
CS 5220

Parallelism and Locality in Simulations

David Bindel

2024-09-17

1

Intro

Parallelism and Locality

The world exhibits parallelism and locality

• Particles, people, etc function independently
• Near-field interactions stronger than far-field
• Can often simplify dependence on distant things

2

Parallelism and Locality

Get more parallelism / locality through model

• Limited dependency between adjacent time steps
• Can neglet or approximate far-field effects

3

Parallelism and Locality

Often get parallelism at multiple levels

• Hierarchical circuit simulation
• Interacting models for climate
• Parallelizing individual experiments in MC or optimization

4

Styles of Simulation

• Discrete event systems (continuous or discrete time)
• Particle systems
• Lumped parameter models (ODEs)
• Distributed parameter models (PDEs / IEs)

Often more than one type of simulation is approprate.
(Sometimes more than one at a time!)

5

Discrete Event Systems

Discrete Event Systems

May be discrete or continuous time.

• Game of life
• Logic-level circuit simulation
• Network simulation

6

Discrete Events

• Finite set of variables, transition function updates
• Synchronous case: finite state machine
• Asynchronous case: event-driven simulation
• Synchronous (?) example: Game of Life
• Nice starting point – no discretization concerns!

7

Game of Life

Game of life (John Conway):

Lonely Crowded OK Born

(Dead next step) (Live next step)

8

Game of Life

Game of life (John Conway):

• Live cell dies with < 2 live neighbors
• Live cell dies with > 3 live neighbors
• Live cell lives with 2-3 live neighbors
• Dead cell becomes live with exactly 3 live neighbors

9

Game of Life

What to do if I really cared?

• Tile the problem for memory
• Try for high operational intensity
• Use instruction-level parallelism
• Don’t output board too often!

Before doing anything with OpenMP/MPI!

10

Game of Life

East to parallelize by domain decomposition

P0 P1

P2 P3

• Update work involves volume of subdomains
• Communication per step on surface (cyan)

Also works with tiling.

11

Game of Life

Sketch of a kernel for tiled implementation:

• Bitwise representation of cells (careful with endian-ness)
• A “tile” is a 64-by-64 piece (64 uint64_t)

• Keep two tiles (ref and tmp)
• Think of inner 48-by-48 as “live”
• Buffer of size 8 on all sides
• Compute saturating 3-bit neighbor counters
• Batches of eight steps (four ref to tmp, four back)

12

https://www.cs.uaf.edu/2012/spring/cs641/lecture/02_14_SIMD.html

Game of Life

Some areas are more eventful than others!

13

Game of Life

What if pattern is dilute?

• Few or no live cells at surface at each step
• Think of live cell at a surface as an “event”
• Only communicate events!

• This is asynchronous
• Harder with message passing – when to receive?

14

Asynchronous Life

How do we manage events?

• Speculative – assume no communication across boundary for many
steps, back up if needed

• Conservative – wait when communication possible
• Possible ≠ guaranteed!
• Deadlock: everyone waits for a send
• Can get around this with NULL messages

15

Asynchronous Life

How do we manage load balance?

• No need to simulate quiescent parts of the game!
• Maybe dynamically assign smaller blocks to processors?

16

HashLife

• There are also other algorithms!

17

Beyond Life

• Forest fire model
• ns-3 network simulator
• Digital hardware

18

https://en.wikipedia.org/wiki/Forest-fire_model
https://www.nsnam.org/

Particle Systems

• Billiards, electrons, galaxies, …
• Ants, cars, agents, …?

19

Particle Simulation

Particles move via Newton (𝐹 = 𝑚𝑎) with

• External forces: ambient gravity, currents, etc
• Local forces: collisions, Van der Waals (𝑟−6), etc
• Far-field forces: gravity and electrostatics (𝑟−2), etc

• Simple approximations often apply (Saint-Venant)

20

Forced Example

𝑓𝑖 = ∑
𝑗

𝐺𝑚𝑖𝑚𝑗
(𝑥𝑗 − 𝑥𝑖)

𝑟3
𝑖𝑗

(1 − (𝑎
𝑟𝑖𝑗

)
4
) ,

𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖

• Long-range attractive force (𝑟−2)
• Short-range repulsive force (𝑟−6)
• Go from attraction to repulsion at radius 𝑎

21

Simple Serial Simulation

Using Boost.Numeric.Odeint, we can write

integrate(particle_system, x0, tinit, tfinal, h0,
[](const auto& x, double t) {

std::cout << "t=" << t << ": x=" << x << std::endl;
});

where

• particle_system defines the ODE system
• x0 is the initial condition
• tinit and tfinal are start and end times
• h0 is the initial step size

and the final lambda is an observer function.

22

https://www.boost.org/doc/libs/1_86_0/libs/numeric/odeint/doc/html/index.html

Beyond Serial Simulation

Can parallelize in

• Time (tricky): Parareal methods, asynchronous methods
• Space: Our focus!

23

Plotting Particles

Smooth Particle Hydrodynamics (SPH) – Project 2

24

Pondering Particles

• Where do particles “live” (distributed mem)?
• Decompose in space? By particle number?
• What about clumping?

• How are long-range force computations organized?
• How are short-range force computations organized?
• How is force computation load balanced?
• What are the boundary conditions?
• How are potential singularities handled?
• Choice of integrator? Step control?

25

External Forces

Simplest case: no particle interactions.

• Pleasingly parallel (like Monte Carlo!)
• Could just split particles evenly across processors
• Is it that easy?

• Maybe some trajectories need short time steps?
• Even with MC, load balance may not be trivial!

26

Local Forces

• Simplest all-pairs check is 𝑂(𝑛2) (expensive)
• Or only check close pairs (via binning, quadtrees?)
• Communication required for pairs checked
• Usual model: domain decomposition

27

Local Forces: Communication

Minimize communication:

• Send particles that might affect a neighbor “soon”
• Trade extra computation against communication
• Want low surface area-to-volume ratios on domains

28

Local Forces: Load Balance

• Are particles evenly distributed?
• Do particles remain evenly distributed?
• Can divide space unevenly (e.g. quadtree/octtree)

29

Far-Field Forces

• Every particle affects every other particle
• All-to-all communication required

• Overlap communication with computation
• Poor memory scaling if everyone keeps everything!

• Idea: pass particles in a round-robin manner

30

Passing Particles (Far-Field Forces)

Mine

Buffered

Mine

Buffered

Mine

Buffered

copy particles to current buf
for phase = 1 to p

send current buf to rank+1 (mod p)
recv next buf from rank-1 (mod p)
interact local particles with current buf
swap current buf with next buf

end

31

Passing Particles (Far-Field Forces)

Suppose 𝑛 = 𝑁/𝑝 particles in buffer. At each phase

𝑡comm ≈ 𝛼 + 𝛽𝑛
𝑡comp ≈ 𝛾𝑛2

So mask communication with computation if

𝑛 ≥ 1
2𝛾 (𝛽 + √𝛽2 + 4𝛼𝛾) .

32

Passing Particles (Far-Field Forces)

More efficient serial code
⟹ larger 𝑛 needed to mask commujnication!
⟹ worse speed-up as 𝑝 gets larger (fixed 𝑁)
but scaled speed-up (𝑛 fixed) remains unchanged.

33

Far-Field Forces: Particle-Mesh

Consider 𝑟−2 electrostatic potential interaction

• Enough charges look like a continuum!
• Poisson maps charge distribution to potential
• Fast Poisson for regular grids (FFT, multigrid)
• Approx depends on mesh and particle density
• Can clean up leading part of approximation error

34

Far-Field Forces: Particle-Mesh

• Map particles to mesh points (multiple strategies)
• Solve potential PDE on mesh
• Interpolate potential to particles
• Add correction term – acts like local force

35

Far-Field Forces: Tree Methods

• Distance simplifies things
• Andromeda looks like a point mass from here?

• Build tree, approx descendants at each node
• Variants: Barnes-Hut, FMM, Anderson’s method
• More on this later in the semester

36

Summary of Particle Example

• Model: Continuous motion of particles
• Could be electrons, cars, whatever

• Step through discretized time

37

Summary of Particle Example

• Local interactions
• Relatively cheap
• Load balance a pain

• All-pairs interactions
• Obvious algorithm is expensive (𝑂(𝑛2))
• Particle-mesh and tree-based algorithms help

An important special case of lumped/ODE models.

38

	Intro
	Discrete Event Systems

