
CS 5220

Dense LA

David Bindel

2024-10-22

1

Logistics

Special talk!

CS colloquium / Salton lecture
Thursday, Oct 22, 11:45-12:45
Gates G01

Speaker: Jack Dongarra
Title: An Overview of High Performance Computing and Responsibly
Reckless Algorithms

Please come out!

2

Participation

Trying a few things:

• More small-group discussion
• Poll Everywhere
• CMS quizzes

Open to suggestions! Help me make this time most useful to you.

3

Projects 1 and 2

• Project 1 is graded
• NB re ChatGPT - doesn’t seem to have helped

• Project 2 extended to 10/24
• Wrapping earlier is good!
• Do spend time on the write-up
• P2 peer evals are due 10/25

4

Homework 3

• See hw3 prompt
• Due Oct 29

5

https://github.com/cs5220-f24/hw3

Project 3: Shallow water

• FA2020 version
• Linearized SWE

6

https://www.cs.cornell.edu/courses/cs5220/2020fa/hw/proj2.html
https://github.com/devovevo/P3-linear-swe-solver-handout

Final project

Final project basics

• Scope
• Analogous to other projects
• Groups of 1-5
• Must be related to performance

• Platform
• Does not need to be on Perlmutter
• Or even parallel
• Or even involve new code!

7

Final project ideas

From my own work:

• Parallel optimization (variable evaluation time)
• Smart GPU memory in a GPU-accelerated time stepper
• Blocked relaxation methods for kernel systems
• Bayesian optimization and auto-tuning
• Mixed-precision linear algebra operations

8

Final project ideas

• From this class
• Previous semester projects
• Current projects on other platforms

• PDE solves, dynamic programming (shortest path), etc
• Tree operations
• Things from your research

9

Final project ideas

“But I want to parallelize ML workloads!”

• Knock yourself out
• I’m interested in training constitutive models…

• Be aware of what course compute resources we have
• Compare to a fair baseline

10

Final project timeline

• Proposal due 10/31
• Final outline 11/26 (just before Thanksgiving)
• Project presentations 12/3-4
• Final deliverable due 12/19 at 12 PM

11

Dense LA

Where we are

• This week: dense linear algebra
• Next week: sparse linear algebra

12

Nutshell NLA

• Linear systems: 𝐴𝑥 = 𝑏
• Least squares: minimize ‖𝐴𝑥 − 𝑏‖2

2
• Eigenvalues: 𝐴𝑥 = 𝜆𝑥

13

Nutshell NLA

• Basic paradigm: matrix factorization
• 𝐴 = 𝐿𝑈 , 𝐴 = 𝐿𝐿𝑇

• 𝐴 = 𝑄𝑅
• 𝐴 = 𝑉 Λ𝑉 −1, 𝐴 = 𝑄𝑇 𝑄𝑇

• 𝐴 = 𝑈Σ𝑉 𝑇

• Factorization ≡ switch to basis that makes problem easy

14

Dense and sparse

Two flavors: dense and sparse

15

Dense

Common structures, no complicated indexing

• General dense (all entries nonzero)
• Banded (zero below/above some diagonal)
• Symmetric/Hermitian
• Standard, robust algorithms (LAPACK)

16

Sparse

Stuff not stored in dense form!

• Maybe few nonzeros
• e.g. compressed sparse row formats

• May be implicit (e.g. via finite differencing)
• May be “dense”, but with compact repn (e.g. via FFT)
• Mostly iterations; varied and subtle
• Build on dense ideas

17

History: BLAS 1 (1973–1977)

15 ops (mostly) on vectors

• BLAS 1 == 𝑂(𝑛1) ops on 𝑂(𝑛1) data
• Up to four versions of each: S/D/C/Z
• Example: DAXPY

• Double precision (real)
• Computes 𝐴𝑥 + 𝑦

18

BLAS 1 goals

• Raise level of programming abstraction
• Robust implementation (e.g. avoid over/underflow)
• Portable interface, efficient machine-specific implementation
• Used in LINPACK (and EISPACK?)

19

History: BLAS 2 (1984–1986)

25 ops (mostly) on matrix/vector pairs

• BLAS2 == 𝑂(𝑛2) ops on 𝑂(𝑛2) data
• Different data types and matrix types
• Example: DGEMV

• Double precision
• GEneral matrix
• Matrix-Vector product

20

BLAS 2 goals

• BLAS1 insufficient
• BLAS2 for better vectorization (when vector machines roamed)

21

History: BLAS 3 (1987–1988)

9 ops (mostly) on matrix/matrix

• BLAS3 == 𝑂(𝑛3) ops on 𝑂(𝑛2) data
• Different data types and matrix types
• Example: DGEMM

• Double precision
• GEneral matrix
• Matrix-Matrix product

22

BLAS 3 goals

Efficient cache utilization!

23

Why BLAS?

LU for 2 × 2:

[𝑎 𝑏
𝑐 𝑑] = [1 0

𝑐/𝑎 1] [𝑎 𝑏
0 𝑑 − 𝑏𝑐/𝑎]

24

Why BLAS?

Block elimination

[𝐴 𝐵
𝐶 𝐷] = [𝐼 0

𝐶𝐴−1 𝐼] [𝐴 𝐵
0 𝐷 − 𝐶𝐴−1𝐵]

25

Why BLAS?

Block LU

[𝐴 𝐵
𝐶 𝐷] = [𝐿11 0

𝐿12 𝐿22
] [𝑈11 𝑈12

0 𝑈22
]

= [𝐿11𝑈11 𝐿11𝑈12
𝐿12𝑈11 𝐿21𝑈12 + 𝐿22𝑈22

]

26

Why BLAS?

Think of 𝐴 as 𝑘 × 𝑘, 𝑘 moderate:

[L11,U11] = small_lu(A); % Small block LU
U12 = L11\B; % Triangular solve
L12 = C/U11; % "
S = D-L21*U12; % Rank k update
[L22,U22] = lu(S); % Finish factoring

Three level-3 BLAS calls!

• Two triangular solves
• One rank-𝑘 update

27

LAPACK (1989-present)

• Supercedes earlier LINPACK and EISPACK
• High performance through BLAS

• Parallel to the extent BLAS are parallel (on SMP)
• Linear systems, least squares – near 100% BLAS 3
• Eigenproblems, SVD — only about 50% BLAS 3

• Careful error bounds on everything
• Lots of variants for different structures

28

http://www.netlib.org/lapack

ScaLAPACK (1995-present)

• MPI implementations
• Only a small subset of LAPACK functionality

29

http://www.netlib.org/scalapack

PLASMA (2008-present)

Parallel LA Software for Multicore Architectures

• Target: Shared memory multiprocessors
• Stacks on LAPACK/BLAS interfaces
• Tile algorithms, tile data layout, dynamic scheduling
• Other algorithmic ideas, too (randomization, etc)

30

https://bitbucket.org/icl/plasma/src/main/

MAGMA (2008-present)

Matrix Algebra for GPU and Multicore Architectures

• Target: CUDA, OpenCL, Xeon Phi
• Still stacks (e.g. on CUDA BLAS)
• Again: tile algorithms + data, dynamic scheduling
• Mixed precision algorithms (+ iterative refinement)

31

https://icl.utk.edu/magma/index.html

And beyond!

SLATE???

Much is housed at UTK ICL

32

http://icl.utk.edu/slate/
http://www.icl.utk.edu/research

	Logistics
	Final project
	Dense LA

