
CS 5220

Shared memory

David Bindel

2024-10-03

1

OpenMP

OpenMP

• Standard API for multi-threaded code
• Only a spec — multiple implementations
• Lightweight syntax
• C or Fortran (with appropriate compiler support)

• High level:
• Preprocessor/compiler directives (80%)
• Library calls (19%)
• Environment variables (1%)

2

OpenMP

Basic syntax: #omp construct [clause …]

• Usually affects structured block (one way in/out)
• OK to have exit() in such a block

3

Last time

• Creating parallel regions
• Sharing annotations
• Synchronization
• Parallel for

4

Parallel for

void accumulate_a2a(std::vector<double>& f, const std::vector<double>& x)
{

int n = f.size();

#pragma omp parallel for
for (int i = 0; i < n; ++i) {

double fi = 0.0;
double xi = x[i];
for (int j = 0; j < n; ++j) {

double dij = xi-x[j];
if (dij != 0.0)

fi += 1.0/(dij*dij);
}
f[i] = fi;

}
}

Aside: tiling transformation on this code?

5

What about symmetry?

void accumulate_a2a(std::vector<double>& f, const std::vector<double>& x)
{

int n = f.size();

for (int i = 0; i < n; ++i) {
double xi = x[i];
for (int j = i+1; j < n; ++j) {

double dij = xi-x[j];
f[i] += 1.0/(dij*dij);
f[j] += 1.0/(dij*dij);

}
}

}

Why would omp parallel for fail here? 6

Other parallel work divisions

• sections: like cobegin/coend
• single: do only in one thread (e.g. I/O)
• master: do only in master thread; others skip

7

Sections

#pragma omp parallel
{

#pragma omp sections nowait
{

#pragma omp section
do_something();

#pragma omp section
and_something_else();

#pragma omp section
and_this_too();
// No implicit barrier here

}
// Implicit barrier here

}

sections nowait to kill barrier.

8

Task-based parallelism

• Work-sharing so far is rather limited
• Work cannot be produced/consumed dynamically
• Fine for data parallel array processing...
• ... but what about tree walks and such?

• Alternate approach (OpenMP 3.0+): Tasks

9

Tasks

Task involves:

• Task construct: task directive plus structured block
• Task: Task construct + data

Tasks are handled by run time, complete at barriers or taskwait.

10

Example: List traversal

#pragma omp parallel
{

#pragma omp single nowait
{

for (link_t* link = head; link; link = link->next)
#pragma omp task firstprivate(link)
process(link);

}
// Implicit barrier

}

One thread generates tasks, others execute them.

11

Example: Tree traversal

int tree_max(node_t* n)
{

int lmax, rmax;
if (n->is_leaf)

return n->value;

#pragma omp task shared(lmax)
lmax = tree_max(n->l);

#pragma omp task shared(rmax)
rmax = tree_max(n->l);

#pragma omp taskwait

return max(lmax, rmax);
}

The taskwait waits for all child tasks.
12

Example: Quicksort

void omp_qsort(int* a, int lo, int hi)
{

if (lo >= hi) return;
int p = partition(a, lo, hi);
#pragma omp task shared(a)
omp_qsort(a, lo, p);
#pragma omp task shared(a)
omp_qsort(a, p, hi);

}

void call_qsort(int* a, int lo, int hi)
{

#pragma omp parallel
{

#pragma omp single
omp_qsort(a, lo, hi);
#pragma omp taskwait

}
}

13

Task dependencies

What happens if one task produces what another needs?

#pragma omp task depend(out:x)
x = foo();
#pragma omp task depend(in:x)
y = bar(x);

14

Topics not addressed

• Low-level synchronization (locks, flush)
• OpenMP 4.x constructs for accelerator interaction
• A variety of more specialized clauses

See http://www.openmp.org/

15

http://www.openmp.org/

SPH

Your next project!

16

Smoothed Particle Hydrodynamics

• Particle-based method for fluid simulation
• Representative of other particle-based methods
• More visually interesting than MD with Lennard-Jones?

• Particle 𝑖 (a fluid blob) evolves as

𝑚a𝑖 = ∑
|x𝑗−x𝑖|≤ℎ

f𝑖𝑗

where force law satisfies f𝑖𝑗 = −f𝑗𝑖.
• Chief performance challenge: fast force evaluation!

17

Task 1: Binning / spatial hashing

• Partition space into bins of size ≥ ℎ (interaction radius)
• Only check interactions in nearby bins
• Tradeoff between bin size, number of interaction checks

18

Task 1: Binning / spatial hashing

19

Task 1: Binning / spatial hashing

• Keep particles in an array as usual
• Also keep array of head pointers for bins
• Thread linked list structures for bin contents

20

Task 1: Binning / spatial hashing

struct particle_t {
float rho; // Density
float x[3]; // Position
float v[3]; // Velocity (full step)
float vh[3]; // Velocity (half step)
float a[3]; // Accelerations
particle_t* next; // Link for hashing

};

struct sim_state_t {
float mass; // Particle mass
std::vector<particle_t> part; // Particles
std::vector<particle_t*> hash; // Hash table

};
21

Task 1: Binning / spatial hashing

• Typical situation: lots of empty bins
• Empty boxes take space!
• Alternative: spatial hashing

• Map multiple bins to one storage location
• Avoid collisions (several bins map to same place)

• Idea: figure out potential neighbors good for a few steps?

22

Ordering

• Bins naturally identified with two or three indices
• Want to map to a single index

• To serve as a hash key
• For ordering computations

23

Ordering

• Row/column major: mediocre locality
• Better: Z-Morton ordering

• Interleave bits of (𝑥, 𝑦, 𝑧) indices
• Efficient construction a little fidly
• Basic picture is simple!

24

Z Morton ordering

Equivalent to height-balanced quadtree/octtree

25

Task 2: Profiling

Computation involves several different steps:

• Finding nearest neighbors
• Computing local densities
• Computing local pressure / viscous forces
• Time stepping
• I/O

How much does each cost? Scaling?

26

Profiling

• Want to act based on timing data
• Manual instrumentation?
• Profilers?

• Fix what takes most time first
• Consider both algorithm improvements and tuning

27

Task 3: Parallelization

How do we decompose the problem?

• Processors own regions of space?
• Processors own fixed set of particles?
• Processors own sets of force interactions?
• Hybrid recommended!

28

Task 3: Parallelization

How do we synchronize force computation?

• Compute f𝑖𝑗 and f𝑗𝑖 simultaneously in reference code
• Could keep multiple updates per processor and reduce?
• Use multi-color techniques?
• Interacts with problem decomposition!

29

Example: Multi-color ordering

No blue cell neighbors another blue.

30

Things to think about

• How do we make sure we don’t break the code?
• How fast is the parallel code for 𝑝 = 1?
• Are there load balance issues?
• Do we synchronize often?
• Do we get good strong scaling? weak scaling?

31

Task 4: Play

• How fast can we make the serial code?
• How should we improve initialization?
• Could we time step smarter?
• What about surface tension?
• What about better BCs?
• Swishing, pouring, etc?
• Improvements for incompressible flow?

32

	OpenMP
	SPH

