
CS 5220

Basic Code Optimization

David Bindel

2024-09-05

1



Reminder

• Modern CPUs are wide, pipelined, out-of-order
• Want good instruction mixes, independent operations
• Want vectorizable operations

• Communication (including with memory) is slow
• Caches provide intermediate cost/capacity points
• Designed for spatial and temporal locality

2



(Trans)portable Performance

• Details have orders-of-magnitude impacts
• But systems differ in micro-arch, caches, etc
• Want transportable performance across HW
• Need principles for high-perf code (+ tricks)

3



Principles

• Think before you write
• Time before you tune
• Stand on shoulders of giants
• Help your tools help you
• Tune your data structures

4



Think Before You Write



Premature Optimization

We should forget about small efficiencies, say 97% of the time:
premature optimization is the root of all evil.
- Knuth, Structured programming with go to statements, Comput-
ing Surveys (4), 1974.

5

https://dl.acm.org/doi/10.1145/356635.356640


Premature Optimization

… Yet we should not pass up our opportunities in that critical 3%.
- Knuth, Structured programming with go to statements, Comput-
ing Surveys (4), 1974.

6

https://dl.acm.org/doi/10.1145/356635.356640


Premature Optimization

• At design time, think big efficiencies
• Don’t forget the 3%!
• And the time is not premature forever!

7



Functionality First

No prize for speed of wrong answers.

8



Lay-of-the-Land Thinking

for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)

for (int k = 0; k < n; ++k)
C[i+j*n] += A[i+k*n] * B[k+j*n];

• What are the “big computations” in my code?
• What are natural algorithmic variants?

• Vary loop orders? Different interpretations!
• Lower complexity algorithm (Strassen?)

• Should I rule out some options in advance?
• How can I code so it is easy to experiment?

9



Don’t Sweat the Small Stuff

• Fine to have high-level logic in Python and company
• Probably fine not to tune configuration file readers
• Maybe OK not to tune 𝑂(𝑛2) prelude to 𝑂(𝑛3) algorithm?

• Depending on 𝑛 and on the constants!

10



How Big?

Typical analysis: time is 𝑂(𝑓(𝑛))

• Meaning: ∃𝐶, 𝑁 ∶ ∀𝑛 ≥ 𝑁, 𝑇𝑛 ≤ 𝐶𝑓(𝑛)
• Says nothing about constants: 𝑂(10𝑛) = 𝑂(𝑛)
• Ignores lower-order term: 𝑂(𝑛3 + 1000𝑛2) = 𝑂(𝑛3)

Beware asymptotic complexity analysis for small 𝑛!

11



Avoid Work

Asymptotic complexity is not everything, but:

• Quicksort beats bubble sort for modest 𝑛
• Counting sort even faster for modest key space
• No time at all if data is already sorted!

Pick algorithmic approaches thoughtfully.

12



Be Cheap

Our motto: Fast enough, right enough

• Want: time saved in compute ≫ time taken in tuning
• Your time costs more than compute cycles
• No shame in a slow workhorse that gets the job done

• Maybe an approximation is good enough?
• Depends on application context
• Answer usually requires error analysis, too

13



Do More with Less (Data)

Want lots of work relative to data loads:

• Keep data compact to fit in cache
• Short data types for better vectorization
• But be aware of tradeoffs!

• For integers: May want 64-bit ints sometimes!
• For floating point: More in other lectures

14



Remember the I/O

Example: Explicit PDE time stepper on 2562 mesh

• 0.25 MB per frame (three fit in L3 cache)
• Constant work per element (a few flops)
• Time to write to disk ≈ 5 ms

If I write once every 100 frames, how much time is I/O?

15



Time Before You Tune



Back to Knuth

It is often a mistake to make a priori judgements about what
parts of a program are really critical, since the universal experi-
ence of programmers who have been using measurement tools
has been that their intuitive guesses fail.
- Knuth, Structured programming with go to statements, Comput-
ing Surveys (4), 1974.

16

https://dl.acm.org/doi/10.1145/356635.356640


Hot Spots and Bottlenecks

• Often a little bit of code takes most of the time
• Usually called a “hot spot” or bottleneck
• Goal: Find and remove (“de-slugging”)

17



Practical Timing

Things to consider:

• Want high-resolution timers
• Wall-clock time vs CPU time
• Size of data collected vs how informative it is
• Cross-interference with other tasks
• Cache warm-start on repeated timings
• Overlooked issues from too-small timings

18



Manual Instrumentation

Basic picture:

• Identify stretch of code to be timed
• Run several times with “characteristic” data
• Accumulate time spent

Caveats: Effects from repetition, “characteristic” data

19



Manual Instrumentation

• Was hard to get portable high-resolution wall-clock time!
• Things have improved some…

• If OpenMP available: omp_get_wtime()
• C11 timespec_get
• C++ std::chrono::high_resolution_clock

20

https://www.openmp.org/spec-html/5.0/openmpsu160.html
https://en.cppreference.com/w/c/chrono/timespec_get
https://en.cppreference.com/w/cpp/chrono/high_resolution_clock


Profiling Tools

• Sampling: Interrupt every 𝑡profile cycles
• Instrumenting: Rewrite code to insert timers

• May happen at binary or source level

21



Time Attribution

May time at function level or line-by-line

• Function: Can still get mis-attribution from inlinining
• Line-by-line: Attribution is harder, need debug symbols (-g)

22



More Profiling Details

• Distinguish full call stack or not?
• Time full run, or just part?
• Just timing, or get other info as well?

23



Hardware Counters

• Counters track cache misses, instruction counts, etc
• Present on most modern chips
• But may require significant permissions to access

24



Symbolic Execution

• Main current example: llvm-mca
• Symbolically execute assembly on model of core
• Usually only practical for short segments
• Can give detailed feedback on (assembly) quality

25

https://llvm.org/docs/CommandGuide/llvm-mca.html


Shoulders of Giants



What Makes a Good Kernel?

Computational kernels are

• Small and simple to describe
• General building blocks (amortize tuning work)
• Ideally high arithmetic intensity

• Arithmetic intensity = flops/byte
• Amortizes memory costs

26



Case Study: BLAS

Basic Linear Algebra Subroutines

• Level 1: 𝑂(𝑛) work on 𝑂(𝑛) data
• Level 2: 𝑂(𝑛2) work on 𝑂(𝑛2) data
• Level 3: 𝑂(𝑛3) work on 𝑂(𝑛2) data

Level 3 BLAS are key for high-perf transportable LA.

27



Other Common Kernels

• Apply sparse matrix (or sparse matrix powers)
• Compute an FFT
• Sort an array

28



Kernel Tradeoffs

• Critical to get properly tuned kernels
• Interface is consistent across HW types
• Implementation varies by archiecture
• General kernels may leave performance on table

• Ex: General matrix ops for structured matrices

• Overheads may be an issue for small 𝑛 cases

29



Kernel Tradeoffs

Building on kernel functionality is not perfect –
But: Ideally, someone else writes the kernel!

(Or it may be automatically tuned)

30



Help Tools Help You



How can Compiler Help?

In decreasing order of effectiveness:

• Local optimization
• Espectially restricted to a “basic block”
• More generally, in “simple” functions

• Loop optimizations
• Global (cross-function) optimizations

31



Local Optimizations

• Register allocation: compiler > human
• Instruction scheduling: compiler > human
• Branch joins and jump elim: compiler > human?
• Constant folding and propogation: humans OK
• Common subexpression elimination: humans OK
• Algebraic reductions: humans definitely help

32



Loop Optimization

Mostly leave these to modern compilers

• Loop invariant code motion
• Loop unrolling
• Loop fusion
• Software pipelining
• Vectorization
• Induction variable substitution

33



Obstacles for the Compiler

• Long dependency chains
• Excessive branching
• Pointer aliasing
• Complex loop logic
• Cross-module optimization

34



Obstacles for the Compiler

• Function pointers and virtual functions
• Unexpected FP costs
• Missed algebraic reductions
• Lack of instruction diversity

Let’s look at a few…

35



Long Dependency Chains

Sometimes these can be decoupled. Ex:

// Version 0
float s = 0;
for (int i = 0; i < n; ++i)

s += x[i];

Apparently linear dependency chain.

36



Long Dependency Chains

// Version 1
float ss[4] = {0, 0, 0, 0};
int i;

// Sum start of list in four independent sub-sums
for (i = 0; i < n-3; i += 4)

for (int j = 0; j < 4; ++j)
ss[j] += x[i+j];

// Combine sub-sums, handle trailing elements
float s = (ss[0] + ss[1]) + (ss[2] + ss[3]);
for (; i < n; ++i)

s += x[i];

37



Pointer Aliasing

Why can this not vectorize easily?

void add_vecs(int n, double* result, double* a, double* b)
{

for (int i = 0; i < n; ++i)
result[i] = a[i] + b[i];

}

Q: What if result overlaps a or b?

38



Pointer Aliasing

void add_vecs(int n, double* restrict result,
double* restrict a, double* restrict b)

{
for (int i = 0; i < n; ++i)

result[i] = a[i] + b[i];
}

• C restrict promise: no overlaps in access
• Many C++ compilers have __restrict__
• Fortran forbids aliasing – part of why naive Fortran speed often
beats naive C speed!

39



“Black Box” Calls

Compiler assumes arbitrary wackiness:

void foo(double* restrict x)
{

double y = *x; // Load x once
bar(); // Assume bar is a 'black box' fn
y += *x; // Must reload x
return y;

}

40



Floating Point

Several possible optimizations:

• Use different precisions
• Use more/less accurate special function routines
• Underflow as flush-to-zero vs gradual

But these change semantics! Needs a human.

41



Optimization Flags

-O0123: no optimization – aggressive optimization

• -O2 is usually the default
• -O3 is useful, but might break FP codes (for example)

42



Optimization Flags

Architectural targets

• “Native” mode targets current architecture
• Not always the right choice (e.g. head/compute)

43



Optimization Flags

Specialized flags

• Turn on/off specific optimization features
• Often the basic -Ox has reasonable defaults

44



Auto-Vectorizations Reports

• Good compilers try to vectorize for you
• Vendors are pretty good at this
• GCC / CLang are OK, not as strong

• Can get reports about what prevents vectorization
• Not necessarily by default!
• Helps a lot for tuning

45



Profile-Guided Optimization

Basic workload

• Compile code with optimizations
• Run in a profiler
• Compile again, provide profiler results

Helps with branch optimization.

46



Data Layout Matters



“Speed-of-Light”

For compulsory misses:

𝑇data (s) ≥ data required (bytes)
peak BW (bytes/s)

Possible optimizations:

• Shrink working sets to fit in cache (pay this once)
• Use simple unit-stride access patterns

Reality is more complicated…

47



When and How to Allocate

Access is not the only cost!

• Allocation/de-allocation also costs something
• So does GC (where supported)
• Beware hidden allocation costs (e.g. on resize)
• Often bites naive library users

48



When and How to Allocate

Two thoughts to consider:

• Preallocation (avoid repeated alloc/free)
• Lazy allocation (if alloc will often not be needed)

49



Storage Layout

Desiderata:

• Compact (fits lots into cache)
• Traverse with simple access patterns
• Avoids pointer chasing

50



Multi-Dimensional Arrays

Two standard formats:

• Column major (Fortran): Store columns consecutively
• Row major (C/C++?): Store rows consecutively

Ideally, traverse with unit stride! Layout affects choice.
Can use more sophisticated multi-dim array layouts…

51



Blocking / Tiling

Classic example: matrix multiply

• Load 𝑏 × 𝑏 block of 𝐴
• Load 𝑏 × 𝑏 block of 𝐵
• Compute product of blocks
• Accumulate into 𝑏 × 𝑏 block of 𝐶

Have 𝑂(𝑏3) work for 𝑂(𝑏2) memory references!

52



Alignment and Vectorization

• Vector load/stores faster if aligned (e.g. start at memory addresses
that are multiples of 64 or 256)

• Can ask for aligned blocks of memory from allocator
• Then want aligned offsets into aligned blocks
• Have to help compiler recognize aligned pointers!

53



Cache Conflicts

Issue: What if strided access causes conflict misses?

• Example: Walk across row of col-major matrix
• Example: Parallel arrays of large-power-of-2 size

Not the most common problem, but one to watch for

54



Structure Layouts

• Want 𝑏-byte types on 𝑏-byte memory boundaries
• Compiler may pad structures to enforce this
• Arrange structure fields in decreasing size order

55



SOA vs AOS

// Structure of arrays (parallel arrays)
typedef struct {

double* x;
double* y;

} soa_points_t;

// Array of structs
typedef struct {

double x;
double y;

} point_t;
typedef point_t* soa_points_t;

56



SOA vs AOS

SoA: Structure of Arrays

• Friendly to vectorization
• Poor locality to access all of one item
• Awkward for lots of libraries and programs

57



SOA vs AOS

AoS: Array of Structs

• Naturally supported default
• Not very SIMD-friendly

Can use C++ zip_view to iterate over SOA like AOS.

58

https://en.cppreference.com/w/cpp/ranges/zip_view


Copy Optimizations

Can copy between formats to accelerate, e.g.

• Copy piece of AoS to SoA format
• Perform vector operations on SoA data
• Copy back out

Performance gains > copy costs?
Plays great with tiling!

59



For the Control Freak

Can get (some) programmer control over

• Pre-fetching
• Uncached memory stores

But usually best left to compiler / HW.

60



Summary



Strategy

• Think some about performance before writing
• After coding, time to identify what needs tuning
• Tune data layouts and access patterns together
• Work with compiler on low-level optimizations

61


	Think Before You Write
	Time Before You Tune
	Shoulders of Giants
	Help Tools Help You
	Data Layout Matters
	Summary

