
CS 5220

Performance Basics

David Bindel

2024-08-29

1



Soap Box



The Goal

The goal is right enough, fast enough — not flop/s.

2



More than Speed

Performance is not all that matters.

• Portability, readability, ease of debugging, ...
• Want to make intelligent tradeoffs

3



Start at the Beginning

The road to good performance
starts with a single core.

• Even single-core performance is hard
• Helps to build well-engineered libraries

4



Fair Comparisons

Parallel efficiency is hard!

• 𝑝 processors ≠ speedup of 𝑝
• Different algorithms parallelize differently
• Speed vs untuned serial code is cheating!

5



Peak Performance



Whence Rmax?

Top 500 benchmark reports:

• Rmax: Linpack flop/s
• Rpeak: Theoretical peak flop/s

Measure the first; how do we know the second?

6

https://top500.org/


What is a float?

Start with what is floating point:

• (Binary) scientific notation
• Extras: inf, NaN, de-normalized numbers
• IEEE 754 standard: encodings, arithmetic rules

7

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html


Formats

• 64-bit double precision (DP)
• 32-bit single precision (SP)
• Extended precisions (often 80 bits)
• 128-bit quad precision
• 16-bit half precision (multiple)
• Decimal formats

Lots of interest in 16-bit formats for ML. Linpack results are double
precision

8



What is a flop?

• Basic floating point operations: +, −, ×, /, √⋅
• FMA (fused multiply-add): 𝑑 = 𝑎𝑏 + 𝑐
• Costs depend on precision and op
• Often focus on add, multiply, FMA (“flams”)

9



Perlmutter specs

Consider Perlmutter

10

https://docs.nersc.gov/systems/perlmutter/architecture/


Flops / cycle / core

Processor does more than one thing at a time. On one CPU core of
Perlmutter (AMD EPYC 7763 (Milan)):

2flops
FMA

× 4 FMA
vector FMA

× 2vector FMA
cycle

= 16flops
cycle

11



Flops / sec / core

At standard clock (2.45 GHz)

16flops
cycle

× 2.4 × 109 cycle
s

= 39.2Gflop
s

At max boost clock (3.5 GHz)

16flops
cycle

× 3.5 × 109 cycle
s

= 56Gflop
s

12



Flops / sec / CPU

Each CPU has 64 cores, at standard clock

39.2Gflop
s

= 2508.8Gflop
s

≈ 2.5Tflop
s

Peak CPU flop/s by partition:

• GPU: 2.5808 Tflop/s/CPU ×1536 CPU ≈ 3.9 Pflop/s
• CPU: 2.5808 Tflop/s/CPU ×2 CPU/node ×3072 nodes ≈ 15.4
Pflop/s

• NERSC docs inconsistent re 2 CPU/node?

13



Flops / sec / GPU

• GPU partition nodes have 4 NVIDIA A100 each.
• Different peak performance depending on FP type (9.7 Tflop/s FP64)

14



But…

Rpeak > Rmax > Gordon Bell > Typical

• Performance is application dependent
• Hard to get more than a few percent on most

Consider HPCG - June 2024.
Problem: Data movement is expensive!

15

https://www.hpcg-benchmark.org/
https://top500.org/lists/hpcg/2024/06/


Serial Costs



Naive Matmul

void square_dgemm(int n, double* C, double* A, double* B)
{

// Accumulate C += A*B for n-by-n matrices
for (i = 0; i < n; ++i)

for (j = 0; j < n; ++j)
for (k = 0; k < n; ++k)
C[i+j*n] += A[i+k*n] * B[k+j*n];

}

• Inner product formulation of matrix multiply
• Takes 2𝑛3 flops
• Cost is much more than Rpeak suggests!
• Problem is communication cost / memory traffic

16



Price to Fetch

Two pieces to cost of fetching data

Latency Time from operation start to first result (s)

Bandwidth Rate at which data arrives (bytes/s)

17



Price to Fetch

• Usually latency ≫ bandwidth−1 ≫ time per flop
• Latency to L3 cache is 10s of ns
• DRAM is 3 − 4× slower
• Partial solution: caches (to discuss next time)

See: Latency numbers every programmer should know

18

https://colin-scott.github.io/personal_website/research/interactive_latency.html


Price to Fetch

• Lose orders of magnitude if too many memory refs
• And getting full vectorization is also not easy!
• We’ll talk more about (single-core) arch next time

19



Takeaways

Start with a simple model

• But flop counting is too simple
• Counting every detail complicates life
• Want enough detail to predict something

20



Watch for Hidden Costs

• Flops are not the only cost!
• Memory/communication costs are often killers
• Integer computation may play a role, too

21



Parallelism?

Picture gets even more complicated!

22



Parallel Costs



Naive model

Too simple:

• Serial task takes time 𝑇 (𝑛)
• Deploy 𝑝 processors
• Parallel time is 𝑇 (𝑛)/𝑝

23



What’s Wrong?

Why is parallel time not 𝑇 (𝑛)/𝑝?

• Overheads: Communication, synchronization, extra computation and
memory overheads

• Intrinsically serial work
• Idle time due to synchronization
• Contention for resources

24



Quantifying Performance

• Start with good serial performance
• (Strong) scaling study: compare parallel vs serial time as a function
of 𝑝 for a fixed problem

Speedup = Serial time
Parallel time

Efficiency = Speedup
𝑝

25



Quantifying Performance

Perfect (linear) speedup is 𝑝. Barriers:

• Serial work (Amdahl’s law)
• Parallel overheads (communication, synchronization)

26



Amdahl

If 𝑠 is the fraction that is serial:

Speedup < 1
𝑠

Looks bad for strong scaling!

27



Strong and Weak Scaling

Strong scaling Fix problem size, vary 𝑝

Weak scaling Fix work per processor, vary 𝑝

28



Scaled Speedup

Scaled speedup

𝑆(𝑝) = 𝑇serial(𝑛(𝑝))
𝑇parallel(𝑛(𝑝), 𝑝)

Gustafson:
𝑆(𝑝) ≤ 𝑝 − 𝛼(𝑝 − 1)

where 𝛼 is fraction of serial work.

29



Imperfect Parallelism

Problem is not just with purely serial work, but

• Work that offers limited parallelism
• Coordination overheads.

30



Dependencies

Main pain point: dependency between computations

a = f(x)
b = g(x)
c = h(a,b)

Can compute 𝑎 and 𝑏 in parallel with each other.
But not with 𝑐!

True dependency (read-after-write). Can also have issues with false
dependencies (write-after-read and write-after-write), deal with this later.

31



Granularity

• Coordination is expensive
• including parallel start/stop!

• Need to do enough work to amortize parallel costs
• Not enough to have parallel work, need big chunks!
• Chunk size depends on the machine.

32



Patterns and Benchmarks



Pleasing Parallelism

“Pleasingly parallel” (aka “embarrassingly parallel”) tasks require very
little coordination, e.g.:

• Monte Carlo computations with independent trials
• Mapping many data items independently

Result is “high-throughput” computing – easy to get impressive speedups!

Says nothing about hard-to-parallelize tasks.

33



Displeasing Parallelism

If your task is not pleasingly parallel, you ask:

• What is the best performance I reasonably expect?
• How do I get that performance?

34



Partly Pleasing Parallelism?

Matrix-matrix multiply:

• Is not pleasingly parallel.
• Admits high-performance code.
• Is a prototype for much dense linear algebra.
• Is the key to the Linpack benchmark.

35



Patterns and Kernels

Look at examples somewhat like yours – a parallel pattern – and maybe
seek an informative benchmark. Better yet: reduce to a previously
well-solved problem (build on tuned kernels).

NB: Uninformative benchmarks will lead you astray.

36



Recap



Recap

Speed-of-light “Rpeak” is hard to reach

• Communication (even on one core!)
• Other overhead costs to parallelism
• Dependencies limiting parallelism

Want

• Models to understand real performance
• Building blocks for getting high performance

37


	Soap Box
	Peak Performance
	Serial Costs
	Parallel Costs
	Patterns and Benchmarks
	Recap

