CS 5220

GEMV, GEMM, and LU

David Bindel
2024-10-24

Matrix multiply

Matrix vector product

Simple y = Ax involves two indices:
Yi = Z A
J

Sums can go in any order!

Matrix vector product

Organize y = Ax around rows or columns:

% Row-oriented
for i = 1:n

y(i) = A(i,:)*x;
end

% Col-oriented

y = 0;
for j = 1:n

y =y + A(:,3)*x(J);
end

.. or deal with index space in other ways!

Parallel matvec: 1D row-blocked

Broadcast @, compute rows independently.

Parallel matvec: 1D row-blocked

Allgather(xlocal, xall)
ylocal = Alocal * xall

Parallel matvec: 1D col-blocked

Compute partial matvecs and reduce.

Parallel matvec: 1D col-blocked

z = Alocal * xlocal

for j = 1:p
Reduce(sum, z[i], ylocal at proc i)

end

Parallel matvec: 2D blocked

- Involves broadcast and reduction

- ... but with subsets of processors

Parallel matmul

- Basic operation: C' = C + AB

- Computation: 2n3 flops

- Goal: 2n3/p flops per processor, minimal communication
- Two main contenders: SUMMA and Cannon

1D layout

- Block MATLAB notation: A(:, j) means jth block column
- Processor j owns A(:, 7), B(:,), C(:,7)

- C(:,4) depends on all of A, but only B(:,)

- How do we communicate pieces of A?

1D layout on ring

- Every process j can send data to j 4+ 1 simultaneously
- Pass slices of A around the ring until everyone sees the whole
matrix (p — 1 phases).

"

1D layout on ring

tmp = A(:,myproc)
C(myproc) += tmp*B(myproc,myproc)
for j = 1 to p-1
sendrecv tmp to myproc+1 mod p,
from myproc-1 mod p
C(myproc) += tmp*B(myproc-j mod p, myproc)

Performance model?

1D layout on ring

In a simple & — 3 model, at each processor:

- p — 1 message sends (and simultaneous receives)
- Each message involves nz/p data
- Communication cost: (p — 1)a+ (1 —1/p)n?B

Outer product algorithm

Recall outer product organization:

for k = 0:s-1
C += A(C:,k)*B(k,:);
end

14

Outer product algorithm

Parallel: Assume p = 52 processors, block s X s matrices.
Fora 2 X 2 example:

(700 (701
C'10 (711

/4001300 /4001301
/4101300 f4101301

/4011310 /4011311
14111310 /4111311

- Processor for each (4, j) = parallel work for each k!
- Note everyone in row 4 uses A(4, k) at once,
and everyone in row j uses B(k, 7) at once.

Parallel outer product (SUMMA)

for k = 0:s-1
for each i in parallel
broadcast A(i,k) to row
for each j in parallel
broadcast A(k,j) to col
on processor (i,j), C(i,j) += A(i,k)*B(k,j);
end

Parallel outer product (SUMMA)

If we have tree along each row/column, then

- log(s) messages per broadcast

- o+ Bn?/s? per message

- 2log(s)(as + Bn?/s) total communication

- Compare to 1D ring: (p — D)+ (1 — 1/p)n?p3

Note: Same ideas work with block size b < n/s

Cannon'’s algorithm

SUMMA + “pass it around?”

Cannon'’s algorithm

Idea: Reindex products in block matrix multiply

[asry

C(%J) - A(ka)B<kvj)

S

i

S|

A(i, k+i14+j modp) Blk+i+j modp,j)
0

i

For a fixed k, a given block of A (or B) is needed for contribution to
exactly one C'(1, j).

19

Cannon'’s algorithm

COO 001
ClO Cl 1

AOOBOO AOlBll
AllBlo AlOBOl

A01B10 AOOB()l
AlOBOO AllBll

20

Cannon’s algorithm

% Move A(i,j) to A(i,i+j)
for 1 = 0 to s-1
cycle A(i,:) left by i

% Move B(i,j) to B(i+j,j)
for j = 0 to s-1
cycle B(:,j) up by j

for k = 0 to s-1
in parallel;
C(i,j) = C(i,j) + A(i,3)*B(i,3);
cycle A(:,1i) left by 1
cycle B(:,3j) up by 1

21

Cost of Cannon

- Assume 2D torus topology

- Initial cyclic shifts: < s messages each (< 2s total)

- For each phase: 2 messages each (2s total)

- Each message is size n?/s?

- Communication cost: 4s(a + Bn?/s?) = 4(as + Bn?/s)
- This communication cost is optimal!

... but SUMMA is simpler, more flexible, almost as good

22

Speedup and efficiency

Recall
Speedup 8= tserial/tparallel

Efficiency := Speedup/p

23

Speedup and efficiency

1D layout (l—i-O(%))il
summa (140 (¥22R))

n
=il

Cannon (14—0(%))

-1

Assuming no overlap of communication and computation.

24

LU

Reminder: Evolution of LU

On board... or not.

25

9
o
S
S
x
T
>
o
)
|

26

9
o
S
S
x
T
>

o
)
|

27

LU by example

1 2 37[x 4
0 -3 —6||y|l=1|-3
0 —6 —11] |z —6

28

LU by example

29

LU by example

1 2 37 [z 4
0 -3 —6| |y| =|-3
0 0 1]z 0

30

9
o
S
S
x
T
>

o

)

|

—6

31

Simple LU

Overwrite A with L and U

for j = 1:n-1
for i = j+l:n
A(i,3) = A(i,3) /7 A(3,3); % Compute multiplier
for k = j+1:n
A(i,k) -= A(i,j) * A(j,k); % Update row
end
end
end

32

Simple LU

Overwrite A with L and U

for j = 1:n-1
A(j+1:n,3) = A(j+1:n,3)/A(3,3); % Compute multiplier:
A(j+1:n,j+1:n) -= A(Jj+1:n,j) = A(j, j+1:n); % Trailing update
end

138

Stability is a problem! Compute PA = LU

p=1:n;

for j = 1:n-1
[~,jpiv] = max(abs(A(j+1:n,3))); % Find pivot
ACLJ, j+jpiv-11,:) = A([j+jpiv-1, j1); % Swap pivot row
p([j, j+jpiv-11,:) = p([j+jpiv-1, j1); % Save pivot info
A(j+1:n,3) = A(3+1:n,3)/A(3,3); % Compute multiplier
A(j+1:n,j+1:n) -= A(Jj+1:n,j) = A(j, j+1:n); % Trailing update

end

34

Think in a way that uses level 3 BLAS

All A12 _ Lll 0 Ull U12
A21 A22 L21 L22 0 U22

35

Think in a way that uses level 3 BLAS

Ay A _
Ay Agy

LUy L11Uyy
Ly Uiy LoyUpp + LopUp,

36

Think in a way that uses level 3 BLAS

L11U11 = A11
Upp = L1t Ay
Ly = Ay Uit

L22U22 = A22 - L21U12

37

Enter pictures

- Still haven't showed how to do pivoting!
- Easier to draw diagrams from here
- Take 6210 or 4220 if you want more on LU!

38

Blocked GEPP

Find pivot

39

Blocked GEPP

Swap pivot row

40

Blocked GEPP

Update within block column

41

Blocked GEPP

Delayed update (at end of block)

- Delayed update strategy lets us do LU fast
- Could have also delayed application of pivots

- Same idea with other one-sided factorizations (QR)
- Decent multi-core speedup with parallel BLAS!
.. assuming n sufficiently large.

Issues left over (block size?)...

43

Explicit parallelization of GE

What to do:

- Decompose into work chunks

- Assign work to threads in a balanced way

- Orchestrate communication + synchronization
- Map which processors execute which threads

44

Possible matrix layouts

How should we share the matrix across ranks?

45

o

Q
4

o
o
)
°

o
)
-

000111222
000111222
000111222
000111222
000111222
000111222
000111222
00011122 2
0001112 2 2

46

A2
o
>
(&
©°
o
a
-

01201201 2
01201201 2
01201201 2
01201201 2
01201201 2
01201201 2
01201201 2
01201201 2
012012012

47

o=
©
>
O
~
@}
S
o]
°
O
a
-

0011220011
00112200171
0011220011
0011220011
0011220011
0011220011
0011220011
0011220011
0011220011
0011220011

48

©
9]
=
)
k
(%2}
=
O
£
m

000111222
000111222
000111222
222000111
222000111
222000111

1112222000
1112222000
1112222000

49

A2
o
>
O
~
w}
©
o]
a
N

00110011
00110011
22332233
22332233
00110011
00110011
22332233
22332233

50

Possible matrix layouts

- 1D col blocked: bad load balance

- 1D col cyclic: hard to use BLAS2/3

- 1D col block cyclic: factoring col a bottleneck
- Block skewed (a la Cannon): just complicated
- 2D row/col block: bad load balance

- 2D row/col block cyclic: win!

51

Distributed GEPP

Find pivot (column broadcast)

52

Distributed GEPP

Swap pivot row within block column + broadcast pivot

58]

Distributed GEPP

Update within block column

54

Distributed GEPP

N
h 4

IN
h <

IN
h <

At end of block, broadcast swap info along rows

55

Distributed GEPP

Apply all row swaps to other columns

56

Distributed GEPP

h 2

Broadcast block L;; right

57

Distributed GEPP

Update remainder of block row

Distributed GEPP

Broadcast rest of block row down

Distributed GEPP

h 4

h <

Broadcast rest of block col right

60

Distributed GEPP

Update of trailing submatrix

61

Cost of ScaLAPACK GEPP

Communication costs:

- Lower bound: O(n?/+/P) words, O(v/P) messages
- ScalAPACK:

- O(n?log P/v/P) words sent

- O(nlogp) messages

- Problem: reduction to find pivot in each column

- Tournaments for stability without partial pivoting

If you don’t care about dense LU?
Let's review some ideas in a different setting...

62

Floyd-Warshall

Goal: All pairs shortest path lengths.
Idea: Dynamic programming! Define
dg?) = shortest path ¢ to j with intermediates in {1, ..., k}.

Then
dif) = min (a7 +di)

andcé?>isthedeswedshomestpathlength

63

The same and different

Floyd's algorithm for all-pairs shortest paths:

for k=1:n
for i = 1:n
for j = 1:n
D(i,j) = min(D(i,j), D(i,k)+D(k,j));

Unpivoted Gaussian elimination (overwriting A):

for k=1:n
for i = k+1:n
A(i,k) = A(i,k) / A(k,k);
for j = k+1:n
A(L,3) = A(1,])-ACL,k)*ACk,]);

64

The same and different

- The same: O(n?) time, O(n?) space
- The same: can't move k loop (data dependencies)
- ... at least, can't without care!

- Different from matrix multiplication
(k (k—1) (k—1) (k—1)
- The same: xij> = (xij g (xzk ,xgcj))

- Same basic dependency pattern in updates!
- Similar algebraic relations satisfied

- Different: Update to full matrix vs trailing submatrix

65

How far can we get?

How would we write

- Cache-efficient (blocked) serial implementation?
- Message-passing parallel implementation?

The full picture could make a fun class project...

66

Next up: Sparse linear algebra and iterative solvers!

67

	Matrix multiply
	LU

