
1

CS519: Computer
Networks

Lecture 5, Part 5: Mar 31, 2004
Queuing and QoS

CS519

Ways to deal with congestion

Host-centric versus router-centric
Reservation-based versus feedback-based
Window-based versus rate-based
The Internet is: host-centric, feedback-
based, and window-based

Because that’s what TCP is
But this is to some extent an “accident” of
TCP’s history

CS519

Alternative approaches

In the mid-90’s, there was a concerted effort
to make Internet QoS more router-centric,
reservation-based, and rate-based

An architecture called Integrated-Services
(“intserv”)
And a resource reservation protocol called
RSVP
This didn’t take off, but its interesting to look
at, and to see where things stand now

CS519

Queuing disciplines

We talked a bit about RED
But in fact, most queuing in the internet is
FIFO with tail-drop

FIFO means First-In-First-Out, like the queue
in a bank

• This is a scheduling discipline

Tail drop means that, if the queue overflows,
you drop the last packet received

• This is a drop policy

2

CS519

Limitations of FIFO . . .

The problem with FIFO is that
aggressive flows can squeeze out
conservative flows

A TCP that doesn’t follow AIMD rules
can grab all the bandwidth
Non-TCP connections (voice) can
grab all the bandwidth

It just isn’t fair!

CS519

Fair Queuing

Use multiple FIFO queues instead of
just one
Assign traffic to queue according to
some policy

Such as type of traffic (voice versus
TCP)
Or by TCP flow

Service each queue in turn

CS519

Fair Queuing
CS519

Fair Queuing issues

Scheduling must be (conceptually) per
bit, not per packet

Else large packet flows get more
bandwidth

Often you want to schedule a short
packet from Q1 that arrived after a
long packet in Q2

Unless of course the long packet is
already in transit . . .

3

CS519

Fair Queuing issues

Perfect “per bit” scheduling of fair
queues a bit expensive

Book defines giving a sending
timestamp to each packet, and then
sending in order, but now you have an
ordering job

I’ll ask you to build simple “reasonable
approximations” in project 4!

CS519

Weighted Fair Queuing

If we want to give higher priority to
some queues over other, we can
schedule bits from some queues more
often than others

“Q1 gets 2 bits for every 1 bit from Q2”
Why do this rather than a strict priority
queuing scheme???

Service Q2 only if Q1 empty, service
Q3 only if Q2 empty, etc…

CS519

Fair Queuing is “work
conserving”

“Work conserving” means:
If there is work to be done, it will be
done

With fair queuing, if any queue has
something to send, it will be sent
Note that this is not the case with pure
circuit switches, where BW has been
reserved whether it is used or not!

CS519

What is a “real-time”
application?

One where the time at which a packet is
“played out” is important

Voice or video . . .
But real-time applications can have
extremely different network requirements

Voice conversation is very bad if delay >
200ms or so
Streaming media can be delayed for many
seconds

• Telnet has much stricter delay requirements!

4

CS519

Play-out (or playback) buffer
CS519

Real-time applications

Some video applications can adapt
bandwidth requirements over a large
range

High-fidelity versus low-fidelity bits
And can therefore tolerate wide BW
variance
Others won’t or can’t do this…

CS519

IETF Intserv (Integrated
Services)

IETF attempt at fine-grained (per-flow) QoS
Resource reservation with admission control

Settled on two types of service:
Guaranteed

i.e. conversational voice
Controlled Load

More tolerant/adaptive realtime applications
(In addition to existing “best effort” service)

CS519

Guaranteed versus Controlled
Load

Guaranteed really requires reserved
resources, careful packet scheduling
Controlled Load is based on the
notion that most realtime apps work
well as long as the network is lightly
loaded

Simply give this class adequate
bandwidth (WFQ), but otherwise treat
FIFO

5

CS519

Flowspec

Recall that the more bursty traffic is, the
quicker queues build up
To make admission control decisions, the
network needs to know how bursty a given
flow is going to be
And, it needs to guarantee that the flow is
no more bursty than it claimed
A flowspec is what describes the traffic
(TSpec) and the network requirements
(RSpec)

CS519

Token bucket (aka Leaky
bucket)

A simple and common way to
describe traffic is with a token bucket
Two parameters:

Rate r (bits per second)
• The size of the hole in the bucket
• (average throughput)

and bucket Depth B (bits)
• The size of the bucket itself
• (max burst size)

CS519

Token bucket policing

A token bucket flowspec (r,B) can be
enforced with a queue of size B that is
serviced at a rate of r
The network can therefore enforce
compliance
The network will tag a non-compliant packet
as “out of spec” rather than drop it

And then drop with higher priority should
there actually be congestion

CS519

Resource Reservation Protocol
(RSVP)

IETF’s version of a “call setup” protocol
Different from a virtual circuit network in
several interesting ways
VCs couple routing and resource
reservation (RR), whereas Internet already
has routing (decoupled from RR)
IETF wanted to allow router failure and not
lose the “call”
IETF wanted to accommodate multicast

6

CS519

RSVP

Recipient makes the actual resource
reservation

But initiator gives the recipient the path to
use
Resource reservation is on reverse path

Reservation is “soft-state”
Network will “forget” the reservation if
recipient doesn’t refresh it
Essentially, the recipient refreshes the
reservation every minute or so!

CS519

An aside: soft-state

Internet community was (still is???)
big on the notion of soft state
Idea is to allow control state to “age”
(timeout) rather than require explicit
deletion of state
More robust, because if state creator
crashes, state goes away naturally
Simpler, because only need state
create commands

CS519

An aside: soft-state

Can be a nice principle if functions degrade
gracefully rather than stop working when
state disappears

RSVP: packet still forwarded, but just
without requested QoS

Or if actual usage (user data packets) is
what refreshes the state

LRU caching is a form of soft state
A nice design principle to keep in mind, but
don’t be religious about it…

CS519

RSVP with multicast

7

CS519

RSVP with multicast
CS519

Intserv failed in the commercial
marketplace

Scaling issues
Core routers can’t handle so much flow state
Rather spend energy on high speed
(rightfully)

Lack of business model?
Requires buy-in from too many communities

ISPs, OS vendors, application developers

CS519

Differentiated Services
(Diffserv)

A more modest (and realistic) proposal from
IETF
No resources reservations
No per-flow handling
Simply define a smallish number of service
classes, encoded in IP’s ToS bits
These bits can be set by ISP edge routers,
handled by internal routers according to ISP
policies

CS519

Example Diffserv deployment
model

8

CS519

Service classes reflect those of
Intserv

EF (Expedited Forwarding)
For highly delay sensitive and
intolerant apps

AF (Assured Forwarding)
To give “high priority” traffic the effect
of a lightly loaded network
12 classes of this

CS519

Several approaches to AF

Weighted RED (or RIO: Red with In
and Out)

Different drop thresholds for different
classes

WFQ
Combinations of these

CS519

Status of Diffserv

I’ve seen it defined for cellular
wireless data networks

Where there is a clear bottleneck and
need for differentiated services

Certainly people believe that this is
the best usage of the IP ToS bits
Not aware that this has taken off for
backbone services

CS519

TCP Friendly Rate Control
(TFRC, RFC3448)

What if you don’t need TCP’s
reliability/sequencing, but want to be
TCP friendly?

A BW-flexible realtime video that can
tolerate some packet loss

TCP behavior can be described by an
equation

Some time called “equation-based
congestion control”

9

CS519

Approaches for TCP-friendly
congestion control

Round-trip delay R
Packet size s
Loss event rate p (receiver feedback
every RTT)
Retransmission timeout tRTO ~ 4R

CS519

Simple TCP model

Bandwidth as function of packet loss:

Assumes triple-duplicate-ACK triggering
retransmission
Does not take timeout into account
Model: single saturated TCP pumping data
into bottleneck

other flows only modeled through packet
loss

CS519

TFRC

Defines an algorithm for
Measuring loss at receiver
Feeding back that info to sender
Measuring RTT at sender
Adjusting send rate accordingly

