
CS 5220

Distributed memory

David Bindel

2024-09-24

1

Logistics

Matrix multiply

• Deadline extended to Oct 1
• Please use c4-standard-2 instances
• I also recommend the Intel compilers
• MKL gets 80-100 GFlop/s

2

Scoring

• Performance: Linearly interpolate
• 10 GFlop/s = 0 points (baseline)
• 60 GFlop/s = 5 points (max)

• Writeup (5 points)
• Describe strategy
• What you tried
• What worked or didn’t work
• Analysis of improvements
• Performance plots

3

Advice

• Intel compiler vectorization guidelines
• ICX align: __declspec(align(16, 8) static double
Abuf[BUF_SIZE];

• Report with -qopt-report
• OK with -fp-model fast=2
• Recommend -march=emeraldrapids

4

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/vectorization-programming-guidelines.html

More advice

• Start with a small kernel working on aligned memory
• Get advice from the compiler (-qopt-report)
• Build bigger matmul by copying a tile in, doing kernel matmuls, and
accumulating result out

• Build timing harnesses for things
• Use Intel Advisor and any other tools you can find!

5

HW1

• Also due Oct 1
• Main point: get to know Perlmutter!
• Also write just a little MPI (telephone)
• This is an individual assignment

6

Distributed memory

Plan for this week

• This week: distributed memory
• HW issues (topologies, cost models)
• Message-passing concepts and MPI
• Some simple examples

• Next week: shared memory

7

Basic questions

How much does a message cost?

• Latency: time to get between processors
• Bandwidth: data transferred per unit time
• How does contention affect communication?

This is a combined hardware-software question!

We want to understand just enough for reasonable modeling.

8

Thinking about interconnects

Several features characterize an interconnect:

• Topology: who do the wires connect?
• Routing: how do we get from A to B?
• Switching: circuits, store-and-forward?
• Flow control: how do we manage limited resources?

9

Thinking about interconnects

• Links are like streets
• Switches are like intersections
• Hops are like blocks traveled
• Routing algorithm is like a travel plan
• Stop lights are like flow control
• Short packets are like cars, long ones like buses?

At some point the analogy breaks down…

10

Bus topology

Memory

P0

$

P1

$

P2

$

P3

$

• One set of wires (the bus)
• Only one processor allowed at any given time

• Contention for the bus is an issue

• Example: basic Ethernet, some SMPs

11

Crossbar

P3

P2

P1

P0

P0 P1 P2 P3

• Dedicated path from every input to every output
• Takes 𝑂(𝑝2) switches and wires!

• Example: recent AMD/Intel multicore chips
(older: front-side bus)

12

Bus vs. crossbar

• Crossbar: more hardware
• Bus: more contention (less capacity?)
• Generally seek happy medium

• Less contention than bus
• Less hardware than crossbar
• May give up one-hop routing

13

Other topologies

P0 P1 P2 P3 P0 P1

P2P3

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 PA PB

PC PD PE PF

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 PA PB

PC PD PE PF

P0 P1

P2 P3

P4 P5

P6 P7

P8 P9

PA PB

PC PD

PE PF

P0 P1 P2 P3 P4 P5 P6 P7

14

Network properties

Think about latency and bandwidth via two quantities:

• Diameter: max distance between nodes
• Latency depends on distance (weakly?)

• Bisection bandwidth: smallest BW cut to bisect
• Particularly key for all-to-all comm

15

MANY networks

In a typical cluster

• Ethernet, Infiniband, Myrinet
• Buses within boxes?
• Something between cores?

All with different behaviors.

16

Modeling picture

• DO distinguish different networks
• Otherwise, want simple perf models

• Hockney model (𝛼-𝛽)
• LogP and company
• And many others

17

https://doi.org/10.1016/S0167-8191(06)80021-9
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/6262.html
https://dx.doi.org/10.1145/3284358

𝛼-𝛽 model (Hockney 94)

Crudest model: 𝑡comm = 𝛼 + 𝛽𝑀

• Communication time 𝑡comm
• Latency 𝛼
• Inverse bandwidth 𝛽
• Message size 𝑀

Works pretty well for basic guidance!

Typically 𝛼 ≫ 𝛽 ≫ 𝑡flop. More money on network, lower 𝛼.

18

LogP model

Like 𝛼-𝛽, but includes CPU time on send/recv:

• Latency: the usual
• Overhead: CPU time to send/recv
• Gap: min time between send/recv
• P: number of processors

Assumes small messages (gap ∼ 𝛽 for fixed message size).

19

And many others

Recent survey lists 25 models!

• More complexity, more parameters
• Most miss some things (see Box quote)
• Still useful for guidance!
• Needs to go with experiments

20

https://dx.doi.org/10.1145/3284358

Ping-pong

Process 0:

for i = 1:ntrials
send b bytes to 1
recv b bytes from 1

end

Process 1:

for i = 1:ntrials
recv b bytes from 0
send b bytes to 0

end

21

Laptop ping-pong times

𝛼 = 0.240 microseconds; 𝛽 = 0.141 s/GB

22

Perlmutter ping-pong times

𝛼 = 0.365 microseconds; 𝛽 = 0.0189 s/GB

This is on one node.

23

Takeaways

• Prefer larger to smaller messages (amortize latency, overhead)
• More care with slower networks
• Avoid communication when possible

• Great speedup for Monte Carlo and other embarrassingly parallel
codes!

• Overlap communication with computation
• Models tell roughly computation to mask comm
• Really want to measure, though

24

MPI programming

Message passing programming

Basic operations:

• Pairwise messaging: send/receive
• Collective messaging: broadcast, scatter/gather
• Collective computation: parallel prefix (sum, max)
• Barriers (no need for locks!)
• Environmental inquiries (who am I? do I have mail?)

(Much of what follows is adapted from Bill Gropp.)

25

MPI

• Message Passing Interface
• An interface spec — many implementations (OpenMPI, MPICH,
MVAPICH, Intel, …)

• Single Program Multiple Data (SPMD) style
• Bindings to C, C++, Fortran

26

MPI

• Versions
• 1.0 in 1994
• 2.2 in 2009
• 3.0 in 2012
• 4.1 in 2023
• 4.2, 5.0 are pending

• Will mostly stick to MPI-2 today

27

Hello world

#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv) {
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("Hello from %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

28

Building, queueing, running

Several steps to actually run

cc -o foo.x foo.c # Compile the program
sbatch foo.sub # Submit to queue (SLURM)
srun -n 2 ./foo.x # (in foo.sub) Run on 2 procs

29

Sending and receiving

Need to specify:

• What’s the data?
• Different machines use different encodings (e.g. endian-ness)
• ⟹ “bag o’ bytes” model is inadequate

• How do we identify processes?
• How does receiver identify messages?
• What does it mean to “complete” a send/recv?

30

MPI datatypes

Message is (address, count, datatype). Allow:

• Basic types (MPI_INT, MPI_DOUBLE)
• Contiguous arrays
• Strided arrays
• Indexed arrays
• Arbitrary structures

Complex data types may hurt performance?

31

MPI tags

Use an integer tag to label messages

• Help distinguish different message types
• Can screen messages with wrong tag
• MPI_ANY_TAG is a wildcard

32

MPI Send/Recv

Basic blocking point-to-point communication:

int
MPI_Send(void *buf, int count,

MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm);

int
MPI_Recv(void *buf, int count,

MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status *status);

33

MPI send/recv semantics

• Send returns when data gets to system
• … might not yet arrive at destination!

• Recv ignores messages that mismatch source/tag
• MPI_ANY_SOURCE and MPI_ANY_TAG wildcards

• Recv status contains more info (tag, source, size)

34

Ping-pong pseudocode

Process 0:

for i = 1:ntrials
send b bytes to 1
recv b bytes from 1

end

Process 1:

for i = 1:ntrials
recv b bytes from 0
send b bytes to 0

end

35

Ping-pong MPI

void ping(char* buf, int n, int ntrials, int p)
{

for (int i = 0; i < ntrials; ++i) {
MPI_Send(buf, n, MPI_CHAR, p, 0,

MPI_COMM_WORLD);
MPI_Recv(buf, n, MPI_CHAR, p, 0,

MPI_COMM_WORLD, NULL);
}

}

(Pong is similar)

36

Ping-pong MPI

for (int sz = 1; sz <= MAX_SZ; sz += 1000) {
if (rank == 0) {

double t1 = MPI_Wtime();
ping(buf, sz, NTRIALS, 1);
double t2 = MPI_Wtime();
printf("%d %g\n", sz, t2-t1);

} else if (rank == 1) {
pong(buf, sz, NTRIALS, 0);

}
}

37

Blocking and buffering

data

buffer

buffer

data

P0 OS Net OS P1

Block until data “in system” — maybe in a buffer?

38

Blocking and buffering

data

data

P0 OS Net OS P1

Alternative: don’t copy, block until done.

39

Problem 1: Potential deadlock

Send Send

blocked

Both processors wait to send before they receive!
May not happen if lots of buffering on both sides.

40

Solution 1: Alternating order

Send

Recv

Recv

Send

Could alternate who sends and who receives.

41

Solution 2: Combined send/recv

Sendrecv Sendrecv

Common operations deserve explicit support!

42

Combined sendrecv

MPI_Sendrecv(sendbuf, sendcount, sendtype,
dest, sendtag,
recvbuf, recvcount, recvtype,
source, recvtag,
comm, status);

Blocking operation, combines send and recv to avoid deadlock.

43

Problem 2: Communication overhead

Sendrecv Sendrecv

... waiting

Partial solution: nonblocking communication

44

Blocking vs non-blocking

• MPI_Send and MPI_Recv are blocking
• Send does not return until data is in system
• Recv does not return until data is ready
• Cons: possible deadlock, time wasted waiting

• Why blocking?
• Overwrite buffer during send ⟹ evil!
• Read buffer before data ready ⟹ evil!

45

Blocking vs non-blocking

Alternative: nonblocking communication

• Split into distinct initiation/completion phases
• Initiate send/recv and promise not to touch buffer
• Check later for operation completion

46

Overlap communication and computation

Start send Start send

Start recv Start recv

End send End send

End recv End recv

Compute, but don’t touch buffers

47

Nonblocking operations

Initiate message:

MPI_Isend(start, count, datatype, dest
tag, comm, request);

MPI_Irecv(start, count, datatype, dest
tag, comm, request);

Wait for message completion:

MPI_Wait(request, status);

Test for message completion:

MPI_Test(request, status);

48

Multiple outstanding requests

Sometimes useful to have multiple outstanding messages:

MPI_Waitall(count, requests, statuses);
MPI_Waitany(count, requests, index, status);
MPI_Waitsome(count, requests, indices, statuses);

Multiple versions of test as well.

49

Other send/recv variants

Other variants of MPI_Send

• MPI_Ssend (synchronous) – do not complete until receive has
begun

• MPI_Bsend (buffered) – user provides buffer (via
MPI_Buffer_attach)

• MPI_Rsend (ready) – user guarantees receive has already been
posted

• Can combine modes (e.g. MPI_Issend)

MPI_Recv receives anything.

50

Another approach

• Send/recv is one-to-one communication
• An alternative is one-to-many (and vice-versa):

• Broadcast to distribute data from one process
• Reduce to combine data from all processors
• Operations are called by all processes in communicator

51

Broadcast and reduce

MPI_Bcast(buffer, count, datatype,
root, comm);

MPI_Reduce(sendbuf, recvbuf, count, datatype,
op, root, comm);

• buffer is copied from root to others
• recvbuf receives result only at root
• op ∈ { MPI_MAX, MPI_SUM, …}

52

Example: basic Monte Carlo

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
int main(int argc, char** argv) {

int nproc, myid, ntrials = atoi(argv[1]);
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nproc);
MPI_Comm_rank(MPI_COMM_WORLD, &my_id);
MPI_Bcast(&ntrials, 1, MPI_INT,

0, MPI_COMM_WORLD);
run_mc(myid, nproc, ntrials);
MPI_Finalize();
return 0;

}
53

Example: basic Monte Carlo

Let sum[0] = ∑𝑖 𝑋𝑖 and sum[1] = ∑𝑖 𝑋2
𝑖 .

void run_mc(int myid, int nproc, int ntrials) {
double sums[2] = {0,0};
double my_sums[2] = {0,0};
/* ... run ntrials local experiments ... */
MPI_Reduce(my_sums, sums, 2, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD);
if (myid == 0) {

int N = nproc*ntrials;
double EX = sums[0]/N;
double EX2 = sums[1]/N;
printf("Mean: %g; err: %g\n",

EX, sqrt((EX*EX-EX2)/N));
}

}
54

Collective operations

• Involve all processes in communicator
• Basic classes:

• Synchronization (e.g. barrier)
• Data movement (e.g. broadcast)
• Computation (e.g. reduce)

55

Barrier

MPI_Barrier(comm);

Not much more to say. Not needed that often.

56

Broadcast

P0

P1

P2

P3

Bcast

P0

P1

P2

P3

A A

A

A

A

57

Scatter/gather

P0

P1

P2

P3

Scatter

Gather

P0

P1

P2

P3

A B C D A

B

C

D

58

Allgather

P0

P1

P2

P3

P0

P1

P2

P3

A

B

C

D

A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

D

59

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

D0

D1

D2

D3

60

Reduce

P0

P1

P2

P3

Reduce

P0

P1

P2

P3

A

B

C

D

A+B+C+D

61

Scan

P0

P1

P2

P3

Scan

P0

P1

P2

P3

A

B

C

D

A

A+B

A+B+C

A+B+C+D

62

The kitchen sink

• In addition to above, have vector variants (v suffix), more All variants
(Allreduce), Reduce_scatter, …

• MPI3 adds one-sided communication (put/get)
• MPI is not a small library!
• But a small number of calls goes a long way

• Init/Finalize
• Get_comm_rank, Get_comm_size
• Send/Recv variants and Wait
• Allreduce, Allgather, Bcast

63

	Logistics
	Distributed memory
	MPI programming

