Lucent Technologies
Bell Labs Innovations

PassageWayr
Telephony Services
for Windows NTC
Release 2.31

Javao Telephony API (JTAPI)
Client Programmer’s Guide
Issue 1.0 October 1997

Copyright [0 1997 Lucent Technologies Inc.
All Rights Reserved
Printed in U.S.A.

Notice

Every effort was made to ensure that the information in this book was complete and accurate at the time of printing.
However, information is subject to change.

Your Responsibility for Your System’s Security

Toll fraud is the unauthorized use of your telecommunications system by an unauthorized party, for example, persons
other than your company’s employees, agents, subcontractors, or persons working on your company’s behalf. Note that
there may be a risk of toll fraud associated with your telecommunications system and, if toll fraud occurs, it can result in
substantial additional charges for your telecommunications services.

You and your system manager are responsible for the security of your system, such as programming and configuring
your equipment to prevent unauthorized use. The system manager is also responsible for reading all installation,
instruction, and system administration documents provided with this product in order to fully understand the features
that can introduce risk of toll fraud and the steps that can be taken to reduce that risk. Lucent Technologies does not
warrant that this product is immune from or will prevent unauthorized use of common-carrier telecommunication
services or facilities accessed through or connected to it. Lucent Technologies will not be responsible for any charges
that result from such unauthorized use.

Lucent Technologies Fraud Intervention

If you suspect that you are being victimized by toll fraud and you need technical support or assistance, call Technical
Service Center Toll Fraud Intervention Hotline at 1 800 643 2353.

Obtaining Products

To learn more about Lucent Technologies products and to order products, contact Lucent Direct, the direct-market
organization of Lucent Technologies Business Communications Systems. Access their web site at
www.lucentdirect.com. Or call the following numbers: customers 1 800 451 2100, account executives 1 800 778 1881
(fax) or 1 800 778 1880 (voice).

Trademarks

Adobe, Acrobat, and the Acrobat logo are trademarks of Adobe Systems Incorporated, which may be registered in
certain jurisdictions.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries.

PassageWay and the Lucent Technologies logotype are registered trademarks of Lucent Technologies Incorporated.
Windows NT is a registered trademark of Microsoft Corp.
All products and company names are trademarks or registered trademarks of their respective holders.

Comments

If you have comments, complete and return the comment card at the end of this document.

Acknowledgment

This document was prepared by BCS Product Publications, Lucent Technologies, Middletown, NJ 07748-9972.

Contents
= About This Guide Vii
M= Telephony Services Implementation of JTAPI for
All Switches and the DEFINITY Switch 1-1
m Using Telephony Services Extensions to JTAPI
Exceptions 2-1
W EXIeNsIons 10 J TAPT EXCeptions
@ USINg Telephony Services DETINTT V-Spacitic
Extensions to JTAPI 3-1
m DEFINITY-Specific Extensions
m Using Telephony Services Private Data
Extensions to JTAPI 4-1

m Private Data Extensions

m Telephony Services Implementation of JTAPI for
Private Data A-1

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 iii

About This Guide

Contents
What is JTAPI? vii
What is the PassageWay Telephony Services Java

Client? viii

Purpose and Scope ix
Finding What You Need X
Navigating through the Document xii
Related Documents xii

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 v

About This Guide

What is JTAPI?

The Javall Telephony API (JTAPI) specifies the standard telephony application
programming interface for computer-telephone applications under Java. It is the
definition for a reuseable set of call control objects that bring cross-platform and
cross-implementation portability to telephony applications. It is a simple,
extensible, object-oriented model that addresses a broad range of computer-
telephony tasks.

The Java Telephony API represents the combined efforts of design teams from

Sun, Lucent Technologies, Nortel, Novell, Intel, and IBM, all operating under the
direction of JavaSoft.

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 vii

About This Guide

What is the PassageWay Telephony
Services Java Client?

The JTAPI specification, as published under the direction of JavaSoft, is a set of
Java interfaces. It requires an implementation of the defined interfaces in the
form of Java classes in order to produce a working product. The Lucent
Technologies PassageWay Telephony Services Java client is an implementation
of the Java classes required to support the JTAPI interfaces.

The Telephony Services Java client communicates with a Telephony Services
driver (i.e., a service provider) to execute the telephony requests to control the
actual switching elements. The Telephony Services drivers use Lucent
Technologies Telephony Services Application Programmer’s Interface (TSAPI)
interfaces to present their services. Therefore, the Telephony Services Java
client can only present the functions and services supplied by TSAPI and
TSAPI's associated private data.

Since the Telephony Services Java client uses TSAPI as its vehicle to
communicate with the Telephony Services drivers, the Telephony Services Java
client has extended JTAPI to give the application additional information
(provided by TSAPI) to help understand exceptions in greater detail. In addition
to the parameters specified in the JTAPI protocol, the Telephony Services Java
client can also deliver private data to the application that is unique to each
switching environment. This additional information is provided by the switch
providers in the private data that accompanies TSAPI messages.

Included in the Telephony Services Java client is a set of Java interfaces that
gives the application programmer access to the private data information used by
the DEFINITY Enterprise Communications Server (ECS). This allows the
application programmer to access additional switch features not available
through standard JTAPI. Application programmers who want their applications to
run on multiple TSAPI switches must “special-case” their code using these
extensions.

For switches other than DEFINITY, the Telephony Services Java client
implements the JTAPI private data package. This exposes TSAPI private data
directly to the application. Additional interfaces have been defined to allow the
application programmer to translate from TSAPI constructs to JTAPI objects and
allow the interpretation of private TSAPI information to JTAPI objects.

viii Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

About This Guide

Purpose and Scope

This document describes:

m the Lucent Technologies generic implementation of JTAPI on PassageWay
Telephony Services. This implementation provides a programming
environment that may be used with any switch for which there is a
PassageWay Telephony Services driver.

= the Lucent Technologies PassageWay Telephony Services' implementation
of JTAPI that provides Telephony Services extensions to JTAPI exceptions
for those application programmers who want to use TSAPI-specific error
codes. This implementation provides a programming environment that may
be used with any switch for which there is a PassageWay Telephony
Services driver.

= the Telephony Services implementation of JTAPI that applies to clients using
the DEFINITY switch and the associated PassageWay Telephony Services
driver, the G3 PBX driver (G3PD). This implementation provides a
programming environment that makes available DEFINITY-specific features.

m the Telephony Services implementation of JTAPI for private data. This
implementation is targeted to independent switch vendors who want to use
the private data programming mechanism to create private data packages,
or application programmers who want to use or interpret private data that is
provided in its raw form.

This document assumes a familiarity with the Java programming language and
JTAPI and, for application programmers who want to use the TSAPI-specific
information, TSAPI. For those readers interested in private data, it assumes a
familiarity with TSAPI and its private data mechanism.

Hereafter, the phrase “Telephony Services implementation of JTAPI” indicates the Lucent
Technologies PassageWay Telephony Services implementation of JTAPI.

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 ix

About This Guide

Finding What You Need (Generic
JTAPI and DEFINITY-Specific)

If you are an application programmer using the Telephony Services generic
implementation of JTAPI to develop applications for all switches for which there
is a PassageWay Telephony Services driver, or for the DEFINITY switch and the
G3PD, find the appropriate description and refer to the associated chapters in

the table below:

Who: an application
programmer

What: Telephony Services
generic implementation of
JTAPI

To do: programming with
JTAPI for any switch for
which there is a
PassageWay Telephony
Services driver

Be familiar with:

= Java

s JTAPI

m TSAPI (optional)

. 1) A programming

environment for applications
used with any switch for
which there is a
PassageWay Telephony
Services driver;

2) A programming
environment that makes
available TSAPI-specific
information (optional)

[Chapter 1 Telephony

Services Implementation
of JTAPI for All Switches
and the DEFINITY
Switch”

[Craper 2 Jusing

Telephony Services
Extensions to JTAPI
Exceptions” (optional)

Who: an application
programmer

What: Telephony Services
implementation of JTAPI
To do: programming with
JTAPI for applications used
with the DEFINITY switch
and the G3PD

Be familiar with:

= Java

s JTAPI

m TSAPI (optional)

1) A programming
environment for applications
used with the DEFINITY
switch and the G3PD;

2) A programming
environment that makes
available DEFINITY-specific
features;

3) A programming
environment that makes
available TSAPI-specific
information (optional)

[Chapter 1, [Telephony

Services Implementation
of JTAPI for All Switches
and the DEFINITY
Switch”

[CRapter 3.1 Using
Telephony Services
DEFINITY-Specific

Extensions to JTAPI”

[CRapter 2 Using
Telephony Services
Extensions to JTAPI
Exceptions” (optional)

x lIssue 1.0 October 1997 JTAPI Client Programmer’s Guide

About This Guide

Finding What You Need (Non-
DEFINITY Private Data)

If you are an independent switch vendor who is using the JTAPI private data
programming environment to develop a private data package for non-DEFINITY
switches, or an application programmer who is using or interpreting private data
in a raw form, find the appropriate description and refer to the associated
chapters in the table below:

Who: An independent
switch vendor

What: Telephony Services
implementation of JTAPI for
applications using private
data

To do: Programming with
JTAPI and TSAPI to produce
private data packages for
applications used with non-
DEFINITY switches and their
associated drivers

Be familiar with:

_provides:
A programming environment
to produce private data
packages that may be used
with any non-DEFINITY
switch and its associated

PassageWay Telephony
Services driver

= [Chapter 4, Using

Telephony Services
Private Data Extensions
to JTAPI”

m |Appendix A, {Telephony

Services Implementation
of JTAPI for Private
Data”

= Java
s JTAPI
m TSAPI
m TSAPI's private data
mechanism
Who: An application A programming environment | m |Chapter 4, |Using
programmer to use or interpret private Telephony Services

What: Telephony Services
implementation of JTAPI for
applications using private
data

To do: Programming with
JTAPI and TSAPI to use or
interpret private data for
applications used with non-
DEFINITY switches and their
associated drivers

Be familiar with:

= Java

s JTAPI

m TSAPI

m TSAPI's private data
mechanism

data, in a raw form, without
an intermediate private data
package, for applications
used with any non-DEFINITY
switch and its associated
PassageWay Telephony
Services driver

Private Data Extensions
to JTAPI”

m [Appendix A, {Telephony

Services Implementation
of JTAPI for Private
Data”

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 xi

About This Guide

Navigating through the Document

This document is presented in PDF format with hypertext links and thumbnails for
easy viewing and printing. Hypertext links are inserted so that you can easily
navigate through the document by moving the hand symbol and clicking on the
desired subject. You can also navigate through the document using the
thumbnails of Adobeld Acrobatl Reader. After opening the PDF file with Adobe
Reader, you can click on the second icon to see the list of items presented in
outline format. If you click on one of the items in the list, you will be brought to the
associated subject.

Related Documents

There is one other document related to JTAPI that is provided with the SDK.
Java Telephony APl Programmer’s Reference (JTAPI 1.2 Early Access)

This document consists of Sun Microsystem'’s Java Telephony API (JTAPI)
specification files that are available to you from the Sun Microsystem Java
Telephony API web site. This document is an early access version of the
JTAPI1.2 specification. To obtain the very latest HTML files, go directly to the
web site, http://java.sun.com/products/jtapi.

The following documents provide reference material about DEFINITY and Telephony
Services Application Programming Interface (TSAPI) respectively.

PassageWay Telephony Services Solution DEFINITY ECS Programmer’s Guide

This document presents information about DEFINITY switch administration and
switch interactions.

Telephony Services Application Programming Interface (TSAPI) Version 2

This document presents information about how Telephony Services and TSAPI
support telephony control capabilities in a generic, switch-independent way (i.e.,
support PBXs from various vendors). The architecture allows the incorporation of
vendor-specific switch drivers to deliver Telephony Services across various
switch environments.

xii Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services
Implementation of JTAPI

Contents

Telephony Services Implementation of JTAPI for

All Switches and the DEFINITY Switch 1-1
| = Support for JTAPI Core Package 1-2 |
Implementation Notes 1-4 |
m Support for JTAPI Call Center Package 1-5 |
Implementation Notes 1-6 |
m Support for JTAPI Call Center Capabilities Package 1-8 |
m Support for JTAPI Call Center Events Package 1-9 |
Implementation Notes 1-10
m Support for JTAPI Call Control Package 1-11
Implementation Notes 1-12 |
[= Support for JTAPI Call Control Capabilities Package 1-14
| m Supporttor JIAFPI Call Control Events Package 1-10
| Implementation Notes 1-16 |
| m Support for JTAPI Capabilities Package 1-17 |
®m__ Support for JTAPTEVENTS Package T-18 |
[Support for JTAPI Media Package 1-19 |
m Support for JTAPI Media Capabllities Package 1-20
m Support for JTAPI Media Events Package 1-21
Implementation Notes T-21]
m Support for JTAPI Phone Package 1-22
m Support for JTAPT Phone Capabilities Package 123 |
(@ Support for JTAPT Phone Events Package 1-04]
m Support for JTAPI Private Data Package 1-25
Implementation NOteES 1-25
m Support for JTAPT Private Data Capabilities Package 1-26 |
m Support for JTAPI Private Data Events Package 1-27 |

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-i

Telephony Services
Implementation of JTAPI

Telephony Services Implementation
of JTAPI for All Switches and the
DEFINITY Switch

This chapter presents the level of support provided by the Telephony Services
implementation of JTAPI for JTAPI interfaces and associated methods:

= for all switches for which there is a Telephony Services driver

The information contained in the column entitled “Supported for All
Switches” in the following tables represents the features supported by
the Telephony Services generic implementation of JTAPI for any switch
for which there is a PassageWay Telephony Services driver.

m for the DEFINITY switch and the G3PD driver

The information contained in the column entitled “Supported for the
DEFINITY Switch” in the following tables represents the features
supported by the Telephony Services implementation of JTAPI for the
DEFINITY switch and the G3PD driver.

This information is organized by JTAPI package, for example,ists
each interface and its associated method from the JTAPI Core package;
[Table 1-2]ists each interface and its associated method from the JTAPI
CallCenter Capabilities package, and so forth.

Numerous tables are followed by implementation notes. If a number follows an

interface (e.g., JtapiPeerl) or a method (e.g., getServicesz), see the appropriate
“Implementation Notes” section that follows the table to obtain additional
information about the interfaces and/or their respective methods.

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-1

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

=" NOTE:

If you are an independent switch vendor who is using the JTAPI private
data programming environment to develop a private data package for non-
DEFINITY switches, or an application programmer who is using or
interpreting private data in a raw form, ignore this chapter and refer to
Chapter 4, |Telephony Services Private Data Extensions to JTAPI.

Support for JTAPI Core Package

The following table lists each JTAPI interface from the JTAPI Core Package,
(e.g., Address), followed by its associated method(s), (e.g., getName,
getProvide, getTerminals, and so forth), and whether the implementation is
supported for all switches and/or for the DEFINITY switch.

Table 1-1. Support for JTAPI Core Package

JTAPI Interfacesand Methods Supported for Supported for
All Switches the DEFINITY
Switch
Address V v
getName v vV
getProvider v vV
getTerminals v vV
getConnections v vV
addObserver v vV
getObservers v vV
removeObserver v vV
addCallObserver v vV
getCallObservers v vV
removeCallObserver v vV
getAddressCapabilities v vV
AddressObser ver v v
addressChangedEvent V v
Call vV v
getConnections v vV
getProvider v vV
getState v vV
connect v vV
addObserver v vV
getObservers v vV
removeObserver v vV
getCallCapabilities v v
CallObser ver v v
callChangedEvent V v
Connection v v

1-2 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

JTAPI Interfacesand Methods Supported for Supported for
All Switches the DEFINITY
Switch
getState v v
getCall v vV
getAddress v v
getTerminalConnections v v
disconnect vV vV
getConnectionCapabilities v vV
JtapiP v v
getName vV vV
getServioész—| v v
getProvidé‘ra—I v Vv
Provider v vV
getState v v
getName v v
getCalls V v
getAddress V v
getAddresses v v
getTerminals v v
getTerminal v v
shutdown v v
createCall v v
addObserver v v
getObservers V v
removeQbserver V v
getProviderCapabilities V v
getCallCapabilities V v
getConnectionCapabilities V V
getAddressCapabilities V v
getTerminalConnectionCapabilities V v
getTerminalCapabilities V v
Provider Observer v v
providerChangedEvent v vV
Terminal vV v
getName V v
getProvider V v
getAddresses V v
getTerminalConnections V V
addObserver V v
getObservers V v
removeQbserver V v
addCallObserver V v
getCallObservers V v
removeCallObserver V v
getTerminalCapabilities V V

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-3

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

JTAPI Interfacesand Methods Supported for Supported for
All Switches the DEFINITY
Switch

TerminalConnection vV vV
getState v v
getTerminal V v
getConnection V v
answer v v
getTerminalConnectionCapabilities v v
TerminalObserver v v
terminalChangedEvent v vV

Implementation Notes

1 Obtain a JtapiPeer object using the JtapiPeerFactory class. The TsapiPeer
class represents this implementation of the JtapiPeer. To obtain TsapiPeer,

do:

Jt api Peer Fact ory. get Jt api Peer (com | ucent . jtapi.tsapi. Tsapi Peer)

2 The JtapiPeer/getServices method returns an array of service names that can
be used to build the String needed to be passed to JtapiPeer.getProvider().

These Strings are the Telephony Services server Tlink names.

3 The String provided by JtapiPeer/getProvider must contain a Telephony
Services server Tlink name as well as a Windows NT login and password.

The format of the String must be:

<tlink>; | ogi n=<I ogi nl D>; passwd=<pw>

1-4 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Call Center Package

The following table lists each JTAPI interface from the JTAPI Call Center
Package, (e.g., ACDAddress), followed by its associated method(s), (e.g.,
getLoggedOnAgents, getNumberQueued, getOldestCallQueued, and so forth),
and whether the implementation is supported for all switches and/or for the
DEFINITY switch.

Table 1-2. Support for JTAPI CallCenter Package

JTAPI Interfacesand Methods Supported for Supported for
All Switches the DEFINITY
Switch

ACDAddress Vv

v
getLoggedOnAgentgl—| v v

getNumberQueuebZ—| v Vv

getOldestCallQueued

getRelativeQueuel oad

getQueueWaitTime

getACDManagerAddress

ACDAddressObserver v

ACDConnection

getACDManagerConnection

<<=

ACDM anager Address

getACDAddresses

ACDM anager Connection

getACDConnections

AgentObject

setState

getState

getAgentI

getACDAddress

getAgentAddress

getAgentTerminal

AgentTerminal

addAgent

removeAgent

getAgents

AgentTerminalObser ver

CallCenter Address

addCallObserver

CallCenterCall

<L) L & Ik <
<L) S LIk Ik s

cormectF’redictivE|

setApplicationData

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-5

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

JTAPI Interfacesand Methods Supported for Supported for
All Switches | the DEFINITY
Switch

getApplicationData

getTrunks

CallCenter CallObserver

CallCenter Provider

ESESESES

getRouteableAddresses

getACDAddresses

getACDManagerAddresses

CallCenter Trunk

getName

getState

getType

getCall

RouteAddress

registerRouteCallba

cancelRouteCallback

getRouteCallback

getActiveRouteSessions

RouteCallback

routeEvent

reRouteEvent

routeUsedEvent

routeEndEvent

routeCallbackEndedEvent

RouteSession

getRouteAddress

SelectRoutbe—I

endRoute

getState

<] S [= = = = = Ik =<

L] S Ik

getCause

Implementation Notes

1 The ACDAddress/getlLoggedOnAgents method is fully supported for the
DEFINITY switch. For other switches, it returns the sum of (a) those agents
that were logged in through the application and (b) those agents that were
logged in after an ACDAddressObserver was added to the application.

2 The ACDAddress/getNumberQueued method is fully supported for the
DEFINITY switch. For other switches, it returns the number of calls queued
reported in the last queued event. This may not be accurate since some of
the calls may have been subsequently dequeued.

1-6 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Implementation Notes (Continued)

3 The AgentObject/getAgentID method returns a null String for the DEFINITY
switch.

4 The CallCenterCall/connectPredictive method is supported for the DEFINITY
switch and for other switches; however, the answeringEndpointType
parameter is not supported. For the DEFINITY switch, the maxRings and
answeringTreatment parameters are supported. For other switches, the
maxRings and answeringTreatment parameters are not supported.

For the DEFINITY switch, if the Call is observed and the ACDAddress or
AgentTerminal is also call observed, then two unique Call objects will be
created that are associated with the same real call.

Other methods must be used to determine that there are two Call objects
representing the same real call:

m One way to do this, if the called address is unique among all calls, is to
use the Call.getCalledAddress() method.

= Another way is to use the UserToUserInfo DEFINITY-specific extension.
The application can send a unique ID in the UserToUserInfo with the
connectPredictive and this ID will be reported in call events for the
ACDAddress or AgentTerminal. The UserToUserInfo can also be
retrieved directly from the Calls.

In any case, both Call objects and all Connections and TerminalConnections
in both Calls are valid. Valid requests may be made of any of the objects.

5 The RouteAddressregisterRouteCallback method is supported for the
DEFINITY switch and other switches; however, only one RouteCallback may
be registered for an Address at a time.

6 The RouteSession/selectRoute method is supported for the DEFINITY switch

and other switches; however, only the first route specified in the
routeSelected parameter is used. The subsequent routes are ignored.

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-7

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Call Center Capabilities
Package

The following table lists each JTAPI interface from the JTAPI Call Center
Capabilities Package, (e.g., ACDAddressCapabilities), followed by its associated
method(s), (e.g., canGetLoggedOnAgents, canGetNumberQueued, and so
forth), and whether the implementation is supported for all switches and/or for

the DEFINITY switch.

Table 1-3. Support for JTAPI CallCenter Capabilities Package

JTAPI Interfacesand Methods Supported for Supported for
All Switches the DEFINITY
Switch
ACDAddressCapabilities
canGetLoggedOnAgents
canGetNumberQueued

canGetOldestCallQueued

canGetRelativeQueueload

canGetQueueWaitTime

canGetACDManagerAddress

ACDConnectionCapabilities

canGetACDManagerConnection

ACDM anager Addr essCapabilities

canGetACDAddresses

ACDM anager ConnectionCapabilities

canGetACDConnections

AgentTer minal Capabilities

canHandleAgents

CallCenter AddressCapabilities

canAddCallObserver

CallCenter CallCapabilities

canConnectPredictive

canHandleApplicationData

canGetTrunks

CallCenter Provider Capabilities

canGetRouteableAddresses

canGetACDAddresses

canGetACDManagerAddresses

canGetTrunks

RouteAddressCapabilities

canRouteCalls

<SS S S = = = =k I <

<SS S I = = = =k I <

1-8 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Call Center Events Package

The following table lists each JTAPI interface from the JTAPI Call Center Events
Package, (e.g., ACDAddrBusyEv, ACDAddrL oggedOffEv,

ACDAddrL oggedOnEyv, and so forth), and whether the implementation is
supported for all switches and/or for the DEFINITY switch.

=" NOTE:

If a JTAPI Call Center Event is supported, all associated methods are also
supported.

Table 1-4. Support for JTAPI CallCenter Events Package

JTAPI Interfaces Supported for Supported for
All Switches the DEFINITY
Switch

ACDAddr BusyEv

ACDAddrL oggedOffEv

ACDAddrL oggedOnEv

ACDAddr NotReadyE ¥

ACDAddr ReadyEh:]

ACDAddrUnknownEv

ACDAddrWorkNotReadyE!

SR SAEYEYESESES

ACDAddrWorkReadyEv—

AgentTermBusyEv

AgentTer mL oggedOffEv

AgentTermL oggedOnEv

AgentTer mNotReadyE

AgentTer mRe:aldyEl;l—_I

AgentTermUnknownEv

AgentTer mWorkNotReady

S RN LN ENEN NS NSRS LS A SE S SASES

< | < L LK<

AgentTer mWorkReadyE

CallCentCallAppDataEv

RouteCallbackEndedEvent

RouteEndEvent

RouteEvent

RouteSessionEvent

<[<
<[<

RouteUsedEvent

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-9

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Implementation Notes

1 These events are not supported for the DEFINITY switch. They will be
generated by the implementation and sent to the application when an
explicit state change is requested by the application.

1-10 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Call Control Package

The following table lists each JTAPI interface from the JTAPI Call Control
Package, (e.g., CallControlAddress), followed by its associated method(s), (e.g.,
setForwarding, getForwarding, cancelForwarding, and so forth), and whether the
implementation is supported for all switches and/or for the DEFINITY switch.

Table 1-5. Support for JTAPI CallControl Package

JTAPI Interfaces and Methods Supported for Supported for
All Switches the DEFINITY
Switch
CallControlAddress v v
SetForwardin v Vv
getForwarding v vV
cancelForwarding v vV
getDoNotDistuﬂaZ—I v v
SetDoNotDisturE v Vv
getMessageWaiting v vV
setMessageWaiting v v
CallControlAddr essObser ver v vV
CallControlCall v v
getCallingAddress v vV
getCallingTerminal v vV
getCalledAddress v vV
getLastRedirectedAddress v vV
addParty
drop v vV
offHook
conference v vV
transfer(Call otherCall) v v
transfer(String address)
setConferenceController v vV
getConferenceController v vV
setTransferController v vV
getTransferController v vV
setConferenceEnable v vV
getConferenceEnable v vV
setTransferEnable v vV
getTransferEnable v vV
consult (TerminalConnection termconn, String address) v v
consult (TerminalConnection termconn)
CallControlCallObser ver v v
CallControlConnection V v
getCallControlState v v

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-11

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

JTAPI Interfaces and Methods

Supported for
All Switches

Supported for
the DEFINITY
Switch

accept

reject

redirect

addToAddress

park

CallControl Terminal

getDoNotDisturtEZl

setDoNotDistur

pickup (Connection pickConnection, Address
terminalAddress)

< | < &<

< | < <<

pickup (TerminalConnection pickTermConn, Address
terminalAddress)

pickup (Address pickAddress, Address
terminalAddress)

pickupFromGroup(String pickupGroup, Address
terminalAddress)

pickupFromGroup(Address terminalAddress)

CallControl TerminalConnection

getCallControlState

hold

unhold

|| L)<

join

leave

CallControl TerminalObser ver

SSESASAESASESASES

Implementation Notes

1 The CallControlAddress/setForwarding method is fully supported for the
DEFINITY switch and for other switches; however, the SPECIFIC_ADDRESS
filter instruction is not supported. The ALL_CALLS filter instruction is only
supported when the filter type is FORWARD_UNCONDITIONALLY. The
DEFINITY switch only supports the ALL_CALLS filter instruction with the

FORWARD_UNCONDITIONALLY filter type.

1-12 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Implementation Notes (Continued)

2 The following methods are paired synonyms:

CallControlAddress/getDoNotDisturb
CallControlTerminal/getDoNotDisturb

CallControlAddress/setDoNotDisturb
CallControl Terminal/setDoNotDisturb

For these methods, there is no distinction between an Address and a

Terminal. CallControlAddress.getDoNotDisturb() and
CallControlTerminal.getDoNotDisturb() always return equivalent values.

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-13

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Call Control Capabilities
Package

The following table lists each JTAPI interface from the JTAPI Call Control
Capabilities Package, (e.g., CallControlAddressCapabilities), followed by its
associated method(s), (e.g., canSetForwarding, canGetForwarding,
canCancelForwarding, and so forth), and whether the implementation is
supported for all switches and/or for the DEFINITY switch.

Table 1-6. Support for JTAPI CallControl Capabilities Package

JTAPI Interfaces and M ethods

Supported for
All Switches

Supported for
the DEFINITY
Switch

CallControlAddressCapabilities

canSetForwarding

canGetForwarding

canCancelForwarding

canGetDoNotDisturb

canSetDoNotDisturb

canGetMessageWaiting

canSetMessageWaiting

CallControlCallCapabilities

canDrop

canOffHook

canSetConferenceController

canSetTransferController

canSetTransferEnable

canSetConferenceEnable

canTransfer

canConference

canAddParty

canConsult

CallControlConnectionCapabilities

canRedirect

canAddToAddress

canAccept

canReject

canPark

CallControl Terminal Capabilities

canGetDoNotDisturb

canSetDoNotDisturb

canPickup

canPickupFromGroup

CallControl Ter minalConnectionCapabilities

<[[[[[[= = [<

<[[[[[[= =& [<

1-14 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

JTAPI Interfacesand Methods Supported for Supported for
All Switches the DEFINITY
Switch
canHold v v
canUnhold v v
canJoin v v
canlLeave v v

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-15

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Call Control Events Package

The following table lists each JTAPI interface from the JTAPI Call Control Events
Package, (e.g., CallCtlIAddrDoNotDisturbEv, CallCtlIAddrForwardEv,

CallCtIAddr M essageWaitingEv, and so forth), and whether the implementation is
supported for all switches and/or for the DEFINITY switch.

=" NOTE:

If a JTAPI Call Control Event is supported, all associated methods are also

supported.

Table 1-7. Support for JTAPI CallControl Events Package

JTAPI Interfaces

Supported for
All Switches

Supported for
the DEFINITY
Switch

CallCtIAddr DoNotDistur bEv:—

Vv

CallCtlAddrForwardEv

CallCtIAddr M essageW aitingEv

CallCtlConnAlertingEv

<<

ESAESES

CallCtIConnDialingev

CallCtIConnDisconnectedEv

CallCtIConnEstablishedEv

CallCtIConnFailedEv

CallCtIConnlnitiatedEv

CallCtlIConnNetwor kAlertingev

CallCtlConnNetwor kReachedEv

S ESESAESAESES

S ESESAESASES

CallCtIConnOfferedEv

CallCtIConnQueuedEv

CallCtIConnUnknownEv

CallCtITermConnBridgedEv

CallCtITermConnDroppedEv

CallCtITermConnHeldEv

<[<

<[<

CallCtITermConnlnUseEv

CallCtITermConnRingingEv

CallCtITermConnTalkingEv

CallCtITermConnUnknownEv

S ESES

<[]

Implementation Notes

1 The CallCtrlAddrDoNotDisturbEv event is sent even if DoNotDisturb was
changed using CallControlTerminal.setDoNotDisturb(). For DoNotDisturb,

there is no distinction between an Address and a Terminal.

1-16 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Capabilities Package

The following table lists each JTAPI interface from the JTAPI Capabilities
Package, (e.g., AddressCapabilities), followed by its associated method(s), (e.g.,
isObservable), and whether the implementation is supported for all switches
and/or for the DEFINITY switch.

Table 1-8. Support for JTAPI Capabilities Package

JTAPI Interfacesand Methods Supported for Supported for
All Switches the DEFINITY
Switch
AddressCapabilities
isObservable
CallCapabilities
canConnect

isObservable

ConnectionCapabilities

canDisconnect

Provider Capabilities

isObservable

TerminalCapabilities

isObservable

TerminalConnectionCapabilities

S ESES A AN A S AN A SESASASES
S ESES YA AN A SEY A SESASASES

isObservable

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-17

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Events Package

The following table lists each JTAPI interface from the JTAPI Events Package,
(e.g., AddObservationEndedEv, CallActiveEv, Calllnvalid, and so forth), and
whether the implementation is supported for all switches and/or for the DEFINITY
switch.

=" NOTE:

If a JTAPI Event is supported, all associated methods are also supported.

Table 1-9. Support for JTAPI Events Package

JTAPI Interfaces Supported for Supported for
All Switches the DEFINITY
Switch

AddrObservationEndedEv v v
CallActiveEv v v
CalllnvalidEv v v
CallObservationEndedEv v v
ConnAlertingEv v vV
ConnConnectedEv v v
ConnCreatedEv v v
ConnDisconnectedEv v v
ConnFailedEv v v
Connl nProgresskv v Vv
ConnUnknownEv v v
ProvInServiceEv v v
ProvObservationEndedEv v v
ProvOutOfServiceEv v v
ProvShutdownEv v v
TermConnActiveEv v Vv
TermConnCreatedEv v v
TermConnDroppedEv v Vv
TermConnPassiveEv v v
TermConnRingingEv v Vv
TermConnUnknownEv v v

v v

TermObservationEndedEv

1-18 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Media Package

The following table lists each JTAPI interface from the JTAPI Media Package,
(e.g., MediaCallObserver), followed by its associated method(s), (if any), and
whether the implementation is supported for all switches and/or for the DEFINITY
switch.

Table 1-10. Support for JTAPI Media Package

JTAPI Interfaces and Methods Supported for Supported for
All Switches the DEFINITY
Switch
M ediaCallObser ver v
M ediaT er minalConnection v
getMediaAvailability
getMediaState
useDefaultSpeaker
useRecordURL
useDefaultMicrophone
usePlayURL
startPlaying
stopPlaying

startRecording

setDtmfDetection

generateDtmf v

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-19

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Media Capabilities Package

The following table lists each JTAPI interface from the JTAPI Media Capabilities
Package, (e.g., MediaTerminalConnectionCapabilities), followed by its
associated method(s), (e.g., canUseDefaultSpeaker, canUseDefaultMicrophone,
canUseRecordURL, and so forth), and whether the implementation is supported
for all switches and/or for the DEFINITY switch.

Table 1-11. Support for JTAPI Media Capabilities Package

JTAPI Interfacesand Methods Supported for Supported for
All Switches the DEFINITY
Switch

M ediaT er minal ConnectionCapabilities V v
canUseDefaultSpeaker v v
canUseDefaultMicrophone v v
canUseRecordURL v v
canUsePlayURL v vV
canStartPlaying v vV
canStopPlaying v vV
canStartRecording v vV
canStopRecording v vV
canDetectDtmf v vV
canGenerateDtmf v vV

1-20 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Media Events Package

The following table lists each JTAPI interface from the JTAPI Media Events
Package, (e.g., MediaTermConnAvailable, MediaTermConnDtmfEyv,
MediaTermConnEv, and so forth), and whether the implementation is supported
for all switches and/or for the DEFINITY switch.

=" NOTE:

If a JTAPI Media Event is supported, all associated methods are also
supported.

Table 1-12. Support for JTAPI Media Events Package

JTAPI Interfaces Supported for Supported for
All Switches the DEFINITY
Switch

M ediaT ermConnAvailableEv

M ediaTermConnDtmfEv- Vv

MediaTermConnStateEv

M ediaT ermConnUnavailableEv

Implementation Notes

1 Although the MediaTermConnDtmfEv interface has been defined as a
TerminalConnection event, the TerminalConnection field will be null. The Call
field will be filled in with the call to which the DTMF digits have been applied.

This event is sent only when a DTMF detector is attached to the call and
DTMF tones are detected. The tone detector is disconnected when the far
end answers or “#” is detected. This event is used in conjunction with the
DEFINITY-specific extension L ucentRouteSession/selectRouteAndCollect.

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-21

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Phone Package

=" NOTE:

The JTAPI Phone Package interfaces and methods are not supported.

1-22 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Phone Capabilities Package

=" NOTE:

The JTAPI Phone Package interfaces and methods are not supported.

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-23

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Phone Events Package

=" NOTE:

The JTAPI Phone Events Package interfaces and methods are not
supported.

1-24 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Private Data Package

The following table lists each JTAPI interface from the JTAPI Private Data
Package, (e.g., PrivateData), followed by its associated method(s), (e.g.,
getPrivateData, and so forth), and whether the implementation is supported for
all switches and/or for the DEFINITY switch.

Table 1-13. Support for JTAPI Private Data Package

JTAPI Interfaces and M ethods Supported for Supported for
All Switches the DEFINITY
Switch
PrivateData v
getPrivateData v
setPrivateDatal Vv
sendPrivateDala™] Vv

Implementation Notes

1 For the PrivateData/setPrivateData and PrivateData/sendPrivateData
methods, the private data Object parameter must be an instance of
TsapiPrivate.

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-25

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Private Data Capabilities
Package

The following table lists each JTAPI interface from the JTAPI Private Data
Capabilities Package, (e.g., PrivateDataCapabilities), followed by its associated
method(s), (e.g., canSetPrivateData, and so forth), and whether the
implementation is supported for all switches and/or for the DEFINITY switch.

Table 1-14. Support for JTAPI Private Data Capabilities Package

JTAPI Interfacesand Methods Supported for Supported for
All Switches the DEFINITY
Switch
PrivateDataCapabilities v Vv
canSetPrivateData v v
canGetPrivateData v v
canSendPrivateData v v

1-26 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI for All
Switches and the DEFINITY Switch

Support for JTAPI Private Data Events Package

The following table lists each JTAPI interface from the JTAPI Private Data Events
Package, (e.g., PrivateAddrEv, PrivateCallEv, and so forth), and whether the
implementation is supported for all switches and/or for the DEFINITY switch.
=" NOTE:

If a JTAPI Private Data Event is supported, all associated methods are also
supported.

Table 1-15. Support for JTAPI Private Data Events Package

JTAPI Interfaces Supported for Supported for
All Switches the DEFINITY
Switch

PrivateAddr Ev v
PrivateCallEv v
v
v

PrivateProvEv
PrivateTermEv

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 1-27

Using Telephony Services
Extensions to JTAPI Exceptions

Contents

Using Telephony Services Extensions to JTAPI

Exceptions 2-1
m Who Should Be Using These Extensions? 2-1
m What are the Extensions”? 2-2

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 2-i

Using Telephony Services
Extensions to JTAPI Exceptions

Using Telephony Services Extensions
to JTAPI Exceptions

=" NOTE:
This chapter describes non-standard additions to JTAPI. This package is
available only from the PassageWay Telephony Services implementation of
JTAPI and is not available from any other implementation of JTAPI.

This chapter is optional. It contains the Telephony Services extensions to JTAPI
exceptions that can be used to program applications for any switch for which
there is a PassageWay Telephony Services driver.

Who Should Be Using These Extensions?

An application programmer who, in addition to using the standard JTAPI
package, wants additional TSAPI-specific information about the JTAPI
exceptions to develop applications which will be used with any switch for which
there is a PassageWay Telephony Services driver. It is assumed that this
individual has a familiarity with the Java programming language, JTAPI, and
TSAPI.

=" NOTE:
If you are an application programmer who is using JTAPI to develop
applications for the DEFINITY switch, also refer to“TeIephony
Services Implementation of JTAPI for All Switches and the DEFINITY
Switch.” If you want to take advantage of DEFINITY-specific features that

are not accessible through standard JTAPI, refer to|Chapter 3, {Telephony
Services DEFINITY-Specific Extensions to JTAPL.”

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 2-1

Using Telephony Services Extensions to JTAPI
Exceptions

=" NOTE:

If you are an independent switch vendor who is using the JTAPI private
data programming environment to develop a private data package for non-
DEFINITY switches, or an application programmer who is using or

interpreting private data in a raw form, ignore this chapter and refer to
|Chapter 4, |‘Telephony Services Private Data Extensions to JTAPI.”

What are the Extensions?

Telephony Services extensions to the JTAPI exceptions provide more detailed
error information than is defined in JTAPI. These extensions consist of the CSTA
and ACS error codes provided by TSAPI.

=" NOTE:
For information about Computer-Supported Telecommunications
Applications (CSTA) and API Control Services (ACS) error codes, refer to
the Telephony Services Application Programming Interface (TSAPI)
Version 2.

2-2 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

package com.lucent.jtapi.tsapi

Interface Index

| TsapiException

Exception Index

TsapilnvalidArgumentException

TsapilnvalidObjectException

TsapilnvalidPartyException

TsapilnvalidStateException

TsapiMethodNotSupportedException

TsapiPlatformException

TsapiPrivilegeViolationException

TsapiProviderUnavailableException

TsapiResourceUnavailableException

Interface com.lucent.jtapi.tsapi.lTsapiException
public interface ITsapiException

The ITsapiException interface adds an errorType and errorCode to all Jtapi exceptions.
When the errorType is ACS or CSTA, the errorCode will contain the Tsapi ACS or CSTA
error code which is documented in the Passageway Telephony Services Network
Manager’s Guide in the TroubleShooting section (netmangd.pdf).

Variable Index

0 ACS
Error Type of ACS.
0 CSTA
Error Type of CSTA.
0 EC_INVALID_CONF
Error Code implying confirmation is invalid.
0 EC_NORMAL
Error Code of NORMAL.
0 EC_PROVIDER_OUT_OF_SERVICE
Error Code implying Provider is OUT_OF_SERVICE.

0 INTERNAL

Failure is internal to this Jtapi implementation.
o0 JTAPI

Failed to meet some Jtapi condition.
0 NORMAL

Error Type of Normal.

Method Index

0 getErrorCode()

Returns the error code.
0 getErrorType()

Returns the error type.

Variables

0 NORMAL

public static final int NORMAL

Error Type of Normal.

0 ACS

public static final int ACS
Error Type of ACS.

0 CSTA

public static final int CSTA
Error Type of CSTA.

0 JTAPI

public static final int JTAPI
Failed to meet some Jtapi condition.

o INTERNAL

public static final int INTERNAL
Failure is internal to this Jtapi implementation.

0 EC_NORMAL

public static final int EC_NORMAL
Error Code of NORMAL.

0 EC_INVALID_CONF

public static final int EC_INVALID_CONF
Error Code implying confirmation is invalid.

0 EC_PROVIDER_OUT_OF_SERVICE

public static final int EC_PROVIDER_OUT_OF_SERVICE

Error Code implying Provider is OUT_OF_SERVICE.

Methods

o0 getErrorType

public abstract int getErrorType()
Returns the error type.

o0 getErrorCode

public abstract int getErrorCode()

Returns the error code.

Class com.lucent.jtapi.tsapi.TsapilnvalidArgumentException

java.lang.Object

+-———java.lang.Throwable

+-———java.lang.Exception

+-————javax.telephony.InvalidArgumentException

+-————com.lucent.jtapi.tsapi. TsapilnvalidArgumentException

public final class TsapilnvalidArgumentException
extends InvalidArgumentException
implements ITsapiException

TsapilnvalidArgumentException extends Jtapi InvalidArgumentException to add
implementation specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

0 getErrorCode()

Returns the error code.
0 getErrorType()

Returns the error type.

Methods

0 getErrorType

public int getErrorType()
Returns the error type.

0 getErrorCode

public int getErrorCode()

Returns the error code.

Class com.lucent.jtapi.tsapi.TsapilnvalidPartyException

java.lang.Object

+-———java.lang.Throwable

+-———java.lang.Exception

+-————javax.telephony.InvalidPartyException

+-———com.lucent.jtapi.tsapi. TsapilnvalidPartyException

public final class TsapilnvalidPartyException
extends InvalidPartyException
implements ITsapiException

TsapilnvalidPartyException extends Jtapi InvalidPartyException to add implementation
specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

0 getErrorCode()

Returns the error code.
0 getErrorType()

Returns the error type.

Methods

0 getErrorType

public int getErrorType()
Returns the error type.

0 getErrorCode

public int getErrorCode()

Returns the error code.

Class com.lucent.jtapi.tsapi.TsapilnvalidStateException

java.lang.Object

+-———java.lang.Throwable

+-———java.lang.Exception

+-————javax.telephony.InvalidStateException

+-———com.lucent.jtapi.tsapi. TsapilnvalidStateException

public final class TsapilnvalidStateException
extends InvalidStateException
implements ITsapiException

TsapilnvalidStateException extends Jtapi InvalidStateException to add implementation
specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

0 getErrorCode()

Returns the error code.
0 getErrorType()

Returns the error type.

Methods

0 getErrorType

public int getErrorType()
Returns the error type.

0 getErrorCode

public int getErrorCode()

Returns the error code.

Class
com.lucent.jtapi.tsapi.TsapiMethodNotSupportedException

java.lang.Object

+-—---java.lang.Throwable

+-—---java.lang.Exception

I
+-————javax.telephony.MethodNotSupportedException

+-————com.lucent.jtapi.tsapi.TsapiMethodNotSupportedException

public final class TsapiMethodNotSupportedException
extends MethodNotSupportedException
implements ITsapiException

TsapiMethodNotSupportedException extends MethodNotSupportedException to add
implementation specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

0 getErrorCode()

Returns the error code.
0 getErrorType()

Returns the error type.

Methods

0 getErrorType

public int getErrorType()
Returns the error type.

o getErrorCode

public int getErrorCode()

Returns the error code.

Class com.lucent.jtapi.tsapi.TsapiPlatformException

java.lang.Object

+-———java.lang.Throwable

+-———java.lang.Exception

+-———java.lang.RuntimeException

+-———javax.telephony.PlatformException

+-———com.lucent.jtapi.tsapi.TsapiPlatformException

public final class TsapiPlatformException
extends PlatformException
implements ITsapiException

TsapiPlatformException extends Jtapi PlatformException to add implementation
specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

0 getErrorCode()

Returns the error code.
0 getErrorType()

Returns the error type.

Methods

0 getErrorType

public int getErrorType()
Returns the error type.

0 getErrorCode

public int getErrorCode()

Returns the error code.

Class
com.lucent.jtapi.tsapi.TsapiPrivilegeViolationException

java.lang.Object

+-—---java.lang.Throwable

+-—---java.lang.Exception

+-———javax.telephony.PrivilegeViolationException

+-———com.lucent.jtapi.tsapi. TsapiPrivilegeViolationException

public final class TsapiPrivilegeViolationException
extends PrivilegeViolationException
implements ITsapiException

TsapiPrivilegeViolationException extends PrivilegeViolationException to add acs / csta
error codes.

Method Index

0 getErrorCode()

Returns the error code.
0 getErrorType()

Returns the error type.

Methods

o getErrorType

public int getErrorType()
Returns the error type.

0 getErrorCode

public int getErrorCode()

Returns the error code.

Class
com.lucent.jtapi.tsapi.TsapiProviderUnavailableException

java.lang.Object

+-—---java.lang.Throwable

+-—---java.lang.Exception

+-——-java.lang.RuntimeException

+-———javax.telephony.ProviderUnavailableException

+-———com.lucent.jtapi.tsapi.TsapiProviderUnavailableException

public final class TsapiProviderUnavailableException
extends ProviderUnavailableException
implements ITsapiException

TsapiProviderUnavailableException extends Jtapi ProviderUnavailableException to add
implementation specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

0 getErrorCode()

Returns the error code.
0 getErrorType()

Returns the error type.

Methods

o0 getErrorType

public int getErrorType()

Returns the error type.

o0 getErrorCode

public int getErrorCode()

Returns the error code.

Class
com.lucent.jtapi.tsapi.TsapiResourceUnavailableException

java.lang.Object

+-—---java.lang.Throwable

+-—---java.lang.Exception

+-———javax.telephony.ResourceUnavailableException

+-————com.lucent.jtapi.tsapi.TsapiResourceUnavailableException

public final class TsapiResourceUnavailableException
extends ResourceUnavailableException
implements ITsapiException

TsapiResourceUnavailableException extends Jtapi ResourceUnavailableException to
add implementation specific errorType and errorCode.

See ITsapiException for details on errorType and errorCode.

Method Index

0 getErrorCode()

Returns the error code.
0 getErrorType()

Returns the error type.

Methods

0 getErrorType

public int getErrorType()
Returns the error type.

o getErrorCode

public int getErrorCode()

Returns the error code.

Using Telephony Services
DEFINITY-Specific Extensions

to JTAPI
Contents
Using Telephony Services DEFINITY-Specific
Extensions 3-1
= Who Should Be Using These Extensions? 3-1
= How Should the Extensions be Used? 3-2

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 3-i

Using Telephony Services
DEFINITY-Specific Extensions
to JTAPI

Using Telephony Services DEFINITY-
Specific Extensions

=" NOTE:
This chapter describes non-standard additions to JTAPI. This package is
available only from the PassageWay Telephony Services implementation of
JTAPI and is not available from any other implementation of JTAPI.

This chapter is optional. It is an intermediate private data package that allows
programmers to access private data via Java interfaces rather than through raw
private data bytes. It contains the DEFINITY-specific feature extensions that
support the Telephony Services implementation of JTAPI intended for
applications that operate solely with the DEFINITY switch.

Who Should Be Using These Extensions?

An application programmer using JTAPI to develop applications that will be used
with the DEFINITY switch and the associated PassageWay Telephony Services
driver (i.e., the G3PD). In addition, these applications will take advantage of
DEFINITY-specific features that are not accessible through standard JTAPI. It is
assumed that this individual has a familiarity with both the Java programming
language and JTAPI.

=" NOTE:
If you are an application programmer who is using JTAPI to develop
applications for any switch for which there is a PassageWay Telephony
Services driver, ignore this chapter and refer tci Chapter 1,[*Telephony
Services Implementation of JTAPI for All Switches and the DEFINITY
Switch.” If you want additional TSAPI-specific information about the JTAPI
exceptions that are not accessible through standard JTAPI, refer to

Chapter 2,|* Using Telephony Services Extensions to JTAPI Exceptions.”

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 3-1

Using Telephony Services DEFINITY-Specific

Extensions to JTAPI

=" NOTE:

If you are an independent switch vendor who is using the JTAPI private
data programming environment to develop a private data package for non-
DEFINITY switches, or an application programmer who is using or
interpreting private data in a raw form, ignore this chapter and refer to

Chapter 4, |'Telephony Services Private Data Extensions to JTAPI.”

How Should the Extensions be Used?

The DEFINITY-specific extensions to JTAPI make available DEFINITY features
beyond those provided by the standard Telephony Services implementation of
JTAPI. The following table lists each DEFINITY feature that is available as an
extension to JTAPI, its description, its associated class or interface, and the
methods returned or used by methods in each appropriate class or interface.

Feature Name and Description

Class or Interface

Returned/Used by Methods in
Class or Interface

Agent Work Mode Specifies the
overriding mode of the Agent;
affects the cycle of the possibly
occurring Agents states

LucentAgent
LucentAgentStatelnfo
LucentTerminal

Call Classifier Information
Provides information on call
classifier port usage

CallClassifierInfo

LucentProvider

Collect Digits Allows a route
request to wait for a specified
number of digits to be collected

LucentRouteSession

Dial-Ahead Digits Allows a route
request to place digits in a dial-
ahead buffer

LucentRouteSession

Direct Agent Calls Allows calls
to be made to and from specific
logged-in ACD Agents

LucentCall
LucentRouteSession

Dropping Resources Allows
specific switch resources to be
dropped from the call

LucentConnection
LucentTerminalConnection

Integrated Directory Name
Allows the G3 Integrated
Directory Database name to be
returned

LucentAddress
LucentTerminal

Look-Ahead Interflow
Information May be used by a
routing server application to
determine the proper destination
of a call

LookaheadInfo

LucentCallinfo
OriginalCallinfo

3-2 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Using Telephony Services DEFINITY-Specific

Extensions to JTAPI

Feature Name and Description

Class or Interface

Returned/Used by Methods in
Class or Interface

Lucent Call Information
Provides Lucent-specific call
information on Call and
CallControlCall events;
information includes delivering
ACD, distributing Address,
originating Trunk, reason for last
Call event, and other information

LucentCallinfo

Cast LucentCall and
CallControlCall events to the
LucentCallinfo interface for
access

Message Waiting Application
Information Indicates which
types of applications have
enabled message waiting

LucentAddress
LucentAddressMsgWaitingEvent

Network Progress Information
Contains supplementary call
progress information from the
ISDN Progress Indicator
Information Element

NetworkProgressinfo

LucentConnNetworkReachedEvent

Original Call Information
Contains information about the
original call in conjunction with
the Call.consult() service

OriginalCallinfo

LucentCallinfo

Priority Calls Enables priority LucentCall
calling LucentRouteSession
Supervisor Assist Calls Allows LucentCall

logged-in ACD Agents to place
calls to a supervisor’s extension

Switch Date and Time
Information Returns the current
date and time from the switch

LucentProvider

Trunk Group Information
Provides information on trunk
group usage

TrunkGrouplnfo

LucentProvider

User Entered Code The
code/digits that may have been
entered by the caller through the
G3 Call Prompting feature of the
Collected Digits feature

UserEnteredCode

LucentCallinfo
OriginalCallinfo

User-to-User Information An

ISDN feature that allows end-to-
end transmission of application
data during call setup/teardown

UserToUserlInfo

LucentCall

LucentCallinfo
LucentConnection
LucentRouteSession
LucentTerminalConnection
OriginalCalllinfo

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 3-3

package com.lucent.jtapi.tsapi

Interface Index

ITsapiAddress
I TsapiAddressMsgWaitingEvent

ITsapiAgent

ITsapiCall
I TsapiCalllnfo

I TsapiConnNetworkReachedEvent
ITsapiConnection
ITsapiRouteSession
ITsapiTerminal
ITsapiTerminalConnection
LucentAddress
LucentAddressMsgWaitingEvent
LucentAgent

LucentCall

LucentCalllnfo
LucentConnNetworkReachedEvent
LucentConnection

LucentProvider
LucentRouteSession
LucentTerminal
LucentTerminalConnection

Class Index

CallClassifierlnfo
Lookaheadlnfo
LucentAgentStatelnfo
NetworkProgressinfo
OriginalCalllnfo
TrunkGrouplnfo
UserEnteredCode
UserToUserlnfo

Interface com.lucent.jtapi.tsapi.lTsapiAddress

public interface ITsapiAddress
extends Address, CallControlAddress, CallCenterAddress, RouteAddress

ITsapiAddress extends Jtapi Address, CallControlAddress, CallCenterAddress,
RouteAddress.

This interface was added so that LucentAddress could extend it and migration of
methods from LucentAddress to ITsapiAddress would not affect applications using
LucentAddress. Methods in LucentAddress currently map to Tsapi Private Data for
Definity. It is expected that once the functionality is part of Tsapi the methods will
migrate.

Interface
com.lucent.jtapi.tsapi.l TsapiAddressMsgWaitingEvent

public interface ITsapiAddressMsgWaitingEvent
extends CallCtlAddrMessageWaitingEv

ITsapiAddressMsgWaitingEvent implements Jtapi CallCtlIAddrMessageWaitingEv.

This interface was added so that LucentAddressMsgWaitingEvent could extend it and
migration of methods from LucentAddressMsgWaitingEvent to
ITsapiAddressMsgWaitingEvent would not affect applications using
LucentAddressMsgWaitingEvent. Methods in LucentAddressMsgWaitingEvent
currently map to Tsapi Private Data for Definity. It is expected that once the
functionality is part of Tsapi the methods will migrate.

Interface com.lucent.jtapi.tsapi.lTsapiAgent

public interface ITsapiAgent
extends Agent

ITsapiAgent extends Agent.

This interface was added so that LucentAgent could extend it and migration of methods
from LucentAgent to ITsapiAgent would not affect applications using LucentAgent.
Methods in LucentAgent currently map to Tsapi Private Data for Definity. It is expected
that once the functionality is part of Tsapi the methods will migrate.

Interface com.lucent.jtapi.tsapi.lTsapiCall

public interface ITsapiCall
extends ITsapiCalllnfo, Call, CallControlCall, CallCenterCall

ITsapiCall extends Jtapi Call, CallControlCall, CallCenterCall.

This interface was added so that LucentCall could extend it and migration of methods
from LucentCall to ITsapiCall would not affect applications using LucentCall. Methods
in LucentCall currently map to Tsapi Private Data for Definity. It is expected that once
the functionality is part of Tsapi the methods will migrate.

Interface com.lucent.jtapi.tsapi.lTsapiCalllnfo
public interface ITsapiCalllnfo
ITsapiCalllnfo adds new call information for Call and events

This interface was added so that LucentCalllnfo could extend it and migration of
methods from LucentCalllnfo to ITsapiCalllnfo would not affect applications using
LucentCalllnfo. Methods in LucentCalllnfo currently map to Tsapi Private Data for
Definity. It is expected that once the functionality is part of Tsapi the methods will
migrate.

Interface
com.lucent.jtapi.tsapi.lTsapiConnNetworkReachedEvent

public interface ITsapiConnNetworkReachedEvent
extends CallCtlConnNetworkReachedEv

ITsapiConnNetworkReachedEvent extends Jtapi CallCtiIiConnNetworkReachedEv.

This interface was added so that LucentConnNetworkReachedEvent could extend it and
migration of methods from LucentConnNetworkReachedEvent to
ITsapiConnNetworkReachedEvent would not affect applications using
LucentConnNetworkReachedEvent.Methods in LucentConnNetworkReachedEvent
currently map to Tsapi Private Data for Definity. It is expected that once the
functionality is part of Tsapi the methods will migrate.

Interface com.lucent.jtapi.tsapi.lTsapiConnection

public interface ITsapiConnection
extends Connection, CallControlConnection

ITsapiConnection extends Jtapi Connection and CallControlConnection.

This interface was added so that LucentConnection could extend it and migration of
methods from LucentConnection to ITsapiConnection would not affect applications using
LucentConnection. Methods in LucentConnection currently map to Tsapi Private Data
for Definity. It is expected that once the functionality is part of Tsapi the methods will
migrate.

Interface com.lucent.jtapi.tsapi.lTsapiRouteSession

public interface ITsapiRouteSession
extends RouteSession, ITsapiCalllnfo

ITsapiRouteSession extends Jtapi RouteSession.

This interface was added so that LucentRouteSession could extend it and migration of
methods from LucentRouteSession to ITsapiRouteSession would not affect applications
using LucentRouteSession.Methods in LucentRouteSession currently map to Tsapi
Private Data for Definity. It is expected that once the functionality is part of Tsapi the
methods will migrate.

Interface com.lucent.jtapi.tsapi.lTsapiTerminal

public interface ITsapiTerminal
extends Terminal, CallControlTerminal, AgentTerminal

ITsapiTerminal extends Terminal, CallControlTerminal and AgentTerminal.

This interface was added so that LucentTerminal could extend it and migration of
methods from LucentTerminal to ITsapiTerminal would not affect applications using
LucentTerminal. Methods in LucentTerminal currently map to Tsapi Private Data for
Definity. It is expected that once the functionality is part of Tsapi the methods will
migrate.

Interface com.lucent.jtapi.tsapi.lTsapiTerminalConnection

public interface ITsapiTerminalConnection
extends TerminalConnection, CallControlTerminalConnection,

MediaTerminalConnection

ITsapiTerminalConnection extends TerminalConnection,
CallControlTerminalConnection, and MediaTerminalConnection.

This interface was added so that LucentTerminalConnection could extend it and
migration of methods from LucentTerminalConnection to ITsapiTerminalConnection
would not affect applications using LucentTerminalConnection. Methods in
LucentTerminalConnection currently map to Tsapi Private Data for Definity. It is
expected that once the functionality is part of Tsapi the methods will migrate.

Interface com.lucent.jtapi.tsapi.LucentAddress

public interface LucentAddress
extends ITsapiAddress

This interface add Lucent—specific methods to the Address interface.

Variable Index

o MWI_CTI
The message waiting indicator has been enabled via CTI.
o MWI_LWC
The message waiting indicator has been enabled via Leave Word Calling.
o MWI_MCS
The message waiting indicator has been enabled via Message Center.
o MWI_PROPMGT
The message waiting indicator has been enabled via Property Management.
o MWI_VOICE
The message waiting indicator has been enabled via Voice Messaging.

Method Index

0 getDirectoryName()
Returns the G3 PBX Integrated Directory Database name corresponding to this
Address.

0 getMessageWaitingBits()
Returns a bit-mask indicating which applications have enabled the message
waiting indicator at this Address.

Variables

o MWI_MCS

public static final int MWI_MCS
The message waiting indicator has been enabled via Message Center.

o MWI_VOICE

public static final int MWI_VOICE

The message waiting indicator has been enabled via Voice Messaging.
o MWI_PROPMGT
public static final int MWI_PROPMGT
The message waiting indicator has been enabled via Property Management.
o MWI_LWC
public static final int MWI_LWC
The message waiting indicator has been enabled via Leave Word Calling.
o MWI_CTI

public static final int MWI_CTI

The message waiting indicator has been enabled via CTI.

Methods

0 getMessageWaitingBits

public abstract int getMessageWaitingBits() throws TsapiMethodNotSupportedException

Returns a bit-mask indicating which applications have enabled the message
waiting indicator at this Address. Its value is a logical-OR combination of
MWI_MCS, MWI_VOICE, MWI_PROPMGT, MWI_LWC, and/or MWI_CTI. If the
return value is 0, then the message waiting indicator is OFF.

0 getDirectoryName

public abstract String getDirectoryName()

Returns the G3 PBX Integrated Directory Database name corresponding to this
Address.

Interface
com.lucent.jtapi.tsapi.LucentAddressMsgWaitingEvent

public interface LucentAddressMsgWaitingEvent
extends ITsapiAddressMsgWaitingEvent

This interface add Lucent-specific methods to the CallCtlIAddrMessageWaitingEv
interface.

Method Index

0 getMessageWaitingBits()
Returns a bit—-mask indicating which applications have enabled the message
waiting indicator at this Address.

Methods

0 getMessageWaitingBits

public abstract int getMessageWaitingBits()

Returns a bit—-mask indicating which applications have enabled the message
waiting indicator at this Address. Its value is a logical-OR combination of
MWI_MCS, MWI_VOICE, MWI_PROPMGT, MWI_LWC, and/or MWI_CTI. If the
return value is 0, then the message waiting indicator is OFF.

See Also:
LucentAddress

Interface com.lucent.jtapi.tsapi.LucentAgent

public interface LucentAgent
extends ITsapiAgent

The LucentAgent interface extends the ITsapiAgent interface.

Variable Index

o MODE_AUTO_IN
In this work mode the agent is put into the Agent.READY state immediately after
disconnecting from a previous call and can be delivered a new call .

o MODE_MANUAL_IN
In this work mode the agent is put into the Agent. WORK_NOT_READY
immediately after disconnecting from a previous call and cannot be delivered a
new call .

o MODE_NONE
This implies the agent’'s work mode is not being set.

Method Index

0 getStatelnfo()
This returns this Agent's state and workMode.

0 setState(int, int)
This method overrides Agent.setState() to add the Lucent—specific parameter
workMode.

Variables

0 MODE_NONE

public static final int MODE_NONE
This implies the agent’'s work mode is not being set.

0o MODE_AUTO_IN

public static final int MODE_AUTO_IN

In this work mode the agent is put into the Agent.READY state immediately after

disconnecting from a previous call and can be delivered a new call .

o MODE_MANUAL_IN

public static final int MODE_MANUAL_IN

In this work mode the agent is put into the Agent. WORK_NOT_READY
immediately after disconnecting from a previous call and cannot be delivered a
new call .

Methods

0 setState

public abstract void setState(int state,
int workMode) throws TsapilnvalidArgumentException , TIsapilnvalidStateE

This method overrides Agent.setState() to add the Lucent—specific parameter
workMode. It changes the state and workMode of a previously added Agent.

The post and pre conditions are as follows:

The pre—condition predicates for this method are:
1. this.getTerminal.getProvider().getState() == IN_SERVICE
2. this.getStatelnfo (appropriate state and workMode)

The post—condition predicates for this method are:
1. this.getTerminal.getProvider().getState() == IN_SERVICE
2. this.getStatelnfo() == state and workMode (specified as a parameter)

Parameters:
state — specifies the state this Agent should be set to. Valid states are
READY, NOT_READY, WORK_READY and WORK_NOT_READY.
workMode — specifies the state this Agent should be set to. Valid workModes
are MODE_AUTO_IN and MODE_MANUAL_IN.
Throws:TsapilnvalidArgumentException
At least one of the arguments passed in is not valid.
Throws:TsapilnvalidStateException
Implementation determined Agent was in an invalid state for this method.

0 getStatelnfo

public abstract LucentAgentStatelnfo getStatelnfo()

This returns this Agent's state and workMode.

Valid values of state returned are UNKNOWN, BUSY, READY, NOT_READY,
WORK_READY, WORK_NOT_READY, LOG_IN and LOG_OUT. Valid values of

workModes are MODE_AUTO_IN and MODE_MANUAL_IN.

Interface com.lucent.jtapi.tsapi.LucentCall

public interface LucentCall
extends ITsapiCall, LucentCalllnfo

The LucentCall interface extends ITsapiCall with Lucent—specific features. When a
Provider is bound to a Lucent switch, this interface may be used to access additional
capabilities.

Direct—agent calling may be used by an application to place a call to a specific logged—in
ACD agent. Supervisor—assist calling may be used by an application to place a call from
a logged—in ACD agent to a supervisor. These features are also available on consultation
calls. These types of calls may be tracked separately by ACD measurement software in
the PBX.

User—to—user information is an ISDN feature which allows end—to—end transmission of
application data during call setup/teardown. This information may be a customer
number, credit card number, alphanumeric digits, or a binary string. It is propagated
with the call whether the call is made to a destination on the local switch or to a
destination on a remote switch over PRI trunks. The switch sends the UUI in the ISDN
SETUP message over the PRI trunk to establish the call. The local and the remote
switch include the UUI in the alerting, connected, disconnected and route request
events.

See Also:
UserToUserlnfo

Method Index

0 connect(Terminal, Address, String, boolean, UserToUserlInfo)
Similar to the standard connect(), with the addition of Lucent-specific call
parameters.

0 connectDirectAgent(Terminal, Address, Agent, boolean, UserToUserInfo)
Places a direct call to a specific logged—in ACD agent.

o0 connectPredictive(Terminal, Address, String, int, int, int, int, boolean,

UserToUserlInfo)
Similar to the standard connectPredictive(), with the addition of Lucent—specific
call parameters.

0 connectSupervisorAssist(Agent, String, UserToUserInfo)
Places a call from a logged—in ACD agent to a supervisor’s extension.

o consult(TerminalConnection, String, boolean, UserToUserInfo)

Similar to the standard consult(), with the addition of Lucent-specific call
parameters.

o consultDirectAgent(TerminalConnection, Agent, boolean, UserToUserInfo)
Places a consultation call with a specific logged—in ACD agent.

0 consultSupervisorAssist(TerminalConnection, ACDAddress, String,

UserToUserlInfo)

Places a consultation call from a logged—-in ACD agent to a supervisor’s extension.

Methods

0 connect

public abstract Connection[] connect(Terminal origterm,
Address origaddr,
String dialedDigits,
boolean priorityCall,
UserToUserInfo _ userinfo) throws TsapiResourceUnavailableExcepti

Similar to the standard connect(), with the addition of Lucent—specific call
parameters.

Parameters:
origterm — The originating Terminal for this telephone call.
origaddr — The originating Address for this telephone call.
dialedDigits — The dialable destination string for this telephone call.
priorityCall — If true, attempt to place a priority call

userinfo — Associate caller information, up to 32 bytes, with the call.
See Also:

UserToUserlnfo

0 connectDirectAgent

public abstract Connection[] connectDirectAgent(Terminal origterm,
Address origaddr,
Agent calledAgent,
boolean priorityCall,

UserToUserInfo userinfo) throws TsapiResourceUnavalil

Places a direct call to a specific logged—in ACD agent.

Parameters:
origterm — The originating Terminal for this telephone call.
origaddr — The originating Address for this telephone call.
calledAgent — The ACD agent extension to be called.
priorityCall — If true, attempt to place a priority call

userinfo — Associate caller information, up to 32 bytes, with the call.
See Also:

UserToUserlnfo

0 connectSupervisorAssist

public abstract Connection[] connectSupervisorAssist(Agent callingAgent,
String dialedDigits,
UserToUserInfo __ userinfo) throws TsapiResourceUn

Places a call from a logged—in ACD agent to a supervisor's extension.

Parameters:
callingAgent — The ACD agent extension from which to originate the call.
dialedDigits — The supervisor’'s extension.
userinfo — Associate caller information, up to 32 bytes, with the call.
See Also:
UserToUserlInfo

o connectPredictive

public abstract Connection[] connectPredictive(Terminal originatorTerminal,
Address origAddress,
String dialedDigits,
int connectionState,
int maxRings,
int answeringTreatment,
int answeringEndpointType,
boolean priorityCall,
UserToUserInfo __ userinfo) throws TsapiResourceUnavaila

Similar to the standard connectPredictive(), with the addition of Lucent-specific
call parameters.

Parameters:
originatorTerminal — The originating Terminal of the telephone call. This is
optional when the originator is for example an ACDAddress.
origAddress — The originating Address of the telephone call.
dialedDigits — This must be a complete and valid telephone number.
connectionState — The application may set this to CONNECTED
ALERTING, NETWORK_REACHED or NETWORK_ALERTING.
maxRings — This specifies the the number of rings that are allowed before
classifying the call as no answer. The allowed range is from MIN_RINGS of 2
to MAX_RINGS of 15.
answeringTreatment — This specifies the call treatment when an answering
endpoint is detected. The set includes
ANSWERING _TREATMENT_PROVIDER_DEFAULT,
ANSWERING_TREATMENT_DROP,
ANSWERING_TREATMENT_CONNECT and
ANSWERING_TREATMENT_NONE.
answeringEndpointType — This specifies the type of answering endpoint.
The set includes ENDPOINT _ANSWERING_MACHINE,
ENDPOINT_FAX_MACHINE, ENDPOINT_ HUMAN_INTERVENTION,
ENDPOINT_ANY.
priorityCall — If true, attempt to place a priority call

userinfo — Associate caller information, up to 32 bytes, with the call.
See Also:

UserToUserlnfo

o consult

public abstract Connection[] consult(TerminalConnection termconn,
String address,
boolean priorityCall,

UserToUserInfo _ userinfo) throws TsapilnvalidStateException

Similar to the standard consult(), with the addition of Lucent—specific call
parameters.

Parameters:
termconn — The controlling TerminalConnection for the consultation call.
address — The dialable destination string for this telephone call.
priorityCall — If true, attempt to place a priority call

userinfo — Associate caller information, up to 32 bytes, with the call.
See Also:

UserToUserlnfo

0 consultDirectAgent

public abstract Connection[] consultDirectAgent(TerminalConnection termconn,
Agent calledAgent,
boolean priorityCall,

UserToUserInfo userinfo) throws TsapilnvalidStateExc

Places a consultation call with a specific logged—in ACD agent.

Parameters:
termconn — The controlling TerminalConnection for the consultation call.
calledAgent — The ACD agent extension to be called.
priorityCall — If true, attempt to place a priority call

userinfo — Associate caller information, up to 32 bytes, with the call.
See Also:

UserToUserlnfo

0 consultSupervisorAssist

public abstract Connection[] consultSupervisorAssist(TerminalConnection termconn,
ACDAddress split,
String address,

UserToUserInfo _ userinfo) throws TsapilnvalidSta

Places a consultation call from a logged—in ACD agent to a supervisor’s extension.

Parameters:
termconn — The controlling TerminalConnection for the consultation call.

split — The split which the originating ACD agent is logged into.

address — The supervisor’s extension.

userinfo — Associate caller information, up to 32 bytes, with the call.
See Also:

UserToUserlnfo

Interface com.lucent.jtapi.tsapi.LucentCalllnfo

public interface LucentCallInfo
extends ITsapiCalllnfo

The LucentCalllnfo interface provides access methods for Lucent—specific call
information. These methods are implemented on the call object and on call control call
events. For example, if a CallControlCallObserver receives a CallCtlConnAlertingEy, it
may be cast to LucentCalllnfo to use the getUserToUserInfo() method. These methods
may return null if the requested data is not available.

Variable Index

0 AR_ANSWER_MACHINE_DETECTED
0 AR_ANSWER_NORMAL

0 AR_ANSWER_TIMED

0 AR_ANSWER_VOICE_ENERGY
0 AR_IN_QUEUE

0 AR_NONE

0 AR_SIT_INEFFECTIVE_OTHER
0 AR_SIT_INTERCEPT

0 AR_SIT_NO_CIRCUIT

0 AR_SIT_REORDER

0 AR_SIT_UNKNOWN

0 AR_SIT_VACANT_CODE

Method Index

o0 getDeliveringACDAddress()
For a connection to an AgentTerminal, getDeliveringACDAddress returns the
ACDAddress that this call was delivered through to the AgentTerminal.

o0 getDistributingAddress()
For a connection to an AgentTerminal, getDistributingAddress returns the
ACDAddress or ACDManagerAddress that was an intermediate endpoint before
the call terminated at the AgentTerminal.

0 getLookaheadlnfo()
Returns lookahead interflow information associated with the call event.

o0 getOriginalCalllnfo()
Returns original call information associated with the call event.

0 getReason()

Specifies the reason for the last event sent for Connections and
TerminalConnections on the Call or the Call.
0 getTrunk()
Returns the trunk from which the call originated.
0 getUserEnteredCode()
Returns call prompting digits associated with the call event.
0 getUserToUserInfo()
Returns user—to—user information associated with the call event.

Variables

0 AR_NONE

public static final short AR_NONE

0 AR_ANSWER_NORMAL

public static final short AR_ANSWER_NORMAL
0 AR_ANSWER_TIMED

public static final short AR_ANSWER_TIMED

0 AR_ANSWER_VOICE_ENERGY

public static final short AR_ANSWER_VOICE_ENERGY

0 AR_ANSWER_MACHINE_DETECTED

public static final short AR_ANSWER_MACHINE_DETECTED
0 AR_SIT_REORDER

public static final short AR_SIT_REORDER

0 AR_SIT_NO_CIRCUIT

public static final short AR_SIT_NO_CIRCUIT

0 AR_SIT_INTERCEPT

public static final short AR_SIT_INTERCEPT

0 AR_SIT_VACANT_CODE

public static final short AR_SIT_VACANT_CODE

0 AR_SIT_INEFFECTIVE_OTHER

public static final short AR_SIT_INEFFECTIVE_OTHER

0 AR_SIT_UNKNOWN

public static final short AR_SIT_UNKNOWN

0 AR_IN_QUEUE

public static final short AR_IN_QUEUE

Methods

0 getUserToUserlInfo

public abstract UserToUserInfo getUserToUserInfo()

Returns user—to—user information associated with the call event.

0 getLookaheadlnfo

public abstract LookaheadInfo _ getLookaheadIinfo()
Returns lookahead interflow information associated with the call event.

0 getUserEnteredCode

public abstract UserEnteredCode _ getUserEnteredCode()
Returns call prompting digits associated with the call event.

o0 getOriginalCalllnfo

public abstract OriginalCalllinfo getOriginalCallinfo()

Returns original call information associated with the call event.

o0 getDistributingAddress

public abstract CallCenterAddress getDistributingAddress()

For a connection to an AgentTerminal, getDistributingAddress returns the
ACDAddress or ACDManagerAddress that was an intermediate endpoint before
the call terminated at the AgentTerminal.

0 getDeliveringACDAddress

public abstract ACDAddress getDeliveringACDAddress()

For a connection to an AgentTerminal, getDeliveringACDAddress returns the
ACDAddress that this call was delivered through to the AgentTerminal.

0 getTrunk

public abstract CallCenterTrunk getTrunk()
Returns the trunk from which the call originated.

0 getReason

public abstract short getReason()

Specifies the reason for the last event sent for Connections and
TerminalConnections on the Call or the Call.

Interface
com.lucent.jtapi.tsapi.LucentConnNetworkReachedEvent

public interface LucentConnNetworkReachedEvent
extends ITsapiConnNetworkReachedEvent

Returns supplementary call progress information from the ISDN Progress Indicator
Information Element.

Method Index

0 getNetworkProgressinfo()
Get the supplementary call progress information

Methods

o getNetworkProgressinfo

public abstract NetworkProgressinfo getNetworkProgressinfo()

Get the supplementary call progress information

Interface com.lucent.jtapi.tsapi.LucentConnection

public interface LucentConnection
extends ITsapiConnection

The LucentConnection interface extends ITsapiConnection with Lucent—specific
features. When a Provider is bound to a Lucent switch, this interface may be used to
access additional capabilities.

Variable Index

0 DR_CALL_CLASSIFIER

Drop a call classifier from the call..
0 DR_NONE
0 DR_TONE_GENERATOR

Drop a tone generator from the call..

Method Index

o disconnect(short, UserToUserInfo)
Similar to the standard disconnect(), with the addition of Lucent—specific
parameters.

Variables

o DR_NONE

public static final short DR_NONE

0 DR_CALL_CLASSIFIER

public static final short DR_CALL_CLASSIFIER
Drop a call classifier from the call..

0 DR_TONE_GENERATOR

public static final short DR_TONE_GENERATOR

Drop a tone generator from the call..

Methods

o disconnect

public abstract void disconnect(short dropResource,
UserToUserInfo _ userinfo) throws TsapiPrivilegeViolationException

Similar to the standard disconnect(), with the addition of Lucent—specific
parameters.

Parameters:
dropResource — The resource to be dropped from the call. Possible values are
DR_CALL_CLASSIFIER, DR_TONE_GENERATOR, and DR_NONE.

userInfo — Associate caller information, up to 32 bytes, with the call.
See Also:

UserToUserlnfo

Interface com.lucent.jtapi.tsapi.LucentProvider

public interface LucentProvider
extends ITsapiProvider

LucentProvider adds methods to obtain Lucent—specific switch information.

Method Index

o0 getCallClassifierlnfo()
Returns information on call classifier port usage.
0 getSwitchDateAndTime()
Returns current date and time from the switch.
0 getTrunkGrouplnfo(String)
Returns trunk usage information on the specified trunk group.

Methods

0 getTrunkGrouplnfo

public abstract TrunkGroupinfo getTrunkGrouplnfo(String trunkAccessCode)

Returns trunk usage information on the specified trunk group.

o getCallClassifierinfo

public abstract CallClassifierInfo getCallClassifierInfo()

Returns information on call classifier port usage.

0 getSwitchDateAndTime

public abstract Date getSwitchDateAndTime()

Returns current date and time from the switch.

Interface com.lucent.jtapi.tsapi.LucentRouteSession

public interface LucentRouteSession
extends ITsapiRouteSession

The LucentRouteSession interface extends ITsapiRouteSession with Lucent-specific
features. When a Provider is bound to a Lucent switch, this interface may be used to
access additional capabilities.

Method Index

o0 selectRoute(String, boolean, UserToUserInfo)
Similar to the standard selectRoute(), with the addition of Lucent-specific call
parameters.
o selectRouteAndCollect(String, int, int, boolean, UserToUserInfo)
Routes a call and requests DTMF digit collection.
o selectRouteDirectAgent(Agent, boolean, UserToUserInfo)
Routes a direct agent call to a specific logged—in ACD agent.
o selectRouteWithDigits(String, String, boolean, UserToUserlInfo)
Routes a call and places digits in a dial-ahead digit buffer.

Methods

o selectRoute

public abstract void selectRoute(String routeSelected,
boolean priorityCall,
UserToUserInfo _ userinfo) throws TsapiMethodNotSupportedException

Similar to the standard selectRoute(), with the addition of Lucent—specific call
parameters.

Parameters:
routeSelected — The selected route for this call. (Note that this is NOT an
array.)
priorityCall — If true, attempt to place a priority call
userinfo — Associate caller information, up to 32 bytes, with the call.
See Also:
UserToUserlnfo

o0 selectRouteDirectAgent

public abstract void selectRouteDirectAgent(Agent calledAgent,
boolean priorityCall,
UserToUserInfo __ userinfo) throws TsapiMethodNotSupportedE

Routes a direct agent call to a specific logged—in ACD agent.

Parameters:

calledAgent — The ACD agent extension to route to.

priorityCall — If true, attempt to place a priority call

userInfo — Associate caller information, up to 32 bytes, with the call.
See Also:

UserToUserlInfo

o selectRouteAndCollect

public abstract void selectRouteAndCollect(String routeSelected,
int digitsToBeCollected,
int timeout,
boolean priorityCall,

UserToUserInfo __ userinfo) throws TsapiMethodNotSupportedEx

Routes a call and requests DTMF digit collection.

Parameters:
routeSelected — The selected route for this call. (Note that this is NOT an
array.)
digitsToBeCollected — The number of digits to be collected (up to 24).
timeout — The number of seconds to wait (up to 63) before digit collection
times out.
priorityCall — If true, attempt to place a priority call
userinfo — Associate caller information, up to 32 bytes, with the call.

See Also:
UserToUserlInfo

o selectRouteWithDigits

public abstract void selectRouteWithDigits(String routeSelected,
String digits,
boolean priorityCall,

UserToUserInfo __ userinfo) throws TsapiMethodNotSupportedEx

Routes a call and places digits in a dial-ahead digit buffer.

Parameters:
routeSelected — The selected route for this call. (Note that this is NOT an
array.)
digits — A string of up to 24 characters (0-9, *, and # only) to place in the
dial-ahead digit buffer.

priorityCall — If true, attempt to place a priority call

userinfo — Associate caller information, up to 32 bytes, with the call.
See Also:

UserToUserlInfo

Interface com.lucent.jtapi.tsapi.LucentTerminal

public interface LucentTerminal
extends ITsapiTerminal

The LucentTerminal interface extends the ITsapiTerminal interface.

Method Index

0 addAgent(Address, ACDAddress, int, int, String, String)
This method overrides Terminal.addAgent() to add the Lucent—specific parameter
workMode.

0 getDirectoryName()
Return Directory name of this Terminal.

Methods

0 addAgent

public abstract Agent addAgent(Address agentAddress,
ACDAddress acdAddress,
int initialState,
int workMode,
String agentlD,
String password) throws TsapilnvalidArgumentException

, TsapilnvalidSt

This method overrides Terminal.addAgent() to add the Lucent—specific parameter
workMode. It creates an Agent object, adds it to this AgentTerminal and returns
the Agent object.

An Agent object represents an AgentTerminal logged into an ACDAddress.
If the getAgents() method is invoked subsequently it will return this Agent object.

The Agent can be removed from this AgentTerminal by invoking the
removeAgent() method.

The pre—condition predicates for this method are:
1. this.getProvider().getState() == IN_SERVICE

The post—condition predicates for this method are:

1. this.getProvider().getState() == IN_SERVICE
2. (this.getAgents() union agent) == agent
3. agent.getStatelnfo == initial state and workMode (specified as a parameter)

Parameters:
agentAddress — specifies that Address on this Terminal that this request is
for, where the Terminal may support several addresses.
acdAddress — specifies the address of the ACD that the Terminal is
requested to be logged in to.
initialState — is the state the specified state requested, it must be one of the
states specified in the Agent object READY or NOT_READY.
workMode — specifies the state this Agent should be set to. Valid workModes
are MODE_AUTO_IN and MODE_MANUAL_IN.
agentID - is the Agents ID.
password — is the Agents password.
Returns:
An Agent object representing the association between this AgentTerminal
and the ACDAddress specified in the request.
Throws:TsapilnvalidArgumentException
At least one of the arguments provided is not valid.
Throws:TsapilnvalidStateException
Implementation determined AgentTerminal was in an invalid state for this
method.

o getDirectoryName

public abstract String getDirectoryName()

Return Directory name of this Terminal.

Interface com.lucent.jtapi.tsapi.LucentTerminalConnection

public interface LucentTerminalConnection
extends ITsapiTerminalConnection

The LucentTerminalConnection interface extends ITsapiTerminalConnection with
Lucent-specific features. When a Provider is bound to a Lucent switch, this interface
may be used to access additional capabilities.

Variable Index

0 DR_CALL_CLASSIFIER

Drop a call classifier from the call..
0 DR_NONE
0 DR_TONE_GENERATOR

Drop a tone generator from the call..

Method Index

0 leave(short, UserToUserInfo)
Similar to the standard leave(), with the addition of Lucent—specific parameters.

Variables

o DR_NONE

public static final short DR_NONE

0 DR_CALL_CLASSIFIER

public static final short DR_CALL_CLASSIFIER
Drop a call classifier from the call..

0 DR_TONE_GENERATOR

public static final short DR_TONE_GENERATOR

Drop a tone generator from the call..

Methods

o leave

public abstract void leave(short dropResource,
UserToUserInfo _ userinfo) throws TsapilnvalidStateException , TsapiMethodNo

Similar to the standard leave(), with the addition of Lucent—specific parameters.

Parameters:
dropResource — The resource to be dropped from the call. Possible values are
DR_CALL_CLASSIFIER, DR_TONE_GENERATOR, and DR_NONE.
userinfo — Associate caller information, up to 32 bytes, with the call.

See Also:
disconnect, UserToUserlInfo

Class com.lucent.jtapi.tsapi.CallClassifierinfo

java.lang.Object

+-————com.lucent.jtapi.tsapi.ASN1

+-———com.lucent.jtapi.tsapi.ASNSequence

+-———com.lucent.jtapi.tsapi.LucentPrivateData

+-———com.lucent.jtapi.tsapi.CallClassifierInfo

public final class CallClassifierinfo
extends LucentPrivateData

Provides information on call classifier port usage.

Variable Index

0 numAvailPorts

The number of available call classifier ports.
0 humlnUsePorts

The number of in—use call classifier ports.

Variables

o numAvailPorts

public int numAvailPorts
The number of available call classifier ports.

o numlilnUsePorts

public int numinUsePorts

The number of in—use call classifier ports.

Class com.lucent.jtapi.tsapi.Lookaheadlnfo

java.lang.Object

+-————com.lucent.jtapi.tsapi.ASN1

+-———com.lucent.jtapi.tsapi.ASNSequence

+-———com.lucent.jtapi.tsapi.LucentPrivateData

+-————com.lucent.jtapi.tsapi.LookaheadInfo

public final class Lookaheadlnfo
extends LucentPrivateData

Lookahead interflow is a G3 switch feature that routes some of the incoming calls from
one switch to another so that they can be handled more efficiently and will not be lost.
The lookahead interflow information is provided by the switch that overflows the call.
The routing server application may use the lookahead interflow information to
determine the destination of the call.

Variable Index

oLAI ALL INTERFLOW

oLAI HIGH

o LAI LOW

o LAI_MEDIUM

o0 LAI_ NOT_IN_QUEUE

0 LAl THRESHOLD_ INTERFLOW
oLAI_ TOP

0 LAl VECTORING_INTERFLOW

Method Index

0 getHours()
Gets the 'hours’ part of the event timestamp.

0 getMinutes()
Gets the 'minutes’ part of the event timestamp.

0 getPriority()

Priority of the interflowed call.
0 getSeconds()
Gets the 'seconds’ part of the event timestamp.
0 getSourceVDN()
Returns the address of the VDN which overflowed the call.

0 getType()
Type of interflow.

Variables

o LAI_ALL_INTERFLOW

public static final short LAI_ALL_INTERFLOW

0 LAI_THRESHOLD_INTERFLOW

public static final short LAl_ THRESHOLD_INTERFLOW
0 LAI_VECTORING_INTERFLOW

public static final short LAI_VECTORING_INTERFLOW
0 LAI_NOT_IN_QUEUE

public static final short LAI_NOT_IN_QUEUE

0 LAI_LOW

public static final short LAI_LOW

o LAI_MEDIUM

public static final short LAI_MEDIUM

o LAI_HIGH

public static final short LAI_HIGH

o LAI_TOP

public static final short LAI_TOP

Methods

0 getType

public short getType()

Type of interflow. Possible values are LAI_ALL_INTERFLOW,
LAI_THRESHOLD_INTERFLOW, and LAI_VECTORING_INTERFLOW.

0 getPriority

public short getPriority()

Priority of the interflowed call. Possible values are LAI_NOT_IN_QUEUE,
LAI_LOW, LAlI_MEDIUM, LAl _HIGH, and LAl _TOP.

0 getHours

public int getHours()
Gets the 'hours’ part of the event timestamp.

0 getMinutes

public int getMinutes()
Gets the 'minutes’ part of the event timestamp.

0 getSeconds

public int getSeconds()
Gets the 'seconds’ part of the event timestamp.

0 getSourceVDN

public ACDManagerAddress getSourceVDN()

Returns the address of the VDN which overflowed the call.

Class com.lucent.jtapi.tsapi.LucentAgentStatelnfo

java.lang.Object

+-———com.lucent.jtapi.tsapi.LucentAgentStatelnfo

public final class LucentAgentStatelnfo
extends Object

This is the object that is returned by the query getStatelnfo in LucentAgent. It returns
both the state and workMode for the Agent.

See LucentAgent for details.

Variable Index

o state
State of Agent.
o workMode
Work Mode for Agent.

Constructor Index

0 LucentAgentStatelnfo(int, int)
Public Constructor.

Variables

o state

public int state
State of Agent.

o workMode

public int workMode

Work Mode for Agent.

Constructors

0 LucentAgentStatelnfo

public LucentAgentStatelnfo(int _state,
int_workMode)

Public Constructor.

Class com.lucent.jtapi.tsapi.NetworkProgressinfo

java.lang.Object

+-————com.lucent.jtapi.tsapi.ASN1

+-———com.lucent.jtapi.tsapi.ASNSequence

+-———com.lucent.jtapi.tsapi.LucentPrivateData

+-————com.lucent.jtapi.tsapi.NetworkProgressinfo

public final class NetworkProgressinfo
extends LucentPrivateData

Contains supplementary call progress information from the ISDN Progress Indicator
Information Element.

Variable Index

oPD_CALL_OFF_ISDN

oPD_CALL_ON_ISDN

o PD_DEST_NOT_ISDN

o0 PD_INBAND

o0 PD_ORIG NOT_ISDN

o PL_PRIV_REMOTE

oPL_PUB_LOCAL

oPL_PUB_REMOTE

o PL_USER

0 progressDescription
Specifies the progress description in a Progress Indicator Information Element
from the PRI network.

0 progressL ocation
Specifies the progress location in a Progress Indicator Information Element from
the PRI network.

Variables

o PL_USER

public static final short PL_USER

o PL_PUB_LOCAL

public static final short PL_PUB_LOCAL

o PL_PUB_REMOTE

public static final short PL_PUB_REMOTE

o PL_PRIV_REMOTE

public static final short PL_PRIV_REMOTE

o PD_CALL_OFF_ISDN

public static final short PD_CALL_OFF_ISDN

o PD_DEST_NOT_ISDN

public static final short PD_DEST_NOT_ISDN

0o PD_ORIG_NOT_ISDN

public static final short PD_ORIG_NOT_ISDN

o PD_CALL_ON_ISDN

public static final short PD_CALL_ON_ISDN

o PD_INBAND

public static final short PD_INBAND

0 progressLocation

public short progressLocation

Specifies the progress location in a Progress Indicator Information Element from
the PRI network. Possible values are PL_USER, PL_PUB_LOCAL,
PL_PUB_REMOTE, PL_PRIV_REMOTE

0 progressDescription

public short progressDescription

Specifies the progress description in a Progress Indicator Information Element
from the PRI network. Possible values are PD_CALL_OFF_ISDN,
PD_DEST_NOT_ISDN, PD_ORIG_NOT_ISDN, PD_CALL_ON_ISDN,
PD_INBAND

Class com.lucent.jtapi.tsapi.OriginalCallinfo

java.lang.Object

+-————com.lucent.jtapi.tsapi.ASN1

+-———com.lucent.jtapi.tsapi.ASNSequence

+-———com.lucent.jtapi.tsapi.LucentPrivateData

+-————com.lucent.jtapi.tsapi.OriginalCallinfo

public final class OriginalCalllnfo
extends LucentPrivateData

Original Call Information is made available in conjunction with the consult() service. It
is provided in event reports to observers of the consulted party and contains information
about the original call.

Variable Index

0 OR_CONFERENCED
0 OR_CONSUL TATION
0OR NEW_CALL

0 OR_TRANSFERRED

Method Index

o getCalledDevice()
Get the original called device for this call.
o getCallingDevice()
Get the original calling device for this call.
0 getLookaheadlnfo()
Get the original lookahead information for this call.

0 getReason()
Get the reason code for this OriginalCalllnfo.

0 getTrunk()
Get the original trunk device for this call.
0 getUserEnteredCode()

Get the original collected digits for this call.
0 getUserToUserInfo()
Get the original user—to—user information for this call.

Variables

0 OR_CONSULTATION

public static final short OR_CONSULTATION

0 OR_CONFERENCED

public static final short OR_CONFERENCED

0 OR_TRANSFERRED

public static final short OR_TRANSFERRED

0 OR_NEW_CALL

public static final short OR_NEW_CALL

Methods

0 getReason

public short getReason()
Get the reason code for this OriginalCalllnfo. Possible values are
OR_CONSULTATION, OR_CONFERENCED, OR_TRANSFERRED, and
OR_NEW_CALL.

0 getCallingDevice

public Address getCallingDevice()
Get the original calling device for this call.

0 getCalledDevice

public Address getCalledDevice()
Get the original called device for this call.

o0 getTrunk

public CallCenterTrunk getTrunk()

Get the original trunk device for this call.

0 getUserToUserlInfo

public UserToUserInfo getUserToUserInfo()

Get the original user—to—user information for this call.

0 getLookaheadInfo

public LookaheadInfo _ getLookaheadInfo()
Get the original lookahead information for this call.

0 getUserEnteredCode

public UserEnteredCode _ getUserEnteredCode()

Get the original collected digits for this call.

Class com.lucent.jtapi.tsapi. TrunkGrouplInfo

java.lang.Object

+-————com.lucent.jtapi.tsapi.ASN1

+-———com.lucent.jtapi.tsapi.ASNSequence

+-———com.lucent.jtapi.tsapi.LucentPrivateData

+-————com.lucent.jtapi.tsapi. TrunkGrouplinfo

public final class TrunkGrouplnfo
extends LucentPrivateData

Provides information on trunk group usage.

Variable Index
o idleTrunks
The number of idle trunks.

o0 usedTrunks
The number of in—use trunks.

Variables

o idleTrunks

public int idleTrunks
The number of idle trunks.

o usedTrunks

public int usedTrunks

The number of in—use trunks.

Class com.lucent.jtapi.tsapi.UserEnteredCode

java.lang.Object

+-————com.lucent.jtapi.tsapi.ASN1

+-———com.lucent.jtapi.tsapi.ASNSequence

+-———com.lucent.jtapi.tsapi.LucentPrivateData

+-————com.lucent.jtapi.tsapi.UserEnteredCode

public final class UserEnteredCode
extends LucentPrivateData

Contains the code/digits that may have been entered by the caller through the G3 call
prompting feature or the collected digits feature.

The following are necessary steps for setting up VDNSs, simple vector steps and
CallObservers in order for a client application to receive UECs from the switch.

1. Administer a VDN and a vector on the G3 switch with collect digits step and route
command to a second VDN. See Call Scenario 1 and 2 below.

The purpose of this VDN is to collect UEC, but it will not report the UEC to the
PBX driver, even if the VDN is observed. The route command must redirect the
call to a second VDN. The first VDN doesn’t have to be observed by any client
application.

2. Administer a second VDN and vector to receive the redirected call from the first
VDN.

The purpose of this second VDN is to report the UEC to the PBX driver. Thus a
CallObserver must be placed on the second VDN. This VDN should redirect the call
to its destination. The destination can be a station extension, an ACD split, or
another VDN.

If the destination is a station extension and there is a CallObserver on that
Address, call events for that observer will contain the UEC collected by the first
VDN.

If the destination is an ACD split and there is a CallObserver on an agent station

in the split, call events for that observer will contain the UEC collected by the first
VDN.

If the destination is a VDN, UEC is NOT delivered to observers of that VDN.

If multiple UECs are collected by multiple VDNSs in call processing, only the most
recently collected UEC is reported.

Limitations

1. An observed VDN only reports the UEC it receives (UEC collected in a previous
VDN). It will not report UEC it collects or UEC collected after the call is redirected
from the VDN.

2. A CallObserver on a station receives only the UEC that is received by the VDN
that redirects the call to the station, provided that the VDN is observed (see Call
Scenario 2).

Call Scenario 1:
VDN 24101 is mapped to vector 1 and vector 1 has the following steps:

1. collect 16 digits after announcement extension 1000
2. route to 24102
3. stop

VDN 24102 is mapped to vector 2 and vector 2 has the following steps:

1. route to 24103
2. stop

where 24103 is a station extension.

When a call arrives on VDN 24101, the caller will hear the announcement and the
switch will wait for the caller to enter 16 digits. After the 16 digits are collected in time
(if the collect digits step is timed out, next step is executed), the call is routed to VDN
24102. The VDN 24102 routes the call to station 24103.

A CallObserver on VDN 24101 will NOT receive UEC.

If there is a CallObserver on VDN 24102, the 16 digits collected by VDN 24101 will be
reported to that observer. VDN 24101 observing is not required for VDN 24102 to receive
UEC collected by VDN 24101.

If there are CallObservers on VDN 24102 and station 24103, the 16 digits collected by
VDN 24101 will be reported to those observers.

Whether the station 24103 is observed or not, the 16 digits will NOT be reported to the
VDN 24102 observer when call is delivered to station 24103.

Call Scenario 2:
VN 24201 is mapped to vector 11 and vector 11 has the following steps:

1. collect 10 digits after announcement extension 2000
2. route to 24202
3. stop

VDN 24202 is mapped to vector 12 and vector 12 has the following steps:

1. collect 16 digits after announcement extension 3000
2. route to 24203
3. stop

VDN 24203 is mapped to vector 13 and vector 13 has the following steps:

1. queue to main split 2 priority m
2. stop

where split 2 is a vector controlled ACD split that has agent extensions 24301,
24302, 24303.

When a call arrives on VDN 24201, the caller will hear an announcement and the switch
will wait for the caller to enter 10 digits. After the 10 digits are collected in time, the call
is routed to VDN 24202. When the call arrives on VDN 24202, the caller will hear an
announcement and the switch will wait for the caller to enter 16 digits. After the 16
digits are collected in time, the call is routed to VDN 24203. The VDN 24203 queues the
call to ACD Split 2. If the agent at station 24301 is available, the call is sent to station
24301.

A CallObserver on VDN 24201 will NOT receive UEC.

If there is a CallObserver on VDN 24102, the 10 digits collected by VDN 24201 will be
reported to that observer.

If there is a CallObserver on VDN 24203, the 16 digits collected by VDN 24202 will be
reported to that observer. However, the 10 digits collected by VDN 24201 will NOT be
reported to that observer. An observer receives only the most recent UEC.

If VDN 24202 and VDN 24203 and station 24301 are all observed, only the 16 digits
collected by VDN 24202 will be reported to the station 24301 observer. A station
observer will receive the UEC that is received by the VDN that redirects calls to the
station.

NOTE: In order to receive the UEC at a station observer, the VDN that receives the
UEC and redirects calls to the station must be observed. For example, if VDN 24203 is
NOT observed by any client, an observer on station 24301 will NOT receive the 16 digits
collected by VDN 24202.

Variable Index

o UE_ANY

o UE_CALL PROMPTER

o0 UE_COLLECT

o0 UE_DATA BASE_PROVIDED
o UE ENTERED

o UE_LOGIN_DIGITS

o0 UE_TONE_DETECTOR

Method Index

0 getCollectVDN()
Returns the ACDManagerAddress of the VDN which collected the digits

0 getDiqits()
Returns the collected digits

0 getindicator()
Returns UE_COLLECT or UE_ENTERED

0 getType()
Returns the type of digits collected

Variables

o UE_ANY

public static final short UE_ANY

0 UE_LOGIN_DIGITS

public static final short UE_LOGIN_DIGITS
0 UE_CALL_PROMPTER

public static final short UE_CALL_PROMPTER

0 UE_DATA_BASE_PROVIDED

public static final short UE_DATA_BASE_PROVIDED

0 UE_TONE_DETECTOR

public static final short UE_TONE_DETECTOR

0 UE_COLLECT

public static final short UE_COLLECT

o0 UE_ENTERED

public static final short UE_ENTERED

Methods
0 getType
public short getType()
Returns the type of digits collected

o getindicator

public short getindicator()

Returns UE_COLLECT or UE_ENTERED
0 getDigits
public String getDigits()

Returns the collected digits

0 getCollectvVDN

public ACDManagerAddress getCollectVDN()

Returns the ACDManagerAddress of the VDN which collected the digits

Class com.lucent.jtapi.tsapi.UserToUserInfo

java.lang.Object

+-————com.lucent.jtapi.tsapi.ASN1

+-———com.lucent.jtapi.tsapi.ASNSequence

+-———com.lucent.jtapi.tsapi.LucentPrivateData

+-————com.lucent.jtapi.tsapi.UserToUserInfo

public final class UserToUserInfo
extends LucentPrivateData

User—to—user information is an ISDN feature which allows end—to—end transmission of
application data during call setup/teardown. This information may be a customer
number, credit card number, alphanumeric digits, or a binary string. It is propagated
with the call whether the call is made to a destination on the local switch or to a
destination on a remote switch over PRI trunks. The switch sends the UUI in the ISDN
SETUP message over the PRI trunk to establish the call. The local and the remote
switch include the UUI in the alerting, connected, disconnected and route request
events.

Constructor Index

0 UserToUserlInfo(byte[])
construct a UserToUserlInfo object from a byte array
0 UserToUserInfo(String)
construct a UserToUserlInfo object from an ASCII string

Method Index

0 getBytes()
return user—to—user info as a (binary) byte array

0 getString()
return user—to—user info as an ASCII string
0 isAscii()
guery whether sender encoded UUI as ASCII or binary

Constructors

o0 UserToUserlInfo

public UserToUserInfo(String _data)
construct a UserToUserlInfo object from an ASCII string

0 UserToUserInfo

public UserToUserInfo(byte _data[])

construct a UserToUserInfo object from a byte array

Methods
0 getString
public String getString()
return user—to—user info as an ASCII string
0 getBytes
public byte[] getBytes()
return user—to—user info as a (binary) byte array
0 iSAscii
public boolean isAscii()

guery whether sender encoded UUI as ASCII or binary

Using Telephony Services
Private Data Extensions to

JTAPI
Contents
Using Telephony Services Private Data Extensions 4-1
m Who Should Be Using These Extensions? 4-1
| = How Should the Extensions be Used? 4-2
[nitialization of Private Data 4-2
Using TsapiPrivate as a JTAPI Private Data Object 4-3
Converting TSAPI Constructs to JTAPI Objects 4-3
Converting JTAPI Objects to TSAPI Constructs 4-4

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 4-i

Using Telephony Services
Private Data Extensions to
JTAPI

Using Telephony Services Private
Data Extensions

=" NOTE:
This chapter describes non-standard additions to JTAPI. This package is
available only from the PassageWay Telephony Services implementation of
JTAPI and is not available from any other implementation of JTAPI.

This chapter contains the extensions that support Telephony Services
implementation of JTAPI for the private data mechanism for non-DEFINITY
switches and their associated drivers.

Who Should Be Using These Extensions?

An independent switch vendor who is using the JTAPI private data programming
environment to develop a private data package for non-DEFINITY switches, or
an application programmer who is using or interpreting private data in a raw
form, without an intermediate private data package. (An example of an
intermediate private data package that allows programmers to access private
data via Java interfaces rather than through raw private data bytes is contained

i Chapter 3, Using Telephony Services DEFINITY-Specific Extensions.) It is
assumed that this individual has a familiarity with the Java programming
language, JTAPI, Lucent Technologies Telephony Services Application
Programmer’s Interface (TSAPI) and its private data mechanism.

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 4-1

Using Telephony Services Private Data Extensions to
JTAPI

=" NOTE:
If you are an application programmer who is using JTAPI to develop
applications for any switch for which there is a PassageWay Telephony
Services driver, ignore this chapter and refer to|Chapter 1, [Telephony
Services Implementation of JTAPI for All Switches and the DEFINITY
Switch.” If you want additional TSAPI-specific information about the JTAPI
exceptions that are not accessible through standard JTAPI, refer to

Chapter 2, [Using Telephony Services Extensions to JTAPI Exceptions.”

=" NOTE:
If you are an application programmer who is using JTAPI to develop
applications for the DEFINITY switch, ignore this chapter and refer to
“Telephony Services Implementation of JTAPI for All Switches
and the DEFINITY Switch.” If you want to take advantage of DEFINITY-
specific features that are not accessible through standard JTAPI, refer to

[Chapter 3, |‘Telephony Services DEFINITY-Specific Extensions to JTAPI.”

How Should the Extensions be Used?

The private data extensions to JTAPI assist independent switch vendors in the
creation of a private data package for non-DEFINITY switches, or allow
application programmers to use or interpret private data when they are supplied
with private data in its raw form (i.e., without an intermediate private data
package.)

The following sections describe guidelines for using or interpreting private data
when it is supplied in its raw form.

Initialization of Private Data

In order to use or interpret private data from a particular vendor, the application
must specify the vendor name and the version of the private data that is to be
used. The particular format of the name and version strings used is supplied by
the vendor.

The specification of the vendor name and the version of the private data must be
done after the application creates a JtapiPeer but before it creates the Provider.
The ITsapiPeer.addVendor() method allows vendor names and versions to be
specified to the application. For example, if a JtapiPeer has been created (called
peer) which is an instance of ITsapiPeer, then:

((ITsapiPeer)peer) .addVendor (“Brand X”, “1-37)

indicates that the application knows how to interpret private data from vendor
“Brand X” as well as versions 1, 2, and 3 of that private data.

If the application supports private data produced by multiple vendors, the
application may call addVendor() multiple times before receiving the Provider.

4-2 |ssue 1.0 October 1997 JTAPI Client Programmer’s Guide

Using Telephony Services Private Data Extensions to
JTAPI

When a String containing the vendor name and version is passed to
JtapiPeer.getProvider(), a particular Provider will be connected to a single
vendor delivering one particular version of private data. The application
determines the connected vendor and version by executing the
ITsapiProvider.getVendor() and ITsapiProvider.getVendorVersion() methods.
Once a particular vendor and version is associated with a particular Provider,
this association will not change for the life of the Provider. If the application wants
a different Provider, the application must call ITsapiPeer.addVendor() again.

Using TsapiPrivate as a JTAPI Private Data
Object

Where JTAPI specifies that a private data Object is to be passed in as an
argument to a method, this implementation of JTAPI requires the Object to be an
instance of TsapiPrivate. Where JTAPI specifies that a private data Object is to
be returned from a method, in this implementation, the returned Object is always
an instance of TsapiPrivate.

When constructing a TsapiPrivate object to be used with the sendPrivateData()
methods, waitForResponse must be set so that the appropriate action is taken.

m Avalue of true indicates that the implementation should block
sendPrivateData() until a response is received from the switch. This reponse
will be passed back to the application as the return code from
sendPrivateData(). This is equivalent to the TSAPI request
cstaEscapeService().

m A value of false indicates that the implementation should return immediately
(with a null) from sendPrivateData(), without waiting for a response from the
switch. This is equivalent to the TSAPI request cstaSendPrivateEvent().

m When a TsapiPrivate object is passed as an argument to a setPrivateData()
method, the waitForResponse flag is ignored.

Converting TSAPI Constructs to JTAPI Objects

Since private data, by its nature, cannot be interpreted by the implementation,
raw TSAPI constructs may be exposed. The ITsapiProviderPrivate interface
defines methods that allow raw TSAPI constructs to be converted into their JTAPI
equivalents. The following table lists the raw TSAPI constructs that may be
converted into their JTAPI equivalents. It lists the TSAPI constructs, the Java
version (the Java class) of the TSAPI constructs, the JTAPI objects to which they
are converted, and the method to be used for the conversion.

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 4-3

Using Telephony Services Private Data Extensions to

JTAPI
TSAPI Construct | Java Class JTAPI Object Conversion Method
in
TsapiProviderPrivate
ExtendedDevicelD_t | ExtendedDevicelD Address getAddress()
ExtendedDevicelD_t | ExtendedDevicelD Terminal getTerminal()
ConnectionlD_t ConnectionID Connection getConnection()
ConnectionlD_t ConnectionID TerminalConnection | getTerminalConnection()
calllD (field in a int Call getCall()
ConnectionlD_t)

=" NOTE:
TSAPI constructs such as DevicelD may be converted to JTAPI objects via
standard JTAPI methods such as Provider.getAddress(String) and
Provider.getTerminal(String).

Converting JTAPI Objects to TSAPI Constructs

Just as receiving TSAPI private data may expose raw TSAPI constructs, sending
TSAPI private data may require raw TSAPI constructs as well. The
ITsapiConnlDPrivate and ITsapiRoutePrivate interfaces have been defined to
retrieve TSAPI constructs from JTAPI objects.

The following table lists the JTAPI objects that may be converted into their
equivalent TSAPI constructs. It lists the JTAPI objects, the TSAPI constructs to
which they are converted, the Java version (the Java class) of the TSAPI
constructs, and the method to be used for the conversion.

JTAPI Object TSAPI Construct Java Class Conversion Method
Connection ConnectionID_t ConnectionID ITsapiConnlDPrivate.
getTsapiConnectionl|D()
TerminalConnection | ConnectionlD_t ConnectionID ITsapiConnlDPrivate.
getTsapiConnectionl|D()
RouteSession RouteRegisterReqlID_t int ITsapiRoutePrivate.
getRouteRegisterID()
RouteSession RouteCrossReflD_t int ITsapiRoutePrivate.
getRouteCrossReflD()

4-4 |ssue 1.0 October 1997 JTAPI Client Programmer’s Guide

package com.lucent.jtapi.tsapi

Interface Index

ITsapiConnlDPrivate
ITsapiPeer
ITsapiProvider

I TsapiProviderPrivate
ITsapiRoutePrivate

Class Index

e ConnectionlD
e ExtendedDevicelD

e TsapiPrivate

Interface com.lucent.jtapi.tsapi.lTsapiConnIDPrivate
public interface ITsapiConnIDPrivate

ITsapiConnlDPrivate lets you retrieve TSAPI information associated with a JTAPI
Connection or TerminalConnection.

See Also:
ConnectionlD

Method Index

0 getTsapiConnectionID()
Retrieves the TSAPI ConnectionID associated with a JTAPI Connection or

TerminalConnection.

Methods

0 getTsapiConnectionlD

public abstract ConnectionlD _ getTsapiConnectionID()

Retrieves the TSAPI ConnectionID associated with a JTAPI Connection or
TerminalConnection.

See Also:
ConnectionlD

Interface com.lucent.jtapi.tsapi.lTsapiPeer

public interface ITsapiPeer
extends JtapiPeer

ITsapiPeer extends JtapiPeer to allow applications a mechanism to specify the vendor(s)
they want to negotiate private data with.

Method Index

0 addVendor(String, String)
This method can be used to set the vendor the application wants to exchange

private data with.

Methods

o addVendor

public abstract void addVendor(String vendorName,
String versions)

This method can be used to set the vendor the application wants to exchange
private data with. The interfaces for private data are in
javax.telephony.privatedata.

This method should be invoked before the application invokes getProvider().

To set multiple vendors an application must invoke this method multiple times.

Interface com.lucent.jtapi.tsapi.lTsapiProvider

public interface ITsapiProvider
extends Provider, CallCenterProvider

ITsapiProvider adds methods to obtain vendor—specific version information.

See Also:
addVendor

Method Index

0 getVendor()
Returns the private data vendor name.

o getVendorVersion()
Returns the negotiated vendor private data version.

Methods

0 getVendor

public abstract String getVendor()
Returns the private data vendor name.

0 getVendorVersion

public abstract byte[] getVendorVersion()

Returns the negotiated vendor private data version.

Interface com.lucent.jtapi.tsapi.lTsapiProviderPrivate
public interface ITsapiProviderPrivate

ITsapiProviderPrivate lets you retrieve or create JTAPI objects from TSAPI constructs.

See Also:
ConnectionlD, ExtendedDevicelD

Method Index

0 getAddress(ExtendedDevicelD)
Returns a JTAPI Address associated with a TSAPI Extended Device ID.

o0 getCall(int)
Returns a JTAPI Call associated with a TSAPI Call ID.
0 getConnection(ConnectionlD, Address)
Returns a JTAPI Connection associated with a TSAPI Connection ID and the

specified JTAPI Address.

0 getTerminal(ExtendedDevicelD)
Returns a JTAPI Terminal associated with a TSAPI Extended Device ID.

0 getTerminalConnection(ConnectionID, Terminal)
Returns a JTAPI TerminalConnection associated with a TSAPI Connection ID and

the specified JTAPI Terminal.

Methods

o getCall

public abstract Call getCall(int calllD)

Returns a JTAPI Call associated with a TSAPI Call ID.

Parameters:
calllD — The Call ID.

0 getAddress

public abstract Address getAddress(ExtendedDevicelD _ devicelD)

Returns a JTAPI Address associated with a TSAPI Extended Device ID.

Parameters:
devicelD — The Extended Device ID.

See Also:
ExtendedDevicel D

o0 getTerminal

public abstract Terminal getTerminal(ExtendedDevicelD _ devicelD)
Returns a JTAPI Terminal associated with a TSAPI Extended Device ID.

Parameters:
devicelD — The Extended Device ID.

See Also:
ExtendedDevicelD

0 getConnection

public abstract Connection getConnection(ConnectionlD _ connlD,
Address address)

Returns a JTAPI Connection associated with a TSAPI Connection ID and the
specified JTAPI Address.

Parameters:
connlD — The Connection ID.
address — The Address to associate with the Connection to be created.

See Also:
ConnectionlD

0 getTerminalConnection

public abstract TerminalConnection getTerminalConnection(ConnectionlD _ connlD,
Terminal terminal)

Returns a JTAPI TerminalConnection associated with a TSAPI Connection ID and
the specified JTAPI Terminal.

Parameters:
connlD — The Connection ID.
terminal — The Terminal to associate with the TerminalConnection to be
created.

See Also:
ConnectionlD

Interface com.lucent.jtapi.tsapi.lTsapiRoutePrivate
public interface ITsapiRoutePrivate

ITsapiRoutePrivate lets you retrieve TSAPI information associated with a JTAPI Route
Session.

Method Index

0 getRouteCrossReflD()
Retrieves the TSAPI RouteCrossReferencel D associated with a JTAPI Route
Session.

0 getRouteReqisterID()
Retrieves the TSAPI RouteRegisterID with a JTAPI Route Session.

Methods
0 getRouteRegisterID
public abstract int getRouteRegisterID()
Retrieves the TSAPI RouteRegisterID with a JTAPI Route Session.
0 getRouteCrossReflD
public abstract int getRouteCrossReflD()

Retrieves the TSAPI RouteCrossReferencel D associated with a JTAPI Route
Session.

Class com.lucent.jtapi.tsapi.ConnectionlID

java.lang.Object

+-————com.lucent.jtapi.tsapi.ASN1

+-———com.lucent.jtapi.tsapi.ASNSequence

+-————com.lucent.jtapi.tsapi.ConnectionID

public final class ConnectionID
extends ASNSequence

Variable Index

o DYNAMIC_ID
0 STATIC_ID

Method Index

0 equals(Object)
0 hashCode()

0 toString()

Variables

0 STATIC_ID

public static final short STATIC_ID

o DYNAMIC_ID

public static final short DYNAMIC_ID

Methods

o0 hashCode

public int hashCode()

Overrides:
hashCode in class Object

0 equals

public boolean equals(Object anObject)

Overrides:
equals in class Object

o0 toString

public String toString()

Overrides:
toString in class Object

Class com.lucent.jtapi.tsapi.ExtendedDevicelD

java.lang.Object

+-————com.lucent.jtapi.tsapi.ASN1

+-———com.lucent.jtapi.tsapi.ASNSequence

+-————com.lucent.jtapi.tsapi.ExtendedDevicelD

public final class ExtendedDevicelD

extends ASNSequence

A TSAPI Extended Device ID. This class should be used for interpretation of TSAPI
private data. Once an Extended Device ID has been constructed from TSAPI private
data, a JTAPI Address or Terminal object should be created using the appropriate
method in ITsapiProviderPrivate.

See Also:

ITsapiProviderPrivate

Variable Index

o DEVICE_IDENTIFIER

Device ID Type.
0 EXPLICIT_PRIVATE

ABBREVIATED

Device ID Type.
0 EXPLICIT_PRIVATE

LEVEL1 REGIONAL_NUMBER

Device ID Type.
0 EXPLICIT_PRIVATE

LEVEL2 REGIONAL_NUMBER

Device ID Type.
0 EXPLICIT_PRIVATE

LEVEL3_REGIONAL_NUMBER

Device ID Type.
0 EXPLICIT_PRIVATE

LOCAL_NUMBER

Device ID Type.
0 EXPLICIT_PRIVATE

PTN_SPECIFIC_NUMBER

Device ID Type.
0 EXPLICIT_PRIVATE

UNKNOWN

Device ID Type.

0 EXPLICIT_PUBLIC_ABBREVIATED
Device ID Type.
0 EXPLICIT_PUBLIC_INTERNATIONAL
Device ID Type.
0 EXPLICIT_PUBLIC_NATIONAL
Device ID Type.
0 EXPLICIT_PUBLIC_NETWORK_SPECIFIC
Device ID Type.
0 EXPLICIT_PUBLIC_SUBSCRIBER
Device ID Type.
0 EXPLICIT_PUBLIC_UNKNOWN
Device ID Type.
01D_NOT_KNOWN
Device ID Status of ID_NOT_KNOWN indicates the Device ID is not known.
01D_NOT_REQUIRED
Device ID Status of ID_NOT_REQUIRED indicates the Device ID is not required.
o 1D_PROVIDED
Device ID Status of ID_PROVIDED indicates the Device ID is valid
o IMPLICIT_PRIVATE
Device ID Type.
oIMPLICIT PUBLIC
Device ID Type.
0 OTHER_PLAN
Device ID Type.
0 TRUNK_GROUP_IDENTIFIER
Device ID Type.
0 TRUNK_IDENTIFIER
Device ID Type.

Constructor Index

0 ExtendedDevicel D(String, short, short)
Construct an ExtendedDevicelD.

Variables

o DEVICE_IDENTIFIER

public static final short DEVICE_IDENTIFIER

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o IMPLICIT_PUBLIC

public static final short IMPLICIT_PUBLIC

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PUBLIC_UNKNOWN

public static final short EXPLICIT_PUBLIC_UNKNOWN
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PUBLIC_INTERNATIONAL

public static final short EXPLICIT_PUBLIC_INTERNATIONAL
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PUBLIC_NATIONAL

public static final short EXPLICIT_PUBLIC_NATIONAL
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PUBLIC_NETWORK_SPECIFIC

public static final short EXPLICIT_PUBLIC_NETWORK_SPECIFIC
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PUBLIC_SUBSCRIBER

public static final short EXPLICIT_PUBLIC_SUBSCRIBER
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o0 EXPLICIT_PUBLIC_ABBREVIATED

public static final short EXPLICIT_PUBLIC_ABBREVIATED
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o IMPLICIT_PRIVATE

public static final short IMPLICIT_PRIVATE
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PRIVATE_UNKNOWN

public static final short EXPLICIT_PRIVATE_UNKNOWN

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PRIVATE_LEVEL3_REGIONAL_NUMBER

public static final short EXPLICIT_PRIVATE_LEVEL3_REGIONAL_NUMBER
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PRIVATE_LEVEL2_REGIONAL_NUMBER

public static final short EXPLICIT_PRIVATE_LEVEL2_REGIONAL_NUMBER
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PRIVATE_LEVEL1_REGIONAL_NUMBER

public static final short EXPLICIT_PRIVATE_LEVEL1_REGIONAL_NUMBER
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PRIVATE_PTN_SPECIFIC_NUMBER

public static final short EXPLICIT_PRIVATE_PTN_SPECIFIC_NUMBER
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PRIVATE_LOCAL_NUMBER

public static final short EXPLICIT_PRIVATE_LOCAL_NUMBER
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 EXPLICIT_PRIVATE_ABBREVIATED

public static final short EXPLICIT_PRIVATE_ABBREVIATED
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 OTHER_PLAN

public static final short OTHER_PLAN
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 TRUNK_IDENTIFIER

public static final short TRUNK_IDENTIFIER

Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

0 TRUNK_GROUP_IDENTIFIER

public static final short TRUNK_GROUP_IDENTIFIER
Device ID Type. Ignored if Device ID Status is not ID_PROVIDED

o ID_PROVIDED

public static final short ID_PROVIDED
Device ID Status of ID_PROVIDED indicates the Device ID is valid

0 1ID_NOT_KNOWN

public static final short ID_NOT_KNOWN

Device ID Status of ID_NOT_KNOWN indicates the Device ID is not known. The
Device ID and Device Type fields are ignored.

0 ID_NOT_REQUIRED

public static final short ID_NOT_REQUIRED

Device ID Status of ID_NOT_REQUIRED indicates the Device ID is not required.
The Device ID and Device Type fields are ignored.

Constructors

o0 ExtendedDevicelD

public ExtendedDevicelD(String _devicelD,
short _devicelDType,
short _devicelDStatus)

Construct an ExtendedDevicelD.

Parameters:
_devicelD — The Device ID.
_devicelDType — The Device ID Type.
_devicelDStatus — The status of the Device ID (ID_PROVIDED,
ID_NOT_KNOWN, ID_NOT_REQUIRED).

Class com.lucent.jtapi.tsapi.TsapiPrivate

java.lang.Object

+-————com.lucent.jtapi.tsapi.TsapiPrivate

public final class TsapiPrivate
extends Object

The TsapiPrivate object is used to pass vendor—specific information between an
application and the service provider, via the JTAPI private data interfaces. Where
JTAPI specifies that a private data Object is to be passed in as an argument to a
method, this implementation requires the Object to be an instance of TsapiPrivate.
Where JTAPI specifies that a private data Object is to be returned from a method, in
this implementation the returned Obiject is always an instance of TsapiPrivate.

An application must first use the ITsapiPeer.addVendor() method so that when a
provider is created it may negotiate the version of private data to be used.

See Also:
addVendor

Variable Index

o data

o0 tsType
o vendor

Constructor Index

0 TsapiPrivate(bytel[])

Construct a TSAPI private data object.
0 TsapiPrivate(byte[], boolean)

Construct a TSAPI private data object.

Method Index

0 getData()
Return the byte array containing the raw private data.

Variables

o vendor

public String vendor

o data

public byte data[]

o tsType

public int tsType

Constructors

o TsapiPrivate

public TsapiPrivate(byte _datal])

Construct a TSAPI private data object. This version of the constructor should be
used when this object will be passed in a setPrivateData() method OR when
sendPrivateData() can return immediately (with a null) without waiting for a
response from the switch (this is equivalent to the TSAPI request
cstaSendPrivateEvent()).

0 TsapiPrivate

public TsapiPrivate(byte _data[],
boolean waitForResponse)

Construct a TSAPI private data object. If this object is to be used with the
sendPrivateData() methods, waitForResponse must be set so that the appropriate
action is taken. true indicates that the implementation should block in
sendPrivateData() until a response is received from the switch. This response will
be passed back to the application as the return code from sendPrivateData(). This
is equivalent to the TSAPI request cstaEscapeService(). false indicates that the
implementation should return immediately (with a null) from sendPrivateData()
without waiting for a response from the switch. This is equivalent to the TSAPI
request cstaSendPrivateEvent(). When a TSAPI private data object is passed as an
argument to a setPrivateData() method, the waitForResponse flag is ignored

Methods

0 getData

public byte[] getData()

Return the byte array containing the raw private data.

Telephony Services
Implementation of JTAPI for
Private Data

Contents
Telephony Services Implementation of JTAPI for
Private Data A-2
m TSAPI Requests with Associated JTAPI Interfaces and
Methods A-4
m TSAPI Requests without Associated JTAPI Mapping A-5
m Mapping of Possible JTAPI Events to TSAPI Events A-6

JTAPI Client Programmer’s Guide Issue 1.0 October 1997 A-i

Telephony Services
Implementation of JTAPI for
Private Data

This appendix describes the level of support the PassageWay Telephony
Services implementation of JTAPI provides for the private data mechanism for
non-DEFINITY switches and their associated drivers. It contains the mappings of
Telephony Services Application Programming Interface (TSAPI) requests with
the JTAPI interfaces and associated methods, along with the mappings between
TSAPI and typically occurring JTAPI events.

It is suggested reading for an independent switch vendor who is using the JTAPI
private data programming environment to develop a private data package for
non-DEFINITY switches, or an application programmer who is using or
interpreting private data in a raw form, without an intermediate private data
package. (An example of an intermediate private data package that allows
programmers to access private data via Java interfaces rather than through raw

private data bytes is contained in|Chapter 3, ['Using Telephony Services
DEFINITY-Specific Extensions.”)

="> NOTE:

If you are an application programmer who is using JTAPI to develop
applications for any switch for which there is a PassageWay Telephony

Services driver, ignore this appendix and refer to|Chapter 1, [Telephony
Services Implementation of JTAPI for All Switches and the DEFINITY

Switch.” If you want additional TSAPI-specific information about the JTAPI
exceptions that are not accessible through standard JTAPI, refer to
Chapter 2, ['Using Telephony Services Extensions to JTAPI Exceptions.”

=" NOTE:
If you are an application programmer who is using JTAPI to develop
applications for the DEFINITY switch, ignore this appendix and refer to
|Chapter 1, [Telephony Services Implementation of JTAPI for All Switches
and the DEFINITY Switch.” If you want to take advantage of DEFINITY-

specific features that are not accessible through standard JTAPI, refer to
Chapter 3,|“Telephony Services DEFINITY-Specific Extensions to JTAPI.”

JTAPI Client Programmer’s Guide lssue 1.0 October 1997 A-1

Telephony Services Implementation of JTAPI
for Private Data

Telephony Services Implementation
of JTAPI for Private Data

A-2

JTAPI’s private data mechanism is defined in the java.telephony.privatedata
package.

The Lucent Technologies Telephony Services Application Programmer’s
Interface (TSAPI) implementation adds the ITsapiPeer and ITsapiProvider
interfaces to allow an application to set one or more vendors with which it might
want to negotiate private data. Applications must invoke the addVendor method
on the ITsapiPeer interface before invoking the getProvider method on the
interface.

The private data object used is defined as TsapiPrivate. It consists of a vendor
name, a byte array of private data, and a tsType value which specifies the
escape service to be used.

JTAPI has a different model for private data than TSAPI. If you used private data
to program to TSAPI, you have to take the following differences into account to
achieve the same result with JTAPI:

m In TSAPI, every request has private data parameters.

In JTAPI, the associated methods do not have private data parameters. An
application must set private data using the setPrivateData method on an
object prior to invoking a JTAPI method on that object. The setPrivateData
method is defined in the PrivateData interface in the
java.telephony.privatedata package. For example, if the desired effect is to
send a cstaMakeCall with a private parameter to the switch, the way to
achieve that in JTAPI is to first invoke setPrivateData on a Call object and
then invoke connect on the Call object.

Many TSAPI requests have corresponding JTAPI interfaces and methods, as
listed in [I'able A-1.[Table A-2 |ists the TSAPI requests that do not have
corresponding JTAPI interfaces and methods. Therefore, there is no access
to the private data for these TSAPI requests.

m In TSAPI, if private data accompanies a confirmation, then it is returned via
the acsGetEventBlock or acsGetEventPoll function.

In JTAPI, there are no confirmation events. An application can get the private
data from a confirmation event by using the getPrivateData method on an
object after returning from invocation of a method in the object. The
getPrivateData method is defined in the PrivateData interface in the
java.telephony.privatedata package. For example, if the desired effect is to
get the private data from the confirmation, CSTAMakeCallConfEvent; the way
to achieve that in JTAPI is to invoke getPrivateData on the Call object after
invoking connect on a Call object.

Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI
for Private Data

m In TSAPI, if private data accompanies an event, then it is copied via the
acsGetEventBlock or acsGetEventPoll function.

In JTAPI, there are PrivateEvents which are delivered to the observers. The
PrivateEvent interface is defined in the java.telephony.privatedata.events
package. For example, if the desired effect is to get private data that is
associated with cstaDeliveredEvent, the way to achieve that in JTAPI is to
extract it from the PrivateEvent that is delivered in an event array to a
CallObserver.

= "> NOTE:
A cstaDeliveredEvent sets the connection state to ALERTING. If this is a
state change, a ConnAlertingEv and PrivateEvent will be in the event array
delivered to the CallObserver. If the state was already ALERTING, the
PrivateEvent will be in the event array by itself.

[Table A-3]ists TSAPI events and corresponding JTAPI events that might be
in the event array in which the PrivateEvent is delivered.

JTAPI Client Programmer’s Guide lssue 1.0 October 1997 A-3

Telephony Services Implementation of JTAPI

for Private Data

TSAPI Requests with Associated JTAPI

Interfaces and Methods

Table A-1 lists the TSAPI requests and associated JTAPI interfaces and

methods.

Table A-1. TSAPI Requests with Associated JTAPI Interfaces and Methods

TSAPI Requests

JTAPI Interfaces

JTAPI Methods

cstaMakeCall Call connect
cstaClearConnection Connection disconnect
acsEnumServerNames JtapiPeer getServices
acsOpenStream JtapiPeer getProvider
acsCloseStream Provider shutdown
cstaAnswerCall TerminalConnection answer
cstaSetAgentState AgentTerminal addAgent

Agent setState
cstaQueryAgentState Agent getState
cstaMakePredictiveCall CallCenterCall connectPredictive
cstaRouteRegisterReq RouteAddress registerRouteCallback
cstaRouteRegisterCancel RouteAddress cancelRouteCallback

cstaRouteSelectinv

RouteSession

selectRoute

cstaRouteEndInv

RouteSession

endRoute

cstaSetForwarding

CallControlAddress

setForwarding
cancelForwarding

cstaQueryForwarding

CallControlAddress

getForwarding

cstaQueryDoNotDisturb CallControlAddress getDoNotDisturb
cstaSetDoNotDisturb CallControlAddress setDoNotDisturb
cstaQueryMsgWaitingInd CallControlAddress getMessageWaiting
cstaSetMsgWaitingind CallControlAddress setMessageWaiting
cstaClearCall CallControlCall drop
cstaConferenceCall CallControlCall conference
cstaTransferCall CallControlCall transfer
cstaConsultationCall CallControlCall consult
cstaDeflectCall CallControlConnection redirect
cstaQueryDoNotDisturb CallControlTerminal getDoNotDisturb
cstaSetDnd CallControlTerminal setDoNotDisturb
cstaPickupCall CallControlTerminal pickup
cstaGroupPickupCall CallControlTerminal pickupFromGroup
cstaHoldCall CallControlTerminalCon | hold

nection
cstaRetrieveCall CallControlTerminalCon | unhold

nection
cstaSendPrivateEvent Private Data sendPrivateData

A-4 Issue 1.0 October 1997

JTAPI Client Programmer’s Guide

Telephony Services Implementation of JTAPI
for Private Data

TSAPI Requests without Associated JTAPI
Mapping

Table A-2 lists the TSAPI requests that do not have corresponding JTAPI
interfaces and methods. Therefore, there is no access to the private data for
these TSAPI requests.

Table A-2. TSAPI Requests Without Associated JTAPI Mapping

TSAPI Requests

Call Control Services
cstaAlternateCall
cstaCallCompletion
cstaReconnectCall
Supplementary Services
cstaQuerylLastNumber
cstaQueryDevicelnfo
Monitor Services
cstaChangeMonitorFilter
FeatureEventReport
CSTACallinfoEvent
Escape Services
cstaEscapeServiceConf
CSTA_ESCAPE_SVC_REQ
M aintenance Services
cstaSysStatReq
cstaSysStatStart
cstaSysStatStop
cstaChangeSysStatFilter
cstaSysStatReqConf
cstaSysStatEvent

JTAPI Client Programmer’s Guide lssue 1.0 October 1997 A-5

Telephony Services Implementation of JTAPI
for Private Data

Mapping of Possible JTAPI Events to TSAPI
Events

Table A-3 lists TSAPI events and the associated possible JTAPI events that might
be in the event array in which the PrivateEvent is delivered.

= NOTE:

A cstaDeliveredEvent sets the connection state to ALERTING. If this is a
state change, a ConnAlertingEv and PrivateEvent will be in the event array
delivered to the CallObserver. If the state was already ALERTING, the
PrivateEvent will be in the event array by itself.

Table A-3. Mapping of Possible JTAPI Events to TSAPI Events

TSAPI Events Possible JTAPI Event in Array with
Private Event
CSTACallClearedEvent CalllnvalidEv
CSTAMonitorEndedEvent CallObservationEndedEv
CSTADeliveredEvent ConnAlertingEv
CSTAEstablishedEvent ConnConnectedEv

CSTAConnectionClearedEvent

ConnDisconnectedEv

CSTAFailedEvent

ConnFailedEv

CSTADoNotDisturbEvent

CallCtIAddrDoNotDisturbEv

CSTAForwardingEvent

CallCtIAddrForwardEv

CSTAMessageWaitingEvent

CallCtIAddrMessageWaitingEv

CSTAServicelnitiatedEvent

CallCtlIConnInitiatedEv

CSTANetworkReachedEvent

CallCtlIConnNetworkReachedEv

CSTAQueuedEvent CallCtliConnQueuedEv
CSTALoggedOffEvent ACDAddrLoggedOffEv
AgentTermLoggedOffEv
CSTALoggedOnEvent ACDAddrLoggedOnEv
AgentTermLoggedOnEv
CSTANotReadyEvent ACDAddrNotReadyEv
AgentTermNotReadyEv
CSTAReadyEvent ACDAddrReadyEv
AgentTermReadyEv

CSTAWorkNotReadyEvent

ACDAddrWorkNotReadyEv
AgentTermWorkNotReadyEv

CSTAWorkReadyEvent ACDAddrWorkReadyEv
AgentTermWorkReadyEv
CSTARouteRequestExtEvent RouteEvent
CSTAReRouteRequestEvent ReRouteEvent
CSTARouteUsedExtEvent RouteUsedEvent
CSTARouteEndEvent RouteEndEvent

CSTARouteRegisterAbortEvent

RouteCallbackEndedEvent

A-6 Issue 1.0 October 1997 JTAPI Client Programmer’s Guide

Lucent Technologies
Sell Lakes Innosations

We'd like your opinion ...

L ucent Technologies welcomes your feedback on this document.
Y our comments can be of great value in helping us improve our documentation.

PassageWay® Telephony Services
for Windows NT®

Javal Telephony API (JTAPI)
Client Programmer’s Guide

Issue 1.0, October 1997

1. Pleaserate the effectiveness of this document in the following areas:

Excellent Good Fair Poor
Ease of Finding Information 0 0 0 O
Clarity 0 0 [l [l
Completeness...... 0 0 O O
Accuracy ... 0 0 O O
Organization 0 0 O O
Appearance...... 0 0 O O
Examples...... 0 0 O O
Overall Satisfaction 0 0 0 [l

2. Please check the ways you fedl we could improve this document:

Make it more concise

Add more step-by-step procedures/tutorials
Add more troubleshooting information
Make it less technical

Add more/better quick reference aids
Improve the index

[Improve the overview/introduction
Improve the table of contents

O Improve the organization

[0 Add morefigures
O
O

O

Add more examples
Add more details
Please add details about your major concerns.

OoOooood

3. What did you like most about this document?

4. Feel freeto write any comments below or on an attached sheet.

If we may contact you concerning your comments, please complete the following:

Name: Telephone Number: ()

Company/Organization Date:

Address:

You may FAX your response to (732) 957-4562. Thank you.

	Title Page
	Copyright
	Main Contents
	About This Guide
	What is JTAPI?
	What is the PassageWay TS Java Client?
	Purpose & Scope
	Finding What You Need (Generic JTAPI & DEFINITY)
	Finding What You Need (Non-DEFINITY Private Data)
	Navigating through the Document
	Related Documents

	Ch1-Contents
	Ch1-TS Implementation for All Switches & DEFINITY
	Support for JTAPI:
	Core Pkg
	Call Center Pkg
	Call Center Capabilities Pkg
	Call Center Events Pkg
	Call Control Pkg
	Call Control Capabilities Pkg
	Call Control Events Pkg
	Capabilities Pkg
	Events Pkg
	Media Pkg
	Media Capabilities Pkg
	Media Events Pkg
	Private Data Pkg
	Private Data Capabilities Pkg
	Private Data Events Pkg

	Ch2-Contents
	Ch2-Using TS Extensions to JTAPI Exceptions
	Who Should Use These Extensions?
	What are the Extensions?

	Extensions to JTAPI Exceptions
	ITsapiException
	TsapiInvalidArgumentException
	TsapiInvalidPartyException
	TsapiInvalidStateException
	TsapiMethodNotSupportedException
	TsapiPlatformException
	TsapiPrivilegeViolationException
	TsapiProviderUnavailableException
	TsapiResourceUnavailableException

	Ch3-Contents
	Ch3-Using TS DEFINITY-Specific Extensions
	Who Should Use These Extensions?
	How Should Extensions be Used?

	DEFINITY-Specific Extensions
	ITsapiAddress
	ITsapiAddressMsgWaitingEvent
	ITsapiAgent
	ITsapiCall
	ITsapiCallInfo
	ITsapiConnNetworkReachedEvent
	ITsapiConnection
	ITsapiRouteSession
	ITsapiTerminal
	ITsapiTerminalConnection
	LucentAddress
	LucentAddressMsgWaitingEvent
	LucentAgent
	LucentCall
	LucentCallInfo
	LucentConnNetworkReachedEvent
	LucentConnection
	LucentProvider
	LucentRouteSession
	LucentTerminal
	LucentTerminalConnection
	CallClassifierInfo
	LookaheadInfo
	LucentAgentStateInfo
	NetworkProgressInfo
	OriginalCallInfo
	TrunkGroupInfo
	UserEnteredCode
	UserToUserInfo

	Ch4-Contents
	Ch4-Using TS Private Data Extensions
	Who Should Use These Extensions?
	How Should Extensions be Used?
	Initialization of Private Data
	Using TsapiPrivate as JTAPI Object
	Converting TSAPI Constructs to JTAPI Objects
	Converting JTAPI Objects to TSAPI Constructs

	Private Data Extensions
	ITsapiConnIDPrivate
	ITsapiPeer
	ITsapiProvider
	ITsapiProviderPrivate
	ITsapiRoutePrivate
	ConnectionID
	ExtendedDeviceID
	TsapiPrivate

	Appendix A-Contents
	Appendix A-TS Implementation of JTAPI for Private Data
	TSAPI Requests - JTAPI Interfaces & Methods
	TSAPI Request - No JTAPI Mapping
	Possible JTAPI Events - TSAPI Events

	Comment Card

