
CS 5220

Single Core Architecture

David Bindel

2024-09-03

1



Logistics



Office hours

• Bindel missing OH this week (new grad student social)
• Caroline and Evan will still have office hours
• Appointment and Ed are also options!

2



Enrollment

• Use ticket system for enrollment issues
• HW0 due Sep 5 via CMS
• Add deadline is Sep 9
• We are currently at 125!

3

https://tdx.cornell.edu/TDClient/193/Portal/Home/


CIS Partner Finding Social

Searching for a study buddy or partner? Looking to meet a new
friend? Are you taking CS, INFO, or ORIE classes? If so, the CIS
Partner Finding Social is for you! This is the PERFECT opportunity
to find a partner and meet other students in your classes, so join
us on September 11th at 5-7pm in Duffield Atrium!

4



Computing Systems

You will be using three systems (if enrolled!) – see email.

• Perlmutter
• Google Cloud Platform

Perlmutter and GCP are Unix environments. Recommended for local work:

• Mac: Terminal and homebrew
• Windows: Windows Subsystem for Linux

You can also develop remotely.

5

https://docs.nersc.gov/systems/perlmutter/architecture/
https://cloud.google.com/
https://brew.sh/
https://learn.microsoft.com/en-us/windows/wsl/install


Computing Systems

• Perlmutter
• Fill out the CMS survey for your login ID
• Make sure you have an MFA token set up

• GCP
• Request and redeem GCP coupon
• Try the console on cloud.google.com

6

https://cloud.google.com/


The Toolbox

You will want to know:

• Covered tools: Compilers, profilers, modules
• Demonstrated: git, make
• “You’ll pick up”: Unix shell, editors

Resources:

• Software Carpentry
• The Missing Semester
• Cornell virtual workshops

7

https://docs.nersc.gov/development/compilers/
https://docs.nersc.gov/tools/performance/
https://docs.nersc.gov/environment/lmod/
https://git-scm.com/docs/gittutorial
https://docs.nersc.gov/development/build-tools/autoconf-make/
https://software-carpentry.org/lessons/
https://missing.csail.mit.edu/
https://cvw.cac.cornell.edu/


Just for Fun

Mythbusters pitch NVidia!

8

https://youtu.be/fKK933KK6Gg


Rage Against the Machine



Idealized Machine

• Address space of named words
• Basic ops: register read/write, logic, arithmetic
• Everything runs in program order
• High-level language means “obvious” machine code
• All operations take about the same time

9



Real World

Memory operations are not all the same!

• Speeds vary (registers and caches)
• Memory layout dramatically affects performance

10



Real World

Instructions are non-obvious!

• Pipelining allows instructions to overlap
• Functional units run in parallel (and out of order)
• Instructions take different amounts of time
• Cost depends on order, instruction mix

11



Real World

Goal: Understand how to help the compiler.

12



Sketching Reality

Today, a play in two acts:

1. One core is not so serial
2. Memory matters

13



Act 1: Not So Serial



Laundry

• Three stages: wash, dry, fold
• Three loads: darks, lights, underwear
• How long?

14



Laundry

Serial execution:

1 2 3 4 5 6 7 8 9

wash dry fold
wash dry fold

wash dry fold

15



Laundry

Pipelined execution:

1 2 3 4 5

wash dry fold
wash dry fold

wash dry fold

16



RISC Pipeline

Classic five-stage pipeline (MIPS and company)

1 2 3 4 5 6 7 8 9

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB

17



RISC Pipeline

• Fetch - read instruction and increment PC
• Decode - determine registers and addresses
• Execute - where the actual computation occurs
• Memory - any memory accesses
• Writeback - results into register file

18



Pipelining

• Improves bandwidth, not latency
• Potential speedup = number of stages

• What if there’s a branch?

19



AMD Milan (Zen 3)

Current versions are much more complicated!

20

https://www.nextplatform.com/2021/03/26/deep-dive-into-amds-milan-epyc-7003-architecture/


Wide Front-End

Fetch/decode or retire multiple ops at once

• Limited by instruction mix
• Different ops use different port

• NB: May dynamically translate to micro-ops

21



Hyperthreading

Support multiple HW threads/core

• Independent registers, program counter
• Shared functional units
• Helps feed core independent work

22



Out-of-Order Execution

• Internally reorder operations
• Have to commit results in order
• May discard uncommited results
(speculative execution)

• Limited by data dependencies

23



SIMD (Vectorization)

• Single Instruction Multiple Data
• Cray-1 (1976): 8 registers × 64 words of 64 bits
• Resurgence in mid-late 90s (for graphics)
• Now short vectors (256-512 bit) are ubiquitous

24



Pipelining

Different pipelines for different units

• Front-end has a pipeline
• Functional units have their own pipelines

• Example: FP adder, multiplier
• Divider often not pipelined

25



All Together, Now…

• Front-end reads several ops at once
• Ops may act on vectors (SIMD)
• Break into mystery micro-ops (and cache)
• Out-of-order scheduling to functional units
• Pipelining within functional units
• In-order commit of finished ops
• Can discard before commit
(speculative execution)

26



All Together, Now…

Modern single-core architecture is complex! Desiderata

• Maintain (mostly) serial semantics
• In-order retirement, precise exceptions

• Make lots of latent parallelism available
• Wide issue, SIMD, pipelining

• Help programmer/compiler manage complexity
• Out-of-order execution

27



Punchline

Compiler understands CPU in principle

• Rearranges instructions to get a good mix
• Tries to use FMAs, SIMD instructions, etc

28



Punchline

Compiler needs help in practice

• Set optimization flags, pragmas, etc
• Make code obvious and predictable
• Expose local independent work
• Use special intrinsics or library routines
• Data layouts, algorithms to suit machine

29



Punchline

The goal:

• You handle high-level optimization
• Compiler handles low-level stuff

Note memory layouts are part of your job!

30



Act 2: Memory Matters



Basic Problem

• Memory latency = how long to get a requested item
• Memory bandwidth = steady-state rate
• Bandwidth improves faster than latency
• Inverse bandwidth remains worse the flop rate

31



Locality

Programs usually have locality:

• Spatial locality: things close to each other tend to be accessed
consecutively.

• Temporal locality: we tend to use a “working set” of data repeatedly.

The cache hierarchy is built to take advantage of locality.

32



How Caches Help

• Hide memory costs by reusing data
• Exploit temporal locality

• Use bandwidth to
• Fetch by cache line (spatial locality)
• Support multiple reads
• Prefetch data

This is mostly automatic and implicit.

33



Cache Basics

• Organize in cache lines of several bytes
• Cache hit when copy of needed data in cache
• Cache miss otherwise. Basic types:

• Compulsory: never used this data before
• Capacity: cache full, working set too big
• Conflict: insufficient associativity for access pattern

34



Cache Associativity

Where can data go in cache?

• Direct-mapped: Each address can go in only one location (e.g. store
address xxxx1101 only at cache location 1101)

• 𝑛-way: Each address can go in one of 𝑛 possible cache locations
(store up to 16 words with addresses xxx1101 at cache location 1101).

Higher associativity costs more in hardware.

35



Teaser

We have 𝑁 = 106 two-dimensional coordinates and want their centroid.
Which of these is faster and why?

1. Store an array of (𝑥𝑖, 𝑦𝑖) coordinates. Loop 𝑖 and simultaneously
sum the 𝑥𝑖 and the 𝑦𝑖.

2. Store an array of (𝑥𝑖, 𝑦𝑖) coordinates. Loop 𝑖 and sum the 𝑥𝑖, then
sum the 𝑦𝑖 in a separate loop.

3. Store the 𝑥𝑖 in one array, the 𝑦𝑖 in a second array. Sum the 𝑥𝑖, then
sum the 𝑦𝑖.

36



Caches on My Laptop

Apple M1 Pro (Firestorm core?)

• 128 KB L1 data cache
• 12 MB L2 cache (shared)
• 24 MB system level cache

37

https://en.wikipedia.org/wiki/Apple_M1


A memory benchmark (Membench)

/* Time the loop with strided access + loop overhead */
int steps = 0;
double start = omp_get_wtime();
do {

for (int i = SAMPLE*stride; i != 0; i--)
for (int index = 0; index < limit; index += stride)

x[index]++;
steps++;
sec0 = omp_get_wtime()-start;

} while (sec0 < RTIME);

38

https://github.com/cs5220-f24/membench


Membench on My Laptop

23 26 29 212 215 218 221 224

Stride (bytes)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ti
m

e 
(n

s)

4.0K
8.0K
16.0K
32.0K
64.0K
128.0K
256.0K
512.0K
1.0M
2.0M
4.0M
8.0M
16.0M
32.0M
64.0M

39



Membench on My Laptop

5 10 15 20 25

log2(stride)
12
14
16
18
20
22
24
26

lo
g2

(s
ize

)

2.5

5.0

7.5

10.0

12.5

15.0

40



Features

• Vertical: 128 B cache lines (26), 16 KB pages (214)
• Horizontal: 128 KB L1 (217), 12 MB L2 (< 224)
• Diagonal: 8-way set assoc, 256 page L1 TLB, 3072 page L2 TLB

41



The Moral

Even for simple programs, performance is a complicated function of
architecture!

• Need to know a little to write fast programs
• Want simple models to understand efficiency
• Want tricks to help design fast codes

• Example: blocking (also called tiling)

42


	Logistics
	Rage Against the Machine
	Act 1: Not So Serial
	Act 2: Memory Matters

