
1

CS519: Computer
Networks

Lecture 5, Part 4: Mar 29, 2004
Transport: TCP congestion control

CS519

TCP performance

We’ve seen how TCP “the protocol”
works

Sequencing, receive window,
connection setup and teardown

And we’ve seen techniques to make it
perform well

RTT estimation, sending big packets,
compression, fast timeout

CS519

TCP congestion control

Now lets finish the picture:
How TCP avoids and controls
congestion in the network
Without this, TCP still won’t perform
well…

CS519

What is congestion?

Lets distinguish between a strict
definition of congestion and a working
definition of congestion
Strictly:

Congestion occurs anytime more than
one packet competes for the same
link at the same time

2

CS519

Question:

Do we want to prevent instances of
multiple packets competing for the
same link at the same time?

CS519

Answer:

No!
Pure circuit networks avoid ever having two
packets compete for the same link at the
same time

(more or less)
By reserving a fixed amount of bandwidth at
each link for each connection
But as we’ve already discussed, for bursty
traffic, utilization is low!

CS519

Queues in switches

Queues deal with congestion at
packet timescales

Two packets arrive at the same time,
one is queued behind the other

Queues allow us to increase the
utilization of links

At the expense of packet delay
In this sense, packet timescale
congestion is actually good!

CS519

Delay and throughput

With no queue, sender can never
send at more than 400Kbps
If sender bursty, then bursts are
limited to 400Kbps,

with links unused during periods
between bursts

3

CS519

Delay and throughput

With a queue, sender can burst at
10Mbps
Burst will start to fill the queue
After burst is over, queue empties
into slow link

Link utilized during silent periods!

CS519

Load, delay and power

Average
Packet delay

Load

Typical behavior of queuing
systems with random arrivals:

Power

Load

A simple metric of how well the
network is performing:

LoadPower
Delay

=

“optimal
load”

Burstiness tends to move
asymptote to the left

Slide from Nick McKeown, Stanford

CS519

Our definition of congestion

Where network load is large enough
that queues overflow and packets are
lost
We are also concerned with
“congestion collapse”

CS519

Load, delay, and throughput:
what’s wrong with this picture??

4

CS519

Queue’s aren’t infinite, packets
get dropped

CS519

Why congestion collapse?

Lost packets leads to retransmissions
Retransmissions add to load, resulting
in more lost packets
Packets may go several hops before
being dropped

Using up resources along the way
Note congestion collapse doesn’t occur
where there are no retransmissions

CS519

TCP was causing congestion
collapse

In the late 1980’s---Internet was
becoming unusable!
Solution attributed to Van Jacobsen
Problem was that the network did not
signal the host when there was
congestion

ICMP source quench wasn’t widely
implemented

CS519

TCP congestion control

Basic idea:
TCP gently “probes” the network to
determine its capacity
Uses dropped packets as a sign of
congestion
Backs off when congestion sensed

5

CS519

TCP congestion control goals

First and foremost, prevent
congestion collapse
Also, fairly apportion resources

Each TCP flow gets an equal amount
of the link bandwidth

While achieving good performance
Keep the pipe full, but not too full!

CS519

Ideal TCP behavior

Bottleneck bandwidth determines
inter-packet spacing

Sender should space packets

CS519

How can TCP sender space
packets properly?

Any ideas?
CS519

How can TCP sender space
packets properly?

Simple solution: use returned ACKs
to clock packets out!

receiversender

6

CS519

Ideal TCP behavior

Get the pipe full
Once full, use return ACKs to clock
out new packets

Now the question is, how to you know
when the pipe is full???

CS519

Answer:

You don’t know when the pipe is full!
You only know when it is too full!

When there is a packet loss
Actually, more recent work challenges
this…

So, what TCP does is slowly fill the
pipe until it is too full, then drain the
pipe some and start filling again . . .

CS519

TCP congestion control

Sender maintains two windows:
The advertised receive window we learned
about
A congestion window (cwnd)

The actual window is the minimum of the
two:

Window = min{Advertized window, cwnd}
In other words, send at the rate of the
slowest component: network or receiver

CS519

Setting the congestion window
(cwnd)

Increase cwnd conservatively
Decrease cwnd aggressively

When loss detected, cut in half!
Multiplicative decrease

Cwnd increase has two phases:
Additive phase (when pipe is full)
Multiplicative phase (when pipe is empty)

• Called “slow start”!

7

CS519

AIMD: Additive Increase
Multiplicative Decrease

Used when pipe is full
Every RTT, add one “packet” to the
cwnd

Actually, one MSS worth of bytes
Since multiple ACKs per RTT, a
fraction of MSS added per ACK

If loss detected (timeout or duplicate
ACKs), decrease cwnd by half

CS519

Additive Increase

S
ou

rc
e

D
es

tin
at

io
n

…

CS519

The famous AIMD sawtooth

t

Window

halved

Timeouts

Could take a long
time to get started!

CS519

“Slow start”

Additive increase takes too long to fill
pipe when pipe is empty

i.e. at the beginning of a connection
During slow start, double the cwnd
every RTT

Increase the cwnd for every ACK
received

8

CS519

Slow start

S
ou

rc
e

D
es

tin
at

io
n

…

CS519

Two reasons for an empty pipe

Beginning of the connection
In this case, do “slow start” until
packet loss

Restart after a “stalled connection”
If timeout, then the pipe is empty
In this case, we remember the
previous cwnd
Do slow start until cwnd reaches 1/2
the previous cwnd, then do additive

CS519

Slow start

halved

Timeouts

Exponential “slow
start”

t

Window

Slow start in operation
until it reaches half of

previous cwnd.

CS519
Slow start
packet
sequence

9

CS519
Continued
(slow start to
½ previous
cwnd)

CS519

Fast Recovery

Recall fast retransmit
Retransmit after three duplicate ACKs
(don’t wait for a timeout)

We can also use the duplicate ACKs
to avoid dropping all the way back to
slow start
This is called fast recovery (always
implemented as part of fast
retransmit)

CS519

Fast Retransmit and Recovery

If we get 3 duplicate acks for segment N
Retransmit segment N
Set ssthresh to 0.5*cwnd
Set cwnd to ssthresh + 3

For every subsequent duplicate ack
Increase cwnd by 1 segment

When new ack received
Reset cwnd to ssthresh (resume congestion
avoidance)

CS519

Fast Recovery Example

fast retransmit
after 3 dup ACKs

fast recovery
due to add’tl
dup ACKs

10

CS519

TCP performance again…

TCP performs poorly if the pipe empties
The pipe empties if a timeout occurs
A timeout occurs if not enough packets
were sent after the lost packet to trigger fast
retransmit
Unfortunately, drop-tail is likely to drop the
last packets of a burst!

Drop-tail is router drop policy that drops all
packets that overflow the queue

CS519

Random Early Detection (RED)

Modifies the router drop policy to make TCP
perform better
Drop occasional packets before the queue
is full, to avoid dropping many packets from
a burst
Select packet to drop randomly, so that a
given burst will have only a single packet
dropped

And later packets passed to trigger fast
retransmission

CS519

RED

Queue has two thresholds, min and
max
If queue below min, don’t drop
If queue above max, drop all received
packets
If queue between min and max, drop
received packet with some probability

Increase probability with time from last
drop

CS519

But why drop at all????
Congestion Avoidance

Dropping not so bad for a long file transfer
But can be noticeable for interactive
applications
Would be nice to avoid dropping at all
Two ways to avoid dropping:

Explicit Congestion Notification from routers
Detect increasing queues before a drop
occurs

11

CS519

ECN (Explicit Congestion
Notification)

DECNet had this back in the 80s!
“DEC bit”

Router sets a bit in the packet if queues are
above a threshold

Receiver echoes bit back to sender
ECN is an IETF standard for use in
conjunction with RED (RFC3168)

Two IP TOS bits defined for this
Plus new flags defined for TCP

CS519

Source-based congestion
avoidance

A router’s queue starts to fill when the
outgoing link capacity is reached
When this happens, the sender will see:

Constant throughput (because capacity has
been reached)
Increasing RTT (because of increasing wait
in router queue)

Sender can look for this, and back-off
before packets are dropped!

CS519 CS519

Additional TCP issues

TCP assumes that a timeout is the result of
a lost packet due to congestion
But, on many wireless links, timeouts occur
because of temporary bad reception
We don’t want the sender to back-off!
Often a TCP-aware box placed at the
Internet-wireless interface can trick the
sender into not backing off

12

CS519

Additional TCP issues

TCP performs poorly on very large
delay X bandwidth pipes
Takes too long to fill the pipe (slow
start)

Performance dominated by RTT
In this case, would like routers to tell
the sender what cwnd to use from the
start!

XTP

CS519

TCP status

Most TCP is still slow-start, AIMD,
fast-retransmit/fast-recovery
RED implemented, but rarely turned
on
TCP issues remain as wireless is
more pervasive, and as pipes get
fatter and longer

