
CS 5220

Parallelism and Locality in Simulations

David Bindel

2024-09-17

1



Lumped Parameter Models



Lumped Parameter Simulations

Examples include:

• SPICE-level circuit simulation
• nodal voltages vs. voltage distributions

• Structural simulation
• beam end displacements vs. continuum field

• Chemical concentrations in stirred tank reactor
• concentrations in tank vs. spatially varying concentrations

2



Lumped Parameter Simulations

• Typically ordinary differential equations (ODEs)
• Constraints: differential-algebraic equations (DAEs)

Often (not always) sparse.

3



Sparsity

A = 1 2 3 4 5

Matrix Graph

Consider ODEs ̇𝑥 = 𝑓(𝑥) (special case 𝑓(𝑥) = 𝐴𝑥).

• Dependency graph: edge (𝑖, 𝑗) if 𝑓𝑗 depends on 𝑥𝑖
• Sparsity means each 𝑓𝑗 depends on only a few 𝑥𝑖
• Often arises from physical or logical locality
• Corresponds to 𝐴 being sparse (mostly zeros)

4



Sparsity and Partitioning

A = 1 2 3 4 5

Matrix Graph

Want to partition sparse graphs so that

• Subgraphs are same size (load balance)
• Cut size is minimal (minimize communication)

We’ll talk more about this later.

5



Static Analysis

Consider ODEs ̇𝑥 = 𝑓(𝑥) (special case 𝑓(𝑥) = 𝐴𝑥).

Might want 𝑓(𝑥∗) = 0.

• Boils down to 𝐴𝑥 = 𝑏 (e.g. for Newton-like steps)
• Can solve directly or iteratively
• Sparsity matters a lot!

6



Dynamic Analysis

Consider ODEs ̇𝑥 = 𝑓(𝑥) (special case 𝑓(𝑥) = 𝐴𝑥).

Might want 𝑥(𝑡) for many 𝑡 given 𝑥0

• Involves time-stepping (explicit or implicit)
• Implicit methods involve linear/nonlinear solves
• Need to understand stiffness and stability issues

7



Modal Analysis

Consider ODEs ̇𝑥 = 𝑓(𝑥) (special case 𝑓(𝑥) = 𝐴𝑥).

Might want eigenvalues/vectors of 𝐴 or 𝑓 ′(𝑥∗).

8



Explicit Time Stepping

• Example: forward Euler: 𝑥𝑘+1 = 𝑥𝑘 + (Δ𝑡)𝑓(𝑥𝑘)
• Next step depends only on earlier steps
• Simple algorithms
• May have stability issues with stiff systems

9



Implicit Time Stepping

• Example: backward Euler: 𝑥𝑘+1 = 𝑥𝑘 + (Δ𝑡)𝑓(𝑥𝑘+1)
• Next step depends on itself and on earlier steps
• Algorithms involve solves — complication, communication!
• Larger time steps, each step costs more

10



A Common Kernel

In all cases, lots of time in sparse matvec:

• Iterative linear solvers: repeated sparse matvec
• Iterative eigensolvers: repeated sparse matvec
• Explicit time marching: matvecs at each step
• Implicit time marching: iterative solves (involving matvecs)

We need to figure out how to make matvec fast!

11



Sparse Storage

• Sparse matrix ⟹ mostly zero entries
• Can also have “data sparseness” — representation with less than

𝑂(𝑛2) storage, even if most entries nonzero
• Could be implicit (e.g. directional differencing)
• Sometimes explicit representation is useful
• Easy to get lots of indirect indexing!
• Compressed sparse storage schemes help

12



Example: Compressed Sparse Row

1 4 2 5 3 6 4 5 1 6 *

1 3 5 7 8 9 11

Adata

col

ptr

Figure 1: Illustration of compressed sparse row format

This can be even more compact:

• Could organize by blocks (block CSR)
• Could compress column index data (16-bit vs 64-bit)
• Various other optimizations — see OSKI

13



Summary

• ODE and DAE models widely used in engineering
• Different analyses: static, dynamic, modal
• Sparse linear algebra is often key

14



Distributed Parameter Models



Types of PDEs

Type Example Time? Space dependence?

Elliptic electrostatics steady global
Hyperbolic sound waves yes local
Parabolic diffusion yes global

15



Types of PDEs

Different types involve different communication:

• Global dependence ⟹ lots of communication (or tiny steps)
• Local dependence from finite wave speeds; limits communication

16



Example: 1D Heat Equation

Consider flow (e.g. of heat) in a uniform rod

• Heat (𝑄) ∝ temperature (𝑢)× mass (𝜌)
• Heat flow ∝ temperature gradient (Fourier’s law)

u h

x − h x x + h

17



Example: 1D Heat Equation

Consider flow (e.g. of heat) in a uniform rod

• Heat (𝑄) ∝ temperature (𝑢)× mass (𝜌)
• Heat flow ∝ negative temperature gradient (Fourier’s law)

𝜕𝑄
𝜕𝑡 ∝ ℎ𝜕𝑢

𝜕𝑡
≈ 𝐶 [𝑢(𝑥 − ℎ) − 𝑢(𝑥)

ℎ + 𝑢(𝑥 + ℎ) − 𝑢(𝑥)
ℎ ]

= 𝐶 [𝑢(𝑥 − ℎ) − 2𝑢(𝑥) + 𝑢(𝑥 + ℎ)
ℎ2 ] → 𝐶 𝜕2𝑢

𝜕𝑥2

18



Spatial Discretization

Heat equation with 𝑢(0) = 𝑢(1) = 0.

𝜕𝑢
𝜕𝑡 = 𝐶 𝜕2𝑢

𝜕𝑥2

19



Spatial Discretization

Spatial semi-discretization (second-order finite difference):

𝜕2𝑢
𝜕𝑥2 ≈ 𝑢(𝑥 − ℎ) − 2𝑢(𝑥) + 𝑢(𝑥 + ℎ)

ℎ2

20



Spatial Discretization

Yields system of ODEs (“method of lines”):

𝑑𝑢
𝑑𝑡 = −𝐶ℎ−2𝑇 𝑢

𝑇 =
⎡
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

⋱ ⋱ ⋱
−1 2 −1

−1 2

⎤
⎥
⎥
⎥
⎥
⎦

Now need to time step!

21



Explicit Time Stepping

• Simplest scheme is Euler:

𝑢(𝑡 + Δ𝑡) ≈ 𝑢(𝑡) + 𝑢′(𝑡)Δ𝑡 = (𝐼 − 𝐶ℎ2𝑇 )𝑢(𝑡)

• Time step ≡ sparse matvec with (𝐼 − 𝐶ℎ2𝑇 )
• This may not end well…

22



Explicit Data Dependence

t

x

Nearest neighbor interactions per step ⟹
finite rate of numerical information propagation

23



Explicit Time Stepping in Parallel

0 1 2 3 4 5 4 5 6 7 8 9

for t = 1 to N
communicate boundary data ("ghost cell")
take time steps locally

end

24



Overlapping Communication with Computation

0 1 2 3 4 5 4 5 6 7 8 9

for t = 1 to N
start boundary data sendrecv
compute new interior values
finish sendrecv
compute new boundary values

end

25



Batching Time Steps

0 1 2 3 4 5 2 3 4 5 6 7

for t = 1 to N by B
start boundary data sendrecv (B values)
compute new interior values
finish sendrecv (B values)
compute new boundary values

end

26



Explicit Pain

27



Explicit Pain

• Unstable for Δ𝑡 > 𝑂(ℎ2)
• Generally happens for parabolic (diffusive) equations
• But these ideas are great for hyperbolic equations!

28



Implicit Stepping

• Backward Euler: 𝑢(𝑡 + Δ𝑡) ≈ 𝑢(𝑡) + 𝑢̇(𝑡 + Δ𝑡)
• Discretized time step: 𝑢(𝑡 + Δ𝑇 ) = (𝐼 + 𝐶ℎ2𝑇 )−1𝑢(𝑡)
• No time step restriction for stabliity (good!)
• But each step involves a linear solve (not so good!)

• Good if you like numerical linear algebra?

29



Explicit and Implicit

Explicit:

• Propagates information at finite rate
• Steps look like sparse matvec (in linear case)
• Stable step determined by fastest time scale
• Works fine for hyperbolic PDEs

30



Explicit and Implicit

Implicit:

• No need to resolve fastest time scales
• Steps can be long… but expensive

• Linear/nonlinear solves at each step
• Often these solves involve sparse matvecs

• Critical for parabolic PDEs

31



Poisson Problems

Consider 2D Poisson

−∇2𝑢 = −𝜕2𝑢
𝜕𝑥2 − 𝜕2𝑢

𝜕𝑦2 = 𝑓

• Prototypical elliptic problem (steady state)
• Similar to a backward Euler step on heat equation

32



Second-Order Finite Differences

𝑢𝑖,𝑗 = ℎ−2 (4𝑢𝑖𝑗 − 𝑢𝑖−1,𝑗 − 𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1)

33



Second-Order Finite Differences

𝐿 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

34



Poisson Solvers in 2D/3D

𝑁 = 𝑛𝑑 total unknowns

Ref: Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

35



Poisson Solvers in 2D

Method Time Space

Dense LU 𝑁3 𝑁2

Band LU 𝑁2 𝑁3/2

Jacobi 𝑁2 𝑁
Explicit inv 𝑁2 𝑁2

36



Poisson Solvers in 2D

Method Time Space

CG 𝑁3/2 𝑁
Red-black SOR 𝑁3/2 𝑁
Sparse LU 𝑁3/2 𝑁 log 𝑁
FFT 𝑁 log 𝑁 𝑁
Multigrid 𝑁 𝑁

37



General Implicit Picture

• Implicit solves or steady state ⟹ solving systems
• Nonlinear solvers generally linearize
• Linear solvers can be

• Direct (hard to scale)
• Iterative (often problem-specific)

• Iterative solves boil down to matvec!

38



PDE Solver Summary

Can be implicit or explicit (as with ODEs)

• Explicit (sparse matvec) — fast, but short steps?
• works fine for hyperbolic PDEs

• Implicit (sparse solve)
• Direct solvers are hard!
• Sparse solvers turn into matvec again

39



PDE Solver Summary

Differential operators turn into local mesh stencils

• Matrix connectivity looks like mesh connectivity
• Can partition into subdomains that communicate only through
boundary data

• More on graph partitioning later

40



PDE Solver Summary

Not all nearest neighbor ops are equally efficient!

• Depends on mesh structure
• Also depends on flops/point

41



Onward!

• Next week: Distributed memory with MPI
• HW1 is posted: please run on Perlmutter!

42


	Lumped Parameter Models
	Distributed Parameter Models

