
CS 5220

Introduction and Performance Basics

David Bindel

2024-08-27

1



Logistics



CS 5220

Title: Applied High-Performance and Parallel Computing
Web: https://www.cs.cornell.edu/courses/cs5220/2024fa
When: TR 1:25-2:40
where: Gates G01
Who: David Bindel, Caroline Sun, Evan Vera

2

https://www.cs.cornell.edu/courses/cs5220/2024fa


Enrollment

https://www.cs.cornell.edu/courseinfo/enrollment
FA24 Add/Drop Announcement

• CS limits pre-enrollment to CS MEng students.
• We almost surely will have enough space for all comers.
• Enroll if you want access to class resources.
• Enrolling as an auditor is OK.
• If you will not take the class, please formally drop!

3

https://www.cs.cornell.edu/courseinfo/enrollment
https://docs.google.com/presentation/d/1HYDJTYucCuiB3lnhM9J66NYc1SuxfUJ21uaJO9jLZdY/


Prerequisites

Basic logistical constraints:

• Class codes will be in C and C++
• Our focus is numerical codes

Fine if you’re not a numerical C hacker!

• I want a diverse class
• Most students have some holes
• Come see us if you have concerns

4



Objectives: Performance sense

Reason about code performance

• Many factors: HW, SW, algorithms
• Want simple “good enough” models

5



Objectives: Learn about HPC

Learn about high-performance computing (HPC)

• Learn parallel concepts and vocabulary
• Experience parallel platforms (HW and SW)
• Read/judge HPC literature
• Apply model numerical HPC patterns
• Tune existing codes for modern HW

6



Objectives: Numerical SWE

Apply good software practices

• Basic tools: Unix, VC, compilers, profilers, ...
• Modular C/C++ design
• Working from an existing code base
• Testing for correctness
• Testing for performance
• Teamwork

7



Lecture Plan: Basics

• Architecture
• Parallel and performance concepts
• Locality and parallelism

8



Lecture Plan: Technology

• C/C++ and Unix fundamentals
• OpenMP, MPI, CUDA and company
• Compilers and tools

9



Lecture Plan: Patterns

• Monte Carlo
• Dense and sparse linear algebra
• Partial differential equations
• Graph partitioning and load balance
• Fast transforms, fast multipole

10



Coursework: Lecture (10%)

• Lecture = theory + practical demos
• 60 minutes lecture
• 15 minutes mini-practicum
• Bring questions for both!

• Notes posted in advance
• May be prep work for mini-practicum
• Course evaluations are also required!

11



Coursework: Homework (15%)

• Five individual assignments plus “HW0”
• Intent: Get everyone up to speed
• Assigned Tues, due one week later

Homework 0

• Posted on the class web page.
• Complete and submit by CMS by 9/3.

12



Coursework: Group projects (45%)

• Three projects done with partners (1–3)
• Analyze, tune, and parallelize a baseline code
• Scope is 2-3 weeks

13



Coursework: Final project (30%)

• Groups are encouraged!
• Bring your own topic or we will suggest
• Flexible, but must involve performance
• Main part of work in November–December

14



Palate Cleanser



Hello, world!

Introduce yourself to a neighbor:

• Name
• Major / academic interests
• Something fun you have recently read or watched
• Hobbies

Jot down answers (part of HW0).

15



The Good Stuff



The CS&E Picture

Application

Analysis Computation

16



Applications Everywhere!

• Climate modeling
• CAD tools (computers, buildings, airplanes, ...)
• Computational biology
• Computational finance
• Machine learning and statistical models
• Game physics and movie special effects
• Medical imaging
• ...

17



Parallel Computing Essentials

• Need for speed and for memory
• Many processors working simultaneously on same problem

• vs concurrency (about logical structure vs performance)
• or distributed systems (coupled but distinct problems, clients and
servers are often at different locations)

18



Why Parallel Computing?

Scientific computing went parallel long ago:

• Want an answer that is right enough, fast enough
• Either of those might imply a lot of work!
• ... and we like to ask for more as machines get bigger
• ... and we have a lot of data, too

19



Why Parallel Computing?

Today: Hard to get non-parallel hardware!

• How many cores are in your laptop?
• How many in NVidia’s latest accelerator?
• Biggest single-node EC2 instance?

20



Organizational Basics

• Cores packaged together on CPUs
• Cores have instruction-level parallelism (e.g. vector units)

• Memory of various types (memory hierarchy)
• Accelerators have similar pieces, organized differently
• CPUs and accelerators packaged together in nodes
• Nodes often connected in racks
• Networks (aka interconnect or fabric) connecting the pieces

21



How Fast Can We Go?

Speed records for Linpack benchmark

https://www.top500.org

Speed measured in flop/s (floating point ops / second):

• Giga (109) – a single core
• Tera (1012) – a big machine
• Peta (1015) – current top 10 machines
• Exa (1018) – favorite of funding agencies

What do these machines look like?

22

https://www.top500.org


How Fast Can We Go?

An alternate benchmark: Graph 500

• Data-intensive graph processing benchmark
• Metric is traversed edges per second (TEPS)
• How do the top machines for Linpack and Graph 500 compare?

What do these machines look like?

23

https://graph500.org


What HW and How Fast?

• Some high-end machines look like high-end clusters
• Except custom networks.

• Achievable performance is
• ≪ peak performance
• Application-dependent

• Hard to achieve peak on more modest platforms, too!

24



Parallel Performance in Practice

So how fast can I make my computation?

• Peak > Linpack > Gordon Bell > Typical
• Measuring performance of real applications is hard

• Even figure of merit may be unclear (flops, TEPS, ...?)
• Typically a few bottlenecks slow things down
• And figuring out why they slow down can be tricky!

• And we really care about time-to-solution
• Sophisticated methods get answer in fewer flops
• ... but may look bad in benchmarks (lower flop rates!)

See also David Bailey’s comments:

• Twelve Ways to Fool the Masses When Giving Performance Results on
Parallel Computers
(1991)

• Twelve Ways to Fool the Masses: Fast Forward to 2011 (2011) 25

http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf
http://crd.lbl.gov/~dhbailey/dhbtalks/dhb-12ways.pdf


Example: Reduction

How can we speed up summing an array of length 𝑛 with 𝑝 ≤ 𝑛
processors?

• Theory: 𝑛/𝑝 + 𝑂(log(𝑝)) time with reduction tree
• Is this realistic?

26



Quantifying Parallel Performance

• Starting point: good serial performance
• Strong scaling: compare parallel to serial time on the same problem
instance as a function of number of processors (𝑝)

Speedup = Serial time
Parallel time

Efficiency = Speedup
𝑝

27



Barriers

Ideally, speedup = 𝑝. Usually, speedup < 𝑝.

Barriers to perfect speedup:

• Serial work (Amdahl’s law)
• Parallel overheads (communication, synchronization)

28



Amdahl’s Law

𝑝 = number of processors

𝑠 = fraction of work that is serial

𝑡𝑠 = serial time

𝑡𝑝 = parallel time ≥ 𝑠𝑡𝑠 + (1 − 𝑠)𝑡𝑠/𝑝

Amdahl’s law:

Speedup = 𝑡𝑠
𝑡𝑝

= 1
𝑠 + (1 − 𝑠)/𝑝 > 1

𝑠

So 1% serial work ⟹ max speedup < 100×, regardless of 𝑝.

29



A Little Experiment

Let’s try a simple parallel attendance count:

• Parallel computation: Rightmost person in each row counts number
in row.

• Synchronization: Raise your hand when you have a count

• Communication: When all hands are raised, each row representative
adds their count to a tally and says the sum (going front to back).

(Somebody please time this.)

30



A Toy Analysis

Parameters:
𝑛 = number of students

𝑟 = number of rows

𝑡𝑐 = time to count one student

𝑡𝑡 = time to say tally

𝑡𝑠 ≈ 𝑛𝑡𝑐
𝑡𝑝 ≈ 𝑛𝑡𝑐/𝑟 + 𝑟𝑡𝑡

How much could I possibly speed up?

31



Modeling Speedup

(Parameters: 𝑡𝑐 = 0.3, 𝑡𝑡 = 1, 𝑛 = 111.) 32



Modeling Speedup

Mostly-tight bound:

speedup < 1
2√𝑛𝑡𝑐

𝑡𝑡

Poor speed-up occurs because:

• The problem size 𝑛 is small
• The communication cost is relatively large
• The serial computation cost is relatively large

Some of the usual suspects for parallel performance problems!

33



Weak scaling?

Things would look better if I allowed both 𝑛 and 𝑟 to grow — that would
be a weak scaling study.

This probably does not make sense for a classroom setting…

34



Summary: Parallel Performance

Today:

• We’re approaching machines with peak exaflop rates
• But codes rarely get peak performance
• Better comparison: tuned serial performance
• Common measures: speedup and efficiency
• Strong scaling: study speedup with increasing 𝑝
• Weak scaling: increase both 𝑝 and 𝑛
• Serial overheads and communication costs kill speedup
• Simple analytical models help us understand scaling

35



And in case you arrived late

http://www.cs.cornell.edu/courses/cs5220/2024fa/

... and please enroll and submit HW0!

36

http://www.cs.cornell.edu/courses/cs5220/2024fa/

	Logistics
	Palate Cleanser
	The Good Stuff

