CS 5220

Sparse linear algebra

David Bindel
2024-10-31

World of Linear Algebra

- Dense methods (last week)
- Sparse direct methods (Thurs)
- Iterative methods (today and Thurs)

Dense Methods

% Dense (LAPACK)
[L,u] = lu(A);
x = U\(L\b);

- Direct representation of matrices with simple data structures (no
need for indexing data structure)

- Mostly O(n?) factorizations (on O(n?) data)

- Good for locality, get to high fraction of peak

Software Strategies: Dense Case

Assuming you want to use (vs develop) dense LA code:

- Learn enough to identify right algorithm
(e.g. is it symmetric? definite? banded? etc)

- Learn high-level organizational ideas

- Make sure you have a good BLAS

- Call LAPACK/ScalLAPACK!

- For n large: wait a while

Sparse Solves?

Questions for you:

- What is a sparse matrix?
- If we only get 3% peak (vs 75%) why consider sparsity?
- What features of sparse matrices might matter for HPC?

Sparse Solves?

Consider Az = b where A sparse.

- Few nonzeros per row
- Use a sparse format (e.g. compressed sparse row)
- Mostly - may have dense rows/columns
- 10% sparse is maybe best treated as dense!
- Dense submatrix structure helps performance!

- Representation may also be implicit (just matvec)
- Includes data sparse matrices

Sparse Solves?

One size does not fit alll What if A is

- From a low-order PDE solver?

- From a high-order PDE solver?
- Spectral methods?
- Spectral elements?

- From a social network?

- From a Gaussian process?
- Spatio-temporal stats or ML?

Sparse Direct Methods

% Sparse direct (UMFPACK + COLAMD)
[L,U,P,Q] = lu(A);
x = Q*(U\(L\(P*b)));

- Direct representation, keep only the nonzeros

- Factorization costs depend on problem structure (1D cheap; 2D
reasonable; 3D gets expensive; not easy to give a general rule, and
NP hard to order for optimal sparsity)

- Robust, but hard to scale to large 3D problems

Sparse Direct Strategies

Assuming you want to use (vs develop) sparse LA code

- Identify right algorithm (mainly Cholesky vs LU)
- Get a good solver (often from list)
- You don’t want to roll your own!

- Order your unknowns for sparsity
- Again, good to use someone else’s software!

- For n large, 3D: get lots of memory and wait

Sparse Iterations

% Sparse iterative (PCG + incomplete Cholesky)
tol = le-6;

maxit = 500;

R = cholinc(A,'0');

x = pcg(A,b,tol,maxit,R"',R);

- Only need y = Ax (maybe y = AT)

- Produce successively better (?) approximations

- Good convergence depends on preconditioning

- Best preconditioners are often hard to parallelize

LA Software: the Wider World

- Dense: LAPACK, ScaLAPACK, PLAPACK, PLASMA, MAGMA
- Sparse direct: UMFPACK, TAUCS, SuperlLU, MUMPS, Pardiso, SPOOLES,

- Sparse iterative: too many!
- PETSc (Argonne, object-oriented C)
- Trilinos (Sandia, C++)

"

https://portal.nersc.gov/project/sparse/superlu/SparseDirectSurvey.pdf
https://www.mcs.anl.gov/petsc/
https://trilinos.github.io/

Sparse Iterative Software

Assuming you want to use (vs develop) sparse LA software...

- Identify a good algorithm (GMRES? CG?)

- Pick a good preconditioner
- Often helps to know the application
- ... and to know how the solvers work!

- Play with parameters, preconditioner variants, etc...
- Swear until you get acceptable convergence?
- Repeat for the next variation on the problem

Stacking Solvers

(Typical) example from a bone modeling package:

- Outer load stepping loop

- Newton method corrector for each load step

- Preconditioned CG for linear system

- Multigrid preconditioner

- Sparse direct solver for coarse-grid solve (UMFPACK)
- LAPACK/BLAS under that

- Up next: Stationary iterations
- Thurs: Krylov and sparse direct

Reading: Templates book

14

https://www.netlib.org/templates/templates.pdf

Page Rank:
akth) = (1 — o) Pr®) + a1

where

© T represents probability of being at node j
- Py = 1/dj if there is an edge j to 4 (0 ow.)
- «vis a damping factor (often around 015)

Max difference from limit 7* decreases by 1 — « per step.

- How would you represent P?

- How might you tune serial Page Rank?

- How might you parallelize Page Rank?

- What barriers would you anticipate for high performance?

Fixed Point Iteration

Iterative Idea

- fisacontraction if | f(z) — f(y)| < |z —y|, = # .
- f has a unique fixed point z, = f(x,).

s Forxp,, = f(xg) xp — 2,
| f(z) — f)|l < afxz —y|, a < 1, forall z, y, then

|z — 2. < o*llz — 2,

- Looks good if v not too near 1...

Correction Form

Contraction mapping f(z) = x 4+ g(x) where

- g(x,) =0
Ng(z) —z.| < afz —z,|

Approximate (e.g. with lowered precision):

lg(z) — g(2)| < Bl — =.].

- Convergence still guaranteed if a + 3 < 1!
- Can also analyze absolute errors, etc (another class)

19

Stationary lterations

Write Ax = bas A = M — K get fixed point of

or
Ty = MKz, +b) = (M K)zy, + M.

- Convergence if p(M 1K) < 1
- Best case for convergence: M = A
- Cheapestcase: M =1

20

Stationary lterations

Write Az = bas A = M — K; get fixed point of
Mz, =Kz, +b

or
Tpr1 = Ty + M1 (b — Azy).

- Correction form is good for mixed precision!
- Also useful for building to Krylov methods

21

Performance Model

Exercise: Model time to completion as a function of

- Setup cost 7T,

setup

* Residual cost T} g
+ Cost to solve with M, T},
- Cost to apply update 7T}, gate
- Initial error norm ||e||

- Contraction rate «

- Desired tolerance 7

22

Stationary lterations

- Starting point: choose something between

Jacobi M = diag(A)
Gauss-Seidel M = tril(A)

23

Reminder: Discretized 2D Poisson

o j+1
-1k 4 »—-1

h '_1

-1]
i—-1 i i+ 1

24

Jacobi on 2D Poisson

Assuming homogeneous Dirichlet boundary conditions

for step = 1:nsteps

for i = 2:n-1
for j = 2:n-1
u_next(i,j) = ...
(u(i,j+1) + u(i,j-1) +
u(i-1,3) + u(i+1,3j) /4 - ...
h*2xf(1,3)/4;
end
end

u = u_next;

end
25

Parallel (5 point stencil)

OO0
CO000e
oY X X | BEEEE
C000® -
B D

Boundary values: white
Data on PO: green
Ghost cell data: blue

26

Parallel (9 point stencil)

QOO0
CO000e
oY X X | BEEEE
C000® -
it I

Boundary values: white
Data on PO: green
Ghost cell data: blue

27

Parallel (5 point stencil)

Communicate ghost cells before each step.

28

=
‘S
c
(O]
+—
(%]
+—
c
o
o
O\
~
Y
©
—
©
o

Communicate in two phases (EW, NS) to get corners.

29

=
‘S
c
(O]
+—
(%]
+—
c
o
O\
~
Y
©
—
©
o

Communicate in two phases (EW, NS) to get corners.

30

Gauss-Seidel on 2D Poisson

for step = 1:nsteps

for i = 2:n-1
for j = 2:n-1
u(i,jd = ...
(u(i,j+1) + u(i,j-1) + ...
u(i-1,3) + u(i+1,3))/4 - ...
h*2xf(1,3)/4;
end
end

end

Bottom values depend on top; how to parallelize?

31

Red-Black Gauss-Seidel

Red depends only on black, and vice-versa.
Generalization: multi-color orderings

32

Red-Black Gauss-Seidel Step

for i = 2:n-1
for j = 2:n-1
if mod(i+j,2) == 0
u(i,j) = ...
end
end
end

for i = 2:n-1
for j = 2:n-1
if mod(i+j,2) == 1
u(i,j) = ...
end
end

end 33

Parallel Red-Black Gauss-Seidel

At each step

- Send black ghost cells

- Update red cells

- Send red ghost cells

- Update black ghost cells

34

More Sophistication

- Successive over-relaxation (SOR): extrapolate G-S

- Block Jacobi: M a block diagonal matrix from A
- Other block variants similar

- Generalize to overlapping (Schwarz) methods

- Alternating Direction Implicit (ADI): alternately solve on vertical lines
and horizontal lines

- Multigrid

Mostly the opening act for Krylov methods.

35

