
CS 5220

Parallel HW and Models

David Bindel

2024-09-05

1



Logistics



Partner finding

• Please post on Ed if you need someone!
• Looking for groups of 2-3

2



Instance setup

• Let’s use c4-standard-2 (vs e2)
• C4 machines are Intel Emerald Rapids
• Also gives PMU access
• Recommend a larger boot disk (20 GB)

• Change of plans for Proj 1: C4 for timing

3



Instance setup

• You can use Intel oneAPI tools
• Need 20 GB disk in setup (tools take 10 GB)
• Make sure you set up your environment for it
• Intel Advisor and compilers are nice

• Intel Advisor
• Gives a variety of reports (including Roofline!)
• Note offline HTML report mode

4



Roofline



Basic idea

Log-log plot showing memory/compute bottlenecks.

• Y axis: Performance (usu Gflop/s)
• X axis: Operational intensity (usu flops/byte read)
• Diagonals: Memory bottlenecks
• Horizontals: Compute bottlenecks
• Performance sits “under the roof”

5



One core (GCP C4, Emerald Rapids)

See source example

6

https://www.cs.cornell.edu/courses/cs5220/2024fa/data/roofline.html


References

Roofline: An Insightful Visual Performance Model for Multicore
Architectures, Communications of the ACM, 2009, 52(4).

7

https://dx.doi.org/10.1145/1498765.1498785
https://dx.doi.org/10.1145/1498765.1498785


Parallel Models and HW



Hardware

Basic components: processors, memory, interconnect.

• Where is the memory physically?
• Is it attached to processors?
• What is the network connectivity?

8



Model

Programming model through languages, libraries.

• What are the control mechanisms?
• What data semantics? Private, shared?
• What synchronization constructs?

For performance, need cost models (involves HW)!

9



Dot product

double dot(int n, double* x, double* y)
{

double s = 0;
for (int i = 0; i < n; ++i)

s += x[i] * y[i];
return s;

}

10



Dot product

double pdot(int n, double* x, double* y)
{

double s = 0;

// Somehow parallelize over this loop
for (int p = 0; p < NPROC; ++p) {

int i = p*n/NPROC;
int inext = (p+1)*n/NPROC;
double partial = dot(inext-i, x+i, y+i);
s += partial;

}
return s;

}

11



Basic considerations

How can we parallelize dot product?

• Where do arrays 𝑥 and 𝑦 live? At one CPU? Partitioned? Replicated?
• Who does what work?
• How do we combine to get a single final result?

12



Shared Memory Model



Programming model

Program consists of threads of control.

• Can be created dynamically
• Each has private variables (e.g. local)
• Each has shared variables (e.g. heap)
• Communication through shared variables
• Coordination by synchronizing on variables
• Example: OpenMP

13



Dot product

Consider pdot on 𝑝 ≪ 𝑛 processors:

1. Each CPU: partial sum (𝑛/𝑝 elements, local)
2. Everyone tallies partial sums

Of course, it can’t be that simple…

14



Race condition

A race condition is when:

• Two threads access the same variable
• At least one is a write.
• Accesses are concurrent

• No ordering guarantees
• Could happen “simultaneously”!

15



Race to the dot

Consider s += partial on two CPUs (s shared).

16



Race to the dot

Processor 1
load S
add partial
…
store S
…
…

Processor 2
…
…
load S
…
add partial
store S

17



Sequential consistency?

Implicitly assumed sequential consistency:

• Idea: Execution is as if processors take turns, in some order
• Convenient for thinking through correctness
• Hard to implement in a performant way!
• Will talk about “memory models” later

18



Locks

Can consider s += partial a critical section

• Only one thread at a time allowed in critical section
• Can violate invariants locally
• Mechanisms: lock or mutex, monitor

19



Shared dot with locks

Dot product with mutex:

• Create global mutex l
• Compute partial
• Lock l
• s += partial
• Unlock l

Still need to synchronize on return…

20



A problem

Processor 1
1. Acquire lock 1
2. Acquire lock 2
3. Do something
4. Release locks

Processor 2
1. Acquire lock 2
2. Acquire lock 1
3. Do something
4. Release locks

What if both processors execute step 1 simultaneously?

21



Barriers

• Many scientific codes have phases (time steps, iterations)
• Communication only needed at end of phases
• Idea: synchronize on end of phase with barrier

• More restrictive than small locks
• But easier to think through (no deadlocks)!

• Sometimes called bulk synchronous programming

22



Dot with barriers

// Shared array partials
partials[omp_get_thread_num()] = partial;
#pragma omp barrier

double s = 0;
for (int i = 0; i < omp_get_num_threads(); ++i)

s += partials[i];

23



Punchline

Shared memory correctness is hard

• Too little synchronization: races
• Too much synchronization: deadlock
• And both can happen at once!

And this is before we talk performance!

24



Shared Memory HW



Uniform shared memory

• Processors and memories talk through a bus
• Symmetric multiprocessor
• Hard to scale to lots of processors

• Bus becomes bottleneck
• But cache coherence via snooping

25



Distributed shared memory

• Non-Uniform Memory Access (NUMA)
• Includes most big modern chips
• Also many-core accelerators

• Memory logically shared, physically distributed
• Any processor can access any address
• Close accesses (affinity) faster than far accesses
• Cache coherence is a pain

26



Punchline

Shared memory is expensive!

• Uniform access means bus contention
• Non-uniform access scales better

• But now access costs vary

• Cache coherence is tricky regardless
• May forgo sequential consistency for performance

27



Message-Passing Programming



Programming model

• Collection of named (indexed) processes
• Data is partitioned
• Communication by send/receive of explicit messages

• One-sided put/get verges on shared memory

• Lingua franca: MPI (Message Passing Interface)

28



Dot product (v1)

Processor 1
1. Partial sum s1
2. Send s1 to P2
3. Receive s2 from P2
4. s = s1 + s2

Processor 2
1. Partial sum s2
2. Send s2 to P1
3. Receive s1 from P1
4. s = s1 + s2

What could go wrong?

29



Dot product (v2)

Processor 1
1. Partial sum s1
2. Send s1 to P2
3. Receive s2 from P2
4. s = s1 + s2

Processor 2
1. Partial sum s2
2. Receive s1 from P1
3. Send s2 to P1
4. s = s1 + s2

Better, but what if more than two processors?

• This is part of why we have MPI_Sendrecv
• Also, MPI_Allreduce

30



MPI: The de facto standard

• Pro: Portability
• Con: Feels like assembly language for communication

• So use higher-level libraries on top

31



Punchline

• Message passing hides less than shared memory
• But correctness is still subtle

32



Distributed Memory Machines



Hardware setup

• Each node has local memory
• … and no direct access to memory on other nodes
• Except maybe RDMA (remote direct memory access)

• Nodes communicate via network interface
• Example: most modern clusters!

33



Speed of light

• One light-ns is 30 cm (about one foot)
• A big machine is often over 300 feet across
• May still be dominated by NIC latency (microseconds)
• Across a big machine will always be much slower than local memory
accesses

• Another reason locality matters!

34



Paths to performance



What do we want?

• High-level: solve bit problems fast
• Start with good serial performance
• Given 𝑝 processors, could then ask for

• Good speedup: serial time /𝑝
• Good scaled speedup: 𝑝× serial work in serial time

• Easiest to get speedup from bad serial code!

35



Story so far

Parallel performance is limited by:

• Single core performance
• Communication and synchronization costs
• Non-parallel work (Amdahl)

Overcome these limits by understanding common patterns of parallelism
and locality in applications.

36



Parallelism and locality

Can get more parallelism / locality through modeling

• Limited range of dependency between time steps
• Neglect or approximate far-field effects

37



Parallelism and locality

Often get parallelism at multiple levels

• Hierarchical circuit simulation
• Interacting models for climate
• Parallelizing experiments in MC or optimization

38



Next week

More about parallelism and locality in simulations!

39


	Logistics
	Roofline
	Parallel Models and HW
	Shared Memory Model
	Shared Memory HW
	Message-Passing Programming
	Distributed Memory Machines
	Paths to performance

