CS 5220

Sparse linear algebra

David Bindel

2024-10-31

- Dense methods (last week)
- Sparse direct methods (Thurs)
- Iterative methods (today and Thurs)

```
% Dense (LAPACK)
[L,U] = lu(A);
x = U\(L\b);
```

- Direct representation of matrices with simple data structures (no need for indexing data structure)
- \cdot Mostly $O(n^3)$ factorizations (on $O(n^2)$ data)
- Good for locality, get to high fraction of peak

Assuming you want to use (vs develop) dense LA code:

- Learn enough to identify right algorithm (e.g. is it symmetric? definite? banded? etc)
- Learn high-level organizational ideas
- Make sure you have a good BLAS
- Call LAPACK/ScaLAPACK!
- \cdot For n large: wait a while

Questions for you:

- What is a sparse matrix?
- If we only get 3% peak (vs 75%) why consider sparsity?
- What features of sparse matrices might matter for HPC?

Consider Ax = b where A sparse.

- Few nonzeros per row
 - Use a sparse format (e.g. compressed sparse row)
 - Mostly may have dense rows/columns
 - 10% sparse is maybe best treated as dense!
 - Dense submatrix structure helps performance!
- Representation may also be implicit (just matvec)
 - Includes data sparse matrices

One size does not fit all! What if A is

- From a low-order PDE solver?
- From a high-order PDE solver?
 - Spectral methods?
 - Spectral elements?
- From a social network?
- From a Gaussian process?
 - Spatio-temporal stats or ML?

```
% Sparse direct (UMFPACK + COLAMD)
[L,U,P,Q] = lu(A);
x = Q*(U\(L\(P*b)));
```

- Direct representation, keep only the nonzeros
- Factorization costs depend on problem structure (1D cheap; 2D reasonable; 3D gets expensive; not easy to give a general rule, and NP hard to order for optimal sparsity)
- Robust, but hard to scale to large 3D problems

Assuming you want to use (vs develop) sparse LA code

- Identify right algorithm (mainly Cholesky vs LU)
- Get a good solver (often from list)
 - You *don't* want to roll your own!
- Order your unknowns for sparsity
 - Again, good to use someone else's software!
- + For n large, 3D: get lots of memory and wait

```
% Sparse iterative (PCG + incomplete Cholesky)
tol = 1e-6;
maxit = 500;
R = cholinc(A,'0');
```

- x = pcg(A,b,tol,maxit,R',R);
 - · Only need y = Ax (maybe $y = A^T x$)
 - Produce successively better (?) approximations
 - · Good convergence depends on preconditioning
 - Best preconditioners are often hard to parallelize

- Dense: LAPACK, ScaLAPACK, PLAPACK, PLASMA, MAGMA
- Sparse direct: UMFPACK, TAUCS, SuperLU, MUMPS, Pardiso, SPOOLES,
- Sparse iterative: too many!
 - PETSc (Argonne, object-oriented C)
 - Trilinos (Sandia, C++)

Assuming you want to use (vs develop) sparse LA software...

- Identify a good algorithm (GMRES? CG?)
- Pick a good preconditioner
 - Often helps to know the application
 - ... and to know how the solvers work!
- Play with parameters, preconditioner variants, etc...
- Swear until you get acceptable convergence?
- Repeat for the next variation on the problem

(Typical) example from a bone modeling package:

- Outer load stepping loop
- Newton method corrector for each load step
- Preconditioned CG for linear system
- Multigrid preconditioner
- Sparse direct solver for coarse-grid solve (UMFPACK)
- LAPACK/BLAS under that

- Up next: Stationary iterations
- Thurs: Krylov and sparse direct

Reading: Templates book

Page Rank:

$$\pi^{(k+1)} = (1-\alpha) P \pi^{(k)} + \alpha \mathbf{1}$$

where

- $\cdot \ \pi_{j}$ represents probability of being at node j
- $\cdot \ P_{ij} = 1/d_j$ if there is an edge j to i (0 o.w.)
- $\cdot \, \alpha$ is a damping factor (often around 0.15)

Max difference from limit π^* decreases by $1-\alpha$ per step.

- \cdot How would you represent P?
- How might you tune serial Page Rank?
- How might you *parallelize* Page Rank?
- What barriers would you anticipate for high performance?

Fixed Point Iteration

 $x_{k+1}=f(x_k)\to x_*=f(x_*)$

- $\cdot \ f \text{ is a contraction if } \|f(x)-f(y)\| < \|x-y\|, x \neq y.$
- + f has a unique fixed point $x_{\ast}=f(x_{\ast}).$

$$\cdot \ \, \text{For} \ \, x_{k+1} = f(x_k) \text{,} \ \, x_k \to x_*.$$

 $\cdot \ \, \mbox{If } \|f(x)-f(y)\|<\alpha\|x-y\|, \alpha<1, \mbox{ for all } x,y, \mbox{ then }$

$$\|x_k-x_*\|<\alpha^k\|x-x_*\|$$

- Looks good if α not too near 1...

Contraction mapping $f(\boldsymbol{x}) = \boldsymbol{x} + g(\boldsymbol{x})$ where

$$\cdot \ g(x_*) = 0$$

$$\cdot \ \|g(x)-x_*\| \leq \alpha \|x-x_*\|$$

Approximate (e.g. with lowered precision):

$$\|\widehat{g}(x)-g(x)\|\leq\beta\|x-x_*\|.$$

- Convergence still guaranteed if $\alpha + \beta < 1!$
- Can also analyze absolute errors, etc (another class)

Write Ax = b as A = M - K; get fixed point of

$$Mx_{k+1} = Kx_k + b$$

or

$$x_{k+1} = M^{-1}(Kx_k + b) = (M^{-1}K)x_k + M^{-1}b.$$

- $\cdot \,$ Convergence if $\rho(M^{-1}K) < 1$
- $\cdot\,$ Best case for convergence: M=A
- \cdot Cheapest case: M=I

Write Ax = b as A = M - K; get fixed point of

$$Mx_{k+1} = Kx_k + b$$

or

$$x_{k+1} = x_k + M^{-1}(b - Ax_k).$$

- Correction form is good for mixed precision!
- Also useful for building to Krylov methods

Exercise: Model time to completion as a function of

- $\cdot \,\, {\rm Setup} \, \cos T_{\rm setup}$
- $\cdot \,$ Residual cost $T_{\rm resid}$
- $\cdot\,$ Cost to solve with M , $T_{\rm pc}$
- $\cdot\,$ Cost to apply update $T_{
 m update}$
- $\cdot \,$ Initial error norm $\|e\|$
- Contraction rate lpha
- $\cdot\,$ Desired tolerance τ

• Starting point: choose something between

Jacobi	$M = \mathrm{diag}(A)$
Gauss-Seidel	$M=\operatorname{tril}(A)$

Reminder: Discretized 2D Poisson

i – 1 i i + 1

$$(Lu)_{i,j} = h^{-2} \left(4u_{i,j} - u_{i-1,j} - u_{i+1,j} - u_{i,j-1} - u_{i,j+1} \right)$$

Assuming homogeneous Dirichlet boundary conditions

```
for step = 1:nsteps
```

```
for i = 2:n-1
for j = 2:n-1
    u_next(i,j) = ...
        ( u(i,j+1) + u(i,j-1) + ...
        u(i-1,j) + u(i+1,j) )/4 - ...
        h^2*f(i,j)/4;
end
end
```

u = u_next;

Parallel (5 point stencil)

Boundary values:	white
Data on P0:	green
Ghost cell data:	blue

Parallel (9 point stencil)

Boundary values:	white
Data on P0:	green
Ghost cell data:	blue

Parallel (5 point stencil)

Communicate ghost cells before each step.

Parallel (9 point stencil)

Communicate in two phases (EW, NS) to get corners.

Parallel (9 point stencil)

Communicate in two phases (EW, NS) to get corners.

```
for step = 1:nsteps
  for i = 2:n-1
    for j = 2:n-1
      u(i,j) = ...
        ( u(i,j+1) + u(i,j-1) + ...
          u(i-1,j) + u(i+1,j) )/4 - ...
        h^2*f(i,j)/4;
    end
  end
```

end

Bottom values depend on top; how to parallelize?

Red depends only on black, and vice-versa.

Generalization: multi-color orderings

```
for i = 2:n-1
  for j = 2:n-1
    if mod(i+j,2) == 0
     u(i,j) = ...
    end
  end
end
for i = 2:n-1
  for j = 2:n-1
    if mod(i+j,2) == 1
     u(i,j) = ...
    end
  end
end
```

At each step

- Send black ghost cells
- Update red cells
- Send red ghost cells
- Update black ghost cells

- Successive over-relaxation (SOR): extrapolate G-S
- $\cdot\,$ Block Jacobi: M a block diagonal matrix from A
 - Other block variants similar
- Generalize to overlapping (Schwarz) methods
- Alternating Direction Implicit (ADI): alternately solve on vertical lines and horizontal lines
- Multigrid

Mostly the opening act for *Krylov methods*.