degree bounded (e.g. near-neighbor meshes).
Optimal vertex/edge separators very different for social networks!
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Cost

How many partitionings are there? If 𝑛 is even,

( 𝑛
𝑛/2) = 𝑛!

((𝑛/2)!)2 ≈ 2𝑛√2/(𝜋𝑛).

Finding the optimal one is NP-complete.

We need heuristics!
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Partitioning with coordinates

• Lots of partitioning problems from “nice” meshes
• Planar meshes (maybe with regularity condition)
• 𝑘-ply meshes (works for 𝑑 > 2)
• Nice enough ⟹ cut 𝑂(𝑛1−1/𝑑) edges
(Tarjan, Lipton; Miller, Teng, Thurston, Vavasis)

• Edges link nearby vertices

• Get useful information from vertex density
• Ignore edges (but can use them in later refinement)
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Recursive coordinate bisection

Idea: Cut with hyperplane parallel to a coordinate axis.

• Pro: Fast and simple
• Con: Not always great quality
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Inertial bisection

Idea: Optimize cutting hyperplane via vertex density

x̄ = 1
𝑛

𝑛
∑
𝑖=1

x𝑖, ̄r𝑖 = x𝑖 − x̄

I =
𝑛

∑
𝑖=1

[‖r𝑖‖2𝐼 − r𝑖r𝑇
𝑖 ]

Let (𝜆𝑛, n) be the minimal eigenpair for the inertia tensor I, and choose
the hyperplane through x̄ with normal n.
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Inertial bisection

• Pro: Simple, more flexible than coord planes
• Con: Still restricted to hyperplanes
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Random circles (Gilbert, Miller, Teng)

• Stereographic projection
• Find centerpoint (any plane is an even partition)
In practice, use an approximation.

• Conformally map sphere, centerpoint to origin
• Choose great circle (at random)
• Undo stereographic projection
• Convert circle to separator

May choose best of several random great circles.
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Coordinate-free methods

• Don’t always have natural coordinates
• Example: the web graph
• Can add coordinates? (metric embedding)

• Use edge information for geometry!
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Breadth-first search

• Pick a start vertex 𝑣0
• Might start from several different vertices

• Use BFS to label nodes by distance from 𝑣0
• We’ve seen this before – remember RCM?
• Or minimize cuts locally (Karypis, Kumar)

• Partition by distance from 𝑣0
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Spectral partitioning

Label vertex 𝑖 with 𝑥𝑖 = ±1. We want to minimize

edges cut = 1
4 ∑

(𝑖,𝑗)∈𝐸
(𝑥𝑖 − 𝑥𝑗)2

subject to the even partition requirement

∑
𝑖

𝑥𝑖 = 0.

But this is NP hard, so we need a trick.
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Spectral partitioning

edges cut = 1
4 ∑

(𝑖,𝑗)∈𝐸
(𝑥𝑖 − 𝑥𝑗)2 = 1

4‖𝐶𝑥‖2 = 1
4𝑥𝑇 𝐿𝑥

where 𝐶 = incidence matrix, $L = C^T C = $ graph Laplacian:

𝐶𝑖𝑗 =
⎧{{
⎨{{⎩

1, 𝑒𝑗 = (𝑖, 𝑘)
−1, 𝑒𝑗 = (𝑘, 𝑖)
0, otherwise,

𝐿𝑖𝑗 =
⎧{{
⎨{{⎩

𝑑(𝑖), 𝑖 = 𝑗
−1, (𝑖, 𝑗) ∈ 𝐸,
0, otherwise.

Note: 𝐶𝑒 = 0 (so 𝐿𝑒 = 0), 𝑒 = (1, 1, 1, … , 1)𝑇 .
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Spectral partitioning

Now consider the relaxed problem with 𝑥 ∈ ℝ𝑛:

minimize 𝑥𝑇 𝐿𝑥 s.t. 𝑥𝑇 𝑒 = 0 and 𝑥𝑇 𝑥 = 1.

Equivalent to finding the second-smallest eigenvalue 𝜆2 and
corresponding eigenvector 𝑥, also called the Fiedler vector. Partition
according to sign of 𝑥𝑖.

How to approximate 𝑥? Use a Krylov subspace method (Lanczos)!
Expensive, but gives high-quality partitions.
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Spectral partitioning
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Spectral coordinates

Alternate view: define a coordinate system with the first 𝑑 non-trivial
Laplacian eigenvectors.

• Spectral partitioning = bisection in spectral coords
• Can cluster in other ways as well (e.g. 𝑘-means)
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Spectral coordinates

21



Refinement by swapping

Cut size: 5 Cut size: 4

Gain from swapping (𝑎, 𝑏) is 𝐷(𝑎) + 𝐷(𝑏) − 2𝑤(𝑎, 𝑏), where 𝐷 is
external - internal edge costs:

𝐷(𝑎) = ∑
𝑏′∈𝐵

𝑤(𝑎, 𝑏′) − ∑
𝑎′∈𝐴,𝑎′≠𝑎

𝑤(𝑎, 𝑎′)

𝐷(𝑏) = ∑
𝑎′∈𝐴

𝑤(𝑏, 𝑎′) − ∑
𝑏′∈𝐵,𝑏′≠𝑏

𝑤(𝑏, 𝑏′)
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Greedy refinement

Cut size: 5 Cut size: 4

Start with a partition 𝑉 = 𝐴 ∪ 𝐵 and refine.

• gain(𝑎, 𝑏) = 𝐷(𝑎) + 𝐷(𝑏) − 2𝑤(𝑎, 𝑏)
• Purely greedy strategy: until no positive gain

• Choose swap with most gain
• Update 𝐷 in neighborhood of swap; update gains

• Local minima are a problem.
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Kernighan-Lin

In one sweep, while no vertices marked

• Choose (𝑎, 𝑏) with greatest gain
• Update 𝐷(𝑣) for all unmarked 𝑣 as if (𝑎, 𝑏) were swapped
• Mark 𝑎 and 𝑏 (but don’t swap)
• Find 𝑗 such that swaps 1, … , 𝑗 yield maximal gain
• Apply swaps 1, … , 𝑗
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Kernighan-Lin

Usually converges in a few (2-6) sweeps. Each sweep is 𝑂(|𝑉 |3). Can be
improved to 𝑂(|𝐸|) (Fiduccia, Mattheyses).

Further improvements (Karypis, Kumar): only consider vertices on
boundary, don’t complete full sweep.
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Multilevel ideas

Basic idea (same will work in other contexts):

• Coarsen
• Solve coarse problem
• Interpolate (and possibly refine)

May apply recursively.
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Maximal matching

One idea for coarsening: maximal matchings

• Matching of 𝐺 = (𝑉 , 𝐸) is 𝐸𝑚 ⊂ 𝐸 with no common vertices.
• Maximal: cannot add edges and remain matching.
• Constructed by an obvious greedy algorithm.
• Maximal matchings are non-unique; some may be preferable to
others (e.g. choose heavy edges first).
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Coarsening via maximal matching

• Collapse matched nodes into coarse nodes
• Add all edge weights between coarse nodes
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Software

All these use some flavor(s) of multilevel:

• METIS/ParMETIS (Kapyris)
• PARTY (U. Paderborn)
• Chaco (Sandia)
• Scotch (INRIA)
• Jostle (now commercialized)
• Zoltan (Sandia)
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Graph partitioning: Is this it?

Consider partitioning just for sparse matvec:

• Edge cuts ≠ communication volume
• Should we minimize max communication volume?
• Communication volume – what about latencies?

Some go beyond graph partitioning (e.g. hypergraph in Zoltan).
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Graph partitioning: Is this it?

Additional work on:

• Partitioning power law graphs
• Covering sets with small overlaps

Also: Classes of graphs with no small cuts (expanders)
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Graph partitioning: Is this it?

• Block Jacobi (or Schwarz) – relax on each partition
• Preconditioner: want to consider edge cuts and physics

• E.g. consider edges = beams
• Cutting a stiff beam worse than a flexible beam?
• Doesn’t show up from just the topology

• Multiple ways to deal with this
• Encode physics via edge weights?
• Partition geometrically?

• Tradeoffs are why we need to be informed users
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Graph partitioning: Is this it?

So far, considered problems with static interactions

• What about particle simulations?
• Or what about tree searches?
• Or what about...?

Next time: more general load balancing issues
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