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Goal

Solve
𝐴𝑥 = 𝑏,

where 𝐴 is sparse (or data sparse).
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Plan for today

• Reminder of stationary iterations
• Krylov idea and performance via

• Parallelism in algorithm
• Better convergence (preconditioning)
• Better memory access (reordering)

• Sparse Gaussian elimination
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Reminder: Stationary Iterations

From splitting 𝐴 = 𝑀 − 𝐾 , compute:

𝑥(𝑘+1) = 𝑥(𝑘) + 𝑀−1(𝑏 − 𝐴𝑥(𝑘)).

“Linear” rate of convergence, dependent on 𝜌(𝑀−1𝐾).
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Krylov Subspace Methods

What if we only know how to multiply by 𝐴? About all you can do is keep
multiplying!

𝐾𝑘(𝐴, 𝑏) = span {𝑏, 𝐴𝑏, 𝐴2𝑏, … , 𝐴𝑘−1𝑏} .

Gives surprisingly useful information!
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Example: Conjugate Gradients

If 𝐴 is symmetric and positive definite, 𝐴𝑥 = 𝑏 solves a minimization:

𝜙(𝑥) = 1
2𝑥𝑇 𝐴𝑥 − 𝑥𝑇 𝑏

∇𝜙(𝑥) = 𝐴𝑥 − 𝑏.

Idea: Minimize 𝜙(𝑥) over 𝐾𝑘(𝐴, 𝑏). Basis for the method of conjugate
gradients
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Example: GMRES

Idea: Minimize ‖𝐴𝑥 − 𝑏‖2 over 𝐾𝑘(𝐴, 𝑏). Yields Generalized Minimum
RESidual (GMRES)
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Convergence of Krylov Subspace Methods

• KSPs are not stationary (no constant fixed-point iteration)
• Convergence is surprisingly subtle!
• CG convergence upper bound via condition number

• Large condition number iff 𝜙(𝑥) is narrow
• True for Poisson and company

8



Convergence of Krylov Subspace Methods

• Preconditioned problem 𝑀−1𝐴𝑥 = 𝑀−1𝑏
• Whence 𝑀?

• From a stationary method?
• From a simpler/coarser discretization?
• From approximate factorization?
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PCG

r = b-A*x;
p = 0; beta = 0;
z = Msolve(r);
rho = dot(r, z);
for i=1:nsteps

p = z + beta*p;
q = A*p;
alpha = rho/dot(p, q);
x += alpha*p;
r -= alpha*q;
if norm(r) < tol, break; end
z = Msolve(r);
rho_prev = rho;
rho = dot(r, z);
beta = rho/rho_prev;

end
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PCG parallel work

• Solve with 𝑀
• Product with 𝐴
• Dot products and axpys
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Pushing PCG

• Rearrange if 𝑀 = 𝐿𝐿𝑇 is available
• Or build around “powers kernel”

• Old “s-step” approach of Chronopoulos and Gear
• CA-Krylov of Hoemmen, Carson, Demmel
• Hard to keep stable
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Pushing PCG

Two real application levers:

• Better preconditioning
• Faster matvecs
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PCG bottlenecks

Key: fast solve with 𝑀 , product with 𝐴

• Some preconditioners parallelize better!
• Balance speed with performance.

• Speed for set up of 𝑀?
• Speed to apply 𝑀 after setup?

• Cheaper to do two multiplies/solves at once...
• Can’t exploit in obvious way — lose stability
• Variants allow multiple products (CA-Krylov)

• Lots of fiddling possible with 𝑀 ; matvec with 𝐴?
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Thinking on (basic) CG convergence

0

1

2

3

Consider 5-point stencil on an 𝑛 × 𝑛 mesh.

• Information moves one grid cell per matvec.
• Cost per matvec is 𝑂(𝑛2).
• At least 𝑂(𝑛3) work to get information across mesh!
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Convergence by counting

• Time to converge ≥ time to move info across
• For a 2D mesh: 𝑂(𝑛) matvecs, 𝑂(𝑛3) = 𝑂(𝑁3/2) cost
• For a 3D mesh: 𝑂(𝑛) matvecs, 𝑂(𝑛4) = 𝑂(𝑁4/3) cost
• “Long” meshes yield slow convergence
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Convergence by counting

3D beats 2D because everything is closer!

• Advice: sparse direct for 2D, CG for 3D.
• Better advice: use a preconditioner!
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Eigenvalue approach

Define the condition number for 𝜅(𝐿) s.p.d:

𝜅(𝐿) = 𝜆max(𝐿)
𝜆min(𝐿)

Describes how elongated the level surfaces of 𝜙 are.
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Eigenvalue approach

• For Poisson, 𝜅(𝐿) = 𝑂(ℎ−2)
• Steps to halve error: 𝑂(√𝜅) = 𝑂(ℎ−1).

Similar back-of-the-envelope estimates for some other PDEs. But these
are not always that useful... can be pessimistic if there are only a few
extreme eigenvalues.
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Frequency-domain approach

Error 𝑒𝑘 after 𝑘 steps of CG gets smoother!
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Preconditioning Poisson

• CG already handles high-frequency error
• Want something to deal with lower frequency!
• Jacobi useless

• Doesn’t even change Krylov subspace!
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Preconditioning Poisson

Better idea: block Jacobi?

• Q: How should things split up?
• A: Minimize blocks across domain.
• Compatible with minimizing communication!
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Multiplicative Schwartz

Generalizes block Gauss-Seidel
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Restrictive Additive Schwartz (RAS)

• Get ghost cell data (green)
• Solve everything local (including neighbor data)
• Update local values for next step (local)
• Default strategy in PETSc
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Multilevel Ideas

• RAS moves info one processor per step
• For scalability, still need to get around this!
• Basic idea: use multiple grids

• Fine grid gives lots of work, kills high-freq error
• Coarse grid cheaply gets info across mesh, kills low freq
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Tuning matmul

Can also tune matrix multiply

• Represented implicitly (regular grids)
• Example: Optimizing stencil operations (Datta)

• Or explicitly (e.g. compressed sparse column)
• Sparse matrix blocking and reordering
• Packages: Sparsity (Im), OSKI (Vuduc)
• Available as PETSc extension

Or further rearrange algorithm (Hoemmen, Demmel).
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Reminder: Compressed sparse row

for (int i = 0; i < n; ++i) {
y[i] = 0;
for (int jj = ptr[i]; jj < ptr[i+1]; ++jj)
y[i] += A[jj]*x[col[jj]];

}

Where is the problem for memory access?
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Memory traffic in CSR multiply

Memory access patterns:

• Elements of 𝑦 accessed sequentially
• Elements of 𝐴 accessed sequentially
• Access to 𝑥 are all over!

Can help by switching to block CSR. Switching to single precision, short
indices can help memory traffic, too!
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Parallelizing matvec

• Each processor gets a piece
• Many partitioning strategies
• Idea: re-order so one of these strategies is “good”
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Reordering for matvec

SpMV performance goals:

• Balance load?
• Balance storage?
• Minimize communication?
• Good cache re-use?

Reordering also comes up for GE!
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Reminder: Sparsity and reordering

Permute unknowns for better SpMV or

• Stability of Gauss elimination,
• Fill reduction in Gaussian elimination,
• Improved performance of preconditioners...
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Reminder: Sparsity and partitioning

Want to partition sparse graphs so that

• Subgraphs are same size (load balance)
• Cut size is minimal (minimize communication)

Matrices that are “almost” diagonal are good?
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Reordering for bandedness

Reverse Cuthill-McKee

• Select “peripheral” vertex 𝑣
• Order according to breadth first search from 𝑣
• Reverse ordering
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From iterative to direct

• RCM ordering is great for SpMV
• But isn’t narrow banding good for solvers, too?

• LU takes 𝑂(𝑛𝑏2) where 𝑏 is bandwidth.
• Great if there’s an ordering where 𝑏 is small!
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Skylines and profiles

• Profile solvers generalize band solvers
• Skyline storage for lower triangle: for each row 𝑖,

• Start and end of storage for nonzeros in row.
• Contiguous nonzero list up to main diagonal.

• In each column, first nonzero defines a profile.
• All fill-in confined to profile.
• RCM is again a good ordering.
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Beyond bandedness

• Minimum bandwidth for 2D model problem? 3D?
• Skyline only gets us so much farther

36



Beyond bandedness

But more general solvers have similar structure

• Ordering (minimize fill)
• Symbolic factorization (where will fill be?)
• Numerical factorization (pivoting?)
• … and triangular solves
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Troublesome Trees

One step of Gaussian elimination completely fills this matrix!
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Terrific Trees

Full Gaussian elimination generates no fill in this matrix!
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Quiz

How many fill elements are there for elimination on

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥 𝑥 0 0 𝑥 0 0 𝑥
𝑥 𝑥 𝑥 0 0 0 0 0
0 𝑥 𝑥 𝑥 0 0 0 0
0 0 𝑥 𝑥 𝑥 0 0 0
𝑥 0 0 𝑥 𝑥 𝑥 0 0
0 0 0 0 𝑥 𝑥 𝑥 0
0 0 0 0 0 𝑥 𝑥 𝑥
𝑥 0 0 0 0 0 𝑥 𝑥

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Graphic Elimination

Consider first steps of GE

A(2:end,1) = A(2:end,1)/A(1,1);
A(2:end,2:end) = A(2:end,2:end)-...

A(2:end,1)*A(1,2:end);

Nonzero in the outer product at (𝑖, 𝑗) if A(i,1) and A(j,1) both nonzero —
that is, if 𝑖 and 𝑗 are both connected to 1.

General: Eliminate variable, connect remaining neighbors.
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Terrific Trees Redux

Order leaves to root ⟹
on eliminating 𝑖, parent of 𝑖 is only remaining neighbor.
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Nested Dissection

• Idea: Think of block tree structures.
• Eliminate block trees from bottom up.
• Can recursively partition at leaves.
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Nested Dissection

• Rough cost estimate: how much just to factor dense Schur
complements associated with separators?

• Notice graph partitioning appears again!
• And again we want small separators!
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Nested Dissection

Model problem: Laplacian with 5 point stencil (for 2D)

• ND gives optimal complexity in exact arithmetic
(George 73, Hoffman/Martin/Rose)

• 2D: 𝑂(𝑁 log 𝑁) memory, 𝑂(𝑁3/2) flops
• 3D: 𝑂(𝑁4/3) memory, 𝑂(𝑁2) flops
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Minimum Degree

• Locally greedy strategy
• Want to minimize upper bound on fill-in
• Fill ≤ (degree in remaining graph)2

• At each step
• Eliminate vertex with smallest degree
• Update degrees of neighbors

• Problem: Expensive to implement!
• But better varients via quotient graphs
• Variants often used in practice
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Elimination Tree

• Variables (columns) are nodes in trees
• 𝑗 a descendant of 𝑘 if eliminating 𝑗 updates 𝑘
• Can eliminate disjoint subtrees in parallel!
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Cache locality

Basic idea: exploit “supernodal” (dense) structures in factor

• e.g. arising from elimination of separator Schur complements in ND
• Other alternatives exist (multifrontal solvers)
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Pivoting

Pivoting is painful, particularly in distributed memory!

• Cholesky — no need to pivot!
• Threshold pivoting — pivot when things look dangerous
• Static pivoting — try to decide up front

What if things go wrong with threshold/static pivoting?
Common theme: Clean up sloppy solves with good residuals
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Direct to iterative

Can improve solution by iterative refinement:

𝑃𝐴𝑄 ≈ 𝐿𝑈
𝑥0 ≈ 𝑄𝑈−1𝐿−1𝑃𝑏
𝑟0 = 𝑏 − 𝐴𝑥0
𝑥1 ≈ 𝑥0 + 𝑄𝑈−1𝐿−1𝑃𝑟0

Looks like approximate Newton on 𝐹(𝑥) = 𝐴𝑥 − 𝑏 = 0.
This is just a stationary iterative method!
Nonstationary methods work, too.
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Variations on a theme

If we’re willing to sacrifice some on factorization,

• Single precision factor + double precision refinement?
• Sloppy factorizations (marginal stability) + refinement?
• Modify 𝑚 small pivots as they’re encountered (low rank updates), fix
with 𝑚 steps of a Krylov solver?
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Parting advice

• Sparse direct for 2D problems
• Gets more expensive for 3D problems
• Approximate direct solves make good preconditioners
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