CS519: Computer
Networks

Lecture 5, Part 4: Mar 29, 2004
Transport: TCP congestion control

TCP performance

€S519
o We've seen how TCP “the protocol”
works
Sequencing, receive window,
connection setup and teardown
o And we’ve seen techniques to make it
perform well

RTT estimation, sending big packets,
compression, fast timeout

TCP congestion control

£s519
o Now lets finish the picture:
o How TCP avoids and controls
congestion in the network

o Without this, TCP still won’t perform
well...

What is congestion?

€S519
o Lets distinguish between a strict
definition of congestion and a working
definition of congestion

o Strictly:

Congestion occurs anytime more than
one packet competes for the same
link at the same time

° Question:

£$519
o Do we want to prevent instances of
multiple packets competing for the
same link at the same time?

Answer:

€519

o No!

o Pure circuit networks avoid ever having two
packets compete for the same link at the
same time

(more or less)

o By reserving a fixed amount of bandwidth at
each link for each connection

o But as we've already discussed, for bursty
traffic, utilization is low!

° Queues in switches

£S519
o Queues deal with congestion at
packet timescales

Two packets arrive at the same time,
one is queued behind the other

o Queues allow us to increase the
utilization of links
At the expense of packet delay
o In this sense, packet timescale
congestion is actually good!

Delay and throughput

£$519
o With no queue, sender can never
send at more than 400Kbps
o If sender bursty, then bursts are
limited to 400Kbps,

with links unused during periods
between bursts

omeps Yoo lulLpS

l der
|

£S519
o Where network load is large enough

that queues overflow and packets are
lost

o We are also concerned with
“congestion collapse”

3 A

o Delay and throughput) Load, delay and power
£S519 €$519
o With a queue, sender can burst at Typical behavior of queuing A simple metric of how well the
10Mbps systems with random arrivals: network is performing:
o Burst will start to fill the queue Power — Load
o After burst is over, queue empties Burstiness tends 1o move Delay
|nt0 SIOW ||nk asymptote to the left,
Link utilized during silent periods! Average Power
Packet delay
oMmLes j————7 HoollLpS — s
~oad “optimal 1004
!_ﬂ'““q“" /(/)(/(i"/
Slide from Nick McKeown, Stanford
" . Load, delay, and throughput:
° Our definition of congestion y ghp

what’s wrong with this picture??
€s519
mex gw

lowd /‘ load

Queue’s aren’t infinite, packets

° Why congestion collapse?
get dropped y 9 P
£$519 €519
—y :‘_"‘,,;'.:;_}‘;’ éa,ﬁe;;!sw o Lost packets leads to retransmissions
e !'- 1 Colayse / o Retransmissions add to load, resulting
| " | L in more lost packets
l o e)
i I | P / o Packets may go several hops before
| / | 7 \ ¥ being dropped
!u /-/ . 1 /-/ \\ Using up resources along the way
_ ' EA— o Note congestion collapse doesn’t occur
loa &]‘ Voo d where there are no retransmissions
ot
(a’w

TCP was causing congestion

collapse
€$519
o In the late 1980’s---Internet was
becoming unusable!

o Solution attributed to Van Jacobsen

o Problem was that the network did not
signal the host when there was
congestion

ICMP source quench wasn’t widely
implemented

° TCP congestion control

Cs519
o Basic idea:

TCP gently “probes” the network to
determine its capacity

Uses dropped packets as a sign of
congestion

Backs off when congestion sensed

° TCP congestion control goals ° Ideal TCP behavior
£$519 €519
o First and foremost, prevent o Bottleneck bandwidth determines
congestion collapse inter-packet spacing
o Also, fairly apportion resources Sender should space packets
Each TCP flow gets an equal amount -
of the link bandwidth \ L] L] \
o While achieving good performance ﬂ
Keep the pipe full, but not too full!
\ 1 1
—_—
How can TCP sender space How can TCP sender space
packets properly? packets properly?
£s519 £$519

o Any ideas?

o Simple solution: use returned ACKs
to clock packets out!

sender

receiver

[Ideal TCP behavior

£S519
o Get the pipe full
o Once full, use return ACKs to clock
out new packets

o Now the question is, how to you know
when the pipe is full???

Answer:

€519
o You don’t know when the pipe is full!
o You only know when it is too full!
When there is a packet loss
Actually, more recent work challenges
this...
o So, what TCP does is slowly fill the
pipe until it is too full, then drain the
pipe some and start filling again . . .

° TCP congestion control

£S519
o Sender maintains two windows:

The advertised receive window we learned
about

A congestion window (cwnd)
o The actual window is the minimum of the
two:
Window = min{Advertized window, cwnd}

o In other words, send at the rate of the
slowest component: network or receiver

Setting the congestion window

(cwnd)
€S519

o Increase cwnd conservatively
o Decrease cwnd aggressively

When loss detected, cut in half!

Multiplicative decrease
o Cwnd increase has two phases:

Additive phase (when pipe is full)

Multiplicative phase (when pipe is empty)

Called “slow start”!

AIMD: Additive Increase
Multiplicative Decrease

o Used when pipe is full
o Every RTT, add one “packet” to the
cwnd
Actually, one MSS worth of bytes

Since multiple ACKs per RTT, a
fraction of MSS added per ACK

€S519

o If loss detected (timeout or duplicate

ACKs), decrease cwnd by half

Additive Increase
£$519

Destination

Source

° ‘ The famous AIMD sawtooth

Window
'y

Timfoufs | | |

halved

£s519

time to get started! t

Could take a long >

“Slow start”

€S519
o Additive increase takes too long to fill
pipe when pipe is empty
i.e. at the beginning of a connection
o During slow start, double the cwnd
every RTT

Increase the cwnd for every ACK
received

° Two reasons for an empty pipe
£s519

Slow start

£S519
o Beginning of the connection

In this case, do “slow start” until

packet loss
o Restart after a “stalled connection”
If timeout, then the pipe is empty
In this case, we remember the
previous cwnd
Do slow start until cwnd reaches 1/2

the previous cwnd, then do additive

Destination

Source

0.3000 — =

° Slow start : e
0.2500 — |Slow start H
£S519 0.2000 packet ;
Window) Sequence E

t Timeouts 0.1500 — T e
0.1000 — : S

oum
L LIT]

J I/I/ 0.0500 —
7halved 0.0000 — .

ExponeriialTaion Slow start in operation —0 .0500 :
"\ until it reaches half of
S previous cwnd 0.0000 1.0000 2.0000

Fast Recovery
£s519

L
@
[]

808050,

SBag,

Continued
S519

(slow start to
Y2 previous

ﬂwmuu:umaﬂll'l|...ll.

""uuG:uwalln.““.

cwnd)

000005, ""innngy
9000500, iNnggy

o000, uangy,

L LT T TT]

L1}
ALY

o Recall fast retransmit
Retransmit after three duplicate ACKs

(don’t wait for a timeout)
o We can also use the duplicate ACKs
to avoid dropping all the way back to

slow start
o This is called fast recovery (always

implemented as part of fast
retransmit)

Fast Recovery Example

00pg

£S519

Q

Fast Retransmit and Recovery

fast recovery
due to add’tl

'
[} []
000gg, My,

£S519
o If we get 3 duplicate acks for segment N dup ACKs
Retransmit segment N H
Set ssthresh to 0.5*cwnd E-
Set cwnd to ssthresh + 3 =E
o For every subsequent duplicate ack = =6 E ,/‘a.:vz retransmit
Increase cwnd by 1 segment s 5 after 3 dup ACKs
o When new ack received H =§ ¢
Reset cwnd to ssthresh (resume congestion - = g °
avoidance)
1.0000 2.0000 3.0

TCP performance again...

£$519
o TCP performs poorly if the pipe empties
o The pipe empties if a timeout occurs
o A timeout occurs if not enough packets

were sent after the lost packet to trigger fast
retransmit

o Unfortunately, drop-tail is likely to drop the
last packets of a burst!

Drop-tail is router drop policy that drops all
packets that overflow the queue

Random Early Detection (RED)

€519
o Modifies the router drop policy to make TCP
perform better
o Drop occasional packets before the queue
is full, to avoid dropping many packets from
a burst
o Select packet to drop randomly, so that a
given burst will have only a single packet
dropped

And later packets passed to trigger fast
retransmission

RED

£S519

o Queue has two thresholds, min and
max

o If queue below min, don’t drop

o If queue above max, drop all received
packets

o If queue between min and max, drop
received packet with some probability

Increase probability with time from last
drop

But why drop at all????

Congestion Avoidance
€519
o Dropping not so bad for a long file transfer
o But can be noticeable for interactive
applications

o Would be nice to avoid dropping at all
o Two ways to avoid dropping:

Explicit Congestion Notification from routers

Detect increasing queues before a drop
occurs

ECN (Explicit Congestion

Notification)
£S519
o DECNet had this back in the 80s!
“DEC bit”
o Router sets a bit in the packet if queues are
above a threshold
Receiver echoes bit back to sender
o ECNis an IETF standard for use in
conjunction with RED (RFC3168)
Two IP TOS bits defined for this
Plus new flags defined for TCP

Source-based congestion

avoidance
€519
o A router’s queue starts to fill when the
outgoing link capacity is reached
o When this happens, the sender will see:
Constant throughput (because capacity has
been reached)
Increasing RTT (because of increasing wait
in router queue)
o Sender can look for this, and back-off
before packets are dropped!

TCPSIM: Time evolution of & TCP flow#(RTT 142ms, BW 8000kb, buffer 142 plis of 1000 bytes)

T T T T T T
Packet Drops [Pkis/s*10]

Sending Rate [Pkis's]
Cong. Window [Fhis*10

Additional TCP issues

€S519
o TCP assumes that a timeout is the result of
a lost packet due to congestion
o But, on many wireless links, timeouts occur
because of temporary bad reception
o We don’t want the sender to back-off!
o Often a TCP-aware box placed at the
Internet-wireless interface can trick the
sender into not backing off

° Additional TCP issues

£$519
o TCP performs poorly on very large
delay X bandwidth pipes
o Takes too long to fill the pipe (slow
start)
Performance dominated by RTT
o In this case, would like routers to tell
the sender what cwnd to use from the
start!
XTP

TCP status

€519
o Most TCP is still slow-start, AIMD,
fast-retransmit/fast-recovery
o RED implemented, but rarely turned
on

o TCP issues remain as wireless is

more pervasive, and as pipes get
fatter and longer

