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World of Linear Algebra

• Dense methods (last week)
• Sparse direct methods (Thurs)
• Iterative methods (today and Thurs)
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Dense Methods

% Dense (LAPACK)
[L,U] = lu(A);
x = U\(L\b);

• Direct representation of matrices with simple data structures (no
need for indexing data structure)

• Mostly 𝑂(𝑛3) factorizations (on 𝑂(𝑛2) data)
• Good for locality, get to high fraction of peak
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Software Strategies: Dense Case

Assuming you want to use (vs develop) dense LA code:

• Learn enough to identify right algorithm
(e.g. is it symmetric? definite? banded? etc)

• Learn high-level organizational ideas
• Make sure you have a good BLAS
• Call LAPACK/ScaLAPACK!
• For 𝑛 large: wait a while

4



Sparse Solves?

Questions for you:

• What is a sparse matrix?
• If we only get 3% peak (vs 75%) why consider sparsity?
• What features of sparse matrices might matter for HPC?
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Sparse Solves?

Consider 𝐴𝑥 = 𝑏 where 𝐴 sparse.

• Few nonzeros per row
• Use a sparse format (e.g. compressed sparse row)
• Mostly – may have dense rows/columns
• 10% sparse is maybe best treated as dense!
• Dense submatrix structure helps performance!

• Representation may also be implicit (just matvec)
• Includes data sparse matrices

6



Sparse Solves?

One size does not fit all! What if 𝐴 is

• From a low-order PDE solver?
• From a high-order PDE solver?

• Spectral methods?
• Spectral elements?

• From a social network?
• From a Gaussian process?

• Spatio-temporal stats or ML?
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Sparse Direct Methods

% Sparse direct (UMFPACK + COLAMD)
[L,U,P,Q] = lu(A);
x = Q*(U\(L\(P*b)));

• Direct representation, keep only the nonzeros
• Factorization costs depend on problem structure (1D cheap; 2D
reasonable; 3D gets expensive; not easy to give a general rule, and
NP hard to order for optimal sparsity)

• Robust, but hard to scale to large 3D problems
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Sparse Direct Strategies

Assuming you want to use (vs develop) sparse LA code

• Identify right algorithm (mainly Cholesky vs LU)
• Get a good solver (often from list)

• You don’t want to roll your own!

• Order your unknowns for sparsity
• Again, good to use someone else’s software!

• For 𝑛 large, 3D: get lots of memory and wait
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Sparse Iterations

% Sparse iterative (PCG + incomplete Cholesky)
tol = 1e-6;
maxit = 500;
R = cholinc(A,'0');
x = pcg(A,b,tol,maxit,R',R);

• Only need 𝑦 = 𝐴𝑥 (maybe 𝑦 = 𝐴𝑇 𝑥)
• Produce successively better (?) approximations
• Good convergence depends on preconditioning
• Best preconditioners are often hard to parallelize
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LA Software: the Wider World

• Dense: LAPACK, ScaLAPACK, PLAPACK, PLASMA, MAGMA
• Sparse direct: UMFPACK, TAUCS, SuperLU, MUMPS, Pardiso, SPOOLES,
...

• Sparse iterative: too many!
• PETSc (Argonne, object-oriented C)
• Trilinos (Sandia, C++)
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https://portal.nersc.gov/project/sparse/superlu/SparseDirectSurvey.pdf
https://www.mcs.anl.gov/petsc/
https://trilinos.github.io/


Sparse Iterative Software

Assuming you want to use (vs develop) sparse LA software...

• Identify a good algorithm (GMRES? CG?)
• Pick a good preconditioner

• Often helps to know the application
• ... and to know how the solvers work!

• Play with parameters, preconditioner variants, etc...
• Swear until you get acceptable convergence?
• Repeat for the next variation on the problem
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Stacking Solvers

(Typical) example from a bone modeling package:

• Outer load stepping loop
• Newton method corrector for each load step
• Preconditioned CG for linear system
• Multigrid preconditioner
• Sparse direct solver for coarse-grid solve (UMFPACK)
• LAPACK/BLAS under that
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Plan

• Up next: Stationary iterations
• Thurs: Krylov and sparse direct

Reading: Templates book
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https://www.netlib.org/templates/templates.pdf


Warm-Up

Page Rank:
𝜋(𝑘+1) = (1 − 𝛼)𝑃𝜋(𝑘) + 𝛼1

where

• 𝜋𝑗 represents probability of being at node 𝑗
• 𝑃𝑖𝑗 = 1/𝑑𝑗 if there is an edge 𝑗 to 𝑖 (0 o.w.)
• 𝛼 is a damping factor (often around 0.15)

Max difference from limit 𝜋∗ decreases by 1 − 𝛼 per step.
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Brain Storm!

• How would you represent 𝑃 ?
• How might you tune serial Page Rank?
• How might you parallelize Page Rank?
• What barriers would you anticipate for high performance?
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Fixed Point Iteration

x0

x∗ x∗ x∗

x1

x2

f f

𝑥𝑘+1 = 𝑓(𝑥𝑘) → 𝑥∗ = 𝑓(𝑥∗)
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Iterative Idea

• 𝑓 is a contraction if ‖𝑓(𝑥) − 𝑓(𝑦)‖ < ‖𝑥 − 𝑦‖, 𝑥 ≠ 𝑦.
• 𝑓 has a unique fixed point 𝑥∗ = 𝑓(𝑥∗).
• For 𝑥𝑘+1 = 𝑓(𝑥𝑘), 𝑥𝑘 → 𝑥∗.
• If ‖𝑓(𝑥) − 𝑓(𝑦)‖ < 𝛼‖𝑥 − 𝑦‖, 𝛼 < 1, for all 𝑥, 𝑦, then

‖𝑥𝑘 − 𝑥∗‖ < 𝛼𝑘‖𝑥 − 𝑥∗‖

• Looks good if 𝛼 not too near 1...
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Correction Form

Contraction mapping 𝑓(𝑥) = 𝑥 + 𝑔(𝑥) where

• 𝑔(𝑥∗) = 0
• ‖𝑔(𝑥) − 𝑥∗‖ ≤ 𝛼‖𝑥 − 𝑥∗‖

Approximate (e.g. with lowered precision):

‖ ̂𝑔(𝑥) − 𝑔(𝑥)‖ ≤ 𝛽‖𝑥 − 𝑥∗‖.

• Convergence still guaranteed if 𝛼 + 𝛽 < 1!
• Can also analyze absolute errors, etc (another class)
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Stationary Iterations

Write 𝐴𝑥 = 𝑏 as 𝐴 = 𝑀 − 𝐾 ; get fixed point of

𝑀𝑥𝑘+1 = 𝐾𝑥𝑘 + 𝑏

or
𝑥𝑘+1 = 𝑀−1(𝐾𝑥𝑘 + 𝑏) = (𝑀−1𝐾)𝑥𝑘 + 𝑀−1𝑏.

• Convergence if 𝜌(𝑀−1𝐾) < 1
• Best case for convergence: 𝑀 = 𝐴
• Cheapest case: 𝑀 = 𝐼
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Stationary Iterations

Write 𝐴𝑥 = 𝑏 as 𝐴 = 𝑀 − 𝐾 ; get fixed point of

𝑀𝑥𝑘+1 = 𝐾𝑥𝑘 + 𝑏

or
𝑥𝑘+1 = 𝑥𝑘 + 𝑀−1(𝑏 − 𝐴𝑥𝑘).

• Correction form is good for mixed precision!
• Also useful for building to Krylov methods
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Performance Model

Exercise: Model time to completion as a function of

• Setup cost 𝑇setup
• Residual cost 𝑇resid
• Cost to solve with 𝑀 , 𝑇pc
• Cost to apply update 𝑇update
• Initial error norm ‖𝑒‖
• Contraction rate 𝛼
• Desired tolerance 𝜏
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Stationary Iterations

• Starting point: choose something between

Jacobi 𝑀 = diag(𝐴)
Gauss-Seidel 𝑀 = tril(𝐴)
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Reminder: Discretized 2D Poisson
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Jacobi on 2D Poisson

Assuming homogeneous Dirichlet boundary conditions

for step = 1:nsteps

for i = 2:n-1
for j = 2:n-1
u_next(i,j) = ...
( u(i,j+1) + u(i,j-1) + ...
u(i-1,j) + u(i+1,j) )/4 - ...

h^2*f(i,j)/4;
end

end
u = u_next;

end

Basically do some averaging at each step.
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Parallel (5 point stencil)

Boundary values: white
Data on P0: green
Ghost cell data: blue
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Parallel (9 point stencil)

Boundary values: white
Data on P0: green
Ghost cell data: blue
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Parallel (5 point stencil)

Communicate ghost cells before each step.
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Parallel (9 point stencil)

Communicate in two phases (EW, NS) to get corners.
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Parallel (9 point stencil)

Communicate in two phases (EW, NS) to get corners.
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Gauss-Seidel on 2D Poisson

for step = 1:nsteps

for i = 2:n-1
for j = 2:n-1
u(i,j) = ...
( u(i,j+1) + u(i,j-1) + ...
u(i-1,j) + u(i+1,j) )/4 - ...

h^2*f(i,j)/4;
end

end

end

Bottom values depend on top; how to parallelize?
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Red-Black Gauss-Seidel

Red depends only on black, and vice-versa.
Generalization: multi-color orderings
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Red-Black Gauss-Seidel Step

for i = 2:n-1
for j = 2:n-1
if mod(i+j,2) == 0
u(i,j) = ...

end
end

end

for i = 2:n-1
for j = 2:n-1
if mod(i+j,2) == 1
u(i,j) = ...

end
end
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Parallel Red-Black Gauss-Seidel

At each step

• Send black ghost cells
• Update red cells
• Send red ghost cells
• Update black ghost cells
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More Sophistication

• Successive over-relaxation (SOR): extrapolate G-S
• Block Jacobi: 𝑀 a block diagonal matrix from 𝐴

• Other block variants similar

• Generalize to overlapping (Schwarz) methods
• Alternating Direction Implicit (ADI): alternately solve on vertical lines
and horizontal lines

• Multigrid

Mostly the opening act for Krylov methods.
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