CS 5220

GEMV, GEMM, and LU

David Bindel 2024-10-24 Matrix multiply

Matrix vector product

Simple y = Ax involves two indices:

$$y_i = \sum_j A_{ij} x_j$$

Sums can go in any order!

Matrix vector product

% Row-oriented

Organize y = Ax around rows or columns:

```
for i = 1:n
  y(i) = A(i,:)*x;
end
% Col-oriented
y = 0;
for j = 1:n
  V = V + A(:,j)*x(j);
end
```

... or deal with index space in other ways!

Parallel matvec: 1D row-blocked

Broadcast x, compute rows independently.

Parallel matvec: 1D row-blocked

Allgather(xlocal, xall)
ylocal = Alocal * xall

Parallel matvec: 1D col-blocked

Compute partial matvecs and reduce.

Parallel matvec: 1D col-blocked


```
z = Alocal * xlocal
for j = 1:p
    Reduce(sum, z[i], ylocal at proc i)
end
```

Parallel matvec: 2D blocked

- · Involves broadcast and reduction
- · ... but with subsets of processors

Parallel matmul

- Basic operation: C = C + AB
- Computation: $2n^3$ flops
- \cdot Goal: $2n^3/p$ flops per processor, minimal communication
- · Two main contenders: SUMMA and Cannon

1D layout

- Block MATLAB notation: A(:,j) means jth block column
- · Processor j owns A(:,j), B(:,j), C(:,j)
- \cdot C(:,j) depends on all of A, but only B(:,j)
- \cdot How do we communicate pieces of A?

1D layout on ring

- \cdot Every process j can send data to j+1 simultaneously
- Pass slices of A around the ring until everyone sees the whole matrix $(p-1 \ {
 m phases}).$

1D layout on ring

1D layout on ring

In a simple $\alpha-\beta$ model, at each processor:

- $\cdot p-1$ message sends (and simultaneous receives)
- \cdot Each message involves n^2/p data
- · Communication cost: $(p-1)\alpha + (1-1/p)n^2\beta$

Outer product algorithm

Recall outer product organization:

```
for k = 0:s-1
   C += A(:,k)*B(k,:);
end
```

Outer product algorithm

Parallel: Assume $p=s^2$ processors, block s imes s matrices. For a 2 imes 2 example:

$$\begin{bmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{bmatrix} = \begin{bmatrix} A_{00}B_{00} & A_{00}B_{01} \\ A_{10}B_{00} & A_{10}B_{01} \end{bmatrix} + \begin{bmatrix} A_{01}B_{10} & A_{01}B_{11} \\ A_{11}B_{10} & A_{11}B_{11} \end{bmatrix}$$

- · Processor for each $(i,j) \implies$ parallel work for each k!
- . Note everyone in row i uses A(i,k) at once, and everyone in row j uses B(k,j) at once.

Parallel outer product (SUMMA)

```
for k = 0:s-1
  for each i in parallel
    broadcast A(i,k) to row
  for each j in parallel
    broadcast A(k,j) to col
  On processor (i,j), C(i,j) += A(i,k)*B(k,j);
end
```

Parallel outer product (SUMMA)

If we have tree along each row/column, then

- $\cdot \log(s)$ messages per broadcast
- $\cdot \ \alpha + \beta n^2/s^2$ per message
- $\cdot \ 2\log(s)(\alpha s + \beta n^2/s)$ total communication
- Compare to 1D ring: $(p-1)\alpha + (1-1/p)n^2\beta$

Note: Same ideas work with block size b < n/s

SUMMA + "pass it around?"

Idea: Reindex products in block matrix multiply

$$C(i,j) = \sum_{k=0}^{p-1} A(i,k)B(k,j)$$

$$= \sum_{k=0}^{p-1} A(i, k+i+j \mod p) \ B(k+i+j \mod p, j)$$

For a fixed k, a given block of A (or B) is needed for contribution to exactly one C(i,j).

$$\begin{bmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{bmatrix} = \begin{bmatrix} A_{00}B_{00} & A_{01}B_{11} \\ A_{11}B_{10} & A_{10}B_{01} \end{bmatrix} + \begin{bmatrix} A_{01}B_{10} & A_{00}B_{01} \\ A_{10}B_{00} & A_{11}B_{11} \end{bmatrix}$$

```
% Move A(i,j) to A(i,i+j)
for i = 0 to s-1
  cvcle A(i,:) left by i
% Move B(i,j) to B(i+j,j)
for j = 0 to s-1
  cycle B(:,j) up by j
for k = 0 to s-1
  in parallel;
    C(i,j) = C(i,j) + A(i,j)*B(i,j);
  cycle A(:,i) left by 1
  cycle B(:,j) up by 1
```

Cost of Cannon

- · Assume 2D torus topology
- · Initial cyclic shifts: $\leq s$ messages each ($\leq 2s$ total)
- \cdot For each phase: 2 messages each (2s total)
- \cdot Each message is size n^2/s^2
- · Communication cost: $4s(\alpha + \beta n^2/s^2) = 4(\alpha s + \beta n^2/s)$
- · This communication cost is optimal!
 - ... but SUMMA is simpler, more flexible, almost as good

Speedup and efficiency

Recall

$$\begin{split} \text{Speedup} &:= t_{\text{serial}}/t_{\text{parallel}} \\ &\text{Efficiency} := \text{Speedup}/p \end{split}$$

Speedup and efficiency

$$\begin{array}{ll} \text{1D layout} & \left(1+O\left(\frac{p}{n}\right)\right)^{-1} \\ \text{SUMMA} & \left(1+O\left(\frac{\sqrt{p}\log p}{n}\right)\right)^{-1} \\ \text{Cannon} & \left(1+O\left(\frac{\sqrt{p}}{n}\right)\right)^{-1} \end{array}$$

Assuming no overlap of communication and computation.

LU

Reminder: Evolution of LU

On board... or not.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 13 \\ 22 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -7 & 0 & 1 \end{bmatrix} \left(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 13 \\ 22 \end{bmatrix} \right)$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -11 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ -6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \left(\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -11 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ -6 \end{bmatrix} \right)$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix}$$

Overwrite A with L and U

Simple LU

Overwrite A with L and U

```
for j = 1:n-1

A(j+1:n,j) = A(j+1:n,j)/A(j,j); % Compute multiplier:

A(j+1:n,j+1:n) = A(j+1:n,j) * A(j,j+1:n); % Trailing update

end
```

Pivoting

Stability is a problem! Compute PA = LU

Blocking

Think in a way that uses level 3 BLAS

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix}$$

Blocking

Think in a way that uses level 3 BLAS

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11}U_{11} & L_{11}U_{12} \\ L_{21}U_{11} & L_{21}U_{12} + L_{22}U_{22} \end{bmatrix}$$

Blocking

Think in a way that uses level 3 BLAS

$$\begin{split} L_{11}U_{11} &= A_{11} \\ U_{12} &= L_{11}^{-1}A_{12} \\ L_{21} &= A_{21}U_{11}^{-1} \\ L_{22}U_{22} &= A_{22} - L_{21}U_{12} \end{split}$$

Enter pictures

- · Still haven't showed how to do pivoting!
- · Easier to draw diagrams from here
- · Take 6210 or 4220 if you want more on LU!

Find pivot

Swap pivot row

Update within block column

Delayed update (at end of block)

Big idea

- Delayed update strategy lets us do LU fast
 - Could have also delayed application of pivots
- · Same idea with other one-sided factorizations (QR)
- Decent multi-core speedup with parallel BLAS!
 - \dots assuming n sufficiently large.

Issues left over (block size?)...

Explicit parallelization of GE

What to do:

- · Decompose into work chunks
- · Assign work to threads in a balanced way
- · Orchestrate communication + synchronization
- Map which processors execute which threads

Possible matrix layouts

How should we share the matrix across ranks?

1D col blocked

```
0
0
                                 2
```

1D col cyclic

```
2
0
          0
                 2
                            2
0
          0
                            2
                 2
                            2
0
          0
                            2
          0
                            2
                            2
```

1D col block cyclic

```
0
0
0
0
   0
0
0
0
   0
0
   0
0
   0
0
```

Block skewed

```
0
          0
          0
                             0
                             0
```

2D block cyclic

```
    0
    0
    1
    1
    0
    0
    1
    1

    0
    0
    1
    1
    0
    0
    1
    1

    2
    2
    3
    3
    2
    2
    3
    3

    2
    2
    3
    3
    2
    2
    3
    3

    0
    0
    1
    1
    0
    0
    1
    1

    0
    0
    1
    1
    0
    0
    1
    1

    2
    2
    3
    3
    2
    2
    3
    3

    2
    2
    3
    3
    2
    2
    3
    3
```

Possible matrix layouts

- · 1D col blocked: bad load balance
- 1D col cyclic: hard to use BLAS2/3
- 1D col block cyclic: factoring col a bottleneck
- · Block skewed (a la Cannon): just complicated
- · 2D row/col block: bad load balance
- 2D row/col block cyclic: win!

Find pivot (column broadcast)

Swap pivot row within block column + broadcast pivot

Update within block column

At end of block, broadcast swap info along rows

Apply all row swaps to other columns

Broadcast block L_{II} right

Update remainder of block row

Broadcast rest of block row down

Broadcast rest of block col right

Update of trailing submatrix

Cost of Scalapack GEPP

Communication costs:

- Lower bound: $O(n^2/\sqrt{P})$ words, $O(\sqrt{P})$ messages
- · ScaLAPACK:
 - $\cdot \ O(n^2 \log P/\sqrt{P})$ words sent
 - $\cdot \ O(n \log p)$ messages
 - · Problem: reduction to find pivot in each column
- · Tournaments for stability without partial pivoting

If you don't care about dense LU?

Let's review some ideas in a different setting...

Floyd-Warshall

Goal: All pairs shortest path lengths.

Idea: Dynamic programming! Define

$$d_{ij}^{(k)} = \text{shortest path } i \text{ to } j \text{ with intermediates in } \{1,\dots,k\}.$$

Then

$$d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

and $d_{ij}^{(n)}$ is the desired shortest path length.

The same and different

Floyd's algorithm for all-pairs shortest paths:

```
for k=1:n
  for i = 1:n
    for j = 1:n
      D(i,j) = min(D(i,j), D(i,k)+D(k,j));
Unpivoted Gaussian elimination (overwriting A):
for k=1:n
  for i = k+1:n
    A(i.k) = A(i.k) / A(k.k):
    for j = k+1:n
      A(i,j) = A(i,j)-A(i,k)*A(k,j);
```

The same and different

- \cdot The same: $O(n^3)$ time, $O(n^2)$ space
- The same: can't move k loop (data dependencies)
 - · ... at least, can't without care!
 - Different from matrix multiplication
- . The same: $x_{ij}^{(k)}=f\left(x_{ij}^{(k-1)},g\left(x_{ik}^{(k-1)},x_{kj}^{(k-1)}\right)\right)$
 - · Same basic dependency pattern in updates!
 - Similar algebraic relations satisfied
- · Different: Update to full matrix vs trailing submatrix

How far can we get?

How would we write

- · Cache-efficient (blocked) serial implementation?
- Message-passing parallel implementation?

The full picture could make a fun class project...

Onward!

Next up: Sparse linear algebra and iterative solvers!