
CS 5220

Parallelism and Locality in Simulations

David Bindel

2024-09-17

1



Lumped Parameter Models



Lumped Parameter Simulations

Examples include:

• SPICE-level circuit simulation
• nodal voltages vs. voltage distributions

• Structural simulation
• beam end displacements vs. continuum field

• Chemical concentrations in stirred tank reactor
• concentrations in tank vs. spatially varying concentrations
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Lumped Parameter Simulations

• Typically ordinary differential equations (ODEs)
• Constraints: differential-algebraic equations (DAEs)

Often (not always) sparse.

3



Sparsity

A = 1 2 3 4 5

Matrix Graph

Consider ODEs ̇𝑥 = 𝑓(𝑥) (special case 𝑓(𝑥) = 𝐴𝑥).

• Dependency graph: edge (𝑖, 𝑗) if 𝑓𝑗 depends on 𝑥𝑖
• Sparsity means each 𝑓𝑗 depends on only a few 𝑥𝑖
• Often arises from physical or logical locality
• Corresponds to 𝐴 being sparse (mostly zeros)
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Sparsity and Partitioning

A = 1 2 3 4 5

Matrix Graph

Want to partition sparse graphs so that

• Subgraphs are same size (load balance)
• Cut size is minimal (minimize communication)

We’ll talk more about this later.
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Static Analysis

Consider ODEs ̇𝑥 = 𝑓(𝑥) (special case 𝑓(𝑥) = 𝐴𝑥).

Might want 𝑓(𝑥∗) = 0.

• Boils down to 𝐴𝑥 = 𝑏 (e.g. for Newton-like steps)
• Can solve directly or iteratively
• Sparsity matters a lot!
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Dynamic Analysis

Consider ODEs ̇𝑥 = 𝑓(𝑥) (special case 𝑓(𝑥) = 𝐴𝑥).

Might want 𝑥(𝑡) for many 𝑡 given 𝑥0

• Involves time-stepping (explicit or implicit)
• Implicit methods involve linear/nonlinear solves
• Need to understand stiffness and stability issues
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Modal Analysis

Consider ODEs ̇𝑥 = 𝑓(𝑥) (special case 𝑓(𝑥) = 𝐴𝑥).

Might want eigenvalues/vectors of 𝐴 or 𝑓 ′(𝑥∗).
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Explicit Time Stepping

• Example: forward Euler: 𝑥𝑘+1 = 𝑥𝑘 + (Δ𝑡)𝑓(𝑥𝑘)
• Next step depends only on earlier steps
• Simple algorithms
• May have stability issues with stiff systems
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Implicit Time Stepping

• Example: backward Euler: 𝑥𝑘+1 = 𝑥𝑘 + (Δ𝑡)𝑓(𝑥𝑘+1)
• Next step depends on itself and on earlier steps
• Algorithms involve solves — complication, communication!
• Larger time steps, each step costs more
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A Common Kernel

In all cases, lots of time in sparse matvec:

• Iterative linear solvers: repeated sparse matvec
• Iterative eigensolvers: repeated sparse matvec
• Explicit time marching: matvecs at each step
• Implicit time marching: iterative solves (involving matvecs)

We need to figure out how to make matvec fast!
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Sparse Storage

• Sparse matrix ⟹ mostly zero entries
• Can also have “data sparseness” — representation with less than

𝑂(𝑛2) storage, even if most entries nonzero
• Could be implicit (e.g. directional differencing)
• Sometimes explicit representation is useful
• Easy to get lots of indirect indexing!
• Compressed sparse storage schemes help
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Example: Compressed Sparse Row

1 4 2 5 3 6 4 5 1 6 *

1 3 5 7 8 9 11

Adata

col

ptr

Figure 1: Illustration of compressed sparse row format

This can be even more compact:

• Could organize by blocks (block CSR)
• Could compress column index data (16-bit vs 64-bit)
• Various other optimizations — see OSKI
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Summary

• ODE and DAE models widely used in engineering
• Different analyses: static, dynamic, modal
• Sparse linear algebra is often key
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Distributed Parameter Models



Types of PDEs

Type Example Time? Space dependence?

Elliptic electrostatics steady global
Hyperbolic sound waves yes local
Parabolic diffusion yes global
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Types of PDEs

Different types involve different communication:

• Global dependence ⟹ lots of communication (or tiny steps)
• Local dependence from finite wave speeds; limits communication

16



Example: 1D Heat Equation

Consider flow (e.g. of heat) in a uniform rod

• Heat (𝑄) ∝ temperature (𝑢)× mass (𝜌)
• Heat flow ∝ temperature gradient (Fourier’s law)

u h

x − h x x + h
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Example: 1D Heat Equation

Consider flow (e.g. of heat) in a uniform rod

• Heat (𝑄) ∝ temperature (𝑢)× mass (𝜌)
• Heat flow ∝ negative temperature gradient (Fourier’s law)

𝜕𝑄
𝜕𝑡 ∝ ℎ𝜕𝑢

𝜕𝑡
≈ 𝐶 [𝑢(𝑥 − ℎ) − 𝑢(𝑥)

ℎ + 𝑢(𝑥 + ℎ) − 𝑢(𝑥)
ℎ ]

= 𝐶 [𝑢(𝑥 − ℎ) − 2𝑢(𝑥) + 𝑢(𝑥 + ℎ)
ℎ2 ] → 𝐶 𝜕2𝑢

𝜕𝑥2
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Spatial Discretization

Heat equation with 𝑢(0) = 𝑢(1) = 0.

𝜕𝑢
𝜕𝑡 = 𝐶 𝜕2𝑢

𝜕𝑥2
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Spatial Discretization

Spatial semi-discretization (second-order finite difference):

𝜕2𝑢
𝜕𝑥2 ≈ 𝑢(𝑥 − ℎ) − 2𝑢(𝑥) + 𝑢(𝑥 + ℎ)

ℎ2
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Spatial Discretization

Yields system of ODEs (“method of lines”):

𝑑𝑢
𝑑𝑡 = −𝐶ℎ−2𝑇 𝑢

𝑇 =
⎡
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

⋱ ⋱ ⋱
−1 2 −1

−1 2

⎤
⎥
⎥
⎥
⎥
⎦

Now need to time step!
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Explicit Time Stepping

• Simplest scheme is Euler:

𝑢(𝑡 + Δ𝑡) ≈ 𝑢(𝑡) + 𝑢′(𝑡)Δ𝑡 = (𝐼 − 𝐶ℎ2𝑇 )𝑢(𝑡)

• Time step ≡ sparse matvec with (𝐼 − 𝐶ℎ2𝑇 )
• This may not end well…
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Explicit Data Dependence

t

x

Nearest neighbor interactions per step ⟹
finite rate of numerical information propagation
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Explicit Time Stepping in Parallel

0 1 2 3 4 5 4 5 6 7 8 9

for t = 1 to N
communicate boundary data ("ghost cell")
take time steps locally

end
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Overlapping Communication with Computation

0 1 2 3 4 5 4 5 6 7 8 9

for t = 1 to N
start boundary data sendrecv
compute new interior values
finish sendrecv
compute new boundary values

end
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Batching Time Steps

0 1 2 3 4 5 2 3 4 5 6 7

for t = 1 to N by B
start boundary data sendrecv (B values)
compute new interior values
finish sendrecv (B values)
compute new boundary values

end

26



Explicit Pain
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Explicit Pain

• Unstable for Δ𝑡 > 𝑂(ℎ2)
• Generally happens for parabolic (diffusive) equations
• But these ideas are great for hyperbolic equations!
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Implicit Stepping

• Backward Euler: 𝑢(𝑡 + Δ𝑡) ≈ 𝑢(𝑡) + 𝑢̇(𝑡 + Δ𝑡)
• Discretized time step: 𝑢(𝑡 + Δ𝑇 ) = (𝐼 + 𝐶ℎ2𝑇 )−1𝑢(𝑡)
• No time step restriction for stabliity (good!)
• But each step involves a linear solve (not so good!)

• Good if you like numerical linear algebra?
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Explicit and Implicit

Explicit:

• Propagates information at finite rate
• Steps look like sparse matvec (in linear case)
• Stable step determined by fastest time scale
• Works fine for hyperbolic PDEs
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Explicit and Implicit

Implicit:

• No need to resolve fastest time scales
• Steps can be long… but expensive

• Linear/nonlinear solves at each step
• Often these solves involve sparse matvecs

• Critical for parabolic PDEs
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Poisson Problems

Consider 2D Poisson

−∇2𝑢 = −𝜕2𝑢
𝜕𝑥2 − 𝜕2𝑢

𝜕𝑦2 = 𝑓

• Prototypical elliptic problem (steady state)
• Similar to a backward Euler step on heat equation
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Second-Order Finite Differences

𝑢𝑖,𝑗 = ℎ−2 (4𝑢𝑖𝑗 − 𝑢𝑖−1,𝑗 − 𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1)
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Second-Order Finite Differences

𝐿 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Poisson Solvers in 2D/3D

𝑁 = 𝑛𝑑 total unknowns

Ref: Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

35



Poisson Solvers in 2D

Method Time Space

Dense LU 𝑁3 𝑁2

Band LU 𝑁2 𝑁3/2

Jacobi 𝑁2 𝑁
Explicit inv 𝑁2 𝑁2
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Poisson Solvers in 2D

Method Time Space

CG 𝑁3/2 𝑁
Red-black SOR 𝑁3/2 𝑁
Sparse LU 𝑁3/2 𝑁 log 𝑁
FFT 𝑁 log 𝑁 𝑁
Multigrid 𝑁 𝑁
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General Implicit Picture

• Implicit solves or steady state ⟹ solving systems
• Nonlinear solvers generally linearize
• Linear solvers can be

• Direct (hard to scale)
• Iterative (often problem-specific)

• Iterative solves boil down to matvec!
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PDE Solver Summary

Can be implicit or explicit (as with ODEs)

• Explicit (sparse matvec) — fast, but short steps?
• works fine for hyperbolic PDEs

• Implicit (sparse solve)
• Direct solvers are hard!
• Sparse solvers turn into matvec again
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PDE Solver Summary

Differential operators turn into local mesh stencils

• Matrix connectivity looks like mesh connectivity
• Can partition into subdomains that communicate only through
boundary data

• More on graph partitioning later
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PDE Solver Summary

Not all nearest neighbor ops are equally efficient!

• Depends on mesh structure
• Also depends on flops/point
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Onward!

• Next week: Distributed memory with MPI
• HW1 is posted: please run on Perlmutter!
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