
CS 5220

Accelerators

David Bindel

2024-10-08

1



Architecture



Pre-history

• GPU = Graphics Processing Units
• GPGPU = General Purpose GPU programming

• Abuse shaders to do matrix multiply
• Ignore the actual graphics output
• Horrible code, but fast!

• Misc projects to systematize GPGPU (e.g. Brook)
• 2007: NVidia launches CUDA

2



CPU vs GPU

Different fundamental goals

• CPU: Minimize latency
• GPU: Maximize throughput

Graphics (and ML) are high throughput!

3



CPU reminder

Five-stage RISC basically has

• Fetch/decode
• Execute (ALU)
• Execution context (memory, register)

4



CPU reminder

Modern machines have pipeline and

• Out-of-order engine
• Fancy branch prediction
• Memory pre-fetcher
• Large and complex data cache

Mostly to find parallelism and reduce latency.

5



CPU to GPU

Simplify, simplify, simplify!

• Forget about making a single instruction stream run fast.
• Out-of-order, branch prediction, etc take space and energy
• What about more compute resources in simpler cores?
• Focus on data parallel operation for performance

6



CPU to GPU

Simplify: Fetch/decode

• Share one fetch/decode across warp of threads
• SIMT: Single Instruction, Multiple Threads
• Each thread has own ALU and execution context

• plus some shared context

• Result: more ALUs, fewer decoders

7



CPU to GPU

Simplify: Branches

if (x > 0)
do_something();

else
do_something_else();

8



CPU to GPU

Simplify: Branches

T1: do_something(); // Only if x > 0
T2: do_something_else(); // Only if x <= 0

• Process both branches sequentially
• Use masking to turn off thread on wrong branch
• “Control divergence” reduces performance

9



CPU to GPU

Simplify: Latency tolerance

• Particular issue: memory latency (100s-1000s cycles)
• CPU solution: caches, prefetch, out-of-order
• GPU solution: more threads!

• When one warp stalls, run another warp

10



GPU architecture

• Array of streaming multiprocessors (SMs)
• Each SM has several CUDA cores

• Cores share logic and control

• Ex: Ampere A100 GPU
• 108 SMs/GPU
• 64 cores/SM
• 32 threads/warp
• 6912 cores/GPU, 221184-way parallel

11



Thread blocks

• Threads are organized into blocks
• Assign threads to SMs block-by-block

• Can assign more than one block per SM

• Schedule blocks in units of warps
• Assignment to one SM enables

• Barrier synchronization
• Fast shared memory

• CUDA Occupancy Calculator
• Checks if partitioning is HW appropriate

12



Memory

• Global memory and constant memory
• Constant memory only written by host

• Local memory (per thread)
• Actually lives in global memory

• On-chip registers
• Private per thread
• Many registers for cheap context switch

• On-chip shared memory
• Used to communicate in block

13



Memory

No caches, but still:

• Global: large, but slow
• Shared: small, but fast

Therefore:

• Use tiling/blocking (as on CPU)
• Try to have threads access sequential global locations

• HW coalesces such accesses – one DRAM burst
• This is about how DRAM works, not cache lines!

14



Optimizations

(From PMPP book)

• Maximize occupancy (tune use of SM resources)
• Enable coalesced global accesses (analogue of unit stride)
• Minimize control divergence (data/thread layout rearrangement)
• Tiling (as you know!)
• Privatization (work on local copies)
• Thread coarsening (reduce scheduling overhead)

Much is not so dissimilar to multicore CPU!

15



Punchline

CPU
• Faster sequential execution
• More latency-reducing features
• Cache hierarchy
• More architectural complexity
• More energy/flop

GPU
• More parallelism
• More compute HW
• High BW on-chip SRAM + global
DRAM

• Simplified core architecture
• Less energy/flop

16



Punchline

GPUs are great for

• Graphics
• Large matrix computations
• Neural networks (and other ML)

… but you still want a CPU, too!

17



Perlmutter setup



Top level view

GPU nodes have:

• 1 AMD EPYC 7763 (Milan) CPU
• 64 CPU cores
• 256 GB of DDR4 DRAM
• 4 NVidia A100 (Ampere) Tensor Core GPUs per node with NVlink
interconnect

• Still just a PCI bus between CPU and GPU

• 40 GB high-bandwidth memory (HBM)/GPU

18



A100 SM

Each SM has
• 64 FP32 cores
• 32 FP64 cores
• 64 KB registers
• 192 KB L1/shared memory
• Four Tensor Cores

19



Tensor Cores

• Support matrix operations
• Mixed numeric data types

• Ex: TF32 format with 10 bit mantissa (same as FP16)
• Can serve as intermediate (FP32 format in/out)
• Will return to floating point issues later in class

20



Heterogeneous computing



Basic model

CPU code calls GPU kernels

1. First, allocate memory on GPU
2. Copy data to GPU
3. Execute GPU program
4. Wait for completion
5. Copy results back to CPU

21



Programming approaches

• CUDA
• NVidia-only (HIP, etc are not)
• “First mover” advantage
• We will start here

• OpenMP
• Thrust, SYCL, Kokkos
• Halide, Taichi, etc

22



Programming approaches

• CUDA
• OpenMP

• Compiler-directive based
• Largely subsuming OpenACC?
• Plays nice with rest of OpenMP

• Thrust, SYCL, Kokkos
• Halide, Taichi, etc

23



Programming approaches

• CUDA
• OpenMP
• Thrust, SYCL, Kokkos

• Somewhat higher-level C++
• Will not cover, but good for projects!

• Halide, Taichi, etc

24



Programming approaches

• CUDA
• OpenMP
• Thrust, SYCL, Kokkos
• Halide, Taichi, etc

• Specialized domain-specific languages
• Raise the abstraction level
• Also think JAX, etc
• Will not cover, but good for projects!

25



Vector addition

“Hello world”: vector addition in CUDA

#include <iostream>
#include <vector>
#include <cassert>

// Compute y += x
void add(const std::vector<float>& x, std::vector<float>& y);

int main()
{

int N = 1<<20;
std::vector<float> x(N), y(N);
for (auto& xi : x) xi = 1.0f;
for (auto& yi : y) yi = 2.0f;
add(x, y);
return 0;

}

26



Serial version

Serial version of add:

void add(const std::vector<float>& x, std::vector<float>& y)
{

int n = x.size();
for (int i = 0; i < n; ++i)

y[i] += x[i];
}

27



Reminder of basic model

CPU code calls GPU kernels

1. First, allocate memory on GPU
2. Copy data to GPU
3. Execute GPU program
4. Wait for completion
5. Copy results back to CPU

28



CUDA kernel

__global__
void gpu_add(int n, float* x, float* y)
{

for (int i = 0; i < n; ++i)
y[i] += x[i];

}

• Use __global__ for host-callable kernel on GPU
• Can also declare __device__ or __host__
• This version is not parallel

29



Device malloc

First, allocate memory on GPU:

int size = n * sizeof(float);
float *d_x, *d_y;
cudaMalloc((void**)& d_x, size);
cudaMalloc((void**)& d_y, size);

• Signature: cudaMalloc(void** p, size_t size);
• Resulting p refers to a device (global) memory location
• CUDA interface is C style (Thrust has device vector, for ex)
• Matching cudaFree(void* p) to free

30



Device malloc

Should probably be more careful:

cudaError_t err = cudaMalloc((void**)& d_x, size);
if (err != cudaSuccess) {

printf("%s in %s at line %d", cudaGetErrorString(err),
__FILE__, __LINE__);

exit(EXIT_FAILURE);
}

31



Transfer to GPU

// cudaMemcpy(void* dest, void* src, size_t size, int direction);
cudaMemcpy(d_x, x.data(), size, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y.data(), size, cudaMemcpyHostToDevice);

• Use data for C pointer to vector storage
• Need matching copy back of y at end

32



GPU call

gpu_add<<<1,1>(n, d_x, d_y);

• Call the kernel on GPU with 1 block, 1 thread
• Need more for parallelism!
• Will revisit this

33



Transfer to host

cudaMemcpy(y.data(), d_y, size, cudaMemcpyDeviceToHost);

• This time we move data the other way
• No need to copy x back (only y updated)

34



Full code

void add(const std::vector<float>& x, std::vector<float>& y)
{

int n = x.size();

// Allocate GPU buffers and transfer data in
int size = n * sizeof(float);
float *d_x, *d_y;
cudaMalloc((void**)& d_x, size); cudaMalloc((void**)& d_y, size);
cudaMemcpy(d_x, x.data(), size, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y.data(), size, cudaMemcpyHostToDevice);

// Call kernel on the GPU (1 block, 1 thread)
gpu_add<<<1,1>>>(n, d_x, d_y);

// Copy data back and free GPU memory
cudaMemcpy(y.data(), d_y, size, cudaMemcpyDeviceToHost);
cudaFree(d_x); cudaFree(d_y);

}

35



What’s wrong here?

• Realistic: work doesn’t justify memory transfer!
• Also: GPU is getting used as a serial device
• Also: The whole malloc/free/memcpy thing is not very C++!

36



Kernel take 2

__global__
void gpu_add(int n, float* x, float* y)
{

int i = threadIdx.x + blockDim.x * blockIdx.x;
if (i < n)

y[i] += x[i]
}

// Call looks like
gpu_add<<<n_blocks,block_size>>>(n, x, y);

• Each thread handles one entry
• Use a 1D block layout
• Each block has blockDim.x threads
• Need at least n total threads 37



Teaser: Thrust

int add(std::vector<float>& x, std::vector<float>& y)
{

thrust::device_vector<float> x_d {x};
thrust::device_vector<float> y_d {y};
using namespace thrust::placeholders;
thrust::transform(x_d.begin(), x_d.end(),

y_d.begin(), y_d.begin(),
_1 + _2);

thrust::copy(y_d.begin(), y_d.end(), y.begin());
}

38



Teaser: OpenMP

void gpu_add(int n, float* x, float* y)
{

#pragma omp target map(to:x[0:n]) \
map(tofrom:y[0:n])

#pragma omp parallel for simd
for (int i = 0; i < n; ++i)

y[i] += x[i];
}

39



Next time

• A little beyond “hello, world”
• Using the GPU with OpenMP

40


	Architecture
	Perlmutter setup
	Heterogeneous computing

