CS 5220

Sparse linear algebra

David Bindel
2024-10-31

Solve

Ax =D,

where A is sparse (or data sparse).

Plan for today

- Reminder of stationary iterations
- Krylov idea and performance via
- Parallelism in algorithm
- Better convergence (preconditioning)

- Better memory access (reordering)

- Sparse Gaussian elimination

Reminder: Stationary Iterations

From splitting A = M — K, compute:
D) = k) L M6 — Az®).

“Linear” rate of convergence, dependent on p(M 1 K).

Krylov Subspace Methods

What if we only know how to multiply by A? About all you can do is keep
multiplying!

K, (A,b) = span {b, Ab, Ab, ..., A*"1b} .

Gives surprisingly useful information!

Example: Conjugate Gradients

If A is symmetric and positive definite, Az = b solves a minimization:

d(x) = éxTAx —xTb
Vé(z) = Az —b.

Idea: Minimize ¢(x) over K (A, b). Basis for the method of conjugate
gradients

Example: GMRES

Idea: Minimize | Az — b||? over K, (A, b). Yields Generalized Minimum
RESidual (GMRES)

Convergence of Krylov Subspace Methods

- KSPs are not stationary (no constant fixed-point iteration)
- Convergence is surprisingly subtle!

- CG convergence upper bound via condition number
- Large condition number iff ¢ () is narrow
- True for Poisson and company

Convergence of Krylov Subspace Methods

- Preconditioned problem M 1Az = M~1b
- Whence M?

- From a stationary method?

- From a simpler/coarser discretization?

- From approximate factorization?

r = b-Axx;

p = 0; beta = 0;
z = Msolve(r);
rho = dot(r, z);
for i=1:nsteps

p = z + betaxp;

q = A*p;

alpha = rho/dot(p, q);

x += alphax*p;

r -= alphaxq;

if norm(r) < tol, break; end

z = Msolve(r);

rho_prev = rho;

rho = dot(r, z);

beta = rho/rho_prev; 10

PCG parallel work

- Solve with M
- Product with A

- Dot products and axpys

"

Pushing PCG

- Rearrange if M = LLT is available

”

- Or build around “powers kernel
- Old “s-step” approach of Chronopoulos and Gear
- CA-Krylov of Hoemmen, Carson, Demmel
- Hard to keep stable

Pushing PCG

Two real application levers:

- Better preconditioning

- Faster matvecs

PCG bottlenecks

Key: fast solve with M, product with A

- Some preconditioners parallelize better!
- Balance speed with performance.
- Speed for set up of M?
- Speed to apply M after setup?
- Cheaper to do two multiplies/solves at once...
- Can't exploit in obvious way — lose stability
- Variants allow multiple products (CA-Krylov)
- Lots of fiddling possible with M; matvec with A?

14

Thinking on (basic) CG convergence

\V]
@)oY X XOX
O00Oeeo
O000LCee
O0000e
O0000O0
O0000O0

Consider 5-point stencil on an . X n mesh.

- Information moves one grid cell per matvec.
- Cost per matvec is O(n?).
- At least O(n3) work to get information across mesh!

Convergence by counting

- Time to converge > time to move info across

- For a 2D mesh: O(n) matvecs, O(n3) = O(N3/2) cost
- For a 3D mesh: O(n) matvecs, O(n*) = O(N*/3) cost
- “Long” meshes yield slow convergence

Convergence by counting

3D beats 2D because everything is closer!

- Advice: sparse direct for 2D, CG for 3D.
- Better advice: use a preconditioner!

Eigenvalue approach

Define the condition number for k(L) s.p.d:

Apan(L)

max (

k(L) = o (D)

min(

Describes how elongated the level surfaces of ¢ are.

Eigenvalue approach

+ For Poisson, k(L) = O(h~2)
- Steps to halve error: O(y/k) = O(h™1).

Similar back-of-the-envelope estimates for some other PDEs. But these
are not always that useful... can be pessimistic if there are only a few

extreme eigenvalues.

19

Frequency-domain approach

s T meme R

Error e, after k steps of CG gets smoother!

20

Preconditioning Poisson

- CG already handles high-frequency error
- Want something to deal with lower frequency!

- Jacobi useless
- Doesn't even change Krylov subspace!

21

Preconditioning Poisson

Better idea: block Jacobi?

- Q: How should things split up?
- A: Minimize blocks across domain.

- Compatible with minimizing communication!

22

Multiplicative Schwartz

Generalizes block Gauss-Seidel

23

Restrictive Additive Schwartz (RAS)

- Get ghost cell data (green)

- Solve everything local (including neighbor data)
- Update local values for next step (local)

- Default strategy in PETSc

24

Multilevel Ideas

- RAS moves info one processor per step
- For scalability, still need to get around this!
- Basic idea: use multiple grids
- Fine grid gives lots of work, kills high-freq error
- Coarse grid cheaply gets info across mesh, kills low freq

25

Tuning matmul

Can also tune matrix multiply

- Represented implicitly (regular grids)

- Example: Optimizing stencil operations (Datta)
- Or explicitly (e.g. compressed sparse column)

- Sparse matrix blocking and reordering

- Packages: Sparsity (Im), OSKI (Vuduc)

- Available as PETSc extension

Or further rearrange algorithm (Hoemmen, Demmel).

26

Reminder: Compressed sparse row

for (int 1 = 0; 1 < n; ++1i) {
y[i] = o;
for (int jj = ptr[il; jj < ptrl[i+1]; ++jj)
y[i] += A[jjI*x[colljjl];
}

Where is the problem for memory access?

27

Memory traffic in CSR multiply

Memory access patterns:

- Elements of ¢ accessed sequentially
- Elements of A accessed sequentially
- Access to x are all over!

Can help by switching to block CSR. Switching to single precision, short
indices can help memory traffic, too!

28

Parallelizing matvec

- Each processor gets a piece
- Many partitioning strategies
- Idea: re-order so one of these strategies is “good”

29

Reordering for matvec

SpMV performance goals:

- Balance load?

- Balance storage?

- Minimize communication?
- Good cache re-use?

Reordering also comes up for GE!

30

Reminder: Sparsity and reordering

Permute unknowns for better SpMV or

- Stability of Gauss elimination,
- Fill reduction in Gaussian elimination,

- Improved performance of preconditioners...

31

Reminder: Sparsity and partitioning

Want to partition sparse graphs so that

- Subgraphs are same size (load balance)
- Cut size is minimal (minimize communication)

Matrices that are “almost” diagonal are good?

32

Reordering for bandedness

0 10 2 % 4 = @ W w0 90 1o 0 10 20 30 4 W@ m 8 % 10
- d60 e 460

Reverse Cuthill-McKee

- Select “peripheral” vertex v
- Order according to breadth first search from v

- Reverse ordering

138

From iterative to direct

- RCM ordering is great for SpMV

- Butisn’t narrow banding good for solvers, too?
- LU takes O(nb?) where b is bandwidth.
- Great if there’s an ordering where b is small!

34

Skylines and profiles

- Profile solvers generalize band solvers

- Skyline storage for lower triangle: for each row ¢,
- Start and end of storage for nonzeros in row.
- Contiguous nonzero list up to main diagonal.

- In each column, first nonzero defines a profile.
- All fill-in confined to profile.
- RCM is again a good ordering.

35

Beyond bandedness

- Minimum bandwidth for 2D model problem? 3D?

- Skyline only gets us so much farther

36

Beyond bandedness

But more general solvers have similar structure

- Ordering (minimize fill)

- Symbolic factorization (where will fill be?)
- Numerical factorization (pivoting?)

- ... and triangular solves

37

Troublesome Trees

|_NONONONG) ®OO0OO0O0
o e @000
O O 00000
O) 00000
O [J O0O0O0Oe

@

One step of Gaussian elimination completely fills this matrix!

38

Full Gaussian elimination generates no fill in this matrix!

39

How many fill elements are there for elimination on

z x 0 0 = 0 0 «x

z x x 0 0 0 0 O
O z 2z 0 0 O O
0O 0z z 0 0 O

r 0 0 z =z =z 0 O

00 0 0 2 « x O

00 000 z = «x

z 0 0 0 0 0 =z «x

A=

40

Graphic Elimination

Consider first steps of GE

A(2:end,1)
A(2:end,2:end)

A(2:end,1)/A(1,1);
A(2:end,2:end)-...
A(2:end,1)*A(1,2:end);

Nonzero in the outer product at (2, 5) if A(is1) and A(j;1) both nonzero —
that is, if 2 and j are both connected to 1.

General: Eliminate variable, connect remaining neighbors.

41

Terrific Trees Redux

Order leaves to root =
on eliminating ¢, parent of ¢ is only remaining neighbor.

42

Nested Dissection

o N

- Idea: Think of block tree structures.
- Eliminate block trees from bottom up.
- Can recursively partition at leaves.

43

Nested Dissection

o

- Rough cost estimate: how much just to factor dense Schur
complements associated with separators?
- Notice graph partitioning appears again!
- And again we want small separators!

44

Nested Dissection

Model problem: Laplacian with 5 point stencil (for 2D)

- ND gives optimal complexity in exact arithmetic
(George 73, Hoffman/Martin/Rose)

- 20: O(N log N') memory, O(N3/?) flops

- 3D: O(N*/3) memory, O(N?) flops

45

- Locally greedy strategy
- Want to minimize upper bound on fill-in
- Fill < (degree in remaining graph)?

- At each step
- Eliminate vertex with smallest degree
- Update degrees of neighbors

- Problem: Expensive to implement!
- But better varients via quotient graphs
- Variants often used in practice

46

Elimination Tree

- Variables (columns) are nodes in trees
- 7 a descendant of k if eliminating j updates k
- Can eliminate disjoint subtrees in parallel!

47

Cache locality

Basic idea: exploit “supernodal” (dense) structures in factor

- e.g. arising from elimination of separator Schur complements in ND
- Other alternatives exist (multifrontal solvers)

48

Pivoting is painful, particularly in distributed memory!

- Cholesky — no need to pivot!
- Threshold pivoting — pivot when things look dangerous
- Static pivoting — try to decide up front

What if things go wrong with threshold/static pivoting?
Common theme: Clean up sloppy solves with good residuals

49

Direct to iterative

Can improve solution by iterative refinement:
PAQ ~ LU
Ty R QU 'L~'Pb
x, ~ x5+ QU L1 Pr,
Looks like approximate Newton on F'(z) = Az — b = 0.

This is just a stationary iterative method!
Nonstationary methods work, too.

50

Variations on a theme

If we're willing to sacrifice some on factorization,

- Single precision factor + double precision refinement?

- Sloppy factorizations (marginal stability) + refinement?

- Modify m small pivots as they're encountered (low rank updates), fix
with m steps of a Krylov solver?

51

Parting advice

- Sparse direct for 2D problems
- Gets more expensive for 3D problems
- Approximate direct solves make good preconditioners

52

