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Matrix multiply



Matrix vector product

Simple y = Ax involves two indices:
Yi = Z A
J

Sums can go in any order!



Matrix vector product

Organize y = Ax around rows or columns:

% Row-oriented
for i = 1:n

y(i) = A(i,:)*x;
end

% Col-oriented

y = 0;
for j = 1:n

y =y + A(:,3)*x(J);
end

.. or deal with index space in other ways!



Parallel matvec: 1D row-blocked

Broadcast @, compute rows independently.




Parallel matvec: 1D row-blocked

Allgather(xlocal, xall)
ylocal = Alocal * xall




Parallel matvec: 1D col-blocked

Compute partial matvecs and reduce.




Parallel matvec: 1D col-blocked

z = Alocal * xlocal

for j = 1:p
Reduce(sum, z[i], ylocal at proc i)

end



Parallel matvec: 2D blocked

- Involves broadcast and reduction

- ... but with subsets of processors



Parallel matmul

- Basic operation: C' = C + AB

- Computation: 2n3 flops

- Goal: 2n3/p flops per processor, minimal communication
- Two main contenders: SUMMA and Cannon



1D layout

- Block MATLAB notation: A(:, j) means jth block column
- Processor j owns A(:, 7), B(:, ), C(:,7)

- C(:,4) depends on all of A, but only B(:, )

- How do we communicate pieces of A?



1D layout on ring

- Every process j can send data to j 4+ 1 simultaneously
- Pass slices of A around the ring until everyone sees the whole
matrix (p — 1 phases).
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1D layout on ring

tmp = A(:,myproc)
C(myproc) += tmp*B(myproc,myproc)
for j = 1 to p-1
sendrecv tmp to myproc+1 mod p,
from myproc-1 mod p
C(myproc) += tmp*B(myproc-j mod p, myproc)

Performance model?



1D layout on ring

In a simple & — 3 model, at each processor:

- p — 1 message sends (and simultaneous receives)
- Each message involves nz/p data
- Communication cost: (p — 1)a+ (1 —1/p)n?B



Outer product algorithm

Recall outer product organization:

for k = 0:s-1
C += A(C:,k)*B(k,:);
end
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Outer product algorithm

Parallel: Assume p = 52 processors, block s X s matrices.
Fora 2 X 2 example:

(700 (701
C'10 (711

/4001300 /4001301
/4101300 f4101301

/4011310 /4011311
14111310 /4111311

- Processor for each (4, j) = parallel work for each k!
- Note everyone in row 4 uses A(4, k) at once,
and everyone in row j uses B(k, 7) at once.



Parallel outer product (SUMMA)

for k = 0:s-1
for each i in parallel
broadcast A(i,k) to row
for each j in parallel
broadcast A(k,j) to col
on processor (i,j), C(i,j) += A(i,k)*B(k,j);
end



Parallel outer product (SUMMA)

If we have tree along each row/column, then

- log(s) messages per broadcast

- o+ Bn?/s? per message

- 2log(s)(as + Bn?/s) total communication

- Compare to 1D ring: (p — D)+ (1 — 1/p)n?p3

Note: Same ideas work with block size b < n/s



Cannon'’s algorithm

SUMMA + “pass it around?”



Cannon'’s algorithm

Idea: Reindex products in block matrix multiply

[asry

C(%J) - A(ka)B<kvj)

S

i

S|

A(i, k+i14+j modp) Blk+i+j modp,j)
0

i

For a fixed k, a given block of A (or B) is needed for contribution to
exactly one C'(1, j).
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Cannon'’s algorithm

COO 001
ClO Cl 1

AOOBOO AOlBll
AllBlo AlOBOl

A01B10 AOOB()l
AlOBOO AllBll
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Cannon’s algorithm

% Move A(i,j) to A(i,i+j)
for 1 = 0 to s-1
cycle A(i,:) left by i

% Move B(i,j) to B(i+j,j)
for j = 0 to s-1
cycle B(:,j) up by j

for k = 0 to s-1
in parallel;
C(i,j) = C(i,j) + A(i,3)*B(i,3);
cycle A(:,1i) left by 1
cycle B(:,3j) up by 1
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Cost of Cannon

- Assume 2D torus topology

- Initial cyclic shifts: < s messages each (< 2s total)

- For each phase: 2 messages each (2s total)

- Each message is size n?/s?

- Communication cost: 4s(a + Bn?/s?) = 4(as + Bn?/s)
- This communication cost is optimal!

... but SUMMA is simpler, more flexible, almost as good
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Speedup and efficiency

Recall
Speedup 8= tserial/tparallel

Efficiency := Speedup/p
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Speedup and efficiency

1D layout (l—i-O(%))il
summa (140 (¥22R))

n
=il

Cannon (14—0(%))

-1

Assuming no overlap of communication and computation.
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LU




Reminder: Evolution of LU

On board... or not.
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LU by example

1 2 37[x 4
0 -3 —6||y|l=1|-3
0 —6 —11] |z —6
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LU by example
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LU by example

1 2 37 [z 4
0 -3 —6| |y| =|-3
0 0 1]z 0
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Simple LU

Overwrite A with L and U

for j = 1:n-1
for i = j+l:n
A(i,3) = A(i,3) /7 A(3,3); % Compute multiplier
for k = j+1:n
A(i,k) -= A(i,j) * A(j,k); % Update row
end
end
end
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Simple LU

Overwrite A with L and U

for j = 1:n-1
A(j+1:n,3) = A(j+1:n,3)/A(3,3); % Compute multiplier:
A(j+1:n,j+1:n) -= A(Jj+1:n,j) = A(j, j+1:n); % Trailing update
end

138



Stability is a problem! Compute PA = LU

p=1:n;

for j = 1:n-1
[~,jpiv] = max(abs(A(j+1:n,3))); % Find pivot
ACLJ, j+jpiv-11,:) = A([j+jpiv-1, j1); % Swap pivot row
p([j, j+jpiv-11,:) = p([j+jpiv-1, j1); % Save pivot info
A(j+1:n,3) = A(3+1:n,3)/A(3,3); % Compute multiplier
A(j+1:n,j+1:n) -= A(Jj+1:n,j) = A(j, j+1:n); % Trailing update

end
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Think in a way that uses level 3 BLAS

All A12 _ Lll 0 Ull U12
A21 A22 L21 L22 0 U22
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Think in a way that uses level 3 BLAS

Ay A _
Ay Agy

LUy L11Uyy
Ly Uiy LoyUpp + LopUp,
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Think in a way that uses level 3 BLAS

L11U11 = A11
Upp = L1t Ay
Ly = Ay Uit

L22U22 = A22 - L21U12
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Enter pictures

- Still haven't showed how to do pivoting!
- Easier to draw diagrams from here
- Take 6210 or 4220 if you want more on LU!
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Blocked GEPP

Find pivot
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Blocked GEPP

Swap pivot row
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Blocked GEPP

Update within block column
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Blocked GEPP

Delayed update (at end of block)



- Delayed update strategy lets us do LU fast
- Could have also delayed application of pivots

- Same idea with other one-sided factorizations (QR)
- Decent multi-core speedup with parallel BLAS!
.. assuming n sufficiently large.

Issues left over (block size?)...
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Explicit parallelization of GE

What to do:

- Decompose into work chunks

- Assign work to threads in a balanced way

- Orchestrate communication + synchronization
- Map which processors execute which threads
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Possible matrix layouts

How should we share the matrix across ranks?
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Possible matrix layouts

- 1D col blocked: bad load balance

- 1D col cyclic: hard to use BLAS2/3

- 1D col block cyclic: factoring col a bottleneck
- Block skewed (a la Cannon): just complicated
- 2D row/col block: bad load balance

- 2D row/col block cyclic: win!
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Distributed GEPP

Find pivot (column broadcast)
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Distributed GEPP

Swap pivot row within block column + broadcast pivot
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Distributed GEPP

Update within block column
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Distributed GEPP

N
h 4

IN
h <

IN
h <

At end of block, broadcast swap info along rows
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Distributed GEPP

Apply all row swaps to other columns

56



Distributed GEPP

h 2

Broadcast block L;; right
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Distributed GEPP

Update remainder of block row



Distributed GEPP

Broadcast rest of block row down



Distributed GEPP

h 4

h <

Broadcast rest of block col right

60



Distributed GEPP

Update of trailing submatrix
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Cost of ScaLAPACK GEPP

Communication costs:

- Lower bound: O(n?/+/P) words, O(v/P) messages
- ScalAPACK:

- O(n?log P/v/P) words sent

- O(nlogp) messages

- Problem: reduction to find pivot in each column

- Tournaments for stability without partial pivoting

If you don’t care about dense LU?
Let's review some ideas in a different setting...
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Floyd-Warshall

Goal: All pairs shortest path lengths.
Idea: Dynamic programming! Define
dg?) = shortest path ¢ to j with intermediates in {1, ..., k}.

Then
dif) = min (a7 +di )

andcé?>isthedeswedshomestpathlength
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The same and different

Floyd's algorithm for all-pairs shortest paths:

for k=1:n
for i = 1:n
for j = 1:n
D(i,j) = min(D(i,j), D(i,k)+D(k,j));

Unpivoted Gaussian elimination (overwriting A):

for k=1:n
for i = k+1:n
A(i,k) = A(i,k) / A(k,k);
for j = k+1:n
A(L,3) = A(1,])-ACL,k)*ACk,]);

64



The same and different

- The same: O(n?) time, O(n?) space
- The same: can't move k loop (data dependencies)
- ... at least, can't without care!

- Different from matrix multiplication
(k (k—1) (k—1) (k—1)
- The same: xij> = (xij g (xzk ,xgcj ))

- Same basic dependency pattern in updates!
- Similar algebraic relations satisfied

- Different: Update to full matrix vs trailing submatrix
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How far can we get?

How would we write

- Cache-efficient (blocked) serial implementation?
- Message-passing parallel implementation?

The full picture could make a fun class project...
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Next up: Sparse linear algebra and iterative solvers!
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