CS519: Computer
Networks

Lecture 5, Part 4: Mar 29, 2004
Transport: TCP congestion control

TCP performance
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o We've seen how TCP “the protocol”
works
Sequencing, receive window,
connection setup and teardown
o And we’ve seen techniques to make it
perform well

RTT estimation, sending big packets,
compression, fast timeout

TCP congestion control
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o Now lets finish the picture:
o How TCP avoids and controls
congestion in the network

o Without this, TCP still won’t perform
well...

What is congestion?

€S519
o Lets distinguish between a strict
definition of congestion and a working
definition of congestion

o Strictly:

Congestion occurs anytime more than
one packet competes for the same
link at the same time




° Question:
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o Do we want to prevent instances of
multiple packets competing for the
same link at the same time?

Answer:

€519

o No!

o Pure circuit networks avoid ever having two
packets compete for the same link at the
same time

(more or less)

o By reserving a fixed amount of bandwidth at
each link for each connection

o But as we've already discussed, for bursty
traffic, utilization is low!

° Queues in switches
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o Queues deal with congestion at
packet timescales

Two packets arrive at the same time,
one is queued behind the other

o Queues allow us to increase the
utilization of links
At the expense of packet delay
o In this sense, packet timescale
congestion is actually good!

Delay and throughput
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o With no queue, sender can never
send at more than 400Kbps
o If sender bursty, then bursts are
limited to 400Kbps,

with links unused during periods
between bursts
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o Where network load is large enough

that queues overflow and packets are
lost

o We are also concerned with
“congestion collapse”

3 A

o Delay and throughput ) Load, delay and power
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Queue’s aren’t infinite, packets

° Why congestion collapse?
get dropped y 9 P
£$519 €519
—y :‘_"‘,,;'.:;_}‘;’ éa,ﬁe;;!sw o Lost packets leads to retransmissions
e !'- 1 Colayse / o Retransmissions add to load, resulting
| " | L in more lost packets
l o e )
i I | P / o Packets may go several hops before
| / | 7 \ ¥ being dropped
!u /-/ . 1 /-/ \\ Using up resources along the way
_ ' EA— o Note congestion collapse doesn’t occur
loa & ]‘ Voo d where there are no retransmissions
ot
(a’w

TCP was causing congestion

collapse
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o In the late 1980’s---Internet was
becoming unusable!

o Solution attributed to Van Jacobsen

o Problem was that the network did not
signal the host when there was
congestion

ICMP source quench wasn’t widely
implemented

° TCP congestion control
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o Basic idea:

TCP gently “probes” the network to
determine its capacity

Uses dropped packets as a sign of
congestion

Backs off when congestion sensed




° TCP congestion control goals ° Ideal TCP behavior
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o First and foremost, prevent o Bottleneck bandwidth determines
congestion collapse inter-packet spacing
o Also, fairly apportion resources Sender should space packets
Each TCP flow gets an equal amount -
of the link bandwidth \ L] L] \
o While achieving good performance ﬂ
Keep the pipe full, but not too full!
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How can TCP sender space How can TCP sender space
packets properly? packets properly?
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o Any ideas?

o Simple solution: use returned ACKs
to clock packets out!

sender

receiver




[ Ideal TCP behavior
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o Get the pipe full
o Once full, use return ACKs to clock
out new packets

o Now the question is, how to you know
when the pipe is full???

Answer:
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o You don’t know when the pipe is full!
o You only know when it is too full!
When there is a packet loss
Actually, more recent work challenges
this...
o So, what TCP does is slowly fill the
pipe until it is too full, then drain the
pipe some and start filling again . . .

° TCP congestion control
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o Sender maintains two windows:

The advertised receive window we learned
about

A congestion window (cwnd)
o The actual window is the minimum of the
two:
Window = min{Advertized window, cwnd}

o In other words, send at the rate of the
slowest component: network or receiver

Setting the congestion window

(cwnd)
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o Increase cwnd conservatively
o Decrease cwnd aggressively

When loss detected, cut in half!

Multiplicative decrease
o Cwnd increase has two phases:

Additive phase (when pipe is full)

Multiplicative phase (when pipe is empty)

Called “slow start”!




AIMD: Additive Increase
Multiplicative Decrease

o Used when pipe is full
o Every RTT, add one “packet” to the
cwnd
Actually, one MSS worth of bytes

Since multiple ACKs per RTT, a
fraction of MSS added per ACK

€S519

o If loss detected (timeout or duplicate

ACKs), decrease cwnd by half

Additive Increase
£$519
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time to get started! t

Could take a long >

“Slow start”
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o Additive increase takes too long to fill
pipe when pipe is empty
i.e. at the beginning of a connection
o During slow start, double the cwnd
every RTT

Increase the cwnd for every ACK
received




° Two reasons for an empty pipe
£s519

Slow start
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o Beginning of the connection

In this case, do “slow start” until

packet loss
o Restart after a “stalled connection”
If timeout, then the pipe is empty
In this case, we remember the
previous cwnd
Do slow start until cwnd reaches 1/2

the previous cwnd, then do additive
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Fast Recovery
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o Recall fast retransmit
Retransmit after three duplicate ACKs

(don’t wait for a timeout)
o We can also use the duplicate ACKs
to avoid dropping all the way back to

slow start
o This is called fast recovery (always

implemented as part of fast
retransmit)

Fast Recovery Example
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o If we get 3 duplicate acks for segment N dup ACKs
Retransmit segment N H
Set ssthresh to 0.5*cwnd E-
Set cwnd to ssthresh + 3 =E
o For every subsequent duplicate ack = =6 E ,/‘a.:vz retransmit
Increase cwnd by 1 segment s 5 after 3 dup ACKs
o When new ack received H =§ ¢
Reset cwnd to ssthresh (resume congestion - = g °
avoidance)
1.0000 2.0000 3.0




TCP performance again...
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o TCP performs poorly if the pipe empties
o The pipe empties if a timeout occurs
o A timeout occurs if not enough packets

were sent after the lost packet to trigger fast
retransmit

o Unfortunately, drop-tail is likely to drop the
last packets of a burst!

Drop-tail is router drop policy that drops all
packets that overflow the queue

Random Early Detection (RED)
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o Modifies the router drop policy to make TCP
perform better
o Drop occasional packets before the queue
is full, to avoid dropping many packets from
a burst
o Select packet to drop randomly, so that a
given burst will have only a single packet
dropped

And later packets passed to trigger fast
retransmission

RED
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o Queue has two thresholds, min and
max

o If queue below min, don’t drop

o If queue above max, drop all received
packets

o If queue between min and max, drop
received packet with some probability

Increase probability with time from last
drop

But why drop at all????

Congestion Avoidance
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o Dropping not so bad for a long file transfer
o But can be noticeable for interactive
applications

o Would be nice to avoid dropping at all
o Two ways to avoid dropping:

Explicit Congestion Notification from routers

Detect increasing queues before a drop
occurs




ECN (Explicit Congestion

Notification)
£S519
o DECNet had this back in the 80s!
“DEC bit”
o Router sets a bit in the packet if queues are
above a threshold
Receiver echoes bit back to sender
o ECNis an IETF standard for use in
conjunction with RED (RFC3168)
Two IP TOS bits defined for this
Plus new flags defined for TCP

Source-based congestion

avoidance
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o A router’s queue starts to fill when the
outgoing link capacity is reached
o When this happens, the sender will see:
Constant throughput (because capacity has
been reached)
Increasing RTT (because of increasing wait
in router queue)
o Sender can look for this, and back-off
before packets are dropped!

TCPSIM: Time evolution of & TCP flow#(RTT 142ms, BW 8000kb, buffer 142 plis of 1000 bytes)
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Sending Rate [Pkis's]
Cong. Window [Fhis*10

Additional TCP issues
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o TCP assumes that a timeout is the result of
a lost packet due to congestion
o But, on many wireless links, timeouts occur
because of temporary bad reception
o We don’t want the sender to back-off!
o Often a TCP-aware box placed at the
Internet-wireless interface can trick the
sender into not backing off




° Additional TCP issues
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o TCP performs poorly on very large
delay X bandwidth pipes
o Takes too long to fill the pipe (slow
start)
Performance dominated by RTT
o In this case, would like routers to tell
the sender what cwnd to use from the
start!
XTP

TCP status
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o Most TCP is still slow-start, AIMD,
fast-retransmit/fast-recovery
o RED implemented, but rarely turned
on

o TCP issues remain as wireless is

more pervasive, and as pipes get
fatter and longer




