
CS 5199 – Competition Programming
and Problem Solving Seminar
Segment Tree

Raunak Kumar
Based on slides by Paul Liu, Kuba Karpierz, Bruno Vacherot, Raunak Kumar
and Jason Chiu for CPSC 490 – Problem Solving in Computer Science at The
University of British Columbia
2019/10/07

Cornell University

Data Structures

You are given an array A of n integers. We want to support the
following operations

• Print the array in sorted order.
• Solution: Just sort the array and print it.

• Additionally, allow insertion/deletion of elements.
• Solution: use a different data structure, like a binary search tree.

We have a collection of elements and we would like to support some
operations on these elements.
⇒ Often, the solution is to use specialized data structures.

1

Data Structures

You are given an array A of n integers. We want to support the
following operations

• Print the array in sorted order.
• Solution: Just sort the array and print it.

• Additionally, allow insertion/deletion of elements.
• Solution: use a different data structure, like a binary search tree.

We have a collection of elements and we would like to support some
operations on these elements.
⇒ Often, the solution is to use specialized data structures.

1

Data Structures

You are given an array A of n integers. We want to support the
following operations

• Print the array in sorted order.
• Solution: Just sort the array and print it.

• Additionally, allow insertion/deletion of elements.
• Solution: use a different data structure, like a binary search tree.

We have a collection of elements and we would like to support some
operations on these elements.
⇒ Often, the solution is to use specialized data structures.

1

Range Query

You are given an array A of n integers. How efficiently can you
answer these queries?

• sum(i, j) = A[i] + A[i+1] + ... + A[j]
• min(i, j) = min(A[i], ..., A[j])
• Median
• Mode
• What if we allow updates?

2

Range Query

You are given an array A of n integers. How efficiently can you
answer these queries?

• sum(i, j) = A[i] + A[i+1] + ... + A[j]
• min(i, j) = min(A[i], ..., A[j])
• Median
• Mode

• What if we allow updates?

2

Range Query

You are given an array A of n integers. How efficiently can you
answer these queries?

• sum(i, j) = A[i] + A[i+1] + ... + A[j]
• min(i, j) = min(A[i], ..., A[j])
• Median
• Mode
• What if we allow updates?

2

Range Query with Updates

Given an array A of n integers, perform these queries efficiently:

• update(i, x): set A[i] = x
• sum(i, j): return A[i] + A[i+1] + ... + A[j]

3

Potential Solutions

We could try the following:

• Option 1: Naively perform the 2 queries.
• update(i, x) takes O(1) time
• sum(i, j) takes O(n) time.

• Option 2: Precompute the sum in O(n2) intervals.
• update(i, x) takes O(n) time, to change O(n) intervals
• sum(i, j) takes O(1) time

Can we do better? Can we do a different type of precomputation that
allows us to update and sum fast?

4

Potential Solutions

We could try the following:

• Option 1: Naively perform the 2 queries.
• update(i, x) takes O(1) time
• sum(i, j) takes O(n) time.

• Option 2: Precompute the sum in O(n2) intervals.
• update(i, x) takes O(n) time, to change O(n) intervals
• sum(i, j) takes O(1) time

Can we do better? Can we do a different type of precomputation that
allows us to update and sum fast?

4

Potential Solutions

We could try the following:

• Option 1: Naively perform the 2 queries.
• update(i, x) takes O(1) time
• sum(i, j) takes O(n) time.

• Option 2: Precompute the sum in O(n2) intervals.
• update(i, x) takes O(n) time, to change O(n) intervals
• sum(i, j) takes O(1) time

Can we do better? Can we do a different type of precomputation that
allows us to update and sum fast?

4

Range Query

Given an array A of n integers, answer these queries quickly:

• update(i, x): sets A[i] = x
• sum(i, j): return A[i] + ... + A[j]

Segment tree can solve this in O(log n) per query.

5

Segment Trees

Basic idea: add a lot of layers!

• Segment tree: group every pair together, then every pair of pairs,
then every pair of that, until you get 1 node

Source: http://scvalex.github.io/articles/SegmentTree.html

6

http://scvalex.github.io/articles/SegmentTree.html

Segment Trees – Structure, Update

Structure

• Binary tree of log n layers, 1+ 2+ 4+ · · ·+ n = O(n) nodes
• Leaf node: represent one element
• Internal node: represent union of interval of left + right child

Point Update

• Update leaf
• Update ancestors

7

Segment Trees (Sum Query) – Structure, Update

Structure

• Binary tree of log n layers, 1+ 2+ 4+ · · ·+ n = O(n) nodes
• Leaf node: store value of one element
• Internal node: store sum of left + right child

Point Update

• Update leaf: change value of leaf node
• Update ancestor: re-compute sum of left + right child

8

Segment Trees (Sum Query) – Point Update

9

Segment Trees (Sum Query) – Point Update

9

Segment Trees (Sum Query) – Point Update

9

Segment Trees (Sum Query) – Point Update

9

Segment Trees (Sum Query) – Point Update

9

Segment Trees – Range Query

Range query

• Start at root and recurse down
• Suppose query for [a,b], current node represent [l, r]
• Case 1: [l, r] ⊆ [a,b], return value of current node
• Case 2: [l, r] ̸⊆ [a,b], recurse then combine answer from children

1. If [l,m] ∩ [a,b] ̸= ∅ recurse left child and get answer
2. If [m+ 1, r] ∩ [a,b] ̸= ∅ recurse right child and get answer
3. Combine above two answers

Sum query: add #1 and #2

10

Segment Trees – Range Query

Range query

• Start at root and recurse down
• Suppose query for [a,b], current node represent [l, r]
• Case 1: [l, r] ⊆ [a,b], return value of current node
• Case 2: [l, r] ̸⊆ [a,b], recurse then combine answer from children

1. If [l,m] ∩ [a,b] ̸= ∅ recurse left child and get answer
2. If [m+ 1, r] ∩ [a,b] ̸= ∅ recurse right child and get answer
3. Combine above two answers
Sum query: add #1 and #2

10

Segment Trees (Sum Query) – Range Query

11

Segment Trees (Sum Query) – Range Query

11

Segment Trees (Sum Query) – Range Query

11

Segment Trees (Sum Query) – Range Query

11

Segment Trees (Sum Query) – Range Query

11

Segment Trees (Sum Query) – Range Query

11

Segment Trees (Sum Query) – Range Query

11

Segment Trees (Sum Query) – Range Query

11

Segment Tree - Construction

• You could call update on each element⇒ O(n log n)
• Better: fill from leaf upwards layer by layer⇒ O(n)

12

Segment Tree - Implementation

Approach is similar to e.g. heap implementation

• Store the tree in an array A[1 . . . 2n].
• Root = A[1].
• Children of node i = A[2i] and A[2i+ 1].
• Parent of node i = i/2.

13

Segment Tree - Initialize

1 // Set input size as some large power of 2.
2 const int MAXN = 1 << 17;
3

4 // Store segment tree in a flat array.
5 int T[2*MAXN];

14

Segment Tree - Build

1 void build(int A[MAXN]) {
2 // initialize leaf
3 for (int i = 0; i < MAXN; i++)
4 T[MAXN + i] = A[i];
5

6 // initialize internal nodes, bottom up
7 for (int i = MAXN-1; i > 0; i--) {
8 T[i] = T[2*i] + T[2*i+1];
9 }

10 }

15

Segment Tree - Point Update

1 void update(int x, int val) {
2 // Change the leaf node's value.
3 int v = MAXN + x;
4 T[v] = val;
5

6 // Propagate the change all the way to the root.
7 for (int i = v/2; i > 0; i /= 2)
8 T[i] = T[2*i] + T[2*i + 1];
9 }

16

Segment Tree - Range Query

1 int query(int x, int y, int i=1, int l=0, int r=MAXN-1) {
2 // [l,r] is completely outside [x,y], return 0
3 if (x > r || y < l) return 0;
4

5 // [l,r] is completely in [x,y], return node value
6 if (x <= l && r <= y) return T[i];
7

8 // Otherwise, recurse on children.
9 return query(x, y, 2*i, l, (l+r)/2)

10 + query(x, y, 2*i+1, (l+r)/2+1, r);
11 }

17

Problem 1

Support the following operations on an array A[1 . . .n]

• update (same as before)
• query(l, r) returns the maximum sum subarray within this
subrange.

18

Problem 1 - Solution

Consider a range [l, r]. How could we get the maximum sum subarray
in this range?

• The answer lies entirely in the left child or entirely in the right.
• The answer could spans the left and right children.
• So ans(l, r) = max{ans(left),ans(right), sum(across)}.

How do we get the maximum sum subarray that goes across the left
and right children?

Clearly, we need to store more information in the nodes.

19

Problem 1 - Solution

Consider a range [l, r]. How could we get the maximum sum subarray
in this range?

• The answer lies entirely in the left child or entirely in the right.
• The answer could spans the left and right children.
• So ans(l, r) = max{ans(left),ans(right), sum(across)}.

How do we get the maximum sum subarray that goes across the left
and right children?

Clearly, we need to store more information in the nodes.

19

Problem 1 - Solution

Consider a range [l, r]. How could we get the maximum sum subarray
in this range?

• The answer lies entirely in the left child or entirely in the right.
• The answer could spans the left and right children.
• So ans(l, r) = max{ans(left),ans(right), sum(across)}.

How do we get the maximum sum subarray that goes across the left
and right children?

Clearly, we need to store more information in the nodes.

19

Problem 1 - Solution

Store these information in each node

• Sum of entire subrange contained in the node = node.sum
• Best prefix sum = node.prefix
• Best suffix sum = node.suffix
• Answer = node.ans

Update queries

• node.sum = left.sum + right.sum
• node.prefix = max(left.prefix, left.sum + right.prefix)
• node.suffix = max(right.suffix, left.suffix + right.sum)
• node.ans = max(left.ans, right.ans, left.suffix + right.prefix

Time Complexity: O(log n).

20

Range Updates

So far we have only been dealing with “point updates”, where we
change only a single input element at a time.

Suppose now we also need to be update an interval [l, r] – for
example, add 3 to every element in an interval. How do we do this?

Naive way: call update once for each element in the interval.
Time Complexity: O(n log n)! Can we do better?

21

Range Updates

So far we have only been dealing with “point updates”, where we
change only a single input element at a time.

Suppose now we also need to be update an interval [l, r] – for
example, add 3 to every element in an interval. How do we do this?

Naive way: call update once for each element in the interval.
Time Complexity: O(n log n)! Can we do better?

21

Range Updates

So far we have only been dealing with “point updates”, where we
change only a single input element at a time.

Suppose now we also need to be update an interval [l, r] – for
example, add 3 to every element in an interval. How do we do this?

Naive way: call update once for each element in the interval.
Time Complexity: O(n log n)! Can we do better?

21

Lazy Propagation

Basic idea

• From range query: range [l, r] = union of ranges represented by
O(log n) nodes, so we can just update value at these nodes!

• Idea: at these nodes, add a “todo” variable saying every leaf in
the subtree needs to be updated by x, don’t recurse further

• Update ancestors as usual

What if end point of next update/query interval lands in the middle
of a node with a “todo”?

• Before recursing on children, push the “todo” down one level
• After recursing on children, continue as usual

22

Lazy Propagation

Basic idea

• From range query: range [l, r] = union of ranges represented by
O(log n) nodes, so we can just update value at these nodes!

• Idea: at these nodes, add a “todo” variable saying every leaf in
the subtree needs to be updated by x, don’t recurse further

• Update ancestors as usual

What if end point of next update/query interval lands in the middle
of a node with a “todo”?

• Before recursing on children, push the “todo” down one level
• After recursing on children, continue as usual

22

Lazy Propagation – Lazy Update

23

Lazy Propagation – Lazy Update

23

Lazy Propagation – Lazy Update

23

Lazy Propagation – Lazy Update

23

Lazy Propagation – Lazy Update

23

Lazy Propagation – Lazy Update

23

Lazy Propagation – Lazy Update

23

Lazy Propagation – Lazy Update

23

Lazy Propagation – Lazy Update

23

Lazy Propagation – Lazy Update

23

Lazy Propagation – Range Query

24

Lazy Propagation – Range Query

24

Lazy Propagation – Range Query

24

Lazy Propagation – Range Query

24

Lazy Propagation – Range Query

24

Lazy Propagation – Range Query

24

Lazy Propagation – Range Query

24

Lazy Propagation – Range Query

24

Lazy Propagation – Range Query

24

Lazy Propagation – Range Query

24

Feedback

Feedback form: https://forms.gle/HqAufcsFUBNN7yfi7

25

https://forms.gle/HqAufcsFUBNN7yfi7

