CS 5199 – Competition Programming and Problem Solving Seminar

Segment Tree

Raunak Kumar

Based on slides by Paul Liu, Kuba Karpierz, Bruno Vacherot, Raunak Kumar and Jason Chiu for CPSC 490 – Problem Solving in Computer Science at The University of British Columbia

2019/10/07

Cornell University

Data Structures

You are given an array A of n integers. We want to support the following operations

- · Print the array in sorted order.
 - · Solution: Just sort the array and print it.

Data Structures

You are given an array A of n integers. We want to support the following operations

- · Print the array in sorted order.
 - · Solution: Just sort the array and print it.
- · Additionally, allow insertion/deletion of elements.
 - · Solution: use a different data structure, like a binary search tree.

Data Structures

You are given an array A of n integers. We want to support the following operations

- · Print the array in sorted order.
 - · Solution: Just sort the array and print it.
- · Additionally, allow insertion/deletion of elements.
 - · Solution: use a different data structure, like a binary search tree.

We have a collection of elements and we would like to support some operations on these elements.

 \Rightarrow Often, the solution is to use specialized data structures.

You are given an array A of n integers. How efficiently can you answer these queries?

You are given an array A of n integers. How efficiently can you answer these queries?

```
sum(i, j) = A[i] + A[i+1] + ... + A[j]

sum(i, j) = min(A[i], ..., A[j])
```

- · Median
- Mode

You are given an array A of n integers. How efficiently can you answer these queries?

```
\cdot \text{ sum}(i, j) = A[i] + A[i+1] + ... + A[j]

\cdot \text{ min}(i, j) = \text{min}(A[i], ..., A[j])
```

- · Median
- · Mode
- · What if we allow updates?

Range Query with Updates

Given an array A of n integers, perform these queries efficiently:

```
· update(i, x): set A[i] = x
```

```
\cdot sum(i, j): return A[i] + A[i+1] + ... + A[j]
```

Potential Solutions

We could try the following:

- Option 1: Naively perform the 2 queries.
 - update(i, x) takes O(1) time
 - \cdot sum(i, j) takes O(n) time.

Potential Solutions

We could try the following:

- · Option 1: Naively perform the 2 queries.
 - update(i, x) takes O(1) time
 - · sum(i, j) takes O(n) time.
- Option 2: Precompute the sum in $O(n^2)$ intervals.
 - update(i, x) takes O(n) time, to change O(n) intervals
 - \cdot sum(i, j) takes O(1) time

Potential Solutions

We could try the following:

- · Option 1: Naively perform the 2 queries.
 - update(i, x) takes O(1) time
 - · sum(i, j) takes O(n) time.
- Option 2: Precompute the sum in $O(n^2)$ intervals.
 - update(i, x) takes O(n) time, to change O(n) intervals
 - sum(i, j) takes O(1) time

Can we do better? Can we do a different type of precomputation that allows us to **update** and **sum** fast?

Given an array A of n integers, answer these queries quickly:

```
\cdot update(i, x): sets A[i] = x
```

$$\cdot$$
 sum(i, j): return A[i] + ... + A[j]

Segment tree can solve this in $O(\log n)$ per query.

Segment Trees

Basic idea: add a lot of layers!

• Segment tree: group every pair together, then every pair of pairs, then every pair of that, until you get 1 node

Source: http://scvalex.github.io/articles/SegmentTree.html

Segment Trees - Structure, Update

Structure

- Binary tree of log n layers, $1 + 2 + 4 + \cdots + n = O(n)$ nodes
- · Leaf node: represent one element
- · Internal node: represent union of interval of left + right child

Point Update

- · Update leaf
- Update ancestors

Segment Trees (Sum Query) - Structure, Update

Structure

- Binary tree of log n layers, $1 + 2 + 4 + \cdots + n = O(n)$ nodes
- · Leaf node: store value of one element
- · Internal node: store sum of left + right child

Point Update

- Update leaf: change value of leaf node
- Update ancestor: re-compute sum of left + right child

Segment Trees - Range Query

Range query

- · Start at root and recurse down
- Suppose query for [a, b], current node represent [l, r]
- Case 1: $[l, r] \subseteq [a, b]$, return value of current node
- Case 2: $[l,r] \not\subseteq [a,b]$, recurse then combine answer from children
 - 1. If $[l, m] \cap [a, b] \neq \emptyset$ recurse left child and get answer
 - 2. If $[m+1,r] \cap [a,b] \neq \emptyset$ recurse right child and get answer
 - 3. Combine above two answers

Segment Trees - Range Query

Range query

- · Start at root and recurse down
- Suppose query for [a, b], current node represent [l, r]
- Case 1: $[l, r] \subseteq [a, b]$, return value of current node
- Case 2: $[l,r] \not\subseteq [a,b]$, recurse then combine answer from children
 - 1. If $[l, m] \cap [a, b] \neq \emptyset$ recurse left child and get answer
 - 2. If $[m+1, r] \cap [a, b] \neq \emptyset$ recurse right child and get answer
 - 3. Combine above two answers

Sum query: add #1 and #2

Segment Tree - Construction

- You could call update on each element $\Rightarrow O(n \log n)$
- Better: fill from leaf upwards layer by layer $\Rightarrow O(n)$

Segment Tree - Implementation

Approach is similar to e.g. heap implementation

- Store the tree in an array A[1...2n].
- Root = A[1].
- Children of node i = A[2i] and A[2i + 1].
- Parent of node i = i/2.

Segment Tree - Initialize

```
// Set input size as some large power of 2.
const int MAXN = 1 << 17;

// Store segment tree in a flat array.
int T[2*MAXN];</pre>
```

Segment Tree - Build

```
void build(int A[MAXN]) {
     // initialize leaf
     for (int i = 0; i < MAXN; i++)
       T[MAXN + i] = A[i];
5
     // initialize internal nodes, bottom up
     for (int i = MAXN-1; i > 0; i--) {
       T[i] = T[2*i] + T[2*i+1];
9
10
```

Segment Tree - Point Update

```
void update(int x, int val) {
// Change the leaf node's value.
int v = MAXN + x;
T[v] = val;

// Propagate the change all the way to the root.
for (int i = v/2; i > 0; i /= 2)
T[i] = T[2*i] + T[2*i + 1];
}
```

Segment Tree - Range Query

```
int query(int x, int y, int i=1, int l=0, int r=MAXN-1)
     // [l,r] is completely outside [x,y], return 0
     if (x > r \mid | v < l) return 0;
4
     // [l,r] is completely in [x,y], return node value
     if (x \le l \&\& r \le v) return T[i];
7
     // Otherwise, recurse on children.
     return query(x, v, 2*i, l, (l+r)/2)
          + query(x, y, 2*i+1, (l+r)/2+1, r):
10
11
```

Problem 1

Support the following operations on an array A[1...n]

- · update (same as before)
- query(l, r) returns the maximum sum subarray within this subrange.

Consider a range [l, r]. How could we get the maximum sum subarray in this range?

- The answer lies entirely in the left child or entirely in the right.
- The answer could spans the left and right children.
- So $ans(l,r) = max\{ans(left), ans(right), sum(across)\}.$

Consider a range [l, r]. How could we get the maximum sum subarray in this range?

- The answer lies entirely in the left child or entirely in the right.
- The answer could spans the left and right children.
- So $ans(l, r) = max\{ans(left), ans(right), sum(across)\}.$

How do we get the maximum sum subarray that goes across the left and right children?

Consider a range [l, r]. How could we get the maximum sum subarray in this range?

- The answer lies entirely in the left child or entirely in the right.
- The answer could spans the left and right children.
- So $ans(l,r) = max\{ans(left), ans(right), sum(across)\}.$

How do we get the maximum sum subarray that goes across the left and right children?

Clearly, we need to store more information in the nodes.

Store these information in each node

- Sum of entire subrange contained in the node = node.sum
- Best prefix sum = node.prefix
- Best suffix sum = node.suffix
- · Answer = node.ans

Update queries

- node.sum = left.sum + right.sum
- node.prefix = max(left.prefix, left.sum + right.prefix)
- node.suffix = max(right.suffix, left.suffix + right.sum)
- node.ans = max(left.ans, right.ans, left.suffix + right.prefix

Time Complexity: $O(\log n)$.

Range Updates

So far we have only been dealing with "point updates", where we change only a single input element at a time.

Range Updates

So far we have only been dealing with "point updates", where we change only a single input element at a time.

Suppose now we also need to be update an interval [l, r] – for example, add 3 to every element in an interval. How do we do this?

Range Updates

So far we have only been dealing with "point updates", where we change only a single input element at a time.

Suppose now we also need to be update an interval [l, r] – for example, add 3 to every element in an interval. How do we do this?

Naive way: call *update* once for each element in the interval.

Time Complexity: $O(n \log n)$! Can we do better?

Lazy Propagation

Basic idea

- From range query: range [l, r] = union of ranges represented by $O(\log n)$ nodes, so we can just update value at these nodes!
- Idea: at these nodes, add a "todo" variable saying every leaf in the subtree needs to be updated by x, <u>don't recurse further</u>
- · Update ancestors as usual

Lazy Propagation

Basic idea

- From range query: range [l, r] = union of ranges represented by $O(\log n)$ nodes, so we can just update value at these nodes!
- Idea: at these nodes, add a "todo" variable saying every leaf in the subtree needs to be updated by x, <u>don't recurse further</u>
- · Update ancestors as usual

What if end point of next update/query interval lands in the middle of a node with a "todo"?

- · Before recursing on children, push the "todo" down one level
- · After recursing on children, continue as usual

Feedback

Feedback form: https://forms.gle/HqAufcsFUBNN7yfi7