
Voice Programmer’s Guide

for Windows NT
Voice and Loop-Start Boards

Release 4.25SC

System Release 4.25SC software only supports hardware
configurations that use SCbus

Copyright © 1992 - 1996 Dialogic Corporation

COPYRIGHT NOTICE

© Dialogic Corporation, 1996

This document may not, in whole or in part, be reduced, reproduced, stored in a retrieval system,
translated, or transmitted in any form or by any means, electronic or mechanical, without the express
written consent of Dialogic.

The contents of this document are subject to change without notice. Every effort has been made to
ensure the accuracy of this document. However, due to ongoing Product improvements and revisions,
Dialogic cannot guarantee the accuracy of printed material after the date of publication nor can it
accept responsibility for errors or omissions. Dialogic will publish updates and revisions to this
document as needed.

The software referred to in this document is provided under a Software License Agreement. Refer to
the Software License Agreement for complete details governing the use of the software.

DIALOGIC and SpringBoard are registered trademarks of Dialogic Corporation. The following are
also trademarks of Dialogic Corporation:

Board Locator Technology, D/121, D/121A, D/121B, D/12x, D/2x, D/21D, D/21E, D40CHK,
D41ECHK, D/xxx, D/41, D/41D, D/41E, D/41ESC, D/4x, D/4xD, D4xE, D/81A, D/160SC-LS,
D/240SC, D/240SC-T1, D/300SC-E1, D/320SC, DIALOG/, DIALOG/2x, DIALOG/4x,
DIALOG/HD, DTI/, DTI/101, DTI/1xx, DTI/211, DTI/212, DTI/2xx, DTI/xxx, FAX/, FAX/120,
GammaFax CP-4/SC, GammaLink, Global Tone Detection, Global Tone Generation, LSI/, LSI/120,
PEB, PerfectCall, SA/120, SCbus, SCxbus, SCSA, Signal Computing System Architecture,
SpringWare, Voice Driver, and World Card.

IBM is a registered trademark and IBM PC is a trademark of International Business Machines
Corporation.
Windows NT is a registered trademark of the Microsoft Corporation.

Publication Date: September, 1996
Dialogic Corporation
1515 Route Ten
Parsippany, NJ 07054

iii-CD

Table of Contents

1. Voice Software Reference Overview .. 1
1.1. Voice Product Terminology .. 1
1.2. Organization of This Voice Reference Guide... 3
1.3. Voice Driver ... 4
1.4. Voice Libraries ... 6

1.4.1. Single Threaded Asynchronous Programming Model 7
1.4.2. Multithreaded Synchronous Programming Model 7
1.4.3. Extended Asynchronous Programming Model 7

2. Using the Voice Reference Library .. 9
2.1. Voice Library ... 9

2.1.1. Device Management Functions.. 10
2.1.2. Configuration Functions .. 11
2.1.3. I/O Functions ... 11
2.1.4. Convenience Functions .. 13
2.1.5. Call Status Transition Event Functions.. 13
2.1.6. SCbus Routing Functions... 14
2.1.7. Global Tone Detection Functions .. 14
2.1.8. Global Tone Generation Functions .. 15
2.1.9. R2MF Convenience Functions... 15
2.1.10. Speed and Volume Functions .. 15
2.1.11. Speed and Volume Convenience Functions 16
2.1.12. PerfectCall Call Analysis Functions .. 17
2.1.13. Structure Clearance Functions ... 17
2.1.14. Extended Attribute Functions .. 17

2.2. Voice Programming Requirements... 20
2.2.1. Opening and Using Devices... 20
2.2.2. Opening and Using Voice Files ... 21
2.2.3. Busy and Idle States... 21
2.2.4. I/O Terminations.. 22
2.2.5. Error Handling ... 26
2.2.6. Voice Library Include Files ... 28
2.2.7. Compiling Applications ... 29

3. Voice Function Reference ... 31
3.1. Voice Function Reference Overview.. 31

SCbus Functions ... 31

Voice Programmer’s Guide for Windows NT

iv-CD

3.2. Voice Library Function Descriptions ... 31
ATDX_ANSRSIZ() - returns the duration of the answer 32
ATDX_BDNAMEP() - returns a pointer .. 35
ATDX_BDTYPE() - returns the device type .. 37
ATDX_BUFDIGS() - returns the number of uncollected digits.......................... 39
ATDX_CHNAMES() - returns a pointer to an array... 41
ATDX_CHNUM() - returns the channel number .. 43
ATDX_CONNTYPE() - returns the connection.. 45
ATDX_CPERROR() - returns the error .. 48
ATDX_CPTERM() - returns last Call Analysis termination 51
ATDX_CRTNID() - returns the tone identifier ... 54
ATDX_DEVTYPE() - returns device type.. 57
ATDX_DTNFAIL() - returns character for dial tone .. 59
ATDX_FRQDUR() - can be used to return the duration 62
ATDX_FRQDUR2() - can be used to return the duration 65
ATDX_FRQDUR3() - can be used to return the duration 67
ATDX_FRQHZ() - return frequency of answered signal 69
ATDX_FRQHZ2() - return frequency of second detected tone 72
ATDX_FRQHZ3() - return frequency of third detected tone 74
ATDX_FRQOUT() - returns percentage of a single tone frequency 76
ATDX_FWVER() - returns version number of D/4x firmware........................... 78
ATDX_HOOKST() - returns the current hook state.. 80
ATDX_LINEST() - returns a bitmapped representation of activity 82
ATDX_LONGLOW() - returns duration of the longer silence............................ 84
ATDX_PHYADDR() - returns the physical address ... 86
ATDX_SHORTLOW() - returns duration of shorter silence 88
ATDX_SIZEHI() - returns duration of initial non-silence................................... 91
ATDX_STATE() - returns the current state .. 93
ATDX_TERMMSK() - returns a bitmap... 95
ATDX_TONEID() - returns the user-defined tone id.. 98
ATDX_TRCOUNT() - returns number of bytes transferred 101
dx_addspddig() - sets a DTMF digit to adjust speed ... 103
dx_addtone() - adds the tone ... 107
dx_addvoldig() - sets a DTMF digit to immediately adjust volume 113
dx_adjsv() - adjusts speed or volume .. 117
dx_blddt() - defines a simple dual frequency tone... 122
dx_blddtcad() - defines a simple dual frequency cadence tone 125
dx_bldst() - defines a simple single frequency tone... 129
dx_bldstcad() - defines a simple single frequency cadence tone 132

Table of Contents

v-CD

dx_bldtngen() - sets up tone generation template .. 136
dx_chgdur() - alters standard definition of duration component........................ 139
dx_chgfreq() - changes the standard definition.. 143
dx_chgrepcnt() - changes the standard definition .. 147
dx_close() - closes Dialogic devices.. 151
dx_clrcap() - clears all the fields in a DX_CAP structure 153
dx_clrdigbuf() - causes the digits present in the firmware digit buffer 155
dx_clrsvcond() - clears any speed or volume adjustment conditions................. 157
dx_clrtpt() - clears all DV_TPT fields ... 160
dx_deltones() - removes all user-defined tones ... 163
dx_dial() - dials an ASCIIZ string ... 166
dx_distone() - disables detection of TONE ON... 178
dx_enbtone() - enables detection of TONE ON .. 181
dx_fileclose() - closes the file associated with the handle 185
dx_fileopen() - opens the file specified by filep .. 187
dx_fileseek() - moves file pointer associated with handle 192
dx_filewrite() - writes count byes from buffer into file associated with handle. 195
dx_getcursv() - returns the specified channel’s current speed............................ 198
dx_getdig() - initiates the collection of digits .. 201
dx_getevt() - used to synchronously monitor channels...................................... 208
dx_getparm() - obtains the current parameter settings....................................... 211
dx_getsvmt() - returns contents of Speed or Volume Modification Table........ 214
dx_initcallp() - initializes and activates PerfectCall Call Analysis 217
dx_open() - opens a Voice device ... 221
dx_play() - plays recorded voice data.. 223
dx_playf() - synchronously plays voice data ... 235
dx_playiottdata() - plays back recorded voice data from multiple sources........ 238
dx_playiottdata() - plays back recorded voice data from multiple sources........ 238
dx_playtone() - plays tone defined by TN_GEN template 241
dx_playvox() - plays voice data stored in a single VOX file 247
dx_playvox() - plays voice data stored in a single VOX file 247
dx_playwav() - plays voice data stored in a single WAVE file 250
dx_playwav() - plays voice data stored in a single WAVE file 250
dx_rec() - records voice data from a single channel .. 253
dx_recf() - permits voice data to be recorded .. 263
dx_reciottdata() - records voice data to multiple destinations 267
dx_reciottdata() - records voice data to multiple destinations 267
dx_recvox() - records voice data to a single VOX file 270
dx_recvox() - records voice data to a single VOX file 270

Voice Programmer’s Guide for Windows NT

vi-CD

dx_recwav() - records voice data to a single WAVE file 273
dx_recwav() - records voice data to a single WAVE file 273
dx_setdigbuf() - sets the digit buffering mode... 276
dx_setdigtyp() - controls the types of digits... 278
dx_setevtmsk() - enables detection of Call Status Transition (CST) event........ 281
dx_setgtdamp() - sets up the amplitudes.. 287
dx_sethook() - provides control of the hookswitch status.................................. 290
dx_setparm() - allows you to set the physical parameters.................................. 295
dx_setsvcond() - sets adjustments and adjustment conditions 298
dx_setsvmt() - updates the speed or volume.. 302
dx_setuio() - allows an application to install a user I/O routine 306
dx_stopch() - forces termination of currently active I/O functions.................... 309
dx_wink() - generates an outbound wink... 312
dx_wtring() - waits for a specified number of rings... 319
r2_creatfsig() - defines and enables leading edge detection 322
r2_playbsig() - plays a specified backward R2MF signal.................................. 326

4. Voice Data Structures and Device Parameters ... 333
4.1. Voice Library Data Structures .. 333

4.1.1. DV_DIGIT - user digit buffer.. 334
4.1.2. DX_CAP - change default call analysis parameters 334
4.1.3. DX_CST - call status transition structure ... 344
4.1.4. DX_EBLK- call status event block structure 346
4.1.5. DX_IOTT - I/O transfer table ... 347
4.1.6. DX_SVMT - speed/volume modification table structure 350
4.1.7. DX_SVCB - speed/volume adjustment condition block 351
4.1.8. DX_UIO - user-definable I/O structure .. 355
4.1.9. TN_GEN - tone generation template structure 356
4.1.10. DX_XPB - I/O transfer parameter block .. 357

4.2. Voice Board Parameter Defines for dx_getparm() 358

5. Voice Programming Conventions... 375
5.1. Always Check Return Code in Voice Programming................................... 375
5.2. Clearing Voice Structures... 375
5.3. Using the Voice dx_playf() and dx_recf() Convenience Functions.......... 376
5.4. Using the Voice Asynchronous Programming Model 376
5.5. Using Multiple Processes in Voice Synchronous Applications 376
Voice Device Entries and Returns .. 379

Appendix A - Standard Runtime Library .. 379
Event Management Functions... 379

Table of Contents

vii-CD

Standard Attribute Functions .. 381
DV_TPT Structure.. 382
Using DX_PMOFF and DX_PMON .. 392

Errors - Voice Library .. 393

Appendix B - Error Defines ... 393

Appendix C - DTMF and MF Tone Specifications .. 395
MF Tone Specifications (CCITT R1 Tone Plan) ... 395
DTMF Tone Specifications .. 397
Using MF Detection ... 398

Appendix D - Related Voice Publications... 401

Glossary... 403

Index .. 419

viii-CD

List of Tables

Table 1. Voice Library Function Errors .. 26
Table 2. Asynchronous/Synchronous CST Event Handling 107
Table 3 Valid Characters for Each Dialing Mode ... 167
Table 4. Play Mode Selections .. 229
Table 5. Record Mode Selections .. 258
DX_CAP Parameter Descriptions ... 337
Table 6. Values Returned in ev_data ... 347
Table 7. DX_SVMT Entries .. 350
Table 8. DX_SVCB Entries .. 352
Table 9. TN_GEN Values ... 356
Table 10. Voice Board Parameters .. 359
Table 12. Voice Device Inputs for Event Management Functions 379
Table 13. Voice Device Returns from Event Management Functions............... 380
Table 14. Standard Attribute Functions ... 381
Table 15. tp_length Settings .. 384
Table 16. tp_data Valid Values ... 389
Table 17. DV_TPT Fields Settings Summary ... 389
Table 18. Voice Library Function Errors .. 393
Table 19. Detecting MF Digits .. 399
Table 20. Detecting DTMF Digits... 400

1-CD

1. Voice Software Reference
Overview

1.1. Voice Product Terminology

The following product naming conventions are used throughout this guide:

D/2x refers to any model of the Dialogic DIALOG series of 2-channel voice-
store-and-forward expansion boards. This series includes D/21D, D41/E, and
D41ESC and boards.

D/4x refers to any model of the Dialogic DIALOG series of 4-channel voice
store-and-forward expansion boards. This series includes the D/41D, D/41E, and
D/41ESC boards.

D/12x refers to any model of the Dialogic series of 12-channel voice-
store-and-forward expansion boards. D/120, D/121, D/121A, and D/121B are
specific models of this board.

D/81A refers to the Dialogic 8-channel voice-store-and-forward expansion board.

D/160SC refers to the Dialogic 16-channel voice board with onboard analog loop
start interface.

D/240SC refers to the Dialogic 24-channel voice board for use with a network
interface board.

D/240SC-T1 refers to the Dialogic 24-channel voice board with onboard T-1
digital interface.

D/300SC-E1 refers to the Dialogic 30-channel voice board with onboard E-1
digital interface.

D/320SC refers to the Dialogic 32-channel voice board for use with a network
interface board.

Voice Programmer’s Guide for Windows NT

2-CD

D/xxx refers to D/2x, D/4x, D/81A and D/12x expansion boards.

D/xxxSC refers to voice and telephone network interface resource boards that
communicate via the SCbus. These boards include D/41ESC, D/160SC-LS,
D/240SC, D/240SC-T1, D/300SC-E1, and D/320SC.

DIALOG/HD or Spancard refers to voice and telephone network interface
resource boards that communicate via the SCbus. These boards include
D/160SC-LS, D/240SC, D/240SC-T1, D/300SC-E1, and D/320SC.

DTI/xxx refers to any of Dialogic’s digital telephony interface expansion boards
for the AT-bus architecture. These boards include: DTI/101, DTI/211, DTI/212,
DTI/240SC, and DTI/300SC boards.

FAX/xxx refers to Dialogic’s FAX resource expansion boards. FAX/120 is a
12-channel model that connects to a D/121A or D/121B board.

Firmware Load File refers to the firmware file that is downloaded to a Voice
board. This file has a .fwl extension.

LSI refers to Dialogic’s PEB-based loop start interface expansion boards. The
LSI/120 is a specific model of this board. LSI/80-int refers to the international
versions of Dialogic’s loop start interface expansion boards.

PEB is the PCM expansion bus connecting the D/81A or D/12x voice boards to
the network interface boards.

SCbus is the TDM (Time Division Multiplexed) bus connecting SCSA (Signal
Computing System Architecture) voice, telephone network interface and other
technology resource boards together.

Spancard same as DIALOG/HD.

SpringBoard refers to the hardware platform used with the D/21D, D/41D,
D/21E, D/41E, D/81A, D/121, D/121A, and D/121B board.

SpringWare refers to the software algorithms built into the downloadable
firmware that provides the voice processing features available on all Dialogic
voice boards.

1. Voice Software Reference Overview

3-CD

VFX/40ESC is a Dialogic SCbus voice and FAX resource board with on-board
loop-start interfaces. The VFX/40ESC board provides 4-channels of enhanced
voice and FAX services in a single slot.

Voice hardware and software refers to D/2x, D/4x, D/81A, D/12x, and D/xxxSC
expansion boards and associated software.

1.2. Organization of This Voice Reference Guide

The Voice Programmer’s Guide for Windows NT describes the voice software for
Windows NT and provides instructions for using the Voice Driver and Voice
Libraries.

Chapter 1. Voice Software Reference Overview provides an overview of the
voice software. It lists each of the components and supported Dialogic boards and
describes the Voice Driver and Voice Libraries.

Chapter 2. Using the Voice Reference Library provides general information
about the Voice Library libdxxmt.lib. It provides an overview of the function
categories, and describes the programming requirements when using the library.

Chapter 3. Voice Function Reference provides a complete function reference (in
alphabetical order) for all of the functions in the Voice Library.

Chapter 4. Voice Data Structures and Device Parametersdescribes the following
topics:

• data structures and tables contained in the Voice Library.

• parameter defines for Voice Devices that can be set or retrieved using
dx_getparm() and dx_setparm().

Chapter 5. Voice Programming Conventions lists programming techniques that
simplify programming with the Dialogic Voice Library.

Appendix A lists the voice device entries and returns for the Standard Runtime
Library.

Appendix B list the Voice Library error defines.

Voice Programmer’s Guide for Windows NT

4-CD

Appendix C describes differences and similarities between DTMF and MF tones.

Appendix D provides a list of related Dialogic publications.

A Glossary and an Index are also provided.

This chapter provides an overview of the voice software for Windows NT. The
voice software consists of the following:

• Voice Driver
• Voice Library of C functions
• Standard Runtime Library

The Voice Driver and Voice Libraries are described in this chapter. For
information about the remaining voice software see the following:

• For installation of the voice software and demonstration program, see the
System Release Software Installation Reference for Windows NT

• For the Standard Runtime Library, see Appendix A and the Standard
Runtime Library Programmer’s Guide for Windows NT

• For Voice Driver Features and a description of the Demonstration
program, see the Voice Features Guide for Windows NT

1.3. Voice Driver

The Voice Driver communicates with and controls the voice hardware. Voice
hardware consists of voice store-and-forward boards which include the following
boards:

For SCbus-based applications:

• D/41ESC
• D/160SC-LS
• D/240SC, D/320SC
• D/240SC-T1, D/300SC-E1
• DTI/241SC, DTI/301SC
• LSI/81SC, LSI/161SC

1. Voice Software Reference Overview

5-CD

The D/41ESC, D/160SC-LS, D/240SC, D/320SC, D/240SC-T1, and D300SC-E1
boards support a range of Voice Processing features such as:

• Record and playback of voice data
• Speed and volume control of play
• Call handling
• Call Analysis - Basic and Enhanced
• DTMF, MF, and R2MF tone generation and detection
• Global Tone Generation and Detection

PerfectCall Call Analysis, Speed and Volume Control, Global Tone Detection,
and Global Tone Generation are supported on the DSP-based D/xxx boards
(D/21D, D41D, D/21E, D/41ESC, D81A, D/121, D/121A, D/121B, D/160SC-LS,
D/240SC, D240SC-T1, D300SC-E1, and D/320SC).

The DTI/241SC, DTI/301SC, LSI/81SC, and LSI/161SC boards support the
following Voice Processing features:

• Call handling
• Call Analysis - Basic and Enhanced
• DTMF, MF, and R2MF tone generation and detection
• Global Tone Generation and Detection

PerfectCall Call Analysis, Speed and Volume Control, Global Tone Detection,
and Global Tone Generation are supported on the DSP-based D/xxx boards
(D/21D, D41D, D/21E, D/41ESC, D81A, D/121, D/121A, D/121B, D/160SC-LS,
D/240SC, D240SC-T1, D300SC-E1, and D/320SC).

User-defined tones are CST events, but detection for these events is enabled using
dx_addtone() or dx_enbtone(). See the Voice Features Guide for information
on Global Tone Detection functions.

Boards are treated as board devices and channels are treated as channel devices or
board subdevices by the Voice Driver.

The SCbus is a real-time, high speed, time division multiplexed (TDM)
communications bus connecting Signal Computing System Architecture (SCSA)
voice, telephone network interface and other technology resource boards together.
SCbus boards are treated as board devices with on-board voice and/or telephone
network interface devices that are identified by a board and channel (time slot for

Voice Programmer’s Guide for Windows NT

6-CD

digital network channels) designation, such as a voice channel, analog channel or
digital channel.

For more information on the SCbus and SCbus routing, refer to the SCbus Routing
Guide and the SCbus Routing Function Reference for Windows NT .

1.4. Voice Libraries

The voice libraries provide the interface to the Voice Driver. The voice libraries
for single threaded and multithreaded applications include:

• libdxxmt.lib - the main Voice Library

• libsrlmt.lib - the Standard Runtime Library

These "C" function libraries can be used to:

• Utilize all the voice board features

• Write applications using a Single Threaded Synchronous or
Multithreaded Asynchronous programming model

• Configure devices

• Handle events that occur on the devices

• Return device information

The voice library libdxxmt.lib, which contains most of these functions, is
described in more detail in 2. Using the Voice Reference Library.

The Standard Runtime Library libsrlmt.lib is described in the Standard Runtime
Library Programmer’s Guide for Windows NT. This library provides a set of
common system functions that are device independent and are applicable to all
Dialogic devices (e.g., D/240SC-T1 and FAX/120 boards). You can use these
functions to simplify application development by writing common event handlers
to be used by all devices.

1. Voice Software Reference Overview

7-CD

1.4.1. Single Threaded Asynchronous Programming Model

Single threaded asynchronous programming enables a single program to control
multiple voice channels within a single thread. This allows the development of
complex applications where multiple tasks must be coordinated simultaneously.
The asynchronous programming model supports both polled and callback event
management.

The Standard Runtime Library Programmer’s Guide for Windows NT contains a
full discussion of the asynchronous programming models.

1.4.2. Multithreaded Synchronous Programming Model

The multithreaded synchronous programming model uses functions that block
application execution until the function completes. This model requires that the
application controls each channel from a separate thread or process. The model
enables you to assign distinct applications to different channels dynamically in
real time.

The Standard Runtime Library Programmer’s Guide for Windows NT contains a
full discussion of the synchronous programming models.

1.4.3. Extended Asynchronous Programming Model

This model is similar to the asynchronous except it is implemented using the
sr_waitevtEx() function. This allows an application to have different threads
waiting on events on different devices. As with the basic asynchronous model,
functions initiated asynchronously from a different thread and the completion
event picked up the sr_waitevtEx() thread.

The Standard Runtime Library Programmer’s Guide for Windows NT contains a
full discussion of the extended asynchronous programming model.

Voice Programmer’s Guide for Windows NT

8-CD

9-CD

2. Using the Voice Reference Library

This chapter provides a description of the voice library and the programming
requirements. The following topics are included:

• Voice Library and its function categories (Section 2.1)

• Programming requirements for the Voice Library (Section 2.2).

2.1. Voice Library

The Voice Library functions provide an interface to the Voice Device Driver. The
functions can be divided into the following major categories:

Device Management • open and close devices
Configuration • alter configuration of devices
I/O • transfer data to and from devices
Convenience • simplify play and record
Call Status Transition
Event

• set and monitor events on devices

Route • for SCbus boards, connect the receive (listen)
channel of an SCbus board to an SCbus time slot;
the transmit of each channel device is connected
to a unique and unchangeable SCbus time slot at
system initiation and download.

Global Tone Detection • enable user-defined tone detection
Global Tone Generation • enable user-defined tone generation
R2MF Convenience • detect and generate R2MF tones
Speed and Volume • enable play-speed and play-volume control
Convenience • convenience functions for adjusting speed and

volume control
Structure Clearance • clear data structures
Extended Attribute • retrieve device information

This section lists the functions that belong to each category and describes the
characteristics of each category.

Voice Programmer’s Guide for Windows NT

10-CD

In the Function Reference (3. Voice Function Reference) each function is
described in detail, and the function header includes the category to which the
function belongs.

2.1.1. Device Management Functions

dx_close() • close a board or channel

dx_open() • open a board or channel

The Device Management functions open and close devices (boards and channels).
For SCbus configurations using a D/240SC-T1 or D/300SC-E1 board, each board
comprises a digital interface device with independent channels/time slots
(dtiBxTx) and a voice device with independent channels (dxxxBxCx); where B is
followed by the unique board number, C is followed by the number of the voice
device channel (1 to 4) and T is followed by the number of the digital interface
device time slot (digital channel)(1 to 24 for T-1; 1 to 30 for E-1).

Before you can use any of the other library functions on a device, that device must
be opened. When the device is opened using dx_open() the function returns a
unique Dialogic device handle. The handle is the only way the device can be
identified once it has been opened. The dx_close() function closes a device via its
handle.

Device Management functions do not cause a device to be busy. In addition, the
Device Management functions will work on a device whether the device is busy or
idle.

NOTES: 1. Issuing a dt_open(), dx_open(), dt_close() or dx_close() while
the device is being used by another process will not affect the current
operation of the device.

2. The device handle which is returned is Dialogic defined. The device
handle is not a standard Windows NT file descriptor. Any attempts
to use operating system commands such as read(), write(), or
ioctl() will produce unexpected results.

3. In an application that starts a process, the device handle is not
inheritable by the child process. Devices must be opened in the child
process.

2. Using the Voice Reference Library

11-CD

2.1.2. Configuration Functions

dx_clrdigbuf() • clear the firmware digit buffer

dx_getparm() • get a board/channel device parameter

dx_setdigtyp() • set digit collection type

dx_sethook() • set hookswitch state

dx_setparm() • set device parameters

dx_wtring() • wait for number of rings

Configuration functions allow you to alter, examine, and control the physical
configuration of an open device. The configuration functions operate on a device
only if the device is idle. All configuration functions cause a device to be busy
and return the device to an idle state when the configuration is complete. See
Section 2.2.3. Busy and Idle States for information about busy and idle states.

NOTE: The dx_sethook() function can also be classified as an I/O function and
can be run asynchronously or synchronously.

2.1.3. I/O Functions

dx_dial()
(enable/disable
call analysis) • dial an ASCIIZ string of digits

dx_getdig() • get digits from channel digit buffer

dx_play() • play voice data from one or more sources

dx_playiottdata() • play voice data from multiple sources

dx_rec() • record voice data to one or more destinations

dx_reciottdata() • record voice data to multiple destinations

dx_setdigbuf() • set digit buffering mode

dx_stopch() • stop current I/O

dx_wink() • wink a channel

NOTES: 1. dx_playtone(), which is grouped with the Global Tone eneration

Voice Programmer’s Guide for Windows NT

12-CD

functions, is also an I/O function and all I/O characteristics apply.

2. dx_sethook(), which is grouped with the Configuration functions, is
also an I/O function and all I/O characteristics apply.

3. dx_wink(), cannot be called for a digital T-1 configuration that
includes a D/240SC-T1 board. Transparent signaling for SCbus
digital interface devices is not supported in System Release 4.1SC.

The purpose of an I/O function is to transfer data to and from an open idle
channel. All I/O functions cause a channel to be busy while data transfer is taking
place and return the channel to an idle state when data transfer is complete. The
dx_stopch() function stops any other I/O function, except dx_dial() (see
dx_dial() and dx_stopch() in the Chapter 3. Voice Function Reference for
information).

I/O functions can be run synchronously or asynchronously. When running
synchronously, they return after completing successfully or after an error. When
running asynchronously they will return immediately to indicate successful
initiation (or an error), and continue processing until a termination condition is
satisfied. See the Standard Runtime Library Programmer’s Guide for Windows
NT, for a full discussion on asynchronous and synchronous operation.

A set of termination conditions can be specified for I/O functions (except
dx_stopch() and dx_wink()). These conditions dictate what events will cause an
I/O function to terminate. The termination conditions are specified just before the
I/O function call is made. Obtain termination reasons for I/O functions by calling
the Extended Attribute function ATDX_TERMMSK(). See Section 2.2.4. I/O
Terminations for information on I/O terminations.

NOTE: The dx_stopch() function will not stop all I/O functions. Do not use this
function to stop dx_wink() or dx_dial()(without Call Analysis
enabled). See Chapter 3. Voice Function Reference for more
information on these functions.

2. Using the Voice Reference Library

13-CD

2.1.4. Convenience Functions

dx_playf() • play voice data from a single file

dx_playvox() • play a VOX file

dx_playwav() • play a WAVE file

dx_recf() • record voice data to a single file

dx_recvox() • record voice data to a single VOX file

dx_recwav() • record voice data to a single WAVE file

These functions simplify synchronous play and record.

dx_playf() performs a playback from a single file by specifying the filename. The
same operation can be done by using dx_play() and supplying a DX_IOTT
structure with only one entry for that file. Using dx_playf() is more convenient
for a single file playback, because you do not have to set up a DX_IOTT structure
for the one file, and the application does not need to open the file. dx_playvox(),
dx_playwav(), dx_recvox(), dx_recwav(), and dx_recf() provide the same
single-file convenience for the dx_playiottdata(), dx_reciottdata(), and
dx_rec() function.

Source code is included for dx_playf() and dx_recf() in the function
descriptions in Chapter 3. Voice Function Reference.

NOTE: dx_playf(), dx_playvox(), dx_playwav(), dx_recf(), dx_recvox()
and dx_recwav() run synchronously only.

2.1.5. Call Status Transition Event Functions

dx_getevt() • get call status transition event

dx_setevtmsk() • set call status transition event notification

Call Status Transition (CST) Event functions set and monitor Call Status
Transition events that can occur on a device. Call Status Transition events indicate
changes in the status of the call. For example, if rings were detected, if the line
went onhook or offhook, or if a tone was detected. The full list of Call Status

Voice Programmer’s Guide for Windows NT

14-CD

Transition events is contained in Section 4.1.3. DX_CST - call status transition
structure which describes the Call Status Transition structure (DX_CST).

dx_setevtmsk() enables detection of CST event(s).

dx_getevt() retrieves events in a synchronous environment. To retrieve CST
events in an asynchronous environment, use the Standard Runtime Library’s Event
Management functions.

2.1.6. SCbus Routing Functions

See the SCbus Routing Function Reference for Windows NT for function
descriptions and the nomenclature used to identify devices, channels and time
slots in an SCbus configuration. The SCbus routing functions can only be used in
SCbus configurations.

2.1.7. Global Tone Detection Functions

dx_addtone() • add a user-defined tone

dx_blddt() • build a dual frequency tone description

dx_blddtcad() • build a dual freqency tone cadence description

dx_bldst() • build a single frequency tone description

dx_bldstcad() • build a single frequency tone cadence description

dx_deltones() • delete user-defined tones

dx_enbtone() • enable detection of user-defined tones

dx_distone() • disable detection of user-defined tones

dx_setgtdamp() • sets amplitudes used by Global Tone Detection (GTD)

Use the Global Tone Detection (GTD) functions to define and enable detection of
single and dual frequency tones that fall outside those automatically provided with
the Voice Driver. This includes tones outside the standard DTMF range of 0-9, a-
d, * and #.

2. Using the Voice Reference Library

15-CD

The GTD dx_blddt(), dx_blddtcad(), dx_bldst(), and dx_bldstcad() functions
define tones which can then be added to the channel using dx_addtone(). This
enables detection of the tone on that channel.

See the Voice Features Guide for Windows NT for a full description of Global
Tone Detection.

2.1.8. Global Tone Generation Functions

dx_bldtngen() • build a user-defined tone generation template

dx_playtone() • play a user-defined tone

Use Global Tone Generation functions to define and play single and dual tones
other than those automatically provided with the Voice driver.

dx_bldtngen() defines a tone template structure, TN_GEN. dx_playtone() can
then be used to generate the tone.

See the Voice Features Guide for Windows NT for a full description of Global
Tone Generation, and see 4. Voice Data Structures and Device Parameters for a
description of the TN_GEN structure.

2.1.9. R2MF Convenience Functions

r2_creatfsig() • create R2MF forward signal tone

r2_playbsig() • play R2MF backward signal tone

These are convenience functions which enable detection of R2MF forward signals
on a channel, and play R2MF backward signals in response. For more information
about Voice Support for R2MF, see the Voice Features Guide for Windows NT.

2.1.10. Speed and Volume Functions

dx_adjsv() • adjust speed or volume

dx_clrsvcond() • clear speed or volume digit adjustment conditions

Voice Programmer’s Guide for Windows NT

16-CD

dx_setsvcond() • set speed or volume digit adjustment conditions

dx_getcursv() • get current speed and volume settings

dx_getsvmt() • get Speed/Volume Modification Table

dx_setsvmt() • set Speed/Volume Modification Table

NOTE: Speed and Volume Control are available on D/41ESC, D/160SC-LS,
D/240SC, D/240SC-T1, D/300SC-E1, and D/320SC boards.

Use these functions to adjust the speed and volume of the play. A 21-entry Speed
Modification Table and Volume Modification Table is associated with each
channel. This table can be used for increasing or decreasing the speed or volume.
This table has default values which can be changed using the dx_setsvmt()
function.

dx_adjsv() and dx_setsvcond() both use the Modification Table to adjust speed
or volume; dx_adjsv() adjusts speed or volume immediately, and
dx_setsvcond() sets conditions (such as a digit) for speed or volume adjustment.
dx_clrsvcond() to clear the speed or volume conditions.

dx_getcursv() retrieves the current speed or volume settings. dx_getsvmt()
retrieves the settings of the current Speed or Volume Adjustment Table.

See the Voice Features Guide for Windows NT for more information about voice
software support for speed and volume.

2.1.11. Speed and Volume Convenience Functions

dx_addspddig() • add speed adjustment digit

dx_addvoldig() • add volume adjustment digit

dx_addspdig() and dx_addvoldig() are convenience functions that specify a
digit and an adjustment to occur on that digit, without having to set any data
structures. These functions use the default settings of the Speed/Volume
Modification Tables.

2. Using the Voice Reference Library

17-CD

2.1.12. PerfectCall Call Analysis Functions

dx_chgdur() • change PerfectCall Call Analysis signal duration

dx_chgfreq() • change PerfectCall Call Analysis signal frequency

dx_chgrepcnt() • change PerfectCall Call Analysis signal repetition count

dx_initcallp() • initialize PerfectCall Call Analysis on a channel

dx_chg() • functions can be used to change the definition of default
PerfectCall Call Analysis tones.

dx_initcallp() • enables PerfectCall Call Analysis.

2.1.13. Structure Clearance Functions

dx_clrcap() • clear DX_CAP structure

dx_clrtpt() • clear DV_TPT structure

These functions do not affect a device. The dx_clrcap() and dx_clrtpt()
functions provide a convenient method for clearing the DX_CAP and DV_TPT
Voice Library data structures. These structures are discussed in Chapter 4. Voice
Data Structures and Device Parameters.

2.1.14. Extended Attribute Functions

ATDX_ANSRSIZ() • Returns duration of answer detected during

Call Analysis

ATDX_BDNAMEP() • Returns pointer to the device name string

ATDX_BDTYPE() • Returns board type

ATDX_BUFDIGS() • Returns number of digits in firmware since
last dx_getdig() for a given channel

ATDX_CHNAMES() • Returns pointer to an array of channel name
strings

ATDX_CHNUM() • Returns channel number on board associated
with the channel device handle

Voice Programmer’s Guide for Windows NT

18-CD

ATDX_CONNTYPE() • Returns connection type for a call

ATDX_CPERROR() • Returns call analysis error

ATDX_CPTERM() • Returns last call analysis termination

ATDX_CRTNID() • Returns the identifier of the tone that
causedthe most recent Call Analysis
termination

ATDX_DEVTYPE() • Returns device type

ATDX_DTNFAIL() • Returns the dial tone character that indicates
which dial tone Call Analysis failed to detect

ATDX_FRQDUR() • Returns duration of first frequency

ATDX_FRQDUR2() • Returns duration of 2nd SIT tone frequency

ATDX_FRQDUR3() • Returns duration of 3rd SIT tone frequency
detected

ATDX_FRQHZ() • Returns frequency of first detected tone

ATDX_FRQHZ2() • Returns frequency of second detected SIT
tone

ATDX_FRQHZ3() • Returns frequency of third detected SIT tone

ATDX_FRQOUT() • Returns % of frequency out of bounds
detected during Call Analysis

ATDX_FWVER() • Returns firmware version

ATDX_HOOKST() • Returns current hook status

ATDX_LINEST() • Returns current line status

ATDX_LONGLOW() • Returns duration of longer silence detected
during Call Analysis

ATDX_PHYADDR() • Returns physical address of board

ATDX_SHORTLOW() • Returns duration of shorter silence detected
during Call Analysis

ATDX_SIZEHI() • Returns duration of non-silence detected
during Call Analysis

ATDX_STATE() • Returns current state of the device

ATDX_TERMMSK() • Returns termination bitmap

2. Using the Voice Reference Library

19-CD

ATDX_TONEID() • Returns the tone id

ATDX_TRCOUNT() • Returns last record or play transfer count

Voice Library Extended Attribute functions return information specific to the
Voice device indicated in the function call. Many are related to specific Voice
features:

Basic Call Analysis uses:

ATDX_ANSRSIZ()
ATDX_CPERROR()
ATDX_CPTERM()
ATDX_FRQ()
ATDX_LONGLOW()
ATDX_SHORTLOW()
ATDX_SIZEHI()

PerfectCall Call Analysis uses:

ATDX_ANSRSIZ()
ATDX_CPERROR()
ATDX_CPTERM()
ATDX_FRQ()
ATDX_CRTNID()
ATDX_DTNFAIL()

The Call Status Transition event detection uses:

ATDX_HOOKST()

Global Tone Detection uses:

ATDX_TONEID()

Voice Programmer’s Guide for Windows NT

20-CD

2.2. Voice Programming Requirements

This section contains information that is required when using the Voice Library
and many of its functions. The following topics are covered:

• Opening and Using Devices (Section 2.2.1)

• Opening and Using Voice Channels (Section 2.2.2)

• Busy and Idle Device States (Section 2.2.3)

• I/O Terminations (Section 2.2.4)

• Error Handling (Section 2.2.5)

• Voice Library Include Files (Section 2.2.6)

• Compiling Applications (Section 2.2.7)

2.2.1. Opening and Using Devices

When you open a file under Windows NT, it returns a unique file descriptor for
that file. The following is an example of a file descriptor:

int file_descriptor;
file_descriptor = open(filename, mode);

Any subsequent action you wish to perform on that file is accomplished by
identifying the file using file_descriptor. No action can be performed on the file
until it is first opened.

Dialogic boards and channels work in a similar manner. You must first open a
Voice device using dx_open() before you can perform any operation on it. When
you open a channel using dx_open(), the value returned is a unique Dialogic
device handle for that particular open process on that channel. The Dialogic
channel device handle is referred to as chdev, where

int chdev;
chdev = dx_open(channel_name,mode)

Any time you wish to use a Voice library function on the channel, you must
identify the channel with its Dialogic channel device handle, chdev. The channel
name is used only when opening a channel, and all actions after opening must use

2. Using the Voice Reference Library

21-CD

the handle chdev. Board devices are opened by following the same procedure,
where bddev refers to the Dialogic board device handle.

NOTE: As stated above, boards and channels are considered separate devices
under Windows NT. It is possible to open and use a channel without ever
opening the board it is on. There is no board-channel hierarchy imposed
by the driver.

To enable users to control the boards and the channels under the Windows NT
operating system, Dialogic provides a library of C language functions. For details
on opening and closing channels and boards refer to the function references for
dx_open() and dx_close() in Section 3.2. Voice Library Function Descriptions.

CAUTION

Dialogic devices should never be opened using the Windows NT
open().

2.2.2. Opening and Using Voice Files

The Voice library provides a set of standard I/O routines. Although applications
may use the routines provided with the Microsoft C Runtime Library, Dialogic
recommends that the application use the Dialogic file handling routines when
manipulating voice files. These routines are dx_fileopen() for opening voice
files, dx_fileclose() for closing voice files, and dx_fileseek(), dx_fileread(), and
dx_filewrite() for searching for, reading, or writing directly to a file. The
arguments for these functions are identical to the equivalent "C" runtime
functions.

2.2.3. Busy and Idle States

Some library functions are dependent on the state of the device when the function
call is made. A device is in an idle state when it is not being used, and in a busy
state when it is dialing, stopped, being configured, or being used for other I/O
functions. Idle represents a single state; busy represents the set of states that a
device may be in when it is not idle. State-dependent functions do not make a
distinction between the individual states represented by the term busy. They only

Voice Programmer’s Guide for Windows NT

22-CD

distinguish between idle and busy states. The categories of functions and their
state dependencies are described in the following sections.

2.2.4. I/O Terminations

Pass a set of termination conditions as one of the function parameters when an I/O
function is issued. Termination conditions are events monitored during the I/O
process that cause an I/O function to terminate. When the termination condition is
met, ATDX_TERMMSK() returns the reason for termination. I/O functions can
terminate under the following conditions:

• byte transfer count is satisfied
• device has stopped due to dx_stopch()
• end of file is reached during a play
• loop current has dropped for a period of time
• maximum delay between DTMF digits is detected
• maximum number of digits has been received
• maximum period of non-silence (noise or meaningful sound) has been

detected
• maximum period of silence has been detected
• pattern of silence and non-silence (noise or meaningful sound) has been

detected
• specific digit has been received
• I/O function has been executing for a maximum period of time
• user-defined digit has been received
• user-defined tone-on or tone-off has been detected (GTD)

You can predict events that will occur during I/O (such as a digit being received
or the call being disconnected) and set termination conditions accordingly. The
flow of control in a voice application is based on the termination condition.
Setting these conditions properly allows you to build voice applications that can
anticipate a caller’s actions.

To set the termination conditions, values are placed in fields of a DV_TPT
structure. If you set more than one termination condition, the first one that occurs
will terminate the I/O function. The DV_TPT structures can be configured as a
linked list or array, with each DV_TPT specifying a single terminating condition.
The DV_TPT structure, which is defined in srllib.h, is described in detail in the
Standard Runtime Library Programmer’s Guide for Windows NT. Voice board

2. Using the Voice Reference Library

23-CD

values for the DV_TPT are contained Appendix A. The termination conditions are
described in the following paragraphs.

Byte Transfer Count - This termination condition applies when playing or
recording a file with dx_play() or dx_rec(). The maximum number of bytes is
set in the DX_IOTTstructure. This condition will cause termination if the
maximum number of bytes is used before one of the termination conditions
specified in the DV_TPT occurs. See Section 4.1.5. DX_IOTT - I/O transfer
table, for information about setting the number of bytes in the DX_IOTT.

Stop Occurred - dx_stopch() terminates any I/O function, except for dx_dial()
without Call Analysis enabled, and dx_wink(). See the dx_stopch() function
description for more detailed information about this function.

End of File Reached - This termination condition applies when playing a file.
This condition causes termination if -1 has been specified in the io_length field of
the DX_IOTT, and no other termination condition has occurred before the end of
the file is reached. See Section 4.1.5. DX_IOTT - I/O transfer table for
information about setting the DX_IOTT. ATDX_TERMMSK() returns the
termination reason TM_EOD when this termination condition is met.

Loop Current Drop - In some central offices, switches, and PBX’s, a drop in
loop current indicates disconnect supervision. An I/O function can terminate if the
loop current drops for a specified amount of time. Specify the amount of time in
the tp_length field of a DV_TPT structure in 100 ms units (default) or 10 ms
units. Specify 10 ms in the tp_flags field of the DV_TPT structure.
ATDX_TERMMSK() returns the termination reason TM_LCOFF when this
termination condition is met.

Maximum Delay Between Digits - This termination condition monitors the
length of time between the digits being received. A specific length of time can be
placed in the tp_length field of a DV_TPT. If the time between receiving digits is
more than this period of time, the function terminates. Specify the amount of time
in 100 ms units (default) or 10 ms units for the tp_length field or 10 ms units for
the tp_flags field. ATDX_TERMMSK() returns the termination reason
TM_IDDTIME when this termination condition is met.

Maximum Digits Received - This termination condition counts the number of
digits in the channel’s digit buffer. If the buffer is not empty before the I/O

Voice Programmer’s Guide for Windows NT

24-CD

function is called, the condition counts the digits remaining in the buffer as well.
To set the maximum number of digits received before termination, place a number
from 1 to 31 in the tp_length field of a DV_TPT. ATDX_TERMMSK() returns
the termination reason TM_MAXDTMF when this termination condition is met.

Maximum Length of Non-silence - Non-silence is the absence of silence: noise
or meaningful sound, such as a person speaking. Enable this condition by setting
the tp_length field of a DV_TPT to a specific period of time. When the
application detects non-silence for this length of time, the I/O function terminates.
This termination condition is frequently used to detect dial tone or the howler tone
that is used by central offices to indicate that a phone has been off-hook for an
extended period of time. Specify the amount of time in 100 ms units (default) or
10 ms units in the tp_length field or 10 ms units in the tp_flags field of the
DV_TPT structure. ATDX_TERMMSK() returns the termination reason
TM_MAXNOSIL when this termination condition is met.

Maximum Length of Silence - Enable this termination condition by setting the
tp_length field of a DV_TPT. The specified value is the length of time that
continuous silence will be detected before it terminates the I/O function. The
amount of time can be specified in 100 ms units (default) or 10 ms units for the
tp_length field or 10 ms units in the tp_flags field of the DV_TPT structure.
ATDX_TERMMSK() returns the termination reason TM_MAXSIL when this
termination condition is met.

Pattern of Silence and Non-silence - A known pattern of silence and non-silence
can terminate a function. A pattern can be specified by specifying DX_PMON and
DX_PMOFF in the tp_termno field in two separate DV_TPT structures, where
one represents a period of silence and one represents a period of non-silence.
ATDX_TERMMSK() returns the termination reason TM_PATTERN when this
termination condition is met.

DX_PMOFF/DX_PMON termination conditions must be used together. The
DX_PMON terminating condition must directly follow the DX_PMOFF
terminating condition. A combination of both DV_TPT structures using these
conditions is used to form a single termination condition. A detailed description of
how to set these termination conditions is described in Appendix A in a section
called "Using DX_PMON and DX_PMOFF."

2. Using the Voice Reference Library

25-CD

Specific Digit Received - An application collects the digits received during an I/O
function in a channel’s digit buffer. If the buffer is not empty before an I/O
function executes, the application treats the digits in the buffer as if the digits were
received during the I/O execution. Enable this termination condition by specifying
a digit bit mask in the tp_length field of a DV_TPT structure. If any digit
specified in the bit mask appears in the digit buffer, the I/O function will
terminate. ATDX_TERMMSK() returns the termination reason TM_DIGIT
when this termination condition is met.

Maximum Function Time - Place a time limit on the I/O function by seeting the
tp_length field of a DV_TPT to a specific length of time in 100 ms units. The I/O
function terminates when it executes longer than this period of time. Specify the
amount of time in 100 ms units (default) or 10 ms units for the tp_length field and
10 ms units in the tp_flags field of the DV_TPT. ATDX_TERMMSK() returns
the termination reason TM_MAXTIME when this termination condition is met.

User-Defined Digit Received - An application collects user-defined digits in a
channel’s digit buffer during an I/O function. If the buffer is not empty before an
I/O function executes, the application treats the digits in the buffer as if received
during the I/O execution. This termination condition is enabled by specifying the
digit and digit type in the tp_length field of a DV_TPT structure. If any digit
specified in the bit mask appears in the digit buffer, the I/O function terminates.
ATDX_TERMMSK() returns the termination reason TM_DIGIT when this
termination condition is met.

User-Defined Tone On/Off Event Detected - Use this termination condition
with Global Tone Detection. Before specifying a user-defined tone as a
termination condition, define the tone using the GTD dx_bld...() functions, and
enable the tone detection on the channel using the dx_addtone() or
dx_enbtone() functions. To set tone on/off to be a termination condition, specify
DX_TONE in the tp_termno field of the DV_TPT. You must also specify
DX_TONEON or DX_TONEOFF in the tp_data field. ATDX_TERMMSK()
returns the termination reason TM_TONE when this termination condition is met.

The application may clear the DV_TPT structure using dx_clrtpt() before
initializing the structure and passing a pointer to it as a function parameter.

Voice Programmer’s Guide for Windows NT

26-CD

Refer to the Standard Runtime Library Programmer’s Guide for Windows NT for
a complete discussion of the DV_TPT structure, and to Appendix A for a
description of Voice software values for the DV_TPT.

2.2.5. Error Handling

All the Dialogic Voice Library functions return a value to indicate success or
failure of the function. All Voice Library functions indicate success by a return
value of zero or a non-negative number.

Extended Attribute functions that return pointers return a pointer to the ASCIIZ
string "Unknown device" if they fail.

Extended Attribute functions that don’t return pointers, return a value of
AT_FAILURE if they fail.

All other functions return a value of -1 to indicate a failure.

If a function fails, call the Standard Attribute functions ATDV_LASTERR() and
ATDV_ERRMSGP() for the reason for failure. These functions are described in
the Standard Runtime Library Programmer’s Guide for Windows NT.

The errors that can be returned by a Voice Library function are listed in Table 1.
These errors are also listed for reference in Appendix B.

NOTES: 1. dx_open() and dx_close() are exceptions to the above error
handling rules. If these functions fail, the return code is -1 and the
specific error is found in the errno variable contained in errno.h.

2. If ATDV_LASTERR() returns the error EDX_SYSTEM, a
Windows NT system error has occurred. Check the global variable
errno contained in errno.h.

Table 1. Voice Library Function Errors

Error Define Error String

EDX_AMPLGEN Invalid Amplitude Value in Tone Generation
Template [+2dB - -40dB]

2. Using the Voice Reference Library

27-CD

Error Define Error String

EDX_ASCII Invalid ASCII Value in Tone Template
Description

EDX_BADDEV Invalid Device Descriptor

EDX_BADIOTT Invalid Entry in the DX_IOTT

EDX_BADPARM Invalid Parameter in Function Call

EDX_BADPROD Function Not Supported on this Board

EDX_BADTPT Invalid Entry in the DX_TPT

EDX_BADWAVFILE Invalid WAV file

EDX_BUSY Device is Already Busy

EDX_CADENCE Invalid Cadence Component Values in Tone
Template Description

EDX_CHANNUM Invalid Channel Number Specified

EDX_DIGTYPE Invalid Dig_type Value in Tone Template
Description

EDX_FLAGGEN Invalid tn_dflag field in Tone Generation
Template

EDX_FREQDET Invalid Freq Component Values in Tone
Template Description

EDX_FREQGEN Invalid Frequency Component in Tone
Generation Template [200hz - 2000hz]

EDX_FWERROR Firmware Error

EDX_IDLE Device is Idle

EDX_INVSUBCM Invalid Sub Command Number

EDX_MAXTMPLT Max number of Templates Exists

EDX_MSGSTATUS Invalid Message Status Setting

Voice Programmer’s Guide for Windows NT

28-CD

Error Define Error String

EDX_NOERROR No Errors

EDX_NONZEROSIZE Reset to Default was Requested but size was non-
zero

EDX_SH_BADCMD Unsupported command or WAV file format

EDX_SPDVOL Must Specify either SV_SPEEDTBL or
SV_VOLUMETBL

EDX_SVADJBLKS Invalid Number of Speed/Volume Adjustment
Blocks

EDX_SVMTRANGE An Entry in DX_SVMT was out of Range

EDX_SVMTSIZE Invalid Table Size Specified

EDX_SYSTEM System Error

EDX_TIMEOUT Function Timed Out

EDX_TONEID Bad Tone Template ID

2.2.6. Voice Library Include Files

The following lines must be included in application code prior to calling Voice
Library functions:

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

NOTE: srllib.h must be included in code before all other Dialogic header files.

The libraries are located in the following default directories:

<install drive:>\<install directory> \dialogic\ inc

2. Using the Voice Reference Library

29-CD

2.2.7. Compiling Applications

Application programs developed using the Voice Library for Windows NT should
be linked with the following libraries.

Libraries for multithreaded applications are located in the following default
directories:

<install drive:>\<install directory> \dialogic\i386\lib\libdxxmt. lib - the
main Voice Library
<install drive:>\<install directory> \dialogic\i386\lib\libsrlmt.lib - the
Standard Runtime Library

They should be linked in the order specified above.

Voice Programmer’s Guide for Windows NT

30-CD

31-CD

3. Voice Function Reference

3.1. Voice Function Reference Overview

This chapter provides a description of the Voice Library functions provided with
the voice software for Windows NT systems. These functions are listed
alphabetically for ease of use.

Some Voice Library functions use special structures. These structures are defined
in the dxxxlib.h and srllib.h header files and are described in Chapter 4. Voice
Data Structures and Device Parameters. They include the following:

DV_DIGIT • User Digit Buffer Structure
DV_TPT • Termination Parameter Table Structure
DX_CAP • Call Analysis Parameter Structure
DX_EBLK • Event Block Structure
DX_IOTT • I/O Transfer Table Structure
DX_UIO • I/O User-definable I/O Structure

The dx_getparm() and dx_setparm() functions use defined masks to specify
parameters. The definitions of the masks are found in Chapter 4. Voice Data
Structures and Device Parameters.

Applications that use the Voice Library must include the dxxxlib.h and srllib.h
header files.

NOTE: The srllib.h header file must always be listed before any other Dialogic
header file.

SCbus Functions

See the SCbus Routing Function Reference for Windows NT for function
descriptions and the nomenclature used to identify devices, channels and time
slots in an SCbus configuration. The SCbus routing functions can only be used in
SCbus configurations.

3.2. Voice Library Function Descriptions

ATDX_ANSRSIZ() returns the duration of the answer

32-CD

Name: long ATDX_ANSRSIZ(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: answer duration in 10 ms units if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_ANSRSIZ() function returns the duration of the answer that occurs
when dx_dial() with Basic Call Analysis enabled is called on a channel. An
answer is considered the period of non-silence that begins after cadence is broken
and a connection is made. This measurement is taken before a connect event is
returned. The duration of the answer can be used to determine if the call was
answered by a person or an answering machine. This feature is based on the
assumption that an answering machine typically answers a call with a longer
greeting than a live person does.

See the section called "Cadence Detection Parameters’ Affect on a Connect" in
the Voice Features Guide for Windows NT for information about distinguishing
between a person and answering machine.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

n Cautions

None.

n Example

/* Call Analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

returns the duration of the answer ATDX_ANSRSIZ()

33-CD

#include <windows.h>

main()
{
 int cares, chdev;
 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call analysis. Perform the
 * outbound dial with call analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }

 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 .
 .
 }
}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

n See Also

Related to Call Analysis:

ATDX_ANSRSIZ() returns the duration of the answer

34-CD

• dx_dial()
• DX_CAP. (Chapter 4. Voice Data Structures and Device Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)

returns a pointer ATDX_BDNAMEP()

35-CD

Name: char * ATDX_BDNAMEP(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: pointer to Board device name string if successful
pointer to ASCIIZ string "Unknown device" if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_BDNAMEP() function returns a pointer to the name of the board
device on which the channel accessed by chdev resides.

As illustrated in the example, this may be used to open the board device that
corresponds to a particular channel device prior to setting board parameters.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

n Cautions

None.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int chdev, bddev;
 char *bdnamep;
 .
 .
 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1", NULL)) == -1) {
 /* Process error */
 }

ATDX_BDNAMEP() returns a pointer

36-CD

 /* Display board name */
 bdnamep = ATDX_BDNAMEP(chdev);
 printf("The board device is: %s\n", bdnamep);

 /* Open the board device */
 if ((bddev = dx_open(bdnamep, NULL)) == -1) {
 /* Process error */
 }
 .
 .
}

n Errors

This function will fail and return a pointer to "Unknown device" if an invalid
channel device handle is specified in chdev.

returns the device type ATDX_BDTYPE()

37-CD

Name: long ATDX_BDTYPE(dev)
Inputs: int dev • valid Dialogic board or channel device

handle
Returns: board or channel device type if successful

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

The ATDX_BDTYPE() function returns the device type of the board or channel
dev.

A typical use would be to determine whether or not the device can support
particular features, such as Call Analysis.

The function parameter is defined as follows:

Parameter Description

dev: specifies the valid Dialogic device handle obtained when a
board or channel was opened using dx_open().

Possible return values are the following:

DI_D20BD • D/20 Board Device
DI_D21BD • D/21 Board Device
DI_D40BD • D/40 Board Device
DI_D41BD • D/41 Board Device
DI_D20CH • D/20 Channel Device
DI_D21CH • D/21 Channel Device
DI_D40CH • D/40 Channel Device
DI_D41CH • D/41 Channel Device

NOTE: DI_41BD and DI_41CH will be returned for the D/121 board, which
emulates three D/41 boards. DI_41BD and DI_41CH will be returned:
for the D/160SC-LS board which emulates four D/41 boards; for the
D/240SC and D/240SC-T1 boards which emulate six D/41 boards; and
for the D/300SC-E1 and D/320SC boards which emulate eight D/41

ATDX_BDTYPE() returns the device type

38-CD

boards

n .Cautions

None.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
#define ON 1

main()
{
 int bddev;
 long bdtype;
 int call_analysis=0;

 /* Open the board device */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* Process error */
 }

 if((bdtype = ATDX_BDTYPE(bddev)) == AT_FAILURE) {
 /* Process error */
 }

 if(bdtype == DI_D41BD) {
 printf("Device is a D/41 Board\n");
 call_analysis = ON;
 }
 .
 .
}

n Errors

This function will fail and return AT_FAILURE if an invalid board or channel
device handle is specified in dev.

returns the number of uncollected digits ATDX_BUFDIGS()

39-CD

Name: long ATDX_BUFDIGS(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: number of uncollected digits in the firmware buffer if
successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_BUFDIGS() function returns the number of uncollected digits in the
firmware buffer for channel chdev. This is the number of digits that have arrived
since the last call to dx_getdig() or the last time the buffer was cleared using
dx_clrdigbuf(). The digit buffer contains a maximum of 31 digits and a null
terminator.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

n Cautions

Digits that adjust speed and volume (see dx_setsvcond()) will not be passed to
the digit buffer.

n Example

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int chdev;
 long bufdigs;
 DX_IOTT iott;
 DV_TPT tpt[2];

ATDX_BUFDIGS() returns the number of uncollected digits

40-CD

 /* Open the device using dx_open(). Get channel device descriptor in
 * chdev. */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1; /* play till end of file */

 if((iott.io_fhandle = dx_fileopen("prompt.vox", O_RDONLY)) == -1) {
 /* process error */
 }

 /* set up DV_TPT */
 dx_clrtpt(tpt,2);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt[0].tp_length = 4; /* terminate on 4 digits */
 tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */
 tpt[1].tp_type = IO_EOT;
 tpt[1].tp_termno = DX_DIGMASK; /* Digit termination */
 tpt[1].tp_length = DM_5; /* terminate on the digit "5" */
 tpt[1].tp_flags = TF_DIGMASK; /* Use the default flags */

 /* Play a voice file. Terminate on receiving 4 digits, the digit "5" or
 * at end of file.*/
 if (dx_play(chdev,&iott,tpt,EV_SYNC) == -1) {
 /* process error */
 }
 /* Check # of digits collected and continue processing. */
 if((bufdigs=ATDX_BUFDIGS(chdev))==AT_FAILURE) {
 /* process error */
 }
 .
 .
 .
}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

n See Also

Other digit functions:

• dx_getdig()
• dx_clrdigbuf()

returns a pointer to an array ATDX_CHNAMES()

41-CD

Name: char ** ATDX_CHNAMES(bddev)
Inputs: int bddev • valid Dialogic board device handle

Returns: pointer to array of channel names if successful
pointer to array of pointers that point to "Unknown device" if
error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_CHNAMES() function returns a pointer to an array of channel
names associated with the designated board device handle bddev.

A possible use for this attribute would be to display the names of the channel
devices associated with a particular board device.

The function parameter is defined as follows:

Parameter Description

bddev: specifies the valid board device handle obtained when the
board was opened using dx_open().

n Cautions

None.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int bddev, cnt;
 char **chnames;
 long subdevs;
 .
 .
 /* Open the board device */

ATDX_CHNAMES() returns a pointer to an array

42-CD

 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* Process error */
 }
 .
 .
 /* Display channels on board */
 chnames = ATDX_CHNAMES(bddev);
 subdevs = ATDV_SUBDEVS(bddev); /* number of sub-devices on board */

 printf("Channels on this board are:\n");
 for(cnt=0; cnt<subdevs; cnt++) {
 printf("%s\n",*(chnames + cnt));
 }

 /* Call dx_open() to open each of the
 * channels and store the device descriptors
 */
 .
 .
}

n Errors

This function will fail and return the address of a pointer to "Unknown device" if
an invalid board device handle is specified in bddev.

returns the channel number ATDX_CHNUM()

43-CD

Name: long ATDX_CHNUM(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: channel number if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_CHNUM() function returns the channel number of the channel
chdev on the Voice board. Channel numbering starts at 1.

For example, use the channel as an index into an array of channel-specific
information.

n Cautions

None.

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
main()
{
 int chdev;
 long chno;
 .
 .
 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1", NULL)) == -1) {
 /* Process error */
 }
 /* Get Channel number */
 if((chno = ATDX_CHNUM(chdev)) == AT_FAILURE) {
 /* Process error */
 }
 /* Use chno for application-specific purposes */
 .
 .
}

ATDX_CHNUM() returns the channel number

44-CD

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

returns the connection ATDX_CONNTYPE()

45-CD

Name: long ATDX_CONNTYPE(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: connection type
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_CONNTYPE() function returns the connection for a call on the
channel chdev. Use this function when a CR_CNCT is returned by
ATDX_CPTERM() after termination of dx_dial() with Call Analysis enabled.

Possible return values are the following:

CON_CAD • Connection due to cadence break
CON_LPC • Connection due to loop current
CON_PVD • Connection due to Positive Voice Detection
CON_PAMD • Connection due to Positive Answering Machine

Detection

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

n Cautions

None.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

ATDX_CONNTYPE() returns the connection

46-CD

main()
{
 int dxxxdev;
 int cares;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

/*
 * Delete any previous tones
 */
 if (dx_deltones(dxxxdev) < 0) {
 /* handle error */
 }

 /*
 * Now enable Enhanced call progress with above changed settings.
 */
 if (dx_initcallp(dxxxdev)) {
 /* handle error */
 }

 /*
 * Take the phone off-hook
 */
 if (dx_sethook(dxxxdev, DX_OFFHOOK, EV_SYNC) == -1) {
 printf("Unable to set the phone off-hook\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Perform an outbound dial with call analysis, using
 * the default call analysis parameters.
 */
 if ((cares=dx_dial(dxxxdev, ",84",(DX_CAP *)NULL, DX_CALLP)) == -1) {
 printf("Outbound dial failed - reason = %d\n",
 ATDX_CPERROR(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 printf("Call Analysis returned %d\n", cares);
 if (cares == CR_CNCT) {
 switch (ATDX_CONNTYPE(dxxxdev)) {
 case CON_CAD:
 printf("Cadence Break\n");
 break;
 case CON_LPC:
 printf("Loop Current Drop\n");
 break;

 case CON_PVD:
 printf("Positive Voice Detection\n");

returns the connection ATDX_CONNTYPE()

47-CD

 break;

 case CON_PAMD:
 printf("Positive Answering Machine Detection\n");
 break;

 default:
 printf("Unknown connection type\n");
 break;
 }
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

n See Also

Related to Call Analysis:

• dx_dial()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)

ATDX_CPERROR() returns the error

48-CD

Name: long ATDX_CPERROR(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: Call Analysis error

AT_FAILURE if function fails
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

The ATDX_CPERROR() function returns the error that caused dx_dial() to
terminate when checking for operator intercept SIT tones.

When dx_dial() terminates due to a Call Analysis error, CR_ERROR is returned
by ATDX_CPTERM().

If CR_ERROR is returned, use ATDX_CPERROR() to determine the Call
Analysis error. One of the following values will be returned:

CR_LGTUERR • lower frequency greater than upper frequency
CR_MEMERR • out of memory when creating temporary SIT tone

templates
CR_MXFRQERR • invalid ca_maxtimefrq field in DX_CAP
CR_OVRLPERR • overlap in selected SIT tones
CR_TMOUTOFF • timeout waiting for SIT tone to terminate
CR_TMOUTON • timeout waiting for SIT tone to commence
CR_UNEXPTN • unexpected SIT tone
CR_UPFRQERR • invalid upper frequency selection

The function parameter is defined as follows:

returns the error ATDX_CPERROR()

49-CD

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

n Cautions

None.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int dxxxdev;
 int cares;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Take the phone off-hook
 */
 if (dx_sethook(dxxxdev, DX_OFFHOOK, EV_SYNC) == -1) {
 printf("Unable to set the phone off-hook\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Perform an outbound dial with call analysis, using
 * the default call analysis parameters.
 */
 if((cares = dx_dial(dxxxdev,",84",(DX_CAP *) NULL, DX_CALLP)) == -1) {
 printf("Outbound dial failed - reason = %d\n",
 ATDX_CPERROR(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*

ATDX_CPERROR() returns the error

50-CD

 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n See Also

Related to Call Analysis:

• dx_dial()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)

returns last Call Analysis termination ATDX_CPTERM()

51-CD

Name: long ATDX_CPTERM(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: last Call Analysis termination if successful

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

The ATDX_CPTERM() function returns last Call Analysis termination on the
channel chdev. Call this function to determine the call status after dialing out with
Call Analysis enabled.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

Possible return values are the following:

CR_BUSY • Busy
CR_CEPT • Operator intercept
CR_CNCT • Connect
CR_FAXTONE • Called line answered by fax machine or modem
CR_NOANS • No answer
CR_NODIALTONE • Timeout occurred while waiting for dial tone
CR_NORB • No ringback
CR_STOPD • Stopped
CR_ERROR • Error

n Cautions

None.

ATDX_CPTERM() returns last Call Analysis termination

52-CD

n Example

 /* Call Analysis with user-specified parameters */
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int chdev;
 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor
 in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 } else {

 /* Clear DX_CAP structure */
 dx_clrcap(&capp);

 /* Set the DX_CAP structure as needed for call analysis.
 * Allow 3 rings before no answer.
 */
 capp.ca_nbrdna = 3;

 /* Perform the outbound dial with call analysis enabled. */
 if (dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC) == -1) {
 /* perform error routine */
 }
 }
 .
 .

 /* Examine last call progress termination on the device */
 switch (ATDX_CPTERM(chdev)) {
 case CR_CNCT: /* Call Connected, get some additional info */
 .
 .
 break;
 case CR_CEPT: /* Operator Intercept detected */
 .
 .
 break;
 .
 .
 case AT_FAILURE: /* Error */

 }
}

returns last Call Analysis termination ATDX_CPTERM()

53-CD

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

n See Also

Related to Call Analysis:

• dx_dial()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)

ATDX_CRTNID() returns the tone identifier

54-CD

Name: long ATDX_CRTNID(chdev)
Inputs: int chdev • valid channel device handle

Returns: identifier of the tone that caused the most recent Call
Analysis termination, if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_CRTNID() function returns the tone identifier of the tone that
caused the most recent Call Analysis termination of the channel device. This
function is supported under PerfectCall Call Analysis on DSP boards only. See the
Voice Features Guide for Windows NT for a description of PerfectCall Call
Analysis.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid Dialogic device handle obtained when a
board or channel was opened using dx_open().

Possible return values are the following:

TID_DIAL_LCL • Local dial tone
TID_DIAL_INTL • International dial tone
TID_DIAL_XTRA • Special (“Extra”) dial tone
TID_BUSY1 • First signal busy
TID_BUSY2 • Second signal busy
TID_RINGBK1 • Ringback
TID_FAX1 • First fax or modem tone
TID_FAX2 • Second fax or modem tone

n Cautions

None.

returns the tone identifier ATDX_CRTNID()

55-CD

n Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;

 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

 /*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

 /*
 * Now enable Enhanced call progress with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */
 printf("Dialing %s\n", dialstrg);
 car = dx_dial(ddd,dialstrg,(DX_CAP *)&cap_s,DX_CALLP|EV_SYNC);
 if (car == -1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 switch(ATDX_DTNFAIL(ddd)) {
 case ’L’:
 printf(" Unable to get Local dial tone\n");

ATDX_CRTNID() returns the tone identifier

56-CD

 break;
 case ’I’:
 printf(" Unable to get International dial tone\n");
 break;
 case ’X’:
 printf(" Unable to get special eXtra dial tone\n");
 break;
 }
 break;

 case CR_BUSY:
 printf(" %s engaged - %s detected\n", dialstrg,
 (ATDX_CRTNID(ddd) == TID_BUSY1 ? "Busy 1" : "Busy 2"));
 break;

 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;

 default:
 break;
 }

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

returns device type ATDX_DEVTYPE()

57-CD

Name: long ATDX_DEVTYPE(dev)
Inputs: int dev • valid Dialogic board or channel device

handle
Returns: device type if successful

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

The ATDX_DEVTYPE() function returns device type of the board or channel
dev.

The function parameter is defined as follows:

Parameter Description

dev: specifies the valid Dialogic device handle obtained when a
board or channel was opened using dx_open().

Possible return values are the following:

DT_DXBD • Board device
DT_DXCH • Channel

n Cautions

None.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int bddev;

ATDX_DEVTYPE() returns device type

58-CD

 long devtype;

 /* Open the board device */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* Process error */
 }

 if((devtype = ATDX_DEVTYPE(bddev)) == AT_FAILURE) {
 /* Process error */
 }

 if(devtype == DT_DXBD) {
 printf("Device is a Board\n");
 }

 /* Continue processing */
 .
 .
}

n Errors

This function will fail and return AT_FAILURE if an invalid board or channel
device handle is specified in dev.

returns character for dial tone ATDX_DTNFAIL()

59-CD

Name: long ATDX_DTNFAIL(chdev)
Inputs: int chdev • valid channel device handle

Returns: code for the dial tone that failed to appear
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_DTNFAIL() function returns character for dial tone that PerfectCall
Call Analysis failed to detect. This attribute is supported under PerfectCall Call
Analysis only.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid Dialogic device handle obtained when a
board or channel was opened using dx_open().

Possible return values are the following:

L • Local dial tone
I • International dial tone
X • Special ("extra") dial tone

n Cautions

None.

n Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()

ATDX_DTNFAIL() returns character for dial tone

60-CD

{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;

 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

 /*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

 /*
 * Now enable Enhanced call progress with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */

 printf("Dialing %s\n", dialstrg);
 car = dx_dial(ddd,dialstrg,(DX_CAP *)&cap_s,DX_CALLP|EV_SYNC);
 if (car == -1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 switch(ATDX_DTNFAIL(ddd)) {
 case ’L’:
 printf(" Unable to get Local dial tone\n");
 break;
 case ’I’:
 printf(" Unable to get International dial tone\n");
 break;
 case ’X’:
 printf(" Unable to get special eXtra dial tone\n");
 break;
 }
 break;

returns character for dial tone ATDX_DTNFAIL()

61-CD

 case CR_BUSY:
 printf(" %s engaged - %s detected\n", dialstrg,
 ATDX_CRTNID(ddd) == TID_BUSY1 ? "Busy 1" : "Busy 2"));
 break;

 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;

 default:
 break;
 }

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

ATDX_FRQDUR() can be used to return the duration

62-CD

Name: long ATDX_FRQDUR(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: first frequency duration in 10ms units

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

When dx_dial() terminates due to Operator Intercept; the ATDX_FRQDUR()
function can be used to return the duration of the first detected SIT tone frequency
in 10 ms units.

Termination due to Operator Intercept is indicated by ATDX_CPTERM()
returning CR_CEPT.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

n Cautions

None.

n Example

This example illustrates ATDX_FRQDUR(), ATDX_FRQDUR2(), and
ATDX_FRQDUR3().

/* Call Analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()

can be used to return the duration ATDX_FRQDUR()

63-CD

{
 int cares, chdev;
 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call analysis. Perform the
 * outbound dial with call analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }

 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFirst frequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\nSecond frequency detected - %ld Hz", ATDX_FRQHZ2(chdev));
 printf("\nThird frequency detected - %ld Hz", ATDX_FRQHZ3(chdev));

 printf("\nDuration of first frequency - %ld ms", ATDX_FRQDUR(chdev));
 printf("\nDuration of second frequency - %ld ms",
 ATDX_FRQDUR2(chdev));
 printf("\nDuration of third frequency - %ld ms", ATDX_FRQDUR3(chdev));
 break;
 case CR_BUSY:
 break;
 .
 .
 }
}

n See Also

Related to Call Analysis:

• dx_dial()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)

ATDX_FRQDUR() can be used to return the duration

64-CD

SIT Tone Detection - All Boards:

• ATDX_FRQHZ()

SIT Tone Detection - DSP Boards

• ATDX_FRQDUR2()
• ATDX_FRQDUR3()
• ATDX_FRQHZ2()
• ATDX_FRQHZ3()

can be used to return the duration ATDX_FRQDUR2()

65-CD

Name: long ATDX_FRQDUR2(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: second frequency duration in 10 ms units
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

When dx_dial() terminates due to Operator Intercept, the ATDX_FRQDUR2()
function can be used to return the duration of the second detected frequency in 10
ms units.

NOTE: For more information on tri-tone SIT sequences, see Frequency
Detection in the Voice Features Guide for Windows NT.

Termination due to Operator Intercept is indicated by ATDX_CPTERM()
returning CR_CEPT.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

n Cautions

None.

n Example

See the example for ATDX_FRQDUR().

n See Also

Related to Call Analysis:

ATDX_FRQDUR2() can be used to return the duration

66-CD

• dx_dial()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)

SIT Tone Detection - All Boards:

• ATDX_FRQHZ()
• ATDX_FRQDUR()
• "Frequency Detection" (Voice Features Guide for Windows NT)

SIT Tone Detection - DSP Boards:

• ATDX_FRQDUR3()
• ATDX_FRQHZ2()
• ATDX_FRQHZ3()

can be used to return the duration ATDX_FRQDUR3()

67-CD

Name: long ATDX_FRQDUR3(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: third frequency duration in 10 ms units

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

When dx_dial() terminates due to Operator Intercept, the ATDX_FRQDUR3()
function can be used to return the duration of the third detected frequency in 10
ms units.

NOTE: For more information about tri-tone SIT tone detection, see Frequency
Detection in the Voice Features Guide for Windows NT.

Termination due to Operator Intercept is indicated by ATDX_CPTERM()
returning CR_CEPT.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

n Cautions

None.

n Example

See the example for ATDX_FRQDUR().

ATDX_FRQDUR3() can be used to return the duration

68-CD

n See Also

Related to Call Analysis:

• dx_dial()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)

SIT Tone Detection - All Boards:

• ATDX_FRQHZ()
• ATDX_FRQDUR()
• "Frequency Detection" (Voice Features Guide for Windows NT)

SIT Tone Detection - DSP Boards

• ATDX_FRQDUR2()
• ATDX_FRQHZ2()
• ATDX_FRQHZ3()

return frequency of answered signal ATDX_FRQHZ()

69-CD

Name: long ATDX_FRQHZ(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: first tone frequency in hz
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

When dx_dial() with Call Analysis terminates due to Operator Intercept, the
ATDX_FRQHZ() function can return frequency of answered signal in Hz, (such
as the first detected SIT tone that occurs due to operator intercept).

NOTE: Termination due to Operator Intercept is indicated by
ATDX_CPTERM() returning CR_CEPT.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

n Cautions

None.

n Example

This example illustrates the use of ATDX_FRQHZ(), ATDX_FRQHZ2(), and
ATDX_FRQHZ3().

/* Call Analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int cares, chdev;

ATDX_FRQHZ() return frequency of answered signal

70-CD

 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call analysis. Perform the
 * outbound dial with call analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }

 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFirst frequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\nSecond frequency detected - %ld Hz", ATDX_FRQHZ2(chdev));
 printf("\nThird frequency detected - %ld Hz", ATDX_FRQHZ3(chdev));

 printf("\nDuration of first frequency - %ld ms", ATDX_FRQDUR(chdev));
 printf("\nDuration of second frequency - %ld ms",
 ATDX_FRQDUR2(chdev));
 printf("\nDuration of third frequency - %ld ms", ATDX_FRQDUR3(chdev));
 break;
 case CR_BUSY:
 break;
 .
 .
 }
}

n See Also

Related to Call Analysis:

• dx_dial()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)

return frequency of answered signal ATDX_FRQHZ()

71-CD

SIT Tone Detection - All Boards:

• ATDX_FRQDUR()

SIT Tone Detection - DSP Boards:

• ATDX_FRQDUR2()
• ATDX_FRQDUR3()
• ATDX_FRQHZ2()
• ATDX_FRQHZ3()

ATDX_FRQHZ2() return frequency of second detected tone

72-CD

Name: long ATDX_FRQHZ2(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: second tone frequency in hz

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

When dx_dial() terminates due to Operator Intercept, the ATDX_FRQHZ2()
function can return frequency of second detected tone in Hz.

Termination due to Operator Intercept is indicated by ATDX_CPTERM()
returning CR_CEPT.

NOTE: For more information about tri-tone SIT tone detection, see Frequency
Detection in the Voice Features Guide for Windows NT.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

n Cautions

None.

n Example

See the example for ATDX_FRQHZ().

return frequency of second detected tone ATDX_FRQHZ2()

73-CD

n See Also

Related to Call Analysis:

• dx_dial()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)

SIT Tone Detection - All Boards:

• ATDX_FRQDUR()
• ATDX_FRQHZ()
• "Frequency Detection" (Voice Features Guide for Windows NT)

SIT Tone Detection - DSP Boards:

• ATDX_FRQDUR2()
• ATDX_FRQDUR3()
• ATDX_FRQHZ3()

ATDX_FRQHZ3() return frequency of third detected tone

74-CD

Name: long ATDX_FRQHZ3(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: third tone frequency in hz

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

When dx_dial() terminates due to Operator Intercept, the ATDX_FRQHZ3()
function can return frequency of third detected tone in Hz.

Termination due to Operator Intercept is indicated by ATDX_CPTERM()
returning CR_CEPT.

NOTE: For more information about tri-tone SIT tone detection, see Frequency
Detection in the Voice Features Guide for Windows NT.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

n Cautions

None.

n Example

See the example for ATDX_FRQHZ().

return frequency of third detected tone ATDX_FRQHZ3()

75-CD

n See Also

Related to Call Analysis:

• dx_dial()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)

SIT Tone Detection - DSP Boards

• ATDX_FRQDUR2()
• ATDX_FRQDUR3()
• ATDX_FRQHZ2()

ATDX_FRQOUT() returns percentage of a single tone frequency

76-CD

Name: long ATDX_FRQOUT(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: percentage frequency out-of bounds

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

The ATDX_FRQOUT() function returns percentage of a single tone frequency
that was not within the specified range in the DX_CAP structure.

Upon detection of a frequency within the range specified by ca_upperfrq and
lower ca_lowerfrq, use this function to optimize the ca_refctfrq parameter
(which sets the percentage of time that the frequency can be out of bounds) in the
DX_CAP structure.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

n Cautions

This function is only for use with non-DSP boards. If you call it on a DSP board,
it will return zero.

n Example

/* Call Analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int cares, chdev;

returns percentage of a single tone frequency ATDX_FRQOUT()

77-CD

 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call analysis. Perform the
 * outbound dial with call analysis enabled.
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }
 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 break;
 .
 .
 }
}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

n See Also

Related to Call Analysis:

• dx_dial()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)

ATDX_FWVER() returns version number of D/4x firmware

78-CD

Name: long ATDX_FWVER(bddev)
Inputs: int bddev • valid Dialogic board device handle

Returns: D/4x Firmware version if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_FWVER() function returns version number of D/4x firmware. On a
D/41ESC or a D/xxxSC board the emulated D/4x firmware version is returned.

The function parameter is defined as follows:

Parameter Description

bddev: specifies the valid board device handle obtained when the
board was opened using dx_open().

n Cautions

None.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int bddev;
 long fwver;
 .
 .
 /* Open the board device */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* Process error */
 }
 .
 .
 /* Display Firmware version number */
 if ((fwver = ATDX_FWVER(bddev))==AT_FAILURE) {

returns version number of D/4x firmware ATDX_FWVER()

79-CD

 /* Process error */
 }
 printf("Firmware version %ld\n",fwver);
 .
 .
}

n Errors

This function will fail and return AT_FAILURE if an invalid device handle is
specified in bddev.

ATDX_HOOKST() returns the current hook state

80-CD

Name: long ATDX_HOOKST(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: current hook state of channel if successful

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

The ATDX_HOOKST() function returns the current hook state of the channel
chdev.

NOTE: Do not call this function for a digital T-1 or E-1 SCbus configuration that
includes a D/240SC, D/240SC-T1, D/320SC D/300SC-E1, DTI/241SC,
or DTI/301SC board. Transparent signaling for SCbus digital interface
devices is not supported in System Release 4.1SC.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

Possible return values are the following:

DX_OFFHOOK • Channel is off-hook
DX_ONHOOK • Channel is on-hook

n Cautions

None.

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

returns the current hook state ATDX_HOOKST()

81-CD

main()
{
 int chdev;
 long hookst;

 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* Process error */
 }
 .
 .
 /* Examine Hook state of the channel. Perform application specific action */
 if((hookst = ATDX_HOOKST(chdev)) == AT_FAILURE) {
 /* Process error */
 }

 if(hookst == DX_OFFHOOK) {
 /* Channel is Off-hook */
 }
 .
 .
}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

n See Also

• dx_sethook()
• DX_CST() (Chapter 4. Voice Data Structures and Device Parameters)

ATDX_LINEST() returns a bitmapped representation of activity

82-CD

Name: long ATDX_LINEST(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: current line status of channel if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_LINEST() function returns a bitmapped representation of activity on
the line at that instant connected to the channel chdev.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

Possible return values are the following:

RLS_SILENCE • Silence on the line
RLS_DTMF • present
RLS_LCSENSE • not present
RLS_RING • Ring not present
RLS_HOOK • Channel is on-hook
RLS_RINGBK • Audible ringback detected

n Cautions

None.

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()

returns a bitmapped representation of activity ATDX_LINEST()

83-CD

{
 int chdev;
 long linest;

 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* Process error */
 }

 /* Examine line status bitmap of the channel. Perform application-specific
 * action
 */
 if((linest = ATDX_LINEST(chdev)) == AT_FAILURE) {
 /* Process error */
 }

 if(linest & RLS_LCSENSE) {
 /* No loop current */
 }
 .
 .
}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

ATDX_LONGLOW() returns duration of the longer silence

84-CD

Name: long ATDX_LONGLOW(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: duration of longer silence if successful

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

The ATDX_LONGLOW() function returns duration of the longer silence, in 10
ms units, of the initial signal that occurred during Call Analysis on the channel
chdev. This function can be used in conjunction with ATDX_SIZEHI() and
ATDX_SHORTLOW() to determine the elements of an established cadence.
See the Voice Features Guide for Windows NT for further information.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

n Cautions

None.

n Example

/* Call Analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int cares, chdev;
 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor in

returns duration of the longer silence ATDX_LONGLOW()

85-CD

 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call analysis. Perform the
 * outbound dial with call analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }
 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 .
 .
 }
}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

n See Also

Related to Call Analysis::

• dx_dial()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)
• "Cadence Detection" (Voice Features Guide for Windows NT)

ATDX_PHYADDR() returns the physical address

86-CD

Name: long ATDX_PHYADDR(bddev)
Inputs: int bddev • valid Dialogic board device

handle
Returns: physical address of board if successful

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

The ATDX_PHYADDR() function returns the physical address of the board
bddev.

The function parameter is defined as follows:

Parameter Description

bddev: specifies the valid board device handle obtained when the
board was opened using dx_open().

n Cautions

None.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int bddev;
 long phyaddr;

 /* Open the board device */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* Process error */
 }

 if((phyaddr = ATDX_PHYADDR(bddev)) == AT_FAILURE) {
 /* Process error */

returns the physical address ATDX_PHYADDR()

87-CD

 }

 printf("Board is at address %X\n",phyaddr);
 .
 .
}

n Errors

This function will fail and return AT_FAILURE if an invalid board device handle
is specified in bddev.

ATDX_SHORTLOW() returns duration of shorter silence

88-CD

Name: long ATDX_SHORTLOW(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: duration of shorter silence if successful

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

The ATDX_SHORTLOW() function returns duration of shorter silence of the
initial signal that occurred during Call Analysis on the channel chdev. This
function can be used in conjunction with ATDX_SIZEHI() and
ATDX_LONGLOW() to determine the elements of an established cadence. See
the Voice Features Guide for Windows NT for further information.

Compare the results of this function with the DX_CAP field ca_lo2rmin to
determine whether the cadence is a double or single ring.

If the result of ATDX_SHORTLOW() is less than the ca_lo2rmin field this
indicates a double ring cadence.

If the result of ATDX_SHORTLOW() is greater than the ca_lo2rmin field this
indicates a single ring.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

n Cautions

None.

returns duration of shorter silence ATDX_SHORTLOW()

89-CD

n Example

/* Call Analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int cares, chdev;
 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor
 * in chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call analysis. Perform the
 * outbound dial with call analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }
 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 .
 .
 }

}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

ATDX_SHORTLOW() returns duration of shorter silence

90-CD

n See Also

• dx_dial()
• ATDX_LONGLOW()
• ATDX_SIZEHI()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)
• "Cadence Detection" (Voice Features Guide for Windows NT)

returns duration of initial non-silence ATDX_SIZEHI()

91-CD

Name: long ATDX_SIZEHI(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: non-silence duration in 10 ms units if successful

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

The ATDX_SIZEHI() function returns duration of initial non-silence, in 10 ms
units, during Call Analysis on the channel chdev. This function can be used in
conjunction with ATDX_SIZEHI() and ATDX_LONGLOW() to determine the
elements of an established cadence. See the Voice Features Guide for Windows
NT for further information.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

n Cautions

None.

n Example

/* Call Analysis with user-specified parameters */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int cares, chdev;
 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor

ATDX_SIZEHI() returns duration of initial non-silence

92-CD

 * in chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 /* Set the DX_CAP structure as needed for call analysis. Perform the
 * outbound dial with call analysis enabled
 */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }
 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of non-silence - %ld ms",ATDX_SIZEHI(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 .
 .
 }

}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

n See Also

• dx_dial()
• ATDX_LONGLOW()
• ATDX_SHORTLOW()
• ATDX_CPTERM()
• DX_CAP structure (Chapter 4. Voice Data Structures and Device

Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)
• "Cadence Detection" (Voice Features Guide for Windows NT)

returns the current state ATDX_STATE()

93-CD

Name: long ATDX_STATE(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: current state of channel if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_STATE() function returns the current state of the channel chdev.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

Possible return values are the following:

CS_DIAL • Dial state
CS_CALL • Call state
CS_GTDIG • Get Digit state
CS_HOOK • Hook state
CS_IDLE • Idle state
CS_PLAY • Play state
CS_RECD • Record state
CS_STOPD • Stopped state
CS_TONE • Playing tone state
CS_WINK • Wink state

NOTE: When a Voice board is being used with a FAX/xxx board to send and
receive faxes the following states may be returned:

CS_SENDFAX • Channel is in a fax transmission state.
CS_RECVFAX • Channel is in a fax reception state.

NOTE: A device is idle if there is no I/O function active on it.

ATDX_STATE() returns the current state

94-CD

n Cautions

None.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
m#include <windows.h>

main()
{
 int chdev;
 long chstate;

 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* Process error */
 }
 .
 .
 /* Examine state of the channel. Perform application specific action based
 * on state of the channel
 */
 if((chstate = ATDX_STATE(chdev)) == AT_FAILURE) {
 /* Process error */
 }

 printf("current state of channel %s = %ld\n", ATDX_NAMEP(chdev), chstate);
 .
 .

}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

returns a bitmap ATDX_TERMMSK()

95-CD

Name: long ATDX_TERMMSK(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: channel’s last termination bitmap if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_TERMMSK() function returns a bitmap containing the reason(s) for
the last termination on the channel chdev. The bitmap is reset when an I/O
function terminates.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

Possible return values are the following:

TM_NORMTERM • Normal Termination (for dx_dial(),
dx_sethook())

TM_MAXDTMF • Maximum DTMF count
TM_MAXSIL • Maximum period of silence
TM_MAXNOSIL • Maximum period of non-silence
TM_LCOFF • Loop current off
TM_IDDTIME • Inter-digit delay
TM_MAXTIME • Maximum function time
TM_DIGIT • Specific digit received
TM_PATTERN • Pattern matched silence off
TM_USRSTOP • Function stopped by user
TM_EOD • End of Data reached on playback
TM_TONE • Tone-on/off event
TM_ERROR • I/O Device Error

ATDX_TERMMSK() returns a bitmap

96-CD

n Cautions

If several termination conditions are met at the same time, several bits will be set
in the termination bitmap.

n Example

#include <stdio.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int chdev;
 long term;
 DX_IOTT iott;
 DV_TPT tpt[4];

 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* Process error */
 }

 /* Record a voice file. Terminate on receiving a digit, silence, loop
 * current drop, max time, or reaching a byte count of 50000 bytes.
 */

 /* set up DX_IOTT */

 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = 50000;

 if((iott.io_fhandle = dx_fileopen("file.vox", O_RDWR)) == -1) {
 /* process error */
 }

 /* set up DV_TPTs for the required terminating conditions */

 dx_clrtpt(tpt,4);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt[0].tp_length = 1; * terminate on the first digit */
 tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */
 tpt[1].tp_type = IO_CONT;
 tpt[1].tp_termno = DX_MAXTIME; /* Maximum time */
 tpt[1].tp_length = 100; /* terminate after 10 secs */
 tpt[1].tp_flags = TF_MAXTIME; /* Use the default flags */
 tpt[2].tp_type = IO_CONT;
 tpt[2].tp_termno = DX_MAXSIL; /* Maximum Silence */
 tpt[2].tp_length = 30; /* terminate on 3 sec silence */
 tpt[2].tp_flags = TF_MAXSIL; /* Use the default flags */

returns a bitmap ATDX_TERMMSK()

97-CD

 tpt[3].tp_type = IO_EOT; /* last entry in the table */
 tpt[3].tp_termno = DX_LCOFF; /* terminate on loop current drop */
 tpt[3].tp_length = 10; /* terminate on 1 sec silence */
 tpt[3].tp_flags = TF_LCOFF; /* Use the default flags */

 /* Now record to the file */
 if (dx_rec(chdev,&iott,tpt,EV_SYNC) == -1) {
 /* process error */
 }

 /* Examine bitmap to determine if digits caused termination */
 if((term = ATDX_TERMMSK(chdev)) == AT_FAILURE) {
 /* Process error */
 }

 if(term & TM_MAXDTMF) {
 printf("Terminated on digits\n");
 .
 .
 }

}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

n See Also

Setting Termination Conditions:

• DV_TPT (Appendix A)

Retrieving Termination Events - asynchronously:

• Event Management functions (Standard Runtime Library Programmer’s
Guide for Windows NT)

ATDX_TONEID() returns the user-defined tone id

98-CD

Name: long ATDX_TONEID(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: channel’s last termination bitmap if successful

AT_FAILURE if error
Includes: srllib.h

dxxxlib.h
Category: Extended Attribute

n Description

The ATDX_TONEID() function returns the user-defined tone id. Use this
function to determine which tone occurred when ATDX_TERMMSK() returns
DX_TONE to indicate that an I/O function terminated due to the occurrence of a
user-specified tone.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

n Cautions

None.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define TID_1 101

main()
{
 TN_GEN tngen;
 DV_TPT tpt[5];
 int chdev;

returns the user-defined tone id ATDX_TONEID()

99-CD

 /*
 * Open the D/xxx Channel Device and Enable a Handler
 */
 if ((chdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */
 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING)== -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Add the Tone to the Channel
 */
 if (dx_addtone(chdev, NULL, 0) == -1) {
 printf("Unable to Add the Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(chdev), ATDV_ERRMSGP(chdev));
 dx_close(chdev);
 exit(1);
 }

 /*
 * Build a Tone Generation Template.
 * This template has Frequency1 = 1140,
 * Frequency2 = 1020, amplitute at -10dB for
 * both frequencies and duration of 100 * 10 msecs.
 */
 dx_bldtngen(&tngen, 1140, 1020, -10, -10, 100);

 /*
 * Set up the Terminating Conditions
 */
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_TONE;
 tpt[0].tp_length = TID_1;
 tpt[0].tp_flags = TF_TONE;
 tpt[0].tp_data = DX_TONEON;

 tpt[1].tp_type = IO_CONT;
 tpt[1].tp_termno = DX_TONE;
 tpt[1].tp_length = TID_1;
 tpt[1].tp_flags = TF_TONE;
 tpt[1].tp_data = DX_TONEOFF;

 tpt[2].tp_type = IO_EOT;
 tpt[2].tp_termno = DX_MAXTIME;
 tpt[2].tp_length = 6000;
 tpt[2].tp_flags = TF_MAXTIME;

 if (dx_playtone(chdev, &tngen, tpt, EV_SYNC) == -1){
 printf("Unable to Play the Tone\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(chdev), ATDV_ERRMSGP(chdev));
 dx_close(chdev);
 exit(1);

ATDX_TONEID() returns the user-defined tone id

100-CD

 }

 if (ATDX_TERMMSK(chdev) & TM_TONE) {
 printf("Terminated by Tone Id = %d\n", ATDX_TONEID(chdev));
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened D/xxx Channel Device
 */
 if (dx_close(chdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

returns number of bytes transferred ATDX_TRCOUNT()

101-CD

Name: long ATDX_TRCOUNT(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: last play/record transfer count if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute

n Description

The ATDX_TRCOUNT() function returns number of bytes transferred during
the last play or record on the channel chdev.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

n Cautions

None.

n Example

#include <stdio.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int chdev;
 long trcount;
 DX_IOTT iott;
 DV_TPT tpt[2];

 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* Process error */
 }

ATDX_TRCOUNT() returns number of bytes transferred

102-CD

 /* Record a voice file. Terminate on receiving a digit, max time,
 * or reaching a byte count of 50000 bytes.
 */
 .
 .
 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0L;
 iott.io_length = 50000L;
 if((iott.io_fhandle = dx_fileopen("file.vox", O_RDWR)) == -1) {
 /* process error */
 }

 /* set up DV_TPTs for the required terminating conditions */
 dx_clrtpt(tpt,2);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt[0].tp_length = 1; /* terminate on the first digit */
 tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */

 tpt[1].tp_type = IO_EOT;
 tpt[1].tp_termno = DX_MAXTIME; /* Maximum time */
 tpt[1].tp_length = 100; /* terminate after 10 secs */
 tpt[1].tp_flags = TF_MAXTIME; /* Use the default flags */

 /* Now record to the file */
 if (dx_rec(chdev,&iott,tpt,EV_SYNC) == -1) {
 /* process error */
 }

 /* Examine transfer count */
 if((trcount = ATDX_TRCOUNT(chdev)) == AT_FAILURE) {
 /* Process error */
 }

 printf("%ld bytes recorded\n", trcount);
 .
 .
}

n Errors

This function will fail and return AT_FAILURE if an invalid channel device
handle is specified in chdev.

sets a DTMF digit to adjust speed dx_addspddig()

103-CD

Name: int dx_addspddig(chdev, digit, adjval)
Inputs: int chdev • valid Dialogic channel device

handle
char digit • DTMF digit
short adjval • speed adjustment value

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume Convenience

n Description

dx_addspddig() is a convenience function that sets a DTMF digit to adjust speed
by a specified amount, immediately and for all subsequent plays on the specified
channel (until changed or cancelled).

NOTES: 1. Calls to this function are cumulative. To reset a digit condition, you
need to clear all adjustment conditions using a dx_clrsvcond(), and
then reset the new condition.

2. Speed control is supported on D/21D, D/21E, D/41D, D/41ESC,
D/41E, D/81A, D/121B, D/160SC-LS, D/240SC, D/240SC-T1,
D/300SC-E1 and D/320SC boards.

This function assumes that the Speed Modification Table has not been modified
using the dx_setsvmt() function.

For information about the speed and volume functions and the Speed and Volume
Modification Tables, see the Voice Features Guide for Windows NT. For
information about the speed and volume data structures see Sections DV_TPT

Parameter Description

chdev: specifies the valid channel device handle obtained by a call
to dx_open().

digit: specifies a DTMF digit (0-9, *,#) that will modify speed by
the amount specified in adjval.

To start play-speed at the origin, set digit to NULL and set
adjval to SV_NORMAL.

dx_addspddig() sets a DTMF digit to adjust speed

104-CD

Parameter Description

adjval: specifies one of the following the speed adjustment values
to take effect whenever the digit specified in digit occurs:

SV_ADD10PCT Increase play - speed by 10%
SV_ADD20PCT Increase play - speed by 20%
SV_ADD30PCT Increase play - speed by 30%
SV_ADD40PCT Increase play - speed by 40%
SV_ADD50PCT Increase play - speed by 50%
SV_SUB10PCT Decrease play - speed by 10%
SV_SUB20PCT Decrease play - speed by 20%
SV_SUB30PCT Decrease play - speed by 30%
SV_SUB40PCT Decrease play - speed by 40%
SV_NORMAL Set play - speed to origin (regular

speed) when the play begins. digit
must be set to NULL.

n Cautions

1. This function is cumulative. To reset or remove any condition, you
should clear all conditions, and reset if required (e.g., If DTMF digit "1"
has already been set to increase play-speed by one step, a second call that
attempts to redefine "1" to the origin, will have no effect on speed or
volume but it will be added to the array of conditions. The digit will
retain its original setting).

2. The digit that causes the play adjustment will not be passed to the digit
buffer, so it cannot be retrieved using dx_getdig() or
ATDX_BUFDIGS()

3. Digits that are used for play adjustment will not be used as a terminating
condition. If a digit is defined as both, then the play adjustment will take
priority.

4. Speed control is supported on all the D/21D, D/21E, D/41D, D/41E,
D/41ESC, D/81A, D/121B, D/160SC-LS, D/240SC, D/240SC-T1,
D/300SC-E1, and D/320SC boards.

n Example

#include <stdio.h>

sets a DTMF digit to adjust speed dx_addspddig()

105-CD

#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

/*
 * Global Variables
 */

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Add a Speed Adjustment Condition - increase the
 * playback speed by 30% whenever DTMF key 1 is pressed.
 */
 if (dx_addspddig(dxxxdev, ’1’, SV_ADD30PCT) == -1) {
 printf("Unable to Add a Speed Adjustment Condition\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

dx_addspddig() sets a DTMF digit to adjust speed

106-CD

EDX_BADPARM • Invalid Parameter
EDX_BADPROD • Function not supported on this board
EDX_SYSTEM • Windows NT system error - check errno
EDX_SVADJBLK • Invalid Number of Play Adjustment Blocks

n See Also

• dx_addvoldig()
• dx_adjsv()
• dx_clrsvcond()
• dx_getcursv()
• dx_getsvmt()
• dx_setsvcond()
• dx_setsvmt()
• "Speed and Volume Modification Tables" (Voice Features Guide for

Windows NT)
• DX_SVCB data structure (Chapter 4. Voice Data Structures and Device

Parameters)

adds the tone dx_addtone()

107-CD

Name: int dx_addtone(chdev,digit,digtype)
Inputs: int chdev • valid Dialogic channel device

handle
unsigned char digit • optional digit associated with the

bound tone
unsigned char digtype • digit type

 Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

n Description

The dx_addtone() function adds the tone that was defined by the most recent
dx_blddt() (or other Global Tone Detection build-tone) function call, to the
specified channel. Adding a user-defined tone to a channel downloads it to the
board and enables detection of tone-on and tone-off events for that tone by
default.

Use dx_distone() to disable detection of the tone, without removing the tone
from the channel. Detection can be enabled again using dx_enbtone(). For
example, if you only want to be notified of tone-on events, you should call
dx_distone() to disable detection of tone-off events.

n Detection Notification

Tone-on and tone-off events are call status transition events. Retrieval of these
events is handled differently for asynchronous and synchronous applications.
Table 2 outlines the different processes:

Table 2. Asynchronous/Synchronous CST Event Handling

Synchronous Asynchronous

1. Call dx_addtone(), or
dx_enbtone()

Call dx_addtone() or dx_enbtone()
to enable tone-on/off detection.

2. Call dx_getevt() to wait for CST Use SRL to asynchronously wait for

dx_addtone() adds the tone

108-CD

event(s). Events are returned in
the DX_EBLK structure

TDX_CST event(s)

3. N/A Use sr_getevtdatap() to retrieve
DX_CST structure

NOTE: These procedures are the sa me as the retrieval of any other CST event,
except that dx_addtone() or dx_enbtone() are used to enable event
detection instead of dx_setevtmsk().

You can optionally specify an associated ASCII digit (and digit type) with the
tone. When the digit is detected, it is placed in the digit buffer and can be used for
termination.

n Setting User-Defined Tones as Termination Conditions

Detection of a user-defined tone can be specified as a termination condition for
I/O functions. Set the tp_termno field in the DV_TPT to DX_TONE, and specify
DX_TONEON or DX_TONEOFF in the tp_data field.

The function parameters are described below.

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

digit: (optional) specifies the digit to associate with the tone. When the
tone is detected, the digit will be placed in the DV_DIGIT digit
buffer. These digits can be retrieved using dx_getdig() (i.e.,
they can be used in the same way as DTMF digits, for example).

If you do not specify a digit, the tone will be indicated by a
DE_TONEON event or DE_TONEOFF event.

digtype: specifies the type of digit the channel will detect. Specify one of
the following values.

• DG_USER1
• DG_USER2
• DG_USER3
• DG_USER4
• DG_USER5

adds the tone dx_addtone()

109-CD

Parameter Description

Up to twenty digits can be associated with each of these digit
types.

NOTE: These types can be specified in addition to the digit types already
defined for the Voice Library (e.g., DTMF, MF) which are specified
using dx_setdigtyp().

n Cautions

1. Ensure that dx_blddt() (or another appropriate "build tone" function)
has been called to define a tone prior to adding it to the channel using
dx_addtone(), otherwise an error will occur.

2. The dx_addtone() function may not be used to change a tone that has
previously been added.

3. The number of tones that can be added to a channel is dependent on the
type of board. See the Voice Features Guide for Windows NT for details.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define TID_1 101
#define TID_2 102
#define TID_3 103
#define TID_4 104

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */

dx_addtone() adds the tone

110-CD

 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING) == -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, NULL, 0) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Describe a Dual Tone Frequency Tone of 950-1050 Hz
 * and 475-525 Hz. On between 190-210 msecs and off
 * 990-1010 msecs and a cadence of 3.
 */
 if (dx_blddtcad(TID_2, 1000, 50, 500, 25, 20, 1, 100, 1, 3) == -1) {
 printf("Unable to build a Dual Tone Cadence Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, ’A’, DG_USER1) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_2);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Describe a Simple Single Tone Frequency Tone of
 * 950-1050 Hz using trailing edge detection.
 */
 if (dx_bldst(TID_3, 1000, 50, TN_TRAILING) == -1) {
 printf("Unable to build a Single Tone Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, ’D’, DG_USER2) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_3);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Describe a Single Tone Frequency Tone of 950-1050 Hz.
 * On between 190-210 msecs and off 990-1010 msecs and
 * a cadence of 3.
 */
 if (dx_bldstcad(TID_4, 1000, 50, 20, 1, 100, 1, 3) == -1) {
 printf("Unable to build a Single Tone Cadence Template\n");
 }

adds the tone dx_addtone()

111-CD

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, NULL, 0) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_4);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_ASCII • Invalid ASCII value in tone template description
EDX_BADPARM • Invalid parameter
EDX_BADPROD • Function not supported on this board
EDX_CADENCE • Invalid cadence component value
EDX_DIGTYPE • Invalid Dig_Type value in tone template description
EDX_FREQDET • Invalid tone frequency
EDX_INVSUBCMD • Invalid sub-command
EDX_MAXTMPLT • Maximum number of user-defined tones for the

board
EDX_SYSTEM • Windows NT System error - check errno
EDX_TONEID • Invalid tone template ID

dx_addtone() adds the tone

112-CD

n See Also

Global Tone Detection functions:

• dx_blddt(), dx_bldst(), dx_blddtcad(), dx_bldstcad()
• dx_distone()
• dx_enbtone()
• "Global Tone Detection" (Voice Features Guide for Windows NT)

Event Retrieval:

• dx_getevt()
• DX_CST data structure
• sr_getevtdatap() (in the Standard Runtime Library Programmer’s

Guide for Windows NT)

Digit Retrieval:

• dx_getdig()
• dx_setdigtyp()
• DV_DIGIT

sets a DTMF digit to immediately adjust volume dx_addvoldig()

113-CD

Name: int dx_addvoldig(chdev,digit,adjval)
Inputs: int chdev • valid Dialogic channel device

handle
char digit • DTMF digit
short adjval • volume adjustment value

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume Convenience

n Description

dx_addvoldig() is a convenience function that sets a DTMF digit to immediately
adjust volume by a specified amount for all subsequent plays on the specified
channel (until changed or cancelled).

NOTES: 1. Calls to this function are cumulative. To reset a digit condition, you
need to clear all adjustment conditions using a dx_clrsvcond(), and
then reset the new condition.

2. Volume control is supported on D/21D, D/21E, D/41D, D/41E,
D/41ESC, D/81A, D/121, D/121A, D/121B, D/160SC-LS, D/240SC,
D/240SC-T1, D/300SC-E1, and D/320SC boards.

This function assumes that the Volume Modification Table has not been modified
using the dx_setsvmt() function.

For information about the speed and volume functions and the Speed and Volume
Modification Tables, see the Voice Features Guide for Windows NT.

Parameter Description

chdev: specifies the valid channel device handle obtained by a call
to dx_open().

digit: specifies a DTMF digit (0-9, *,#) that will modify volume
by the amount specified in adjval.

To start play-volume at the origin, set digit to NULL and
set adjval to SV_NORMAL.

adjval: specifies one of the following the speed adjustment values

dx_addvoldig() sets a DTMF digit to immediately adjust volume

114-CD

Parameter Description
to take effect whenever the digit specified in digit occurs:

SV_ADD2DB Increase play-volume by 2DB
SV_ADD4DB Increase play-volume by 4DB
SV_ADD6DB Increase play-volume by 6DB
SV_ADD8DB Increase play-volume by 8DB
SV_SUB2DB Decrease play-volume by 2DB
SV_SUB4DB Decrease play-volume by 4DB
SV_SUB6DB Decrease play-volume by 6DB
SV_SUB8DB Decrease play-volume by 8DB
SV_NORMAL Set play-volume to origin when the

play begins (digit must be set to
NULL)

n Cautions

1. This function is cumulative. To reset or remove any condition, you
should clear all adjustment conditions, and reset them if required. (e.g., If
DTMF digit "1" has already been set to increase play-volume by one
step, a second call that attempts to redefine "1" to the origin (regular
volume), will have no effect on the volume, but will add it to the
condition array. The digit will retain its original setting).

2. The digit that causes the play adjustment will not be passed to the digit
buffer, so it cannot be retrieved using dx_getdig() and will not be
included in the result of ATDX_BUFDIGS() which retrieves the
number of digits in the buffer.

3. Digits that are used for play adjustment will not be used as a terminating
condition. If a digit is defined as both, then the play adjustment will take
priority.

4. Volume control is supported on the D/21D, D/21E, D/41D, D/41E,
D/41ESC, D/81A, D/121, D/121A, D/121B, D/160SC-LS, D/240SC,
D/240SC-T1, D/300SC-E1, and D/320SC boards only.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>

sets a DTMF digit to immediately adjust volume dx_addvoldig()

115-CD

#include <dxxxlib.h>
#include <windows.h>

/*
 * Global Variables
 */
main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Add a Speed Adjustment Condition - decrease the
 * playback volume by 2dB whenever DTMF key 2 is pressed. */
 if (dx_addvoldig(dxxxdev, ’2’, SV_SUB2DB) == -1) {
 printf("Unable to Add a Volume Adjustment");
 printf(" Condition\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_BADPROD • Function not supported on this board

dx_addvoldig() sets a DTMF digit to immediately adjust volume

116-CD

EDX_SVADJBLKS • Invalid Number of Play Adjustment Blocks
EDX_SYSTEM • Windows NT system error - check errno

n See Also

Related Speed and Volume functions:

• dx_addspddig()
• dx_adjsv()
• dx_clrsvcond()
• dx_getcursv()
• dx_getsvmt()
• dx_setsvcond()
• dx_setsvmt()

adjusts speed or volume dx_adjsv()

117-CD

Name: int dx_adjsv(chdev,tabletype,action,adjsize)
Inputs: int chdev • valid channel device handle

unsigned short tabletype • table to set (speed or volume)

unsigned short action • how to adjust (absolute position,
relative change or toggle)

unsigned short adjsize • adjustment size

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

n Description

The dx_adjsv() function adjusts speed or volume immediately, and for all
subsequent plays on a specified channel (until changed or cancelled). Speed or
volume can be set to a specific value, adjusted incrementally, or can be set to
toggle. See the action parameter description for information.

dx_adjsv() utilizes the Speed and Volume Modification Tables to make
adjustments to play-speed or play-volume. These tables have 21 entries that
represent different levels of speed or volume. There are up to ten levels above and
below the regular speed or volume. These tables can be set with explicit values
using dx_setsvmt() or default values can be used. Refer to the Voice Features
Guide for Windows NT for detailed information about these tables.

NOTES: 1. This function is similar to dx_setsvcond(). Use dx_adjsv() to
explicitly adjust the play immediately, and use dx_setsvcond() to
adjust the play in response to specified conditions. See the
description of dx_setsvcond() for more information.

2. Whenever a play is started its speed and volume is based on the most
recent modification.

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

tabletype: specifies whether to modify the play-back using a value from
the Speed or the Volume Modification Table.

dx_adjsv() adjusts speed or volume

118-CD

Parameter Description

SV_SPEEDTBL Use the Speed Modification Table
SV_VOLUMETBL Use the Volume Modification Table

action: specifies the type of adjustment to make. Set to one of the
following:

SV_ABSPOS Set speed or volume to a specified
position in the appropriate table. (The
position is set using the adjsize
parameter).

SV_RELCURPOS Adjust speed or volume by the number
of steps specified using the adjsize
parameter.

SV_TOGGLE Toggle between values specified using
the adjsize parameter.

adjsize: specifies the size of the adjustment. adjsize has a different
value depending on how the adjustment type is set using the
action parameter. Set adjsize to one of the following:

For this
action value

Choose this
adjsize value

SV_ABSPOS Specify the position between -10 to +10 in the
Speed/Volume Modification Table that contains the
required speed or volume adjustment. The origin (regular
speed or volume) has a value of 0 in the table.

SV_RELCURPOS Specify how many positive or negative "steps" in the
Speed/Volume Modification Table by which to adjust the
speed or volume. For example, specify -2 to lower the
speed or volume by 2 steps in the Speed/Volume
Modification Table.

SV_TOGGLE Set the values between which speed or volume will toggle.

adjusts speed or volume dx_adjsv()

119-CD

SV_TOGORIGIN - sets the speed/volume to toggle
between the origin and the last modified level of
speed/volume.

SV_CURORIGIN - resets the current speed/volume level to
the origin (i.e. regular speed/volume).

SV_CURLASTMOD - sets the current speed/volume to the
last modified speed volume level.

SV_RESETORIG - resets the current speed/volume to the
origin and the last modified speed/volume to the origin

n Cautions

Speed and volume control are supported on the D/21D, D/21E, D/41D, D/41E,
D/41ESC, D/81A, D/121B, D/160SC-LS, D/240SC, D/240SC-T1, D/300SC-E1
and D/320SC boards only. Do not use the Speed and Volume control functions to
control speed on the D/120, D/121, or D/121A boards.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Modify the Volume of the playback so that it is 4dB
 * higher than normal.
 */
 if (dx_adjsv(dxxxdev, SV_VOLUMETBL, SV_ABSPOS, SV_ADD4DB) == -1) {
 printf("Unable to Increase Volume by 4dB\n");
 printf("Lasterror = %d Err Msg = %s\n",

dx_adjsv() adjusts speed or volume

120-CD

 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_BADPROD • Function not supported on this board
EDX_SYSTEM • Windows NT system error - check errno

n See Also

Related to Speed and Volume:

• dx_setsvmt()
• dx_getcursv()
• dx_getsvmt()
• "Speed and Volume Modification Tables" (Voice Features Guide for

Windows NT)
• DX_SVMT structure (Chapter 4. Voice Data Structures and Device

Parameters)

Setting Speed and Volume conditions:

• dx_setsvcond()

adjusts speed or volume dx_adjsv()

121-CD

• dx_clrsvcond()

dx_blddt() defines a simple dual frequency tone

122-CD

Name: int dx_blddt(tid,freq1,fq1dev,freq2,fq2dev,mode)
Inputs: unsigned int tid • tone ID to assign.

unsigned int freq1 • frequency 1 in Hz
unsigned int fq1dev • frequency 1 deviation in Hz
unsigned int freq2 • frequency 2 in Hz
unsigned int fq2dev • frequency 2 deviation in Hz
unsigned int mode • leading or trailing edge

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

n Description

The dx_blddt() function defines a simple dual frequency tone. Subsequent calls
to dx_addtone() will enable detection of this tone, until another tone is defined.

Issuing a dx_blddt() defines a new tone but dx_addtone() must be used to add
the tone to the channel.

Use dx_addtone() to enable detection of the tone on a channel.

Parameter Description

tid: specifies a unique identifier for the tone.

NOTE: If you are using R2MF tone detection, reserve the use of
tone IDs 101 to 115 for the R2MF tones. See
r2_creatfsig() for further information.

freq1: specifies the first frequency (in Hz) for the tone

frq1dev: specifies the allowable deviation for the first frequency (in Hz).

freq2: specifies the second frequency (in Hz) for the tone

frq2dev: specifies the allowable deviation for the second frequency (in
Hz)

mode: specifies whether tone detection notification will occur on the
leading or trailing edge of the tone. Set to one of the following:
• TN_LEADING

defines a simple dual frequency tone dx_blddt()

123-CD

Parameter Description
• TN_TRAILING

n Cautions

1. Only one tone per process can be defined at any time. Ensure that
dx_blddt() is called for each dx_addtone(). The tone is not created
until dx_addtone() is called, and a second consecutive call to
dx_blddt() will replace the previous tone definition for the channel. If
you call dx_addtone() without calling dx_blddt() an error will occur.

2. If you are using R2MF tone detection, reserve the use of tone ID’s 101 to
115 for the R2MF tones. See r2_creatfsig() for further information.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define TID_1 101
main()
{
 int dxxxdev;
 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */
 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING) == -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device

dx_blddt() defines a simple dual frequency tone

124-CD

 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

None.

n See Also

Global Tone Detection:

• "Global Tone Detection" (Voice Features Guide for Windows NT)

Building Tones:

• dx_bldst()
• dx_blddtcad()
• dx_bldstcad()

Enabling Tone Detection:

• dx_addtone()
• dx_distone()
• dx_enbtone()

R2MF Tones:

• r2_creatfsig()
• r2_playbsig()

defines a simple dual frequency cadence tone dx_blddtcad()

125-CD

Name: int dx_blddtcad(tid,freq1,fq1dev,freq2,fq2dev,ontime,
ontdev,offtime,offtdev,repcnt)

Inputs: unsigned int tid • tone ID to assign.
unsigned int freq1 • frequency 1 in Hz
unsigned int fq1dev • frequency 1 deviation in Hz
unsigned int freq2 • frequency 2 in Hz
unsigned int fq2dev • frequency 2 deviation in Hz
unsigned int ontime • tone-on time in 10ms
unsigned int ontdev • tone-on time deviation in 10ms
unsigned int offtime • tone-off time in 10ms
unsigned int offtdev • tone-off time deviation in 10ms
unsigned int repcnt • number of repetitions if cadence

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

n Description

The dx_blddtcad() function defines a simple dual frequency cadence tone.
Subsequent calls to dx_addtone() will use this tone, until another tone is defined.

A dual frequency cadence tone has dual frequency signals with specific on/off
characteristics.

Issuing a dx_blddtcad() defines a new tone but dx_addtone() must be used to
add the tone to the channel.

Use dx_addtone() to enable detection of the user-defined tone on a channel.

Parameter Description

tid: specifies a unique identifier for the tone.

NOTE: If you are using R2MF tone detection, reserve the use
of tone IDs 101 to 115 for the R2MF tones. See
r2_creatfsig() for further information.

freq1: specifies the first frequency (in Hz) for the tone

dx_blddtcad() defines a simple dual frequency cadence tone

126-CD

Parameter Description

frq1dev: specifies the allowable deviation for the first frequency (in
Hz).

freq2: specifies the second frequency (in Hz) for the tone

frq2dev: specifies the allowable deviation for the second frequency (in
Hz).

ontime: specifies the length of time for which the cadence is "on" (in
10ms units)

ontdev: specifies the allowable deviation for "on" time. (in 10ms units)

offtime: specifies the length of time for which the cadence is "off" (in
10ms units)

offtdev: specifies the allowable deviation for "off" time (in 10ms
units).

repcnt: specifies the number of repetitions for the cadence (i.e. the
number of times that an on/off signal is repeated).

n Cautions

1. Only 1 user-defined tone per process can be defined at any time.
dx_blddtcad() will replace the previous user-defined tone definition.

2. If you are using R2MF tone detection, reserve the use of tone ID’s 101 to
115 for the R2MF tones. See r2_creatfsig() for further information.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define TID_2 102

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {

defines a simple dual frequency cadence tone dx_blddtcad()

127-CD

 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Dual Tone Frequency Tone of 950-1050 Hz
 * and 475-525 Hz. On between 190-210 msecs and off
 * 990-1010 msecs and a cadence of 3.
 */
 if (dx_blddtcad(TID_2, 1000, 50, 500, 25, 20, 1,
 100, 1, 3) == -1) {
 printf("Unable to build a Dual Tone Cadence");
 printf(" Template\n");
 }

 /*
 * Continue Processing
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

None.

n See Also

Global Tone Detection:

• "Global Tone Detection" (Voice Features Guide for Windows NT)

Building Tones:

• dx_bldst()
• dx_blddt()
• dx_bldstcad()

dx_blddtcad() defines a simple dual frequency cadence tone

128-CD

Enabling Tone Detection:

• dx_addtone()
• dx_distone()
• dx_enbtone()

R2MF Tones:

• r2_creatfsig()
• r2_playbsig()

defines a simple single frequency tone dx_bldst()

129-CD

Name: int dx_bldst(tid,freq,fqdev,mode)
Inputs: unsigned int tid • tone ID to assign.

unsigned int freq • frequency in Hz
unsigned int fqdev • frequency deviation in Hz
unsigned int mode • leading or trailing edge

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection
Mode:

n Description

The dx_bldst() function defines a simple single frequency tone. Subsequent calls
to dx_addtone() will use this tone, until another tone is defined.

Issuing a dx_bldst() defines a new tone but dx_addtone() must be used to add
the tone to the channel.

Use dx_addtone() to enable detection of the user-defined tone on a channel.

Parameter Description

tid: specifies a unique identifier for the tone.

NOTE: If you are using R2MF tone detection, reserve the use
of tone IDs 101 to 115 for the R2MF tones. See
r2_creatfsig() for further information.

freq: specifies the frequency (in Hz) for the tone

frqdev: specifies the allowable deviation for the frequency (in Hz).

mode: specifies whether detection is on the leading or trailing edge of
the tone. Set to one of the following:
• TN_LEADING
• TN_TRAILING

dx_bldst() defines a simple single frequency tone

130-CD

n Cautions

1. Only 1 tone per application may be defined at any time. dx_bldst() will
replace the previous user-defined tone definition.

2. If you are using R2MF tone detection, reserve the use of tone IDs 101 to
115 for the R2MF tones. See r2_creatfsig() for further information.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define TID_3 103

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Single Tone Frequency Tone of
 * 950-1050 Hz using trailing edge detection.
 */
 if (dx_bldst(TID_3, 1000, 50, TN_TRAILING) == -1) {
 printf("Unable to build a Single Tone Template\n");
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

defines a simple single frequency tone dx_bldst()

131-CD

n Errors

None.

n See Also

Global Tone Detection:

• "Global Tone Detection" (Voice Features Guide for Windows NT)

Building Tones:

• dx_blddtcad()
• dx_blddt()
• dx_bldstcad()

Enabling Tone Detection:

• dx_addtone()
• dx_distone()
• dx_enbtone()

R2MF Tones:

• r2_creatfsig()
• r2_playbsig()

dx_bldstcad() defines a simple single frequency cadence tone

132-CD

Name: int dx_bldstcad(tid,freq,fqdev,ontime,ontdev,offtime,
offtdev,repcnt)

Inputs: unsigned int tid • tone ID to assign.
unsigned int freq • frequency in Hz
unsigned int fqdev • frequency deviation in Hz
unsigned int ontime • tone on time in 10ms
unsigned int ontdev • "on" time deviation in 10ms
unsigned int offtime • tone off time in 10ms
unsigned int offtdev • "off" time deviation in 10ms
unsigned int repcnt • repetitions if cadence

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

n Description

 The dx_bldstcad() function defines a simple single frequency cadence tone.
Subsequent calls to dx_addtone() will use this tone, until another tone is defined.

A single frequency cadence tone has single frequency signals with specific on/off
characteristics.

Issuing a dx_bldstcad() defines a new tone but dx_addtone() must be used to
add the tone to the channel.

Use dx_addtone() to enable detection of the user-defined tone on a channel.

Parameter Description

tid: specifies a unique identifier for the tone.

NOTE: If you are using R2MF tone detection, reserve the
use of tone IDs 101 to 115 for the R2MF tones.
See r2_creatfsig() for further information.

freq: specifies the frequency (in Hz) for the tone

frqdev: specifies the allowable deviation for the frequency (in Hz).

ontime: specifies the length of time for which the cadence is "on."

defines a simple single frequency cadence tone dx_bldstcad()

133-CD

Parameter Description
(10 ms units)

ontdev: specifies the allowable deviation for "on" time in 10 ms
units.

offtime: specifies the length of time for which the cadence is "off."
(10 ms units)

offtdev: specifies the allowable deviation for "off" time in 10 ms
units.

repcnt: specifies the number of repetitions for the cadence (i.e., the
number of times that an on/off signal is repeated).

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define TID_4 104

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Single Tone Frequency Tone of 950-1050 Hz.
 * On between 190-210 msecs and off 990-1010 msecs and
 * a cadence of 3.
 */
 if (dx_bldstcad(TID_4, 1000, 50, 20, 1, 100, 1, 3) == -1) {
 printf("Unable to build a Single Tone Cadence");
 printf(" Template\n");
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

dx_bldstcad() defines a simple single frequency cadence tone

134-CD

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Cautions

1. Only 1 tone per application may be defined at any time. dx_bldstcad()
will replace the previous user-defined tone definition.

2. If you are using R2MF tone detection, reserve the use of tone IDs 101 to
115 for the R2MF tones. See r2_creatfsig() for further information.

n Errors

None.

n See Also

Global Tone Detection:

• "Global Tone Detection" (Voice Features Guide for Windows NT)

Building Tones:

• dx_blddtcad()
• dx_blddt()
• dx_bldst()

Enabling Tone Detection:

• dx_addtone()
• dx_distone()
• dx_enbtone()

R2MF Tones:

• r2_creatfsig()

defines a simple single frequency cadence tone dx_bldstcad()

135-CD

• r2_playbsig()

dx_bldtngen() sets up tone generation template

136-CD

Name: void dx_bldtngen(tngenp,freq1,freq2,ampl1,ampl2,duration)
Inputs: TN_GEN *tngenp • pointer to tone generation structure

unsigned short freq1 • frequency of tone 1 in Hz
unsigned short freq2 • frequency of tone 2 in Hz
short ampl1 • amplitude of tone 1 in dB
short ampl2 • amplitude of tone 2 in dB
short duration • duration of tone in 10 ms units

Returns: none
Includes: srllib.h

dxxxlib.h
Category: Global Tone Generation

n Description

dx_bldtngen() is a convenience function that sets up tone generation template
(TN_GEN) by assigning specified values to the appropriate fields. The tone
generation template is placed in the user’s return buffer and can then be used by
the dx_playtone() function to generate the tone.

Parameter Description

tngenp: points to the TN_GEN data structure where the tone
generation template is output.

freq1: specifies the frequency of tone 1 in Hz. Valid range is 200 to
3000 Hz.

freq2: specifies the frequency of tone 2 in Hz. Valid range is 200 to
3000 Hz. To define a single tone, set freq1 to the desired
frequency and set freq2 to 0.

ampl1: specifies the amplitude of tone 1 in dB. Valid range is 0 to
-40 dB. Calling this function with ampl1 set to
R2_DEFAMPL will set the amplitude to -10 dB.

ampl2: specifies the amplitude of tone 2 in dB. Valid range is 0 to
-40 dB. Calling this function with ampl2 set to
R2_DEFAMPL will set the amplitude to -10 dB.

duration: specifies the duration of the tone in 10 ms units. A value of
-1 specifies infinite duration (the tone will only terminate
upon an external terminating condition).

sets up tone generation template dx_bldtngen()

137-CD

Generating a tone with a high frequency component (approximately 700 Hz or
higher) will cause the amplitude of the tone to increase. The increase will be
approximately 1 dB at 1000 Hz. Also, the amplitude of the tone will increase by
2 dB if an analog (loop start) device is used, such as the LSI/120 board or the
analog device on a D/4xD, D/41E, D/41ESC, or D/160SC-LS board.

n Cautions

None.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 TN_GEN tngen;
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Build a Tone Generation Template.
 * This template has Frequency1 = 1140,
 * Frequency2 = 1020, amplitute at -10dB for
 * both frequencies and duration of 100 * 10 msecs.
 */
 dx_bldtngen(&tngen, 1140, 1020, -10, -10, 100);

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

dx_bldtngen() sets up tone generation template

138-CD

 /* Terminate the Program */
 exit(0);
}

n Errors

None.

n See Also

Generating Tones:

• TN_GEN (Chapter 4. Voice Data Structures and Device Parameters)
• dx_playtone()
• "Global Tone Generation" (Voice Features Guide for Windows NT)

R2MF functions:

• r2_creatfsig()
• r2_playbsig()

alters standard definition of duration component dx_chgdur()

139-CD

Name: int dx_chgdur(tonetype, ontime, ondev, offtime, offdev)
Inputs: int tonetype • tone to modify

int ontime • on duration
int ondev • ontime deviation
int offtime • off duration
int offdev • offtime deviation

Returns: 0 • success
-1 • tone does not have cadence values
-2 • unknown tone type

Includes: srllib.h
dxxxlib.h

Category: PerfectCall Call Analysis

n Description

The Voice Driver comes with default definitions for each of the PerfectCall Call
Analysis tones, which are identified by tonetype. The dx_chgdur() function
alters standard definition of duration component.

Changing a tone definition has no immediate effect on the behavior of an
application. The dx_initcallp() function takes the tone definitions and uses them
to initialize a channel. Once a channel is initialized, subsequent changes to the
tone definitions have no effect on that channel. For these changes to take effect,
dx_deltones must be called and then followed by calling dx_initcallp.

Parameter Description

tonetype: specifies the identifier of the tone whose definition is to
be modified. It may be one of the following:

• TID_BUSY1: Busy signal
• TID_BUSY2: Alternate busy signal
• TID_DIAL_INTL: International dial tone
• TID_DIAL_LCL: Local dial tone
• TID_DIAL_XTRA: Special (“extra”) dial tone
• TID_FAX1: Fax or modem tone
• TID_FAX2: Alternate fax or modem tone
• TID_RINGBK1: Ringback

ontime: is the length of time that the tone is on

dx_chgdur() alters standard definition of duration component

140-CD

Parameter Description
(10 ms units).

ondev: is the maximum permissible deviation from ontime (10
ms units).

offtime: is the length of time that the tone is off
(10 ms units).

offdev: is the maximum permissible deviation from offtime (10
ms units).

n Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;

 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

/*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

/*
 * Change Enhanced call progress default local dial tone
 */
 if (dx_chgfreq(TID_DIAL_LCL, 425, 150, 0, 0) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default busy cadence
 */

alters standard definition of duration component dx_chgdur()

141-CD

 if (dx_chgdur(TID_BUSY1, 550, 400, 550, 400) < 0) {
 /* handle error */
 }

 if (dx_chgrepcnt(TID_BUSY1, 4) < 0) {
 /* handle error */
 }

 /*
 * Now enable Enhanced call progress with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */

 if ((car = dx_dial(ddd, dialstrg,(DX_CAP *)&cap_s, DX_CALLP|EV_SYNC))==-1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 printf(" Unable to get dial tone\n");
 break;

 case CR_BUSY:
 printf(" %s engaged\n", dialstrg);
 break;

 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;

 default:
 break;
 }

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

dx_chgdur() alters standard definition of duration component

142-CD

n Cautions

This function changes only the definition of a signal. The new definition does not
apply to a channel until dx_deltones is called and then dx_initcallp() is called on
that channel.

n See Also

• dx_chgfreq()
• dx_chgrepcnt()
• dx_deltones()
• dx_initcallp()

changes the standard definition dx_chgfreq()

143-CD

Name: int dx_chgfreq(tonetype, freq1, freq1dev, freq2, freq2dev)
Inputs: int tonetype • tone to modify

int freq1 • frequency of first tone
int freq1dev • frequency deviation for first tone
int freq2 • frequency of second tone
int freq2dev • frequency deviation of second tone

Returns: 0 • success
-1 • failure due to bad parameter(s) for tone

type
-2 • failure due to unknown tone type

Includes: srllib.h
dxxxlib.h

Category: PerfectCall Call Analysis

n Description

The dx_chgfreq() function changes the standard definition for one of the
PerfectCall Call Analysis tones, identified by tonetype, by modifying its
frequency component.

The Voice Driver comes with default definitions for each of the PerfectCall Call
Analysis tones; this function alters the frequency component of one of the
definitions.

PerfectCall Call Analysis supports both single-frequency and dual-frequency
tones. For dual-frequency tones, the frequency and tolerance of each component
may be specified independently. For single-frequency tones, specifications for the
second frequency are set to zero.

Changing a tone definition has no immediate effect on the behavior of an
application. The dx_initcallp() function takes the tone definitions and uses them
to initialize a channel. Once a channel is initialized, subsequent changes to the
tone definitions have no effect on that channel. For these changes to take effect,
dx_deltones must be called and then followed by calling dx_initcallp.

dx_chgfreq() changes the standard definition

144-CD

Parameter Description

tonetype: specifies the identifier of the tone whose definition is to be
modified. It may be one of the following:

• TID_BUSY1: Busy signal
• TID_BUSY2: Alternate busy signal
• TID_DIAL_INTL: International dial tone
• TID_DIAL_LCL: Local dial tone
• TID_DIAL_XTRA: Special (“extra”) dial tone
• TID_FAX1: Fax or modem tone
• TID_FAX2: Alternate fax or modem tone
• TID_RINGBK1: Ringback

freq1: is the frequency of the first tone (in Hz).

freq1dev: is the maximum permissible deviation from freq1 (in Hz).

freq2: is the frequency of the second tone, if any (in Hz). If there
is only one frequency, freq2 is set to zero.

freq2dev: is the maximum permissible deviation from freq2 (in Hz).

n Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;

 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

/*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {

changes the standard definition dx_chgfreq()

145-CD

 /* handle error */
 }

/*
 * Change Enhanced call progress default local dial tone
 */
 if (dx_chgfreq(TID_DIAL_LCL, 425, 150, 0, 0) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default busy cadence
 */
 if (dx_chgdur(TID_BUSY1, 550, 400, 550, 400) < 0) {
 /* handle error */
 }

 if (dx_chgrepcnt(TID_BUSY1, 4) < 0) {
 /* handle error */
 }

 /*
 * Now enable Enhanced call progress with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */
 if ((car = dx_dial(ddd, dialstrg,(DX_CAP *)&cap_s, DX_CALLP|EV_SYNC))==-1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 printf(" Unable to get dial tone\n");
 break;

 case CR_BUSY:
 printf(" %s engaged\n", dialstrg);
 break;

 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;

 default:
 break;
 }

dx_chgfreq() changes the standard definition

146-CD

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

n Cautions

None.

n See Also

• dx_chgdur()
• dx_chgrepcnt()
• dx_deltones()
• dx_initcallp()

changes the standard definition dx_chgrepcnt()

147-CD

Name: int dx_chgrepcnt(tonetype, repcnt)
Inputs: int tonetype • tone to modify

int repcnt • repetition count
Returns: 0 • success

-1 • tone does not have a repetition value
2 • unknown tone type

Includes: srllib.h
dxxxlib.h

Category: PerfectCall Call Analysis

n Description

The dx_chgrepcnt() function changes the standard definition for one of the
PerfectCall Call Analysis tones, identified by tonetype, by modifying its
repetition count component (the number of times that the signal must repeat
before being recognized as valid).

The Voice Driver comes with default definitions for each of the PerfectCall Call
Analysis tones; this function alters the repetition count component of one of the
definitions.

Changing a tone definition has no immediate effect on the behavior of an
application. The dx_initcallp() function takes the tone definitions and uses them
to initialize a channel. Once a channel is initialized, subsequent changes to the
tone definitions have no effect on that channel. For these changes to take effect,
dx_deltones must be called followed by calling dx_initcallp().

Parameter Description

tonetype: specifies the identifier of the tone whose definition is to be
modified. It may be one of the following:
• TID_BUSY1: Busy signal
• TID_BUSY2: Alternate busy signal
• TID_DIAL_INTL: International dial tone
• TID_DIAL_LCL: Local dial tone
• TID_DIAL_XTRA: Special (“extra”) dial tone
• TID_FAX1: Fax or modem tone
• TID_FAX2: Alternate fax or modem tone

dx_chgrepcnt() changes the standard definition

148-CD

Parameter Description
• TID_RINGBK1: Ringback

repcnt: is the number of times that the signal must repeat.

n Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;

 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

/*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

/*
 * Change Enhanced call progress default local dial tone
 */
 if (dx_chgfreq(TID_DIAL_LCL, 425, 150, 0, 0) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default busy cadence
 */
 if (dx_chgdur(TID_BUSY1, 550, 400, 550, 400) < 0) {
 /* handle error */
 }

 if (dx_chgrepcnt(TID_BUSY1, 4) < 0) {
 /* handle error */
 }

changes the standard definition dx_chgrepcnt()

149-CD

 /*
 * Now enable Enhanced call progress with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */
 if ((car = dx_dial(ddd, dialstrg,(DX_CAP *)&cap_s, DX_CALLP|EV_SYNC))==-1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 printf(" Unable to get dial tone\n");
 break;

 case CR_BUSY:
 printf(" %s engaged\n", dialstrg);
 break;

 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;

 default:
 break;
 }

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

n Cautions

This function changes only the definition of a tone. The new definition does not
apply to a channel until dx_initcallp() is called on that channel.

dx_chgrepcnt() changes the standard definition

150-CD

n See Also

• dx_chgdur()
• dx_chgfreq()
• dx_deltones()
• dx_initcallp()

closes Dialogic devices dx_close()

151-CD

Name: int dx_close(dev)
Inputs: int dev • valid Dialogic channel or board device

handle
Returns: 0 if successful

-1 if error
Includes: srllib.h

dxxxlib.h
Category: Device Management

n Description

The dx_close() function closes Dialogic devices opened previously by using
dx_open(). It releases the handle and breaks any link the calling process has with
the device through this handle. It will release the handle whether the device is
busy or idle.

NOTE: dx_close() disables the generation of all events. It does not affect the
hookstate or any of the parameters that have been set for the device.

The function parameter is defined as follows:

Parameter Description

dev: specifies the valid Dialogic device handle obtained when
a board or channel was opened using dx_open().

n Cautions

Once a device is closed, a process can no longer perform any action on that device
using that device handle. Other handles for that device that exist in the same
process or other processes will still be valid. The only process affected by
dx_close() is the process that called the function.

NOTES: 1. The dx_close() function doesn’t affect any action occurring on a
device, it only breaks the link between the calling process and the
device by freeing the specified device handle. Other links through
different device handles are still valid.

2. Never use the Windows NT close() function to close a Voice device;
unpredictable results will occur.

dx_close() closes Dialogic devices

152-CD

3. dx_close() will discard any outstanding events on that handle.

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
main()
{
 DX_CAP cap;
 int chdev;
 /* continue processing */
 if (dx_close (chdev) ==-1)

n Errors

If this function returns -1 to indicate failure, check errno for one of the following
reasons:

EINVAL • Invalid Argument
EBADF • Invalid file descriptor
EINTR • A signal was caught

clears all the fields in a DX_CAP structure dx_clrcap()

153-CD

Name: void dx_clrcap(capp)
Inputs: DX_CAP *capp • pointer to Call Analysis

Parameter Structure
Returns: None
Includes: srllib.h

dxxxlib.h
Category: Structure Clearance

n Description

The dx_clrcap() function clears all the fields in a DX_CAP structure by setting
them to zero. dx_clrcap() is a VOID function that returns no value. It is provided
as a convenient way of clearing a DX_CAP structure.

The function parameter is defined as follows:

Parameter Description

capp: points to the DX_CAP structure. See Chapter 4. Voice
Data Structures and Device Parameters for information
about the DX_CAP structure.

n Cautions

The DX_CAP structure should be cleared and using dx_clrcap() before the
structure is used as an argument in a dx_dial() function call. This will prevent
parameters from being set unintentionally.

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 DX_CAP cap;
 int chdev;

 /* open the channel using dx_open */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */

dx_clrcap() clears all the fields in a DX_CAP structure

154-CD

 }
 .
 .
 /* set call analysis parameters before doing call analysis */
 dx_clrcap(&cap);
 cap.ca_nbrdna = 5; /* 5 rings before no answer */
 .
 .
 /* continue with call analysis */
 .
 .
}

n Errors

None.

n See Also

• dx_dial()
• DX_CAP (Chapter 4. Voice Data Structures and Device Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)

causes the digits present in the firmware digit buffer dx_clrdigbuf()

155-CD

Name: int dx_clrdigbuf(chdev)
Inputs: int chdev • valid Dialogic channel device

handle
Returns: 0 if success

-1 if failure
Includes: srllib.h

dxxxlib.h
Category: Configuration

n Description

The dx_clrdigbuf() function causes the digits present in the firmware digit buffer
of the channel specified by chdev to be flushed.

The function parameter is defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

n Cautions

None.

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()

{
 int chdev; /* channel descriptor */
 .
 .
 .
 /* Open Channel */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* Clear digit buffer */

dx_clrdigbuf() causes the digits present in the firmware digit buffer

156-CD

 if (dx_clrdigbuf(chdev) == -1) {
 /* process error*/
 }
 .
 .
}

See the function references for dx_getdig(), dx_play(), and dx_rec() for more
examples of how to use dx_clrdigbuf().

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_SYSTEM • Windows NT system error - check errno

clears any speed or volume adjustment conditions dx_clrsvcond()

157-CD

Name: int dx_clrsvcond(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

n Description

The dx_clrsvcond() function clears any speed or volume adjustment conditions
that have been previously set with the dx_setsvcond() function or the
convenience functions dx_addspddig() or dx_addvoldig().

Each time you want to reset a single adjustment condition, you must reset all
adjustment conditions, by first clearing them using this function, and then resetting
the conditions using dx_setsvcond(), dx_addspddig() or dx_addvoldig().

Parameter Description
chdev: specifies the valid channel device handle obtained when the

channel was opened using dx_open().

n Cautions

None.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {

dx_clrsvcond() clears any speed or volume adjustment conditions

158-CD

 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Clear all Speed and Volume Conditions
 */
 if (dx_clrsvcond(dxxxdev) == -1) {
 printf("Unable to Clear the Speed/Volume");
 printf(" Conditions\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_BADPROD • Function not supported on this board
EDX_SYSTEM • Windows NT system error - check errno

n See Also

• dx_setsvcond()
• dx_addspddig()
• dx_addvoldig()
• "Speed and Volume Modification Tables" (Voice Features Guide for

Windows NT)

clears any speed or volume adjustment conditions dx_clrsvcond()

159-CD

• DX_SVCB (Chapter 4. Voice Data Structures and Device Parameters)

dx_clrtpt() clears all DV_TPT fields

160-CD

Name: int dx_clrtpt(tptp,size)
Inputs: DV_TPT *tptp • pointer to termination parameter

table structure
int size • number of entries to clear

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Structure Clearance

n Description

The dx_clrtpt() function clears all DV_TPT fields except tp_type and tp_nextp
in the number of DV_TPT structures indicated in the size parameter. dx_clrtpt()
is provided as a convenient way of clearing a DV_TPT structure, if this is
required before initializing it for a new set of terminating conditions.

NOTE: The DV_TPT is defined in srllib.h since it can be used by other non-
Voice devices. Valid Voice values for the DV_TPT are listed in
Appendix A, and the DV_TPT structure is described in detail in the
Standard Runtime Library Programmer’s Guide.

Prior to calling dx_clrtpt(), you must set the tp_type field of DV_TPT as
follows:

IO_CONT • if the next DV_TPT is contiguous
IO_LINK • if the next DV_TPT is linked
IO_EOT • for the last DV_TPT

If tp_type is set to IO_LINK, you MUST set tp_nextp to point to the next
DV_TPT in the chain. dx_clrtpt() uses the information in tp_type, and in
tp_nextp if IO_LINK is set, to access the next DV_TPT. By setting the tp_type
and tp_nextp fields appropriately, dx_clrtpt() can be used to clear a combination
of contiguous and linked DV_TPT structures.

The function parameters are defined as follows:

clears all DV_TPT fields dx_clrtpt()

161-CD

Parameter Description

tptp: points to the first DV_TPT to be cleared. See Appendix A
for information about the DV_TPT.

size: indicates the number of DV_TPT structures to clear. If size
is set to 0, the function will return a 0 to indicate success.

n Cautions

dx_clrtpt() uses the information present in tp_type and tp_nextp (if IO_LINK is
set) to access the next DV_TPT in the chain. The last DV_TPT in the chain must
have its tp_type field set to IO_EOT. If the DV_TPTs have to be reinitialized
with a new set of conditions, dx_clrtpt() must be called only after the links have
been set up, as illustrated below.

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 DV_TPT tpt1[2];
 DV_TPT tpt2[2];

 /* Set up the links in the DV_TPTs */
 tpt1[0].tp_type = IO_CONT;
 tpt1[1].tp_type = IO_LINK;
 tpt1[1].tp_nextp = &tpt2[0];

 tpt2[0].tp_type = IO_CONT;
 tpt2[1].tp_type = IO_EOT;
 /* set up the other DV_TPT fields as required for termination */
 .
 .
 /* play a voice file, get digits, etc. */
 .
 .
 /* clear out the DV_TPT structures if required */
 dx_clrtpt(&tpt1[0],4);
 /* now set up the DV_TPT structures for the next play */
 .
 .
}

dx_clrtpt() clears all DV_TPT fields

162-CD

n Errors

The function will fail and return -1 if IO_EOT is encountered in the tp_type field
before the number of DV_TPTstructures specified in size have been cleared.

n See Also

• DV_TPT (Chapter 4. Voice Data Structures and Device Parameters)

removes all user-defined tones dx_deltones()

163-CD

Name: int dx_deltones(chdev)
Inputs: int chdev • valid Dialogic channel device handle

Returns: 0 • Success
-1 • Error return code

Includes: srllib.h
dxxxlib.h

Category: Global Tone Detection

n Description

The dx_deltones() function removes all user-defined tones previously added to a
channel with dx_addtone(). If no user-defined tones were previously enabled for
this channel, this function has no effect.

NOTE: Calling this function deletes ALL user-defined tones defined by
dx_blddt(), dx_bldst(), dx_bldstcad(), or dx_blddtcad().

Parameter Description

chdev: specifies the valid Dialogic channel device handle obtained
when the channel was opened using dx_open().

n Cautions

None.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int dxxxdev;
 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

dx_deltones() removes all user-defined tones

164-CD

 /*
 * Delete all Tone Templates
 */
 if (dx_deltones(dxxxdev) == -1) {
 printf("Unable to Delete all the Tone Templates\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and
ATDV_ERRMSGP() to return one of the following errors:

EDX_BADPARM • Invalid parameter
EDX_BADPROD • Function not supported on this board
EDX_SYSTEM • Windows NT System error - check errno

n See Also

Adding and Enabling User-defined Tones:

• dx_addtone()
• dx_enbtone()

Building Tones:

• dx_blddt()
• dx_bldst()
• dx_bldstcad()

removes all user-defined tones dx_deltones()

165-CD

• dx_blddtcad()

dx_dial() dials an ASCIIZ string

166-CD

Name: int dx_dial(chdev,dialstrp,capp,mode)
Inputs: int chdev • valid Dialogic channel device

handle
char *dialstrp • pointer to the ASCIIZ dial string
DX_CAP *capp • pointer to Call Analysis Parameter

Structure
unsigned short mode • asynchronous/synchronous setting

and Call Analysis flag
Returns: 0 to indicate successful initiation (Asynchronous)

>=0 to indicate Call Analysis result if successful
(Synchronous)
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O
Mode: synchronous/asynchronous

n Description

The dx_dial() function dials an ASCIIZ string on an open, idle channel and
optionally enables Call Analysis to provide information about the call.

To determine the state of the channel during a dial and/or Call Analysis, use
ATDX_STATE(), which will return one of the following:

CS_DIAL • dial state (with or without Call Analysis)
CS_CALL • Call Analysis state

NOTE: dx_dial() doesn’t affect the hook state.

 dx_dial() without Call Analysis enabled cannot be terminated
 using dx_stopch(), unlike most I/O functions.

The function parameters are defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

dials an ASCIIZ string dx_dial()

167-CD

Parameter Description

dialstrp: points to the ASCII dial string. dialstrp must contain a
null-terminated string of ASCII characters. Valid dialing
and control characters are described Table 3.

Table 3 Valid Characters for Each Dialing Mode

Pulse
Digit Description

DTMF
Digit Description

MF
Digit Description

“0”-”9” “0”-”9” “0”-”9”

“*” “*” KP

“#” “#” ST

“a” “a” PST

“b” “b” ST2

“c” “c” ST3

“d” “L”

“,” pause “,” pause “I”

“&” flash “&” flash “X”

“L” “L”

“I” “I”

“X” “X”

Change dial mode to: Change dial mode to: Change dial mode to:

“P” Pulse mode. “P” Pulse mode. “P” Pulse mode.

“T” DTMF mode. “T” DTMF mode. “T” DTMF mode.

“M” MF mode. M” MF mode. “M” MF mode.

The dialing mode is specified by a “T” (DTMF tone
dialing), “P” (pulse dialing), or “M” (MF dialing) in the
dial string. If “T”, “P”, or “M” is not specified in
dialstrp, DTMF tone dialing is used.

NOTE: MF dialing is only available on systems with MF

dx_dial() dials an ASCIIZ string

168-CD

capability such as the D/4xD board with MF support, or a
D/21E, D/41E, D/41ESC, D/160SC-LS, D/240SC,
D/240SC-T1, D/300SC-E1, D/320SC board.

The pause character “,” and the flash character “&” are not
available in MF dialing mode. To send these characters while
sending a string of MF digits, switch to DTMF or pulse mode
before sending “,” or “&”, then switch back to MF mode by
sending an “M”. The following string demonstrates this use:

 M*1234T,M5678a

capp: points to the Call Analysis Parameter Structure, DX_CAP. This
structure is described in (Chapter 4. Voice Data Structures and
Device Parameters).

To use the default Call Analysis parameters, specify NULL in
capp and DX_CALLP in mode .

The D/40 board does not have the Call Analysis feature. When
using dx_dial(), do not pass capp to D/40 channels; pass a NULL
pointer and do not set mode to DX_CALLP.

mode specifies whether an ASCIIZ string should be dialed with or
without Call Analysis enabled, and whether the function should
run asynchronously or synchronously. mode is a bit mask that can
be set to a combination of the following values:

DX_CALLP • Enable Call Analysis.

EV_ASYNC • Run dx_dial() asynchronously.

EV_SYNC • Run dx_dial() synchronously. (default)

To run dx_dial() without Call Analysis, specify only EV_ASYNC
or EV_SYNC.

NOTE: If dx_dial() is called on a channel that is onhook, the function will only
dial digits. Call analysis will not occur

dials an ASCIIZ string dx_dial()

169-CD

n Asynchronous Operation

Set the mode field to EV_ASYNC, using a bitwise OR. When running
asynchronously, the function will return 0 to indicate it has initiated successfully,
and will generate one of the following termination events to indicate completion:

TDX_DIAL • termination of dialing (without Call Analysis)
TDX_CALLP • termination of dialing (with Call Analysis)

If asynchronous dx_dial() terminates with a TDX_DIAL event, use
ATDX_TERMMSK() to determine the reason for termination. If dx_dial()
terminates with a TDX_CALLP event, use ATDX_CPTERM() to determine the
reason for termination. These Call Analysis termination reasons are listed under
the description of Call Analysis, below.

Use the SRL Event Management functions to handle the termination event. See
Appendix A for more information about the Event Management functions.

n Synchronous Operation

By default, this function runs synchronously, and will return a 0 to indicate that it
has completed successfully.

When synchronous dialing terminates, the function will return the Call Progress
result (if Call Analysis is enabled) or 0 to indicate success (if Call Analysis isn’t
enabled).

n Call Analysis

Call Analysis provides information about the call. It is enabled to run on the call
after dialing completes by setting the mode field. The function can be set to run
using default Call Analysis parameters, or by using the Call Analysis Parameter
structure (DX_CAP).

Call Analysis results can be retrieved using ATDX_CPTERM().

If dx_dial() is running synchronously, the Call Analysis results will also be
returned by the function.

dx_dial() dials an ASCIIZ string

170-CD

For more information about Call Analysis see the Features Guide.

Possible Call Analysis termination reasons are listed below:

CR_BUSY • line was busy
CR_CEPT • operator intercept
CR_CNCT • call connected
CR_ERROR • Call Analysis error
CR_FAXTONE • fax machine or modem
CR_NOANS • no answer
CR_NODIALTONE • no dial tone
CR_NORB • no ringback
CR_STOPD • Call Analysis stopped due to dx_stopch()

If Call Analysis is enabled, additional information about the call can be obtained
using the following Extended Attribute functions:

ATDX_ANSRSIZ() • Returns duration of answer
ATDX_CPERROR() • Returns Call Analysis error
ATDX_CPTERM() • Returns last Call Analysis termination
ATDX_CRTNID() • Returns tone identifier
ATDX_DTNFAIL() • Returns dial tone fail character
ATDX_FRQDUR() • Returns duration of first frequency detected
ATDX_FRQDUR2() • Returns duration of second frequency

detected
ATDX_FRQDUR3() • Returns duration of third frequency detected
ATDX_FRQHZ() • Returns frequency detected in Hz
ATDX_FRQHZ2() • Returns frequency of second detected tone
ATDX_FRQHZ3() • Returns frequency of third detected tone
ATDX_LONGLOW() • Returns duration of longer silence
ATDX_FRQOUT() • Returns percent of frequency out of bounds
ATDX_SHORTLOW() • Returns duration of shorter silence
ATDX_SIZEHI() • Returns duration of non-silence

n Cautions

1. If you attempt to dial a channel in MF mode and do not have MF capabilities
on that channel, DTMF tone dialing is used.

dials an ASCIIZ string dx_dial()

171-CD

2. Issuing a dx_stopch() on a channel that is dialing without Call Analysis
enabled has no effect on the dial, and will return 0. The digits specified in the
dialstrp parameter will still be dialed.

3. Issuing a dx_stopch() on a channel that is dialing with Call Analysis enabled
will cause the dialing to complete, but Call Analysis will not be executed. The
digits specified in the dialstrp parameter will be dialed. Any Call Analysis
information collected prior to the stop will be returned by Extended Attribute
functions.

4. This function must be issued when the channel is idle.

n Example 1: Call Analysis with user-specified parameters
(Synchronous Mode)

/* Call Analysis with user-specified parameters and synchronous mode. */

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int cares, chdev;
 DX_CAP capp;
 .
 .
 /* open the channel using dx_open(). Obtain channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if ((dx_sethook(chdev,DX_OFFHOOK,EV_SYNC)) == -1) {
 /* process error */
 }

 /* Clear DX_CAP structure */
 dx_clrcap(&capp);

 /* Set the DX_CAP structure as needed for call analysis.
 * Allow 3 rings before no answer.
 */
 capp.ca_nbrdna = 3;

 /* Perform the outbound dial with call analysis enabled. */
 if ((cares = dx_dial(chdev,"5551212",&capp,DX_CALLP|EV_SYNC)) == -1) {
 /* perform error routine */
 }

dx_dial() dials an ASCIIZ string

172-CD

 switch (cares) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 .
 .
 }
 /* carry out the next state */
 .
 .
}

n Example 2: Call Analysis with default parameters (Synchronous
Mode)

/* Call Analysis with default parameters and synchronous mode. */

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int cares, chdev;
 DX_CAP capp;

 /* open the channel using dx_open(). Obtain channel device descriptor
 * in chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* take the phone off-hook */
 if ((dx_sethook(chdev,DX_OFFHOOK,EV_SYNC)) == -1) {
 /* process error */
 }

 /* Perform the outbound dial with call analysis enabled and capp set to
 * NULL
 */
 if ((cares = dx_dial(chdev,"5551212",(DX_CAP *)NULL,DX_CALLP|EV_SYNC)) ==
 -1) {
 /* perform error routine */
 }
 /* Analyze the call analysis results as in Example 1 */
 .
 .
}

dials an ASCIIZ string dx_dial()

173-CD

n Example 3: Call Analysis with default parameters (Asynchronous,
Callback Mode)

/* Call Analysis with user-specified parameters and asynchronous, callback mode. */

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define MAXCHAN 24

int dial_handler();

DX_CAP capp;

main()
{
 int i, chdev[MAXCHAN];
 char *chnamep;
 int srlmode;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 for (i=0; i<MAXCHAN; i++) {

 /* Set chnamep to the channel name, e.g., dxxxB1C1, dxxxB1C2,... */

 /* Open the device using dx_open(). chdev[i] has channel device
 * descriptor.
 */
 if ((chdev[i] = dx_open(chnamep,NULL)) == -1) {
 /* process error */
 }

 /* Using sr_enbhdlr(), set up handler function to handle call analysis
 * completion events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_CALLP, dial_handler) == -1) {
 /* process error */
 }

 /* Before issuing dx_dial(), place the phone off-hook. */

 /* Clear DX_CAP structure */
 dx_clrcap(&capp);

 /* Set the DX_CAP structure as needed for call analysis.
 * Allow 3 rings before no answer.
 */
 capp.ca_nbrdna = 3;

dx_dial() dials an ASCIIZ string

174-CD

 /* Perform the outbound dial with call analysis enabled. */
 if (dx_dial(chdev[i],"5551212",&capp,DX_CALLP|EV_ASYNC) == -1) {
 /* perform error routine */
 }

 /* Use sr_waitevt() to wait for the completion of call analysis.
 * On receiving the completion event,TDX_CALLP,control is transferred
 * to the handler function previously established using sr_enbhdlr().
 */
 .
 .

 }
}

int dial_handler()
{
 int chdev;

 chdev = sr_getevtdev();
 switch (ATDX_CPTERM(chdev)) {
 case CR_CNCT: /* Call Connected, get some additional info */
 printf("\nDuration of short low - %ld ms",ATDX_SHORTLOW(chdev)*10);
 printf("\nDuration of long low - %ld ms",ATDX_LONGLOW(chdev)*10);
 printf("\nDuration of answer - %ld ms",ATDX_ANSRSIZ(chdev)*10);
 break;
 case CR_CEPT: /* Operator Intercept detected */
 printf("\nFrequency detected - %ld Hz",ATDX_FRQHZ(chdev));
 printf("\n%% of Frequency out of bounds - %ld Hz",ATDX_FRQOUT(chdev));
 break;
 case CR_BUSY:
 .
 .
 }

 /* Kick off next function in the state machine model. */
 .
 .

 return 0;
}

n Example 4: PerfectCall Call Analysis (Synchronous Mode)

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;

 chnam = "dxxxB1C1";

dials an ASCIIZ string dx_dial()

175-CD

 dialstrg = "L1234";
 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

/*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

/*
 * Change Enhanced call progress default local dial tone
 */
 if (dx_chgfreq(TID_DIAL_LCL, 425, 150, 0, 0) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default busy cadence
 */
 if (dx_chgdur(TID_BUSY1, 550, 400, 550, 400) < 0) {
 /* handle error */
 }

 if (dx_chgrepcnt(TID_BUSY1, 4) < 0) {
 /* handle error */
 }

 /*
 * Now enable Enhanced call progress with above changed settings.
 */
 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */
 if ((car = dx_dial(ddd, dialstrg,(DX_CAP *)&cap_s, DX_CALLP|EV_SYNC))==-1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 printf(" Unable to get dial tone\n");
 break;

 case CR_BUSY:

dx_dial() dials an ASCIIZ string

176-CD

 printf(" %s engaged\n", dialstrg);
 break;

 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;

 default:
 break;
 }

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_BUSY • Channel is busy
EDX_SYSTEM • Windows NT system error - check errno

n See Also

• dx_stopch()

Retrieving termination reasons and events for dx_dial() with Call
Analysis:

• Event Management functions (Standard Runtime Library Programmer’s
Guide for Windows NT)

• ATDX_CPTERM()

Retrieving termination reasons for dx_dial() without Call Analysis:

• ATDX_TERMMSK()

dials an ASCIIZ string dx_dial()

177-CD

Call Analysis:

• DX_CAP (Chapter 4. Voice Data Structures and Device Parameters)
• "Call Analysis" (Voice Features Guide for Windows NT)
• ATDX_ANSRSIZ()
• ATDX_CPERROR
• ATDX_FRQDUR*()
• ATDX_FRQHZ*()
• ATDX_FRQOUT()
• ATDX_LONGLOW()
• ATDX_SHORTLOW()
• ATDX_SIZEHI()

dx_distone() disables detection of TONE ON

178-CD

Name: int dx_distone(chdev,toneid,evt_mask)
Inputs: int chdev • channel device

int toneid • tone template identification
int evt_mask • event mask

Returns: =0 • Success
-1 • Error return code

Category: Global Tone Detection

n Description

The dx_distone() function disables detection of TONE ON and/or TONE OFF
for a user-defined tone on a channel. Detection capability for user-defined tones is
enabled on a channel by default when dx_addtone() is called.

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

toneid: specifies the user-defined tone identifier for which detection
is being disabled.

To disable detection of all user-defined tones on the channel,
set toneid to TONEALL.

evt_mask: specifies whether to disable detection of the user-defined
tone going on or going off. Set to one or both of the
following using a bitwise-OR (|) operator.

• DM_TONEON disable TONE ON detection

• DM_TONEOFF disable TONE OFF detection

evt_mask affects the enabled/disabled status of the tone
template and will remain in effect until dx_distone() or
dx_enbtone() is called again to reset it.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

disables detection of TONE ON dx_distone()

179-CD

#define TID_1 101

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */
 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING) == -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, NULL, 0) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Disable Detection of ToneId TID_1
 */
 if (dx_distone(dxxxdev, TID_1, DM_TONEON | DM_TONEOFF) == -1) {
 printf("Unable to Disable Detection of Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);

dx_distone() disables detection of TONE ON

180-CD

}

n Errors

If the function returns -1 to indicate failure, call ATDX_LASTERR() and
ATDV_ERRMSGP() to return one of the following errors:

EDX_BADPARM • Invalid parameter
EDX_BADPROD • Function not supported on this board
EDX_SYSTEM • Windows NT System error - check errno
EDX_TNMSGSTATUS • Invalid message status setting
EDX_TONEID • Bad tone ID

n See Also

Global Tone Detection functions:

• dx_addtone()
• dx_blddt(), dx_bldst(), dx_blddtcad(), dx_bldstcad()
• dx_enbtone()
• "Global Tone Detection" (Voice Features Guide for Windows NT)

Event Retrieval:

• dx_getevt()
• DX_CST data structure
• sr_getevtdatap() (in the Standard Runtime Library Programmer’s

Guide for Windows NT)

enables detection of TONE ON dx_enbtone()

181-CD

Name: int dx_enbtone(chdev,toneid,evt_mask)
Inputs: int chdev • valid Dialogic channel device handle

int toneid • tone template identification
int evt_mask • event mask

Returns: 0: • Success
-1 • Error return code

Category: Global Tone Detection

n Description

The dx_enbtone() function enables detection of TONE ON and/or TONE OFF
for a user-defined tone on a channel. Detection capability for tones is enabled on a
channel by default when dx_addtone() is called.

The description of dx_addtone() (earlier in this chapter) explains how to
synchronously and asynchronously retrieve CST tone on and tone off events.

Use this function to enable a tone that has been disabled using dx_distone().

Parameter Description

chdev:
specifies the valid
channel device handle
obtained when the
channel was opened
using dx_open().

toneid: specifies the user-defined
tone identifier for which
detection is being
enabled.

To enable detection of all
user-defined tones on the
channel, set toneid to
TONEALL.

evt_mask: specifies whether to
enable detection of the
user-defined tone going
on or going off. Set to
one or both of the

dx_enbtone() enables detection of TONE ON

182-CD

Parameter Description
following using a bitwise
-OR (|) operator.

• DM_TONEON disable TONE ON
detection

• DM_TONEOFF disable TONE OFF
detection

evt_mask affects the
enabled/disabled status
of the tone template and
will remain in effect until
dx_enbtone() or
dx_distone() is called
again to reset it.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define TID_1 101

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */
 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING) == -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */

enables detection of TONE ON dx_enbtone()

183-CD

 if (dx_addtone(dxxxdev, NULL, 0) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

/*
 * Enable Detection of ToneId TID_1
 */
 if (dx_enbtone(dxxxdev, TID_1, DM_TONEON | DM_TONEOFF) == -1) {
 printf("Unable to Enable Detection of Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Cautions

None.

n Errors

If the function returns -1 to indicate failure, call ATDX_LASTERR() and
ATDV_ERRMSGP() to return one of the following errors:

EDX_BADPARM • Invalid parameter
EDX_BADPROD • Function not supported on this board
EDX_SYSTEM • Windows NT System error - check errno
EDX_TONEID • Bad tone ID
EDX_TNMSGSTATUS • Invalid message status setting

dx_enbtone() enables detection of TONE ON

184-CD

n See Also

Global Tone Detection:

• dx_addtone()
• dx_blddt(), dx_bldst(), dx_blddtcad(), dx_bldstcad()
• dx_distone()
• "Global Tone Detection" (Voice Features Guide for Windows NT)

Event Retrieval:

• dx_getevt()
• DX_CST data structure
• sr_getevtdatap() (in the Standard Runtime Library Programmer’s

Guide for Windows NT)

closes the file associated with the handle dx_fileclose()

185-CD

Name: int dx_fileclose(handle)
Inputs: int handle • handle returned from

dx_fileopen()
Returns: 0 if success

-1 if failure
Category: File Management

n Description

The dx_fileclose() function closes the file associated with the handle returned by
the dx_fileopen() function. See the _close function in the Microsoft Visual C++
Run-Time Library Reference for more information.

n Cautions

Use dx_fileclose() instead of _close to ensure the compatibility of applications
with the libraries across various versions of Visual C++.

n Example

/* Play a voice file. Terminate on receiving 4 digits or at end of file
 */
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
main()
{
 int chdev;
 DX_IOTT iott;
 DV_TPT tpt;
 DV_DIGIT dig;
 .
 .
 /* Open the device using dx_open(). Get channel device descriptor in
 * chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }
 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1; /* play till end of file */
 if((iott.io_handle = dx_fileopen("prompt.vox",
 O_RDONLY|O_BINARY)) == -1) {
 /* process error */
 }

dx_fileclose() closes the file associated with the handle

186-CD

 /* set up DV_TPT */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* only entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 4; /* terminate on four digits */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */
 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }
 /* Now play the file */
 if (dx_play(chdev,&iott,&tpt,EV_SYNC) == -1) {
 /* process error */
 }
 /* get digit using dx_getdig() and continue processing. */
 .
 .
 if (dx_fileclose(iott.io_handle) == -1) {
 /* process error */
 }
}

n Errors

If this function returns -1 to indicate failure, errno is set to EBADF to indicate an
invalid file-handle parameter.

n See Also

• dx_fileopen()
• dx_fileseek()
• dx_fileread()
• dx_filewrite()

opens the file specified by filep dx_fileopen()

187-CD

Name: int dx_fileopen(filep, flags, pmode)
Inputs: const char *filep • filename

int flags • type of operations allowed
int pmode • permission mode

Returns: file handle if success
-1 if failure

Category: File Management

n Description

The dx_fileopen() function opens the file specified by filep and prepares the file
for reading and writing, as specified by flags. See the _open function in the
Microsoft Visual C++ Run-Time Library Reference for more information.

n Cautions

Use dx_fileopen() instead of _open to ensure the compatibility of applications
with the libraries across various versions of Visual C++.

n Example

/* Play a voice file. Terminate on receiving 4 digits or at end of file*/
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
main()
{
 int chdev;
 DX_IOTT iott;
 DV_TPT tpt;
 DV_DIGIT dig;
 .
 .
 /* Open the device using dx_open(). Get channel device descriptor in
 * chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }
 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1; /* play till end of file */
 if((iott.io_handle = dx_fileopen("prompt.vox", O_RDONLY|O_BINARY)) == -1) {
 /* process error */
 }

dx_fileopen() opens the file specified by filep

188-CD

 /* set up DV_TPT */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* only entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 4; /* terminate on four digits */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */
 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }
 /* Now play the file */
 if (dx_play(chdev,&iott,&tpt,EV_SYNC) == -1) {
 /* process error */
 }
 /* get digit using dx_getdig() and continue processing. */
 .
 .
 if (dx_fileclose(iott.io_handle) == -1) {
 /* process error */
 }
}

n Errors

If this function returns -1 to indicate failure, errno is set to one of the following
values:

EACCES Tried to open read only file for writing, file’s sharing mode
does not allow specified operations, or given path is directory

EEXIST
 _O_CREAT and _O_EXCL flags specified, but filename
already exists

EINVAL
Invalid flags or pmode argument

EMFILE
No more file handles available (too many files open)

ENOENT
File or path not found

n See Also

• dx_fileclose()
• dx_fileseek()
• dx_fileread()
• dx_filewrite()

turns number of bytes read by application. dx_fileread()

189-CD

Name: int dx_fileread(handle, buffer, count)
Inputs: int handle • handle returned from

dx_fileopen()
void *buffer • storage location for data
unsigned int count • maximum number of bytes

Returns: number of bytes if success
-1 if failure

Category: File Management

n Description

The dx_fileread() function turns number of bytes read by application. The
function will read the number of bytes from the file associated with the handle into
the buffer. The number of bytes read may be less than the value of count if there
are fewer than count bytes left in the file or if the file was opened in text mode.
See the _read function in the Microsoft Visual C++ Run-Time Library Reference
for more information.

n Cautions

Use dx_fileread() instead of _read to ensure the compatibility of applications
with the libraries across various versions of Visual C++.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
int cd; /* channel descriptor */
DX_UIO myio; /* user definable I/O structure */
/*
 * User defined I/O functions
 */
int my_read(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
 printf("My read\n");
 return(dx_fileread(fd,ptr,cnt));
}
/*
 * my write function
 */
int my_write(fd,ptr,cnt)

dx_fileread() turns number of bytes read by application.

190-CD

int fd;
char * ptr;
unsigned cnt;
{
printf("My write \n");
 return(dx_filewrite(fd,ptr,cnt));
}
/*
 * my seek function
 */
long my_seek(fd,offset,whence)
int fd;
long offset;
int whence;
{
 printf("My seek\n");
 return(dx_fileseek(fd,offset,whence));
}
void main(argc,argv)
int argc;
char *argv[];
{
 .
 . /* Other initialization */
 .
 DX_UIO uioblk;
/* Initialize the UIO structure */
uioblk.u_read=my_read;
uioblk.u_write=my_write;
uioblk.u_seek=my_seek;
/* Install my I/O routines */
dx_setuio(devhandle,uioblk);
vodat_fd = dx_fileopen("JUNK.VOX",O_RDWR|O_BINARY);
/*This block uses standard I/O functions */
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 0;
iott->io_length = 20000;
/*This block uses my I/O functions */
iottp++;
iottp->io_type = IO_DEV|IO_UIO|IO_CONT
iottp->io_fhandle = vodat_fd;
iott->io_offset = 20001;
iott->io_length = 20000;
/*This block uses standard I/O functions */
iottp++
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 20002;
iott->io_length = 20000;
/*This block uses my I/O functions */
iott->io_type = IO_DEV|IO_UIO|IO_EOT
iott->io_fhandle = vodat_fd;
iott->io_offset = 10003;
iott->io_length = 20000;
devhandle = dx_open("dxxxB1C1", 0);
dx_sethook(devhandle, DX-ONHOOK,EV_SYNC)
dx_wtring(devhandle,1,DX_OFFHOOK,EV_SYNC);
dx_clrdigbuf;
 if(dx_rec(devhandle,iott,(DX_TPT*)NULL,RM_TONE|EV_SYNC) == -1) {
 perror("");
 exit(1);
}
dx_clrdigbuf(devhandle);
 if(dx_play(devhandle,iott,(DX_TPT*)EV_SYNC) == -1 {

turns number of bytes read by application. dx_fileread()

191-CD

 perror("");
 exit(1);
 }
 dx_close(devhandle);

n Errors

If this function returns -1 to indicate failure, errno is set to EBADF which
indicates an invalid file-handle parameter, a closed file, or a locked file.

n See Also

• dx_fileopen()
• dx_fileclose()
• dx_fileseek()
• dx_filewrite()

dx_fileseek() moves file pointer associated with handle

192-CD

Name: long dx_fileseek(handle, offset, origin)
Inputs: int handle • handle returned from

dx_fileopen()
long offset • number of bytes from the

origin
int origin • initial position

Returns: number of bytes read if success
-1 if failure

Category: File Management

n Description

The dx_fileseek() function moves file pointer associated with handle to a new
location that is offset bytes from origin. The function returns the offset, in bytes,
of the new position from the beginning of the file. See the _lseek function in the
Microsoft Visual C++ Run-Time Library Reference for more information.

n Cautions

Use dx_fileseek() instead of _lseek to ensure the compatibility of applications
with the libraries across various versions of Visual C++.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
int cd; /* channel descriptor */
DX_UIO myio; /* user definable I/O structure */
/*
 * User defined I/O functions
 */
int my_read(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
 printf("My read\n");
 return(dx_fileread(fd,ptr,cnt));
}
/*
 * my write function
 */
int my_write(fd,ptr,cnt)
int fd;

moves file pointer associated with handle dx_fileseek()

193-CD

char * ptr;
unsigned cnt;
{
printf("My write \n");
 return(dx_filewrite(fd,ptr,cnt));
}
/*
 * my seek function
 */
long my_seek(fd,offset,whence)
int fd;
long offset;
int whence;
{
 printf("My seek\n");
 return(dx_fileseek(fd,offset,whence));
}
void main(argc,argv)
int argc;
char *argv[];
{
 .
 . /* Other initialization */
 .
 DX_UIO uioblk;
/* Initialize the UIO structure */
uioblk.u_read=my_read;
uioblk.u_write=my_write;
uioblk.u_seek=my_seek;
/* Install my I/O routines */
dx_setuio(devhandle,uioblk);
vodat_fd = dx_fileopen("JUNK.VOX",O_RDWR|O_BINARY);
/*This block uses standard I/O functions */
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 0;
iott->io_length = 20000;
/*This block uses my I/O functions */
iottp++;
iottp->io_type = IO_DEV|IO_UIO|IO_CONT
iottp->io_fhandle = vodat_fd;
iott->io_offset = 20001;
iott->io_length = 20000;
/*This block uses standard I/O functions */
iottp++
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 20002;
iott->io_length = 20000;
/*This block uses my I/O functions */
iott->io_type = IO_DEV|IO_UIO|IO_EOT
iott->io_fhandle = vodat_fd;
iott->io_offset = 10003;
iott->io_length = 20000;
devhandle = dx_open("dxxxB1C1", NULL);
dx_sethook(devhandle, DX-ONHOOK,EV_SYNC)
dx_wtring(devhandle,1,DX_OFFHOOK,EV_SYNC);
dx_clrdigbuf;
 if(dx_rec(devhandle,iott,(DX_TPT*)NULL,RM_TONE|EV_SYNC) == -1) {
 perror("");
 exit(1);
}
dx_clrdigbuf(devhandle);
 if(dx_play(devhandle,iott,(DX_TPT*)EV_SYNC) == -1 {
 perror("");

dx_fileseek() moves file pointer associated with handle

194-CD

 exit(1);
 }
 dx_close(devhandle);

n Errors

If this function returns -1 to indicate failure, errno is set to the following values:

EBADF • Invalid file-handle parameter, a closed file, or a locked file.
EINVAL • Value for origin is invalid or the position specified by offset is

before the beginning of the file

On devices incapable of seeking, the return value is undefined.

n See Also

• dx_fileopen()
• dx_fileclose()
• dx_fileread()
• dx_filewrite()

writes count byes from buffer into file associated with handle dx_filewrite()

195-CD

Name: int dx_filewrite(handle, buffer, count)
Inputs: int handle • handle returned from

dx_fileopen()
void *buffer • data to be written
unsigned int count • number of bytes

Returns: number of bytes if success
-1 if failure

Category: File Management

n Description

The dx_filewrite() function writes count byes from buffer into file associated
with handle. The write operation begins at the current position of the file pointer
(if any) associated with the given file. If the file was opened for appending, the
operation begins at the current end of the file. After the write operation, the file
pointer is increased by the number of bytes actually written. See the _write
function in the Microsoft Visual C++ Run-Time Library Reference for more
information.

n Cautions

Use dx_filewrite() instead of _write to ensure the compatibility of applications
with the libraries across various versions of Visual C++.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
int cd; /* channel descriptor */
DX_UIO myio; /* user definable I/O structure */
/*
 * User defined I/O functions
 */
int my_read(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
 printf("My read\n");
 return(dx_fileread(fd,ptr,cnt));
}
/*
 * my write function

dx_filewrite() writes count byes from buffer into file associated with handle

196-CD

 */
int my_write(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
printf("My write \n");
 return(dx_filewrite(fd,ptr,cnt));
}
/*
 * my seek function
 */
long my_seek(fd,offset,whence)
int fd;
long offset;
int whence;
{
 printf("My seek\n");
 return(dx_fileseek(fd,offset,whence));
}
void main(argc,argv)
int argc;
char *argv[];
{
 .
 . /* Other initialization */
 .
 DX_UIO uioblk;
/* Initialize the UIO structure */
uioblk.u_read=my_read;
uioblk.u_write=my_write;
uioblk.u_seek=my_seek;
/* Install my I/O routines */
dx_setuio(devhandle,uioblk);
vodat_fd = dx_fileopen("JUNK.VOX",O_RDWR|O_BINARY);
/*This block uses standard I/O functions */
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 0;
iott->io_length = 20000;
/*This block uses my I/O functions */
iottp++;
iottp->io_type = IO_DEV|IO_UIO|IO_CONT
iottp->io_fhandle = vodat_fd;
iott->io_offset = 20001;
iott->io_length = 20000;
/*This block uses standard I/O functions */
iottp++
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 20002;
iott->io_length = 20000;
/*This block uses my I/O functions */
iott->io_type = IO_DEV|IO_UIO|IO_EOT
iott->io_fhandle = vodat_fd;
iott->io_offset = 10003;
iott->io_length = 20000;
devhandle = dx_open("dxxxB1C1", NULL);
dx_sethook(devhandle, DX-ONHOOK,EV_SYNC)
dx_wtring(devhandle,1,DX_OFFHOOK,EV_SYNC);
dx_clrdigbuf;
 if(dx_rec(devhandle,iott,(DX_TPT*)NULL,RM_TONE|EV_SYNC) == -1) {
 perror("");
 exit(1);
}

writes count byes from buffer into file associated with handle dx_filewrite()

197-CD

dx_clrdigbuf(devhandle);
 if(dx_play(devhandle,iott,(DX_TPT*)EV_SYNC) == -1 {
 perror("");
 exit(1);
 }
 dx_close(devhandle);

n Errors

If this function returns -1 to indicate failure, errno is set to the following values:

EBADF • File handle is invalid or the file is not opened for writing
ENOSPC • Not enough space left on the device for the operation

n See Also

• dx_fileopen()
• dx_fileclose()
• dx_fileseek()
• dx_fileread()

dx_getcursv() returns the specified channel’s current speed

198-CD

Name: int dx_getcursv(chdev,curvolp,curspeedp)
Inputs: int chdev • valid Dialogic channel device handle

int * curvolp • pointer to current absolute volume
setting

int * curspeedp • pointer to current absolute speed
setting

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

n Description

The dx_getcursv() function returns the specified channel’s current speed and
volume adjustments active on a channel. For example, use dx_getcursv() to
determine the speed and volume level set interactively by a listener using DTMF
digits during a play. (DTMF digits are set as play adjustment conditions using the
dx_setsvcond() function, or by one of the convenience functions
dx_addspddig() and dx_addvoldig())

Parameter Description

chdev: specifies the valid channel device handle obtained by a call
to dx_open().

curvolp: points to an integer that represents the current absolute
volume setting for the channel. This value will lie between -
30dB and +10dB.

curspeedp: points to an integer that represents the current absolute speed
setting for the channel. This value will be between -50% and
+50%.

n Cautions

None.

returns the specified channel’s current speed dx_getcursv()

199-CD

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

/*
 * Global Variables
 */

main()
{
 int dxxxdev;
 int curspeed, curvolume;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Get the Current Volume and Speed Settings
 */
 if (dx_getcursv(dxxxdev, &curvolume, &curspeed) == -1) {
 printf("Unable to Get the Current Speed and");
 printf(" Volume Settings\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 } else {
 printf("Volume = %d Speed = %d\n", curvolume, curspeed);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

dx_getcursv() returns the specified channel’s current speed

200-CD

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_BADPROD • Function not supported on this board
EDX_SYSTEM • Windows NT system error - check errno

n See Also

Related to Speed and Volume:

• dx_adjsv()
• dx_addspddig()
• dx_addvoldig()
• dx_setsvmt()
• dx_getsvmt()
• dx_setsvcond()
• dx_clrsvcond()
• "Speed and Volume Modification Tables" (Voice Features Guide for

Windows NT)
• DX_SVMT structure (Chapter 4. Voice Data Structures and Device

Parameters)

initiates the collection of digits dx_getdig()

201-CD

Name: int dx_getdig(chdev,tptp,digitp,mode)
 Inputs: int chdev • valid Dialogic channel device handle

DV_TPT *tptp • pointer to Termination Parameter
Table Structure

DV_DIGIT
*digitp

• pointer to User Digit Buffer Structure

unsigned short
mode

• asynchronous/synchronous setting

Returns: 0 to indicate successful initiation (asynchronous)
number of digits (+1 for NULL) if successful (synchronous)
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O
Mode: synchronous/asynchronous

n Description

The dx_getdig() function initiates the collection of digits from an open channel’s
digit buffer. Upon termination of the function, the collected digits are written in
ASCIIZ format into the local buffer, which is arranged as a DV_DIGIT structure.

The type of digits collected depends on the digit detection mode set by the
dx_setdigtyp() function (for standard Voice board digits) or by the
dx_addtone() function (for user-defined digits).

See the function descriptions for dx_setdigtyp(), dx_addtone() in this chapter
and the description of the DV_DIGIT structure in Chapter 4. Voice Data
Structures and Device Parameters for more information.

Set termination conditions using the DV_TPT structure. This structure is pointed
to by the tptp parameter described below.

n Asynchronous Operation

To run this function asynchronously set the mode field to EV_ASYNC. When
running asynchronously, this function will return 0 to indicate it has initiated
successfully, and will generate a termination event (see below) to indicate

dx_getdig() initiates the collection of digits

202-CD

completion. Use the SRL Event Management functions to handle the termination
event. See Appendix A for more information about the Event Management
functions.

Termination of asynchronous digit collection is indicated by a TDX_GETDIG
event. After dx_getdig() terminates, use the ATDX_TERMMSK() function to
determine the reason for termination.

n Synchronous Operation

By default, this function runs synchronously. Termination of synchronous digit
collection is indicated by a return value greater than 0 that represents the number
of digits received (+1 for NULL). Use ATDX_TERMMSK() to determine the
reason for termination.

The function parameters are defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

tptp: points to the Termination Parameter Table Structure,
DV_TPT, which specifies termination conditions for this
function. See Appendix A for more information about the
DV_TPT. Termination conditions are listed below:

DX_DIGTYPE • User-defined digits
DX_MAXDTMF • Maximum number of digits

received
DX_MAXSIL • Maximum silence
DX_MAXNOSIL • Maximum non-silence
DX_LCOFF • Loop current off
DX_IDDTIME • Inter-digit delay
DX_MAXTIME • Function time
DX_DIGMASK • Digit mask termination
DX_PMOFF • Pattern match silence off
DX_PMON • Pattern match silence on
DX_TONE • Tone-off or Tone-on detection

digitp: points to the User’s Digit Buffer Structure, , where collected

initiates the collection of digits dx_getdig()

203-CD

Parameter Description
digits and their types are stored in arrays. The digit types in
DV_DIGIT can be one of the following:

DG_DTMF • DTMF digit
DG_LPD • Loop Pulse digit
DG_MF • MF digit
DG_USER1 • User-defined digit
DG_USER2 • User-defined digit
DG_USER3 • User-defined digit
DG_USER4 • User-defined digit
DG_USER5 • User-defined digit

See Chapter 4. Voice Data Structures and Device
Parameters for information about the DV_DIGIT structure.

See dx_addtone() for information about creating user-
defined digits.

mode: specifies whether to run dx_getdig() asynchronously or
synchronously. Specify one of the following:
EV_ASYNC: Run dx_getdig() asynchronously.
EV_SYNC: Run dx_getdig() synchronously (default).

The channel’s digit buffer contains up to 31 digits, collected on a First-In
First-Out (FIFO) basis. Since the digits remain in the channel’s digit buffer until
they are overwritten or cleared using dx_clrdigbuf(), the digits in the channel’s
buffer may have been received prior to this function call. DG_MAXDIGS is the
define for the maximum number of digits that can be returned by a single call to
dx_getdig().

NOTE: By default, after the 31st digit, all subsequent digits will be discarded.
You can use the dx_setdigbuf() function with the mode parameter set to
DX_DIGCYCLIC, which will cause all incoming digits to overwrite the
oldest digit in the buffer. See the dx_setdigbuf() function.

n Cautions

1. Some MF digits use approximately the same frequencies as DTMF digits
(see Appendix C). Because there is a frequency overlap, if you have the
incorrect kind of detection enabled, MF digits may be mistaken for
DTMF digits, and vice versa. To ensure that digits are correctly detected,

dx_getdig() initiates the collection of digits

204-CD

only one kind of detection should be enabled at any time. To set MF digit
detection, use the dx_setdigtyp() function.

2. A digit that is set to adjust play-speed or play-volume (using
dx_setsvcond()) will not be passed to dx_getdig(), and will not be used
as a terminating condition. If a digit is defined to adjust play and to
terminate play, then the play adjustment will take priority.

3. When operating asynchronously, ensure that the digit buffer stays in
scope for the duration of the function.

4. The channel must be idle, or the function will return an EDX_BUSY
error.

5. Speed and volume control are supported on the D/21D, D/21E, D/41D,
D/41E, D/41ESC, D/81A, D/121B, D/160SC-LS, D/240SC, D/240SC-
T1, D/300SC-E1 and D/320SC boards only. Do not use the Speed and
Volume control functions to control speed on the D/120, D/121, or
D/121A boards.

6. If the function is operating synchronously and there are no digits in the
buffer, the return value from this function will be 1, which indicates the
NULL terminator.

n Example 1: Using dx_getdig() in synchronous mode

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
main()
{
 DV_TPT tpt[3];
 DV_DIGIT digp;
 int chdev, numdigs, cnt;
 /* open the channel with dx_open(). Obtain channel device descriptor
 * in chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }
 /* initiate the call */
 .
 .
 /* Set up the DV_TPT and get the digits */
 dx_clrtpt(tpt,3);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum number of digits */
 tpt[0].tp_length = 4; /* terminate on 4 digits */
 tpt[0].tp_flags = TF_MAXDTMF; /* terminate if already in buf. */
 tpt[1].tp_type = IO_CONT;
 tpt[1].tp_termno = DX_LCOFF; /* LC off termination */
 tpt[1].tp_length = 3; /* Use 30 ms (10 ms resolution

initiates the collection of digits dx_getdig()

205-CD

 * timer) */
 tpt[1].tp_flags = TF_LCOFF|TF_10MS; /* level triggered, clear history,
 * 10 ms resolution */
 tpt[2].tp_type = IO_EOT;
 tpt[2].tp_termno = DX_MAXTIME; /* Function Time */
 tpt[2].tp_length = 100; /* 10 seconds (100 ms resolution
 * timer) */
 tpt[2].tp_flags = TF_MAXTIME; /* Edge-triggered */
 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }
if ((numdigs = dx_getdig(chdev,tpt, &digp, EV_SYNC)) == -1) {
 /* process error */
 }
 for (cnt=0; cnt < numdigs; cnt++) {
 printf("\nDigit received = %c, digit type = %d",
 digp.dg_value[cnt], digp.dg_type[cnt]);
 }
 /* go to next state */
 .
 .
}

n Example 2: Using dx_getdig() in asynchronous mode

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
#define MAXCHAN 24
int digit_handler();
DV_TPT stpt[3];
DV_DIGIT digp[256];
main()
{
 int i, chdev[MAXCHAN];
 char *chnamep;
 int srlmode;
 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }
 for (i=0; i<MAXCHAN; i++) {
 /* Set chnamep to the channel name - e.g., dxxxB1C1 */
 /* open the channel with dx_open(). Obtain channel device
 * descriptor in chdev[i]
 */
if ((chdev[i] = dx_open(chnamep,NULL)) == -1) {
 /* process error */
 }
 /* Using sr_enbhdlr(), set up handler function to handle dx_getdig()
 * completion events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_GETDIG, digit_handler) == -1) {
 /* process error */
 }
 /* initiate the call */
 .
 .
 /* Set up the DV_TPT and get the digits */

dx_getdig() initiates the collection of digits

206-CD

 dx_clrtpt(tpt,3);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum number of digits */
 tpt[0].tp_length = 4; /* terminate on 4 digits */
 tpt[0].tp_flags = TF_MAXDTMF; /* terminate if already in buf*/
 tpt[1].tp_type = IO_CONT;
 tpt[1].tp_termno = DX_LCOFF; /* LC off termination */
 tpt[1].tp_length = 3; /* Use 30 ms (10 ms resolution
 * timer) */
 tpt[1].tp_flags = TF_LCOFF|TF_10MS; /* level triggered, clear
 * history, 10 ms resolution */
 tpt[2].tp_type = IO_EOT;
 tpt[2].tp_termno = DX_MAXTIME; /* Function Time */
 tpt[2].tp_length = 100; /* 10 seconds (100 ms resolution
 * timer) */
 tpt[2].tp_flags = TF_MAXTIME; /* Edge triggered */
 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev[i]) == -1) {
 /* process error */
 }
 if (dx_getdig(chdev[i], tpt, &digp[chdev[i]], EV_ASYNC) == -1) {
 /* process error */
 }
 }
 /* Use sr_waitevt() to wait for the completion of dx_getdig().
 * On receiving the completion event, TDX_GETDIG, control is transferred
 * to the handler function previously established using sr_enbhdlr().
 */
 .
 .
}

int digit_handler()
{
 int chfd;
 int cnt, numdigs;
 chfd = sr_getevtdev();
 numdigs = strlen(digp[chfd].dg_value);
 for(cnt=0; cnt < numdigs; cnt++) {
 printf("\nDigit received = %c, digit type = %d",
 digp[chfd].dg_value[cnt], digp[chfd].dg_type[cnt]);
 }

 /* Kick off next function in the state machine model. */
 .
 .
 return 0;
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_BADTPT • Invalid DV_TPT entry
EDX_BUSY • Channel busy
EDX_SYSTEM • Windows NT system error - check errno

initiates the collection of digits dx_getdig()

207-CD

n See Also

Setting User-Defined Digits:

• dx_addtone()
• dx_setdigtyp()

Collecting Digits:

• DV_DIGIT
• dx_sethook()

dx_getevt() used to synchronously monitor channels

208-CD

Name: int dx_getevt(chdev,eblkp,timeout)
Inputs: int chdev • valid Dialogic channel device

handle
DX_EBLK *eblkp • Pointer to Event Block Structure
int timeout • Timeout value in seconds

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Call Status Transition Event

n Description

The dx_getevt() function is used to synchronously monitor channels for possible
call status transition events in conjunction with dx_setevtmsk(). dx_getevt()
blocks and returns control to the program after one of the events set by
dx_setevtmsk() occurs on the channel specified in the chdev parameter. The
DX_EBLK structure contains the event that ended the blocking.

The function parameters are defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

eblkp: points to the Event Block Structure DX_EBLK, which
will contain the event that ended the blocking.

timeout: specifies the maximum amount of time in seconds to wait
for an event to occur. timeout can have one of the
following values:

of seconds: maximum length of time dx_getevt()
will wait for an event. When the time
specified has elapsed, the function will
terminate and return an error.

-1: dx_getevt() will block until an event
occurs; it will not time out.

0: The function will return -1 immediately if
no event is present.

used to synchronously monitor channels dx_getevt()

209-CD

Parameter Description

NOTE: When the time specified in timeout expires, dx_getevt() will
terminate and return an error. The Standard Attribute function
ATDV_LASTERR() can be used to determine the cause of the error,
which in this case is EDX_TIMEOUT.

n Cautions

We recommend enabling only one process per channel. The event that
dx_getevt() is waiting for may change if another process sets a different event for
that channel. See dx_setevtmsk() for more details.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
main()
{
 int chdev; /* channel descriptor */
 int timeout; /* timeout for function */
 DX_EBLK eblk; /* Event Block Structure */
 .
 .
 .
 /* Open Channel */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }
 /* Set RINGS or WINK as events to wait on */
 if (dx_setevtmsk(chdev,DM_RINGS|DM_WINK) == -1) {
 /* process error */
 }
 /* Set timeout to 5 seconds */
 timeout = 5;
 if (dx_getevt(chdev,&eblk,timeout) == -1){
 /* process error */
 if (ATDV_LASTERR(chdev) == EDX_TIMEOUT) { /* check if timed out */
 printf("Timed out waiting for event.\n");
 }
 else {
 /* further error processing */
 .
 .
 }
 }
 switch (eblk.ev_event) {
 case DE_RINGS:
 printf("Ring event occurred.\n");
 break;
 case DE_WINK:

dx_getevt() used to synchronously monitor channels

210-CD

 printf("Wink event occurred.\n");
 break;
 }
 .
 .
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_SYSTEM • Windows NT system error - check errno
EDX_TIMEOUT • Timeout time limit is reached

n See Also

• dx_setevtmsk()
• DX_EBLK (Chapter 4. Voice Data Structures and Device Parameters)

obtains the current parameter settings dx_getparm()

211-CD

Name: int dx_getparm(dev,parm,valuep)
Inputs: int dev • valid Dialogic channel or board

device handle
unsigned long parm • parameter type to get value of
void *valuep • pointer to variable for returning

parameter value
Returns: 0 if success

-1 if failure
Includes: srllib.h

dxxxlib.h
Category: Configuration

n Description

The dx_getparm() function obtains the current parameter settings for an open
device. dx_getparm() can only obtain the value of one parameter at a time. The
channel must be idle (i.e., no I/O function running) when calling dx_getparm().

The function parameters are defined as follows:

Parameter Description

dev: specifies the valid Dialogic device handle obtained when a
board or channel was opened using dx_open().

parm specifies the define for the parameter type whose value is to
be returned in the variable pointed to by valuep.

Board and channel parameter defines, defaults and
descriptions are listed in Section 5.2. Clearing Voice
Structures

valuep: points to the variable where the value of the parameter
specified in parm should be returned.

NOTE: You must use a void* cast on the returned parameter value, as
demonstrated in the example that follows.

valuep should point to a variable large enough to hold the value of the
parameter. Refer to dxxxlib.h for parameters sizes. The size of a
parameter is encoded in the define for the parameter. The defines for
parameter sizes are PM_SHORT, PM_BYTE, PM_INT, PM_LONG,

dx_getparm() obtains the current parameter settings

212-CD

Parameter Description
PM_FLSTR (fixed length string), and PM_VLSTR (variable length
string). See dxxxlib.h for DXBD_ and DXCH_ defines.

Most parameters are of type short.

n Cautions

We highly recommend that you clear the variable the parameter value is returned
to prior to calling dx_getparm(), as illustrated in the example below. The
variable whose address is passed to should be of a size sufficient to hold the value
of the parameter. See the description section of this function for more information.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int bddev;
 unsigned short parmval;

 /* open the board using dx_open(). Obtain board device descriptor in
 * bddev
 */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* process error */
 }

 parmval = 0; /* CLEAR parmval */

 /* get the number of channels on the board. DXBD_CHNUM is of type
 * unsigned short as specified by the PM_SHORT define in the definition
 * for DXBD_CHNUM in dxxxlib.h. The size of the variable parmval is
 * sufficient to hold the value of DXBD_CHNUM.
 */
 if (dx_getparm(bddev, DXBD_CHNUM, (void *)&parmval) == -1) {
 /* process error */
 }

 printf("\nNumber of channels on board = %d",parmval);
 .
 .
}

obtains the current parameter settings dx_getparm()

213-CD

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_SYSTEM • Windows NT system error - check errno
EDX_BUSY • Channel is busy (when channel device handle is

specified) or first channel is busy (when board
device handle is specified)

n See Also

• dx_setparm()

dx_getsvmt() returns contents of Speed or Volume Modification Table

214-CD

Name: int dx_getsvmt(chdev,tabletype,svmtp)
Inputs: int chdev • valid Dialogic channel device

handle
unsigned short tabletype • table to retrieve (speed or

volume)
DX_SVMT * svmtp • pointer to DX_SVMT structure

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

n Description

The dx_getsvmt() function returns contents of Speed or Volume Modification
Table to the DX_SVMT structure.

For a full description of the Speed and Volume Modification Tables see the Voice
Features Guide for Windows NT see a description in section 4.1.6. DX_SVMT -
speed/volume modification table structure of the DX_SVMT structure.

Parameter Description

chdev: specifies the valid channel device handle obtained by a call
to dx_open().

tabletype: specifies whether to retrieve the Speed or the Volume
Modification Table.
SV_SPEEDTBL Retrieve the Speed Modification

Table values
SV_VOLUMETBL Retrieve the Volume Modification

Table values

svmtp: points to the DX_SVMT structure that contains the
Speed/Volume Modification Table entries.

n Cautions

None.

returns contents of Speed or Volume Modification Table dx_getsvmt()

215-CD

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

/*
 * Global Variables
 */

main()
{
 DX_SVMT svmt;
 int dxxxdev, index;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Get the Current Volume Modification Table
 */
 memset(&svmt, 0, sizeof(DX_SVMT));
 if (dx_getsvmt(dxxxdev, SV_VOLUMETBL, &svmt) == -1){
 printf("Unable to Get the Current Volume");
 printf(" Modification Table\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 } else {
 printf("Volume Modification Table is:\n");
 for (index = 0; index < 10; index++) {
 printf("decrease[%d] = %d\n", index,
 svmt.decrease[index]);
 }

 printf("origin = %d\n", svmt.origin);

 for (index = 0; index < 10; index++) {
 printf("increase[%d] = %d\n", index,
 svmt.increase[index]);
 }
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*

dx_getsvmt() returns contents of Speed or Volume Modification Table

216-CD

 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_BADPROD • Function not supported on this board
EDX_SPDVOL • Must Specify either SV_SPEEDTBL or

SV_VOLUMETBL
EDX_SYSTEM • Windows NT system error - check errno

n See Also

• dx_addspddig()
• dx_addvoldig()
• dx_adjsv()
• dx_clrsvcond()
• dx_getcursv()
• dx_setsvcond()
• dx_setsvmt()
• "Speed and Volume Modification Tables" (Voice Features Guide for

Windows NT)
• DX_SVMT (Chapter 4. Voice Data Structures and Device Parameters)

initializes and activates PerfectCall Call Analysis dx_initcallp()

217-CD

Name: int dx_initcallp(chdev)
Inputs: int chdev • valid Dialogic channel device handle

0 • success
-1 • failure

Returns: srllib.h
dxxxlib.h

Category: PerfectCall Call Analysis

n Description

The dx_initcallp() function initializes and activates PerfectCall Call Analysis on
the channel identified by chdev. In addition, this function adds all tones used in
Call Analysis to the channel’s Global Tone Detection (GTD) templates.

To use PerfectCall Call Analysis, dx_initcallp() must be called prior to using
dx_dial() on the specified channel. If dx_dial() is called before initializing the
channel with dx_initcallp(), then Call Analysis will operate in Basic mode only
for that channel.

PerfectCall Call Analysis allows the application to detect three different types of
dial tone, two busy signals, ringback, and two fax or modem tones on the channel.
It is also capable of distinguishing between a live voice and an answering machine
when a call is connected. Parameters for these capabilities are downloaded to the
channel when dx_initcallp() is called.

The Voice Driver comes equipped with useful default definitions for each of the
signals mentioned above. The application can change these definitions through
the dx_chgdur(), dx_chgfreq(), and dx_chgrepcnt() functions. The
dx_initcallp() function takes whatever definitions are currently in force and uses
these definitions to initialize the specified channel.

Once a channel is initialized with the current tone definitions, these definitions
cannot be changed for that channel without deleting all tones (dx_deltones()) and
re-initializing with another call to dx_initcallp(). dx_deltones also disables
PerfectCall Call Analysis. Note, however, that dx_deltones() will erase all user-
defined tones from the channel (including any Global Tone Detection
information), and not just the PerfectCall Call Analysis tones.

dx_initcallp() initializes and activates PerfectCall Call Analysis

218-CD

Parameter Description

chdev: specifies the channel device handle.

n Example

#include <stdio.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 DX_CAP cap_s;
 int ddd, car;
 char *chnam, *dialstrg;

 chnam = "dxxxB1C1";
 dialstrg = "L1234";

 /*
 * Open channel
 */
 if ((ddd = dx_open(chnam, NULL)) == -1) {
 /* handle error */
 }

/*
 * Delete any previous tones
 */
 if (dx_deltones(ddd) < 0) {
 /* handle error */
 }

/*
 * Change Enhanced call progress default local dial tone
 */
 if (dx_chgfreq(TID_DIAL_LCL, 425, 150, 0, 0) < 0) {
 /* handle error */
 }

 /*
 * Change Enhanced call progress default busy cadence
 */
 if (dx_chgdur(TID_BUSY1, 550, 400, 550, 400) < 0) {
 /* handle error */
 }

 if (dx_chgrepcnt(TID_BUSY1, 4) < 0) {
 /* handle error */
 }

 /*
 * Now enable Enhanced call progress with above changed settings.
 */

initializes and activates PerfectCall Call Analysis dx_initcallp()

219-CD

 if (dx_initcallp(ddd)) {
 /* handle error */
 }

 /*
 * Set off Hook
 */
 if ((dx_sethook(ddd, DX_OFFHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 /*
 * Dial
 */
 if ((car = dx_dial(ddd, dialstrg,(DX_CAP *)&cap_s, DX_CALLP|EV_SYNC))==-1) {
 /* handle error */
 }

 switch(car) {
 case CR_NODIALTONE:
 printf(" Unable to get dial tone\n");
 break;

 case CR_BUSY:
 printf(" %s engaged\n", dialstrg);
 break;

 case CR_CNCT:
 printf(" Successful connection to %s\n", dialstrg);
 break;

 default:
 break;
 }

 /*
 * Set on Hook
 */
 if ((dx_sethook(ddd, DX_ONHOOK, EV_SYNC)) == -1) {
 /* handle error */
 }

 dx_close(ddd);
}

n Cautions

The channel must be idle.

n See Also

• dx_chgdur()
• dx_chgfreq()
• dx_chgrepcnt()

dx_initcallp() initializes and activates PerfectCall Call Analysis

220-CD

• dx_deltones()

opens a Voice device dx_open()

221-CD

Name: int dx_open(namep,oflags)
Inputs: char *namep • pointer to device name to open

int oflags • Reserved for future use
Returns: >0 to indicate valid Dialogic device handle if successful

-1 if failure
Includes: srllib.h

dxxxlib.h
Category: Device Management

n Description

The dx_open() function opens a Voice device and returns a unique Dialogic
device handle to identify the device. All subsequent references to the opened
device must be made using the handle until the device is closed. A device can be
opened more than once by any number of processes.

NOTE: The device handle returned by this function is Dialogic defined. It is not
a standard Windows NT file descriptor. Any attempts to use Windows
NT operating system commands such as read(), write(), or ioctl() will
produce unexpected results.

In applications that spawn child processes off a parent process, the device handle
is not inheritable by the child process. Make sure devices are opened in the child
process.

The function parameters are defined as follows:

Parameter Description

namep: points to an ASCIIZ string that contains the name of the valid
Dialogic device. These valid devices can be either boards or
channels.

oflags: is reserved for future use. This parameter should be set to
NULL.

n Cautions

Do not use the Windows NT open() function to open a Voice device.
Unpredictable results will occur.

dx_open() opens a Voice device

222-CD

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
main()
{
 int chdev; /* channel descriptor */
 .
 .
 .
 /* Open Channel */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }
 .
 .
}

n Errors

If this function returns -1 to indicate failure, check errno for one of the following
reasons:

EINVAL • Invalid Argument
EBADF • Invalid file descriptor
EINTR • A signal was caught
EIO • Error during a Windows NT STREAMS open

n See Also

• dx_close()

plays recorded voice data dx_play()

223-CD

Name: int dx_play(chdev,iottp,tptp,mode)
Inputs: int chdev • valid Dialogic channel device

handle
DX_IOTT *iottp • pointer to I/O Transfer Table

Structure
DV_TPT *tptp • pointer to Termination Parameter

Table Structure
unsigned short mode • asynchronous/synchronous playing

mode bit mask for this play session
Returns: 0 if success

-1 if failure
Includes: srllib.h

dxxxlib.h
Category: I/O

Mode: synchronous/asynchronous

n Description

The dx_play() function plays recorded voice data or transfers Analog Display
Services Interface (ADSI) data on a specified channel. The voice data may come
from any combination of data files, memory, or custom devices.

The order of play and the location of the voice data is specified in the DX_IOTT
structure pointed to by iottp. The DX_IOTT structure is described in Chapter 4.
Voice Data Structures and Device Parameters .

NOTE: For a single file synchronous play, dx_playf() is more convenient
because you do not have to set up a DX_IOTT structure. See the
dx_playf() function description for more information.

n Asynchronous Operation

To run this function asynchronously set the mode field to EV_ASYNC. When
running asynchronously, this function will return 0 to indicate it has initiated
successfully, and will generate a termination event (see below) to indicate
completion.

dx_play() plays recorded voice data

224-CD

Termination conditions for play are set using the DV_TPT structure. Play
continues until all data specified in DX_IOTT has been played, or until one of the
conditions specified in DV_TPT is satisfied.

When dx_play() terminates, the current channel’s status information, including
the reason for termination, can be accessed using Extended Attribute functions.

Termination of asynchronous play is indicated by a TDX_PLAY event.

After dx_play() terminates, use the ATDX_TERMMSK() function to determine
the reason for termination.

Use the SRL Event Management functions to handle the termination event. See
Appendix A for more information about the Event Management functions.

NOTE: The DX_IOTT structure must remain in scope for the duration of the
function if running asynchronously.

n Synchronous Operation

By default, this function runs synchronously, and will return a 0 to indicate that it
has completed successfully.

Termination conditions for play are set using the DV_TPT structure. Play
continues until all data specified in DX_IOTT has been played, or until one of the
conditions specified in DV_TPT is satisfied.

Termination of synchronous play is indicated by a return value of 0. After
dx_play() terminates, use the ATDX_TERMMSK() function to determine the
reason for termination.

n Analog Display Services Interface (ADSI) Protocol

The Analog Display Services Interface (ADSI) protocol is used to transmit data to
a display-based telephone that is connected to an analog loop start line. An ADSI
alert tone is used to verify that Dialogic hardware is connected to an ADSI
telephone and to alert the telephone that ADSI data will be transferred.

NOTE: Check with your telephone manufacturer to verify that your telephone is
a true ADSI-compliant device.

plays recorded voice data dx_play()

225-CD

Each time a new call is initiated on a channel, send the alert tone to alert the
telephone that ADSI data will be transferred.

The ADSI alert tone can be sent and acknowledged, and ADSI data can be
transferred using the dx_setparm() and dx_play() or dx_playf() functions. This
is accomplished by setting the voice channel parameter DXCH_DTINITSET to
DM_A in the dx_setparm() function and executing the dx_play() or dx_playf()
function with the PM_ADSIALERT define ORed in the mode parameter.

If the acknowledgment digit is not received from the telephone within 500 ms
following the end of the alert tone, the function will return a 0 but the termination
mask returned by ATDX_TERMMSK() will be TM_MAXTIME to indicate an
ADSI protocol error.

NOTE: The function will return a -1 if a failure is due to a general play error.

If the handshaking and transmission are successful, the function terminates
normally with a TM_EOD (End of data reached on playback) termination mask
returned by ATDX_TERMMSK() to indicate that the operation is complete.

To transfer ADSI data without an alert tone, use the dx_clrdigbuf() or
dx_getdig() function to ensure that there are no pending digits. Transfer ADSI
data using the dx_play() or dx_playf() function with the PM_ADSI define ORed
in the mode parameter.

If the transmission is successful, the function terminates normally with a
TM_EOD (End of data reached on playback) termination mask returned by
ATDX_TERMMSK() to indicate that the operation is complete.

The application is responsible for determining whether the message count
acknowledgement matches the number of messages that were transmitted and for
retransmitting any messages. Use the dx_getdig() function with DV_TPT
tp_termno set to DX_DIGTYPE to receive the DTMF string ’adx’ where ’x’ is the
message count acknowledgement digit (1 - 5).

NOTE: The ADSI data must conform to interface requirements described in
Bellcore Technical Reference TR-NWT-000030, Voiceband Data
Transmission Interface Generic Requirements.

For information about message requirements (how the data should be
displayed on the Customer Premise Equipment), see Bellcore Technical
Reference TR-NWT-001273, Generic Requirements for an SPCS to

dx_play() plays recorded voice data

226-CD

Customer Premises Equipment Data Interface for Analog Display
Services.

Each technical reference can be obtained from Bellcore by calling
1-800-521-CORE.

Example code for defining and playing an alert tone, receiving acknowledgement
of the alert tone, and transferring ADSI data is shown in Example 3.

The dx_play() function parameters are defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

iottp: points to the I/O Transfer Table Structure, DX_IOTT, which
sets the order in which and media from which the voice data
will be played. See5.1. Always Check Return Code in Voice
Programming for information about the DX_IOTT
structure.

tptp: points to the Termination Parameter Table Structure,
DV_TPT, which specifies termination conditions for
playing. Valid DV_TPT terminating conditions for
dx_play() are listed below:

DX_DIGTYPE • User-defined digit occurred

DX_MAXDTMF • Maximum number of digits received

DX_MAXSIL • Maximum silence

DX_MAXNOSIL • Maximum non-silence

DX_LCOFF • Loop current off

DX_IDDTIME • Inter-digit delay

DX_MAXTIME • Function time

DX_DIGMASK • Digit mask termination

DX_PMOFF • Pattern match silence off

DX_PMON • Pattern match silence on

DX_TONE • Tone-off or Tone-on detection

See Appendix A, which describes the Standard Runtime

plays recorded voice data dx_play()

227-CD

Parameter Description
Library, for information about this structure.

NOTE: In addition to DV_TPT terminations, the function
can fail due to maximum byte count, dx_stopch(),
or end of file. See ATDX_TERMMSK() for a
full list of termination reasons.

mode: defines the play mode and asynchronous/synchronous mode.
One or more of the play mode parameters listed below may
be selected in the bit mask for play mode combinations (see
Table 4).

Choose one only:

EV_ASYNC: Run dx_play() asynchronously.

EV_SYNC: Run dx_play() synchronously (default).

Choose one or more:

MD_ADPCM: Play using Adaptive Differential Pulse
Code Modulation encoding algorithm (4
bits per sample). Playing with ADPCM
is the default setting.

MD_PCM: Play using Pulse Code Modulation
encoding algorithm (8 bits per sample).

PM_ALAW Play using A-Law.

PM_TONE: Transmit a tone before initiating play. If
this mode is not selected, no tone will
be transmitted. No tone transmitted is
the default setting.

PM_SR6: Play using 6KHz sampling rate (6,000
samples per second).

PM_SR8: Play using 8KHz sampling rate (8,000
samples per second).

dx_play() plays recorded voice data

228-CD

Parameter Description

PM_ADSIALERT: Play using the ADSI protocol with an
alert tone preceding play. If ADSI
protocol mode is selected, it is not
necessary to select any other play
mode parameters. PM_ADSIALERT
should be ORed with the EV_SYNC
or EV_ASYNC parameter in the
mode parameter.

PM_ADSI: Play using the ADSI protocol without
an alert tone preceding play. If ADSI
protocol mode is selected, it is not
necessary to select any other play
mode parameters. If ADSI data will
be transferred, PM_ADSI should be
ORed with the EV_SYNC or
EV_ASYNC parameter in the mode
parameter.

NOTES: 1. The rate specified in the last play function will apply to the next
play function, unless the rate was changed in the parameter
DXCH_PLAYDRATE using dx_setparm().

2. Specifying PM_SR6 or PM_SR8 using dx_play() changes the
setting of the parameter DXCH_PLAYDRATE.
DXCH_PLAYDRATE can also be set and queried using
dx_setparm() and dx_getparm(). The default setting for
DXCH_PLAYDRATE is 6KHz.

3. Make sure data is played using the same encoding algorithm and
sampling rate used when the data was recorded.

4. MD_PCM can be used on D/12x or D/81A board.

5. The D/21E, D/41E, D/41ESC, D/160SC-LS, D/240SC, D/240SC-
T1, D/300SC-E1 and D/320SC boards enable the user to select
either A-Law or mu-Law encoding of data. The default on the
board is set to mu-Law and returns to mu-Law after each play. The
A-Law parameters must be passed each time the play function is
called. Enable A-Law playback by OR’ing the new play mode,

plays recorded voice data dx_play()

229-CD

Parameter Description
PM_ALAW.

Table 4 shows play mode selections when transmitting or not transmitting a tone
before initiating play. The first column of the table lists the two play features (tone
or no tone), and the first row lists each type of encoding algorithm (ADPCM or
PCM) and data-storage rate for each algorithm/sampling rate combination in
parenthesis (24 Kbps, 32 Kbps, 48 Kbps, or 64 Kbps).

Select the desired play feature in the first column of the table and look across that
row until the column containing the desired encoding algorithm and data-storage
rate is reached. The play modes that must be entered in the mode bit mask are
provided where the feature row and encoding algorithm/data-storage rate column
intersect. Parameters listed in { } are default settings and do not have to be
specified.

NOTE: If PM_ADSI play mode is selected (not shown in Table 4), the ADSI
protocol will be used to transfer ADSI data and it is not necessary to
select any other play mode parameters. PM_ADSI should be ORed with
the EV_SYNC or EV_ASYNC parameter in the mode parameter.

Table 4. Play Mode Selections

Feature(s)
ADPCM
(24 Kbps)

ADPCM
(32 Kbps)

PCM
(48 Kbps)

PCM
(64 Kbps)

ì Tone PM_TONE
PM_SR6
{MD_ADPCM
}

PM_TONE
PM_SR8
{MD_ADPCM
}

PM_TONE
PM_ALAW*
PM_SR6
MD_PCM

PM_TONE
PM_ALAW*
PM_SR8
MD_PCM

ì No Tone PM_SR6
{MD_ADPCM
}

PM_SR8
{MD_ADPCM
}

PM_SR6
MD_PCM

PM_SR8
MD_PCM

{ } = Default modes.
 * = Select if file was encoded using A-Law (supported by D/41ESC, D/160SC-LS,
D/240SC, D/240SC-T1, D/300SC-E1 and D/320SC boards only).

NOTE: dx_play() will run synchronously if you do not specify EV_ASYNC, or if

dx_play() plays recorded voice data

230-CD

you specify EV_SYNC (default).

n Cautions

Whenever dx_play() is called, its speed and volume is based on the most recent
adjustment made using dx_adjsv() or dx_setsvcond().

n Example 1: Using dx_play() in synchronous mode.

/* Play a voice file. Terminate on receiving 4 digits or at end of file*/
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
main()
{
 int chdev;
 DX_IOTT iott;
 DV_TPT tpt;
 DV_DIGIT dig;
 .
 .
 /* Open the device using dx_open(). Get channel device descriptor in
 * chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }
 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1; /* play till end of file */
 if((iott.io_fhandle = dx_fileopen("prompt.vox", O_RDONLY|O_BINARY))

== -1) {
 /* process error */
 }
 /* set up DV_TPT */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* only entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 4; /* terminate on four digits */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */
 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }
/* Now play the file */
 if (dx_play(chdev,&iott,&tpt,EV_SYNC) == -1) {
 /* process error */
 }
 /* get digit using dx_getdig() and continue processing. */
 .
 .
}

plays recorded voice data dx_play()

231-CD

n Example 2: Using dx_play() in asynchronous mode.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
#define MAXCHAN 24
int play_handler();
DX_IOTT prompt[MAXCHAN];
DV_TPT tpt;
DV_DIGIT dig;
main()
{
 int chdev[MAXCHAN], index, index1;
 char *chname;
 int i, srlmode, voxfd;
 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }
 /* initialize all the DX_IOTT structures for each individual prompt */
 .
 .
 /* Open the vox file to play; the file descriptor will be used
 * by all channels.
 */
 if ((voxfd = dx_fileopen("prompt.vox", O_RDONLY|O_BINARY)) == -1) {
 /* process error */
 }
/* For each channel, open the device using dx_open(), set up a DX_IOTT
 * structure for each channel, and issue dx_play() in asynchronous mode. */
 for (i=0; i<MAXCHAN; i++) {
 /* Set chname to the channel name, e.g., dxxxB1C1, dxxxB1C2,... */
 /* Open the device using dx_open(). chdev[i] has channel device
 * descriptor.
 */
 if ((chdev[i] = dx_open(chname,NULL)) == -1) {
 /* process error */
 }
 /* Use sr_enbhdlr() to set up handler function to handle play
 * completion events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_PLAY, play_handler) == -1) {
 /* process error */
 }
 /*
 * Set the DV_TPT structures up for MAXDTMF. Play until one digit is
 * pressed or the file is played
 */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* only entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 1; /* terminate on the first digit */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */
 prompt[i].io_type = IO_DEV|IO_EOT; /* play from file */
 prompt[i].io_bufp = 0;
 prompt[i].offset = 0;
 prompt[i].io_length = -1; /* play till end of file */
 prompt[i].io_nextp = NULL;
 prompt[i].io_fhandle = voxfd;
 /* play the data */
 if (dx_play(chdev[i],&prompt[i],&tpt,EV_ASYNC) == -1) {
 /* process error */

dx_play() plays recorded voice data

232-CD

 }
 }
/* Use sr_waitevt to wait for the completion of dx_play().
 * On receiving the completion event, TDX_PLAY, control is transferred
 * to the handler function previously established using sr_enbhdlr().
 */
 .
 .
}
int play_handler()
{
 long term;
 /* Use ATDX_TERMMSK() to get the reason for termination. */
 term = ATDX_TERMMSK(sr_getevtdev());
 if (term & TM_MAXDTMF) {
 printf("play terminated on receiving DTMF digit(s)\n");
 } else if (term & TM_EOD) {
 printf("play terminated on reaching end of data\n");
 } else {
 printf("Unknown termination reason: %x\n", term);
 }
 /* Kick off next function in the state machine model. */
 .
 .
 return 0;
}

n Example 3: Defining and playing an alert tone, receiving
acknowledgement of the alert tone, and using dx_play() to
transfer ADSI data.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
int parm;
DV_TPT tpt[2];
DV_DIGIT digit;
TN_GEN tngen;
DX_IOTT iott;
main(argc,argv)
 int argc;
 char* argv[];
{
 int chfd;
 char channame[12];
 parm = SR_POLLMODE;
 sr_setparm[SRL_DEVICE, SR_MODEID, &parm);
 /*
 * Open the channel using the command line arguments as input
 */
 sprintf(channame, "%sC%s", argv[1],argv[2]);
if ((chfd = dx_open(channame, NULL)) == -1) {
 printf("Board open failed on device %s\n",channame);
 exit(1);
}
 printf("Devices open and waiting\n");
 /*
 * Take the phone off-hook to talk to the ADSI phone
 * This assumes we are connected through a Skutch Box.
 */
 if (dx_sethook(chfd, DX_OFFHOOK, EV_SYNC) == -1) {
 printf("sethook failed\n");

plays recorded voice data dx_play()

233-CD

 while (1) {
 sleep(5);
 dx_clrdigbuf(chfd);
 printf("Digit buffer cleared ..\n);
 /*
 * Generate the alert tone
 */
iott.io_type =IO_DEV|IO_EOT;
 iott.io_fhandle = dx_fileopen("message.asc",O_RDONLY);
iott.io_length = -1;
 parm = DM_D
 if (dx_setparm (chfd, DXCH_DTINITSET, (void *)parm) ==-1){
 printf (“dx_setparm on DTINITSET failed\n”);
 exit(1);
 {
 if (dx_play(chfd,&iott,(DV_TPT *)NULL, PM_ADSIALERT|EV_SYNC) ==-1) {
 printf("dx_play on the ADSI file failed\n");
 exit(1);
 }
 }

 dx_close(chfd);
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_BADIOTT • Invalid DX_IOTT entry
EDX_BADTPT • Invalid DX_TPT entry
EDX_BUSY • Busy executing I/O function
EDX_SYSTEM • Windows NT system error - check errno

n See Also

Related Functions:

• dx_playf()
• dx_rec()
• dx_recf()
• dx_setparm(), dx_getparm()

Setting Speed and Volume:

• dx_adjsv()
• dx_setsvcond()

dx_play() plays recorded voice data

234-CD

Setting Order and Location for Voice Data:

• DX_IOTT (Chapter 4. Voice Data Structures and Device Parameters)

Retrieving and Handling Play Termination Events:

• Event Management functions (Standard Runtime Library Programmer’s
Guide for Windows NT and Appendix A of this guide)

• ATDX_TERMMSK()
• DV_TPT (Appendix A)

synchronously plays voice data dx_playf()

235-CD

Name: int dx_playf(chdev,fnamep,tptp,mode)
Inputs: int chdev • valid Dialogic channel device

handle
char *fnamep • pointer to name of file to play
DV_TPT *tptp • pointer to Termination Parameter

Table Structure
unsigned short mode • playing mode bit mask for this

play session
Returns: 0 if success

-1 if failure
Includes: srllib.h

dxxxlib.h
Category: Convenience

n Description

dx_playf() is a convenience function that synchronously plays voice data or
transfers ADSI data (using the ADSI protocol) from a single file.

dx_playf() operates the same as synchronous dx_play() if the DX_IOTT
structure specified a single file entry. dx_playf() is provided as a convenient way
to play back data or transfer ADSI data from a single file without having to
specify a DX_IOTT structure for only one file. The dx_playf() function opens
and closes the file specified by fnamep while the dx_play() function uses a
DX_IOTT structure that requires the application to open and close the file.

Parameter Description

fnamep: points to the file from which voice data will be played.

For information about other function arguments and transferring ADSI data, see
dx_play().

n Source Code

/***
 * NAME: int dx_playf(devd,filep,tptp,mode)
 * DESCRIPTION: This function opens and plays a
 * named file.
 * INPUTS: devd - channel descriptor
 * tptp - pointer to the termination control block
 * filep - pointer to file name

dx_playf() synchronously plays voice data

236-CD

 * OUTPUTS: Data is played.
 * RETURNS: 0 - success -1 - failure
 * CALLS: open() dx_play() close()
 * CAUTIONS: none.
 ***/
int dx_playf(devd,filep,tptp,mode)
 int devd;
 char *filep;
 DV_TPT *tptp;
 USHORT mode;
{
 DX_IOTT iott;
 int rval;

 /*
 * If Async then return Error
 * Reason: IOTT’s must be in scope for the duration of the play
 */
 if (mode & EV_ASYNC) {
 return(-1);
 }

 /* Open the File */
 if ((iott.io_fhandle = dx_fileopen(filep,O_RDONLY)|O-BINARY) == -1) {
 return -1;
 }

 /* Use dx_play() to do the Play */
 iott.io_type = IO_EOT | IO_DEV;
 iott.io_offset = (unsigned long)0;
 iott.io_length = -1;

 rval = dx_play(devd,&iott,tptp,mode);

 if (dx_fileclose(iott.io_fhandle) == -1) {
 return -1;
 }

 return rval;
}

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int chdev;
 DV_TPT tpt[2];

 /* Open the channel using dx_open(). Get channel device descriptor in
 * chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

synchronously plays voice data dx_playf()

237-CD

 /*
 * Set up the DV_TPT structures for MAXDTMF. Play until one digit is
 * pressed or the file has completed play
 */
 dx_clrtpt(tpt,1);
 tpt[0].tp_type = IO_EOT; /* only entry in the table */
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt[0].tp_length = 1; /* terminate on the first digit */
 tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */

 if (dx_playf(chdev,"weather.vox",tpt,EV_SYNC) == -1) {
 /* process error */
 }
 .
 .
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_BADIOTT • Invalid DX_IOTT entry
EDX_BADTPT • Invalid DX_TPT entry
EDX_BUSY • Busy executing I/O function
EDX_SYSTEM • Windows NT system error - check errno

n See Also

Related Functions:

• dx_rec()
• dx_recf()
• dx_setparm(), dx_getparm()

Setting Speed and Volume:

• dx_adjsv()
• dx_setsvcond()

Setting and Handling Play Termination:

• ATDX_TERMMSK()
• DV_TPT (Appendix A)

dx_playiottdata() plays back recorded voice data from multiple sources

238-CD

Name: short dx_playiottdata(chdev, iottp, tptp, xpbp, mode)
Inputs: int chdev • valid Dialogic channel device

handle
DX_IOTT *iottp • pointer to I/O transfer table
DV_TPT *tptp • pointer to termination

parameter block
DX_XPB *xpbp • pointer to I/O transfer

parameter block
unsigned short mode • play mode

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O function
Mode: synchronous or asynchronous

n Description

The dx_playiottdata() function plays back recorded voice data from multiple
sources on a channel. The file format for the files to be played is specified in the
wFileFormat field of the DX_XPB. Other fields in the DX_XPB describe the data
format. For files that include data format information (i.e. WAVE files), these
other fields are ignored.

Parameter Description

chdev channel device descriptor.

iottp the voice data may come from any combination
of data files, memory, or custom devices. The
order of playback and the location of the voice
data is specified in an array of DX_IOTT
structures pointed to by iottp

tptp pointer to Termination parameter table

xpbp pointer to I/O transfer parameter block

specifies the record mode:

mode PM_TONE
EV_SYNCH
EV_ASYNCH

play 200 ms audible tone
synchronous mode
asynchronous mode

plays back recorded voice data from multiple sources dx_playiottdata()

239-CD

n Cautions

1. All files specified in the DX_IOTT table must be of the same file format type
and match the file format indicated in DX_XPB.

2. All files specified in the DX_IOTT table must contain data of the type
described in DX_XPB.

3. When playing or recording VOX files, the data format is specified in
DX_XPB rather than through the mode argument of this function.

4. When set to play WAVE files, all other fields in the DX_XPB are ignored.

5. When set to play WAVE files, this function will fail if an unsupported data
format is attempted to be played. The supported data forms are:

• 6, 8, and 11KHz linear 8-bit PCM (WAVE_FORMAT_PCM)

• 6, 8, and 11KHz mu-law 8-bit PCM (WAVE_FORMAT_MULAW)

• 6, 8, and 11KHz a-law 8-bit PCM (WAVE_FORMAT_ALAW)

• 6 and 8KHz 4-bit Oki ADPCM
(WAVE_FORMAT_DIALOGIC_OKI_ADPCM)

n Example

#include "srllib.h"
#include “dxxxlib.h”

int chdev; /* channel descriptor */
int fd; /* file descriptor for file to be played */
DX_IOTT iott; /* I/O transfer table */
DV_TPT tpt; /* termination parameter table */
DX_XPB xpb; /* I/O transfer parameter block */
.
.
.
/* Open channel */
if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 printf("errno = %d\n",errno);
 exit(1);
}
/* Set to terminate play on 1 digit */
tpt.tp_type = IO_EOT;
tpt.tp_termno = DX_MAXDTMF;
tpt.tp_length = 1;
tpt.tp_flags = TF_MAXDTMF;
/* Open VOX file to play */
if ((fd = dx_fileopen("HELLO.VOX",O_RDONLY|O_BINARY)) == -1) {
 printf("File open error\n");
 exit(2);
}
/* Set up DX_IOTT */

dx_playiottdata() plays back recorded voice data from multiple sources

240-CD

iott.io_fhandle = fd;
iott.io_bufp = 0;
iott.io_offset = 0;
iott.io_length = -1;
iott.io_typ = IO_DEV | IO_EOT;
/*
 * Specify VOX file format for ADPCM at 8KHz
 */
xpb.wFileFormat = FILE_FORMAT_VOX;
xpb.wDataFormat = DATA_FORMAT_DIALOGIC_ADPCM;
xpb.nSamplesPerSec = DRT_8KHZ;
xpb.nBitsPerSample = 4;

/* Wait forever for phone to ring and go offhook */
if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(3);
}
/* Start playback */
if (dx_playiottdata(chdev,&iott,&tpt,&xpb,EV_SYNC)==-1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
}

n Errors

In asynchronous mode, function returns immediately and a TDX_PLAY event is
queued upon completion. Check ATDX_LASTTERM() for the termination
reason. If a failure occurs, then a TDX_ERROR event will be queued. Use
ATDV_LASTERR() to determine the reason for error.

In synchronous mode, if this function returns -1 to indicate failure, one of the
following reasons will be contained by ATDV_LASTERR() :

Equate Returned When

EDX_BUSY Channel is busy

EDX_XPBPARM Invalid DX_XPB setting

EDX_BADIOTT Invalid DX_IOTT setting

EDX_SYSTEM System I/O errors

EDX_BADWAVFILE Invalid WAV file

EDX_SH_BADCMD Unsupported command or WAV file format

n See Also

• dx_playwav()

• dx_playvox()

plays tone defined by TN_GEN template dx_playtone()

241-CD

Name: int dx_playtone(chdev,tngenp,tptp,mode)
Inputs: int chdev • valid Dialogic channel device

handle
TN_GEN *tngenp • pointer to the TN_GEN structure
DV_TPT*tptp • pointer to the DV_TPT structure
int mode • asynchronous/synchronous

Returns: 0 if success
-1 if failurewhat error

Includes: srllib.h
dxxxlib.h

Category: Global Tone Generation
Mode: asynchronous/synchronous

n Description

The dx_playtone() function plays tone defined by TN_GEN template, which
defines the frequency amplitude and duration of a single or dual frequency tone to
be played.

NOTE: The dx_playtone() function is necessary for supporting the R2MF
protocol in an application. See r2_playbsig() for information.

n Asynchronous Operation

To run this function asynchronously set the mode field to EV_ASYNC. When
running asynchronously, this function will return 0 to indicate it has initiated
successfully, and will generate a termination event (see below) to indicate
completion.

Set termination conditions using the DV_TPT structure. This structure is pointed
to by the tptp parameter described below.

Termination of this function is indicated by a TDX_PLAYTONE event.

Use the SRL Event Management functions to handle the termination event. See
Appendix A for more information about the Event Management functions.

After dx_playtone() terminates, use the ATDX_TERMMSK() function to
determine the reason for termination.

dx_playtone() plays tone defined by TN_GEN template

242-CD

n Synchronous Operation

By default, this function runs synchronously, and will return a 0 to indicate that it
has completed successfully.

Set termination conditions using the DV_TPT structure. This structure is pointed
to by the tptp parameter described below.

Termination of synchronous play is indicated by a return value of 0.

After dx_playtone() terminates, use the ATDX_TERMMSK() function to
determine the reason for termination.

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

tngenp: points to the TN_GEN template structure, which defines
the frequency, amplitude and duration of a single or dual
frequency tone. See Chapter 4. Voice Data Structures and
Device Parameters for a full description of this template.
dx_bldtngen() can be used to set up the structure.

tptp: points to the DV_TPT data structure, which specifies one
of the following terminating conditions for this function:

DX_DIGTYPE • Digit termination for user-defined
tone

DX_MAXDTMF • Maximum number of digits received

DX_MAXSIL • Maximum silence

DX_MAXNOSIL • Maximum non-silence

DX_LCOFF • Loop current off

DX_IDDTIME • Inter-digit delay

DX_MAXTIME • Function time

DX_DIGMASK • Digit mask termination

DX_PMOFF • Pattern match silence off

DX_PMON • Pattern match silence on

DX_TONE • Tone-off or Tone-on detection

plays tone defined by TN_GEN template dx_playtone()

243-CD

Parameter Description

See Appendix A, which describes the Standard Runtime
Library, for information about this structure.

mode: specifies whether to run this function asynchronously or
synchronously. Set to one of the following:

EV_ASYNC: Run dx_playtone() asynchronously.

EV_SYNC: Run dx_playtone() synchronously
(default).

n Cautions

1. The channel must be idle when calling this function.

2. If the tone generation template contains an invalid tg_dflag, or the
specified amplitude or frequency is outside the valid range,
dx_playtone() will generate a TDX_ERROR event if asynchronous, or
 -1 if synchronous.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define TID_1 101

main()
{
 TN_GEN tngen;
 DV_TPT tpt[5];
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*

dx_playtone() plays tone defined by TN_GEN template

244-CD

 * Describe a Simple Dual Tone Frequency Tone of 950-
 * 1050 Hz and 475-525 Hz using leading edge detection.
 */
 if (dx_blddt(TID_1, 1000, 50, 500, 25, TN_LEADING) == -1) {
 printf("Unable to build a Dual Tone Template\n");
 }

 /*
 * Bind the Tone to the Channel
 */
 if (dx_addtone(dxxxdev, NULL, 0) == -1) {
 printf("Unable to Bind the Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Enable Detection of ToneId TID_1
 */
 if (dx_enbtone(dxxxdev, TID_1, DM_TONEON | DM_TONEOFF) == -1) {
 printf("Unable to Enable Detection of Tone %d\n", TID_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Build a Tone Generation Template.
 * This template has Frequency1 = 1140,
 * Frequency2 = 1020, amplitute at -10dB for
 * both frequencies and duration of 100 * 10 msecs.
 */
 dx_bldtngen(&tngen, 1140, 1020, -10, -10, 100);

 /*
 * Set up the Terminating Conditions
 */
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_TONE;
 tpt[0].tp_length = TID_1;
 tpt[0].tp_flags = TF_TONE;
 tpt[0].tp_data = DX_TONEON;

 tpt[1].tp_type = IO_CONT;
 tpt[1].tp_termno = DX_TONE;
 tpt[1].tp_length = TID_1;
 tpt[1].tp_flags = TF_TONE;
 tpt[1].tp_data = DX_TONEOFF;

 tpt[2].tp_type = IO_EOT;
 tpt[2].tp_termno = DX_MAXTIME;
 tpt[2].tp_length = 6000;
 tpt[2].tp_flags = TF_MAXTIME;

 if (dx_playtone(dxxxdev, &tngen, tpt, EV_SYNC) == -1){
 printf("Unable to Play the Tone\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));

plays tone defined by TN_GEN template dx_playtone()

245-CD

 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid parameter
EDX_BADPROD • Function not supported on this board
EDX_BADTPT • Invalid DV_TPT entry
EDX_BUSY • Busy executing I/O function
EDX_AMPLGEN • Invalid amplitude value in TN_GEN structure
EDX_FREQGEN • Invalid frequency component in TN_GEN structure
EDX_FLAGGEN • Invalid tn_dflag field in TN_GEN structure
EDX_SYSTEM • Windows NT system error - check errno

n See Also

Related to Tone Generation:

• dx_bldtngen()
• TN_GEN (Chapter 4. Voice Data Structures and Device Parameters)
• "Global Tone Generation" (Voice Features Guide for Windows NT)

R2MF functions:

dx_playtone() plays tone defined by TN_GEN template

246-CD

• r2_creatfsig()
• r2_playbsig()

Handling and Retrieving dx_playtone() Termination Events:

• Event Management functions (Standard Runtime Library Programmer’s
Guide for Windows NT and Appendix A)

• DV_TPT (Appendix A)
• ATDX_TERMMSK()

plays voice data stored in a single VOX file dx_playvox()

247-CD

Name: SHORT dx_playvox(chdev, filenamep, tptp, xpbp, mode)
Inputs: int chdev • valid Dialogic channel device

handle
char *filenamep • pointer to name of file to play
DV_TPT *tptp • pointer to termination

parameter block
DX_XPB *xpbp • pointer to I/O transfer

parameter block
unsigned short mode • play mode

Returns: 0 if successful
-1 if failure

Includes: dxxxlib.h
Category: Convenience function

Mode: synchronous

n Description

The dx_playvox() convenience function plays voice data stored in a single VOX
file. If xpbp is set to NULL, it will interpret the data as 6KHz linear ADPCM.

Parameter Description

chdev Channel device descriptor

tcbp Pointer to termination parameter table

filenamep Pointer to name of file to play

xpbp Pointer to I/O transfer parameter block (See the DX_XPB data
structure)

mode specifies the play mode:

PM_TONE play 200 ms audible tone
EV_SYNC synchronous operation

(must be specified)

NOTE: Both PM_TONE and EV_SYNC can be specified by
ORing the two values.

dx_playvox() plays voice data stored in a single VOX file

248-CD

n Cautions

When playing or recording VOX files, the data format is specified in DX_XPB
rather than through the dl_stprm() function.

n Example

#include "srllib.h"
#include “dxxxlib.h”

int chdev; /* channel descriptor */
DV_TPT tpt; /* termination parameter table */.
.
.

/* Open channel */
if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 printf("errno = %d\n",errno);
 exit(1);
}
/* Set to terminate play on 1 digit */
tpt.tp_type = IO_EOT;
tpt.tp_termno = DX_MAXDTMF;
tpt.tp_length = 1;
tpt.tp_flags = TF_MAXDTMF;
/* Wait forever for phone to ring and go offhook */
if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(3);
}

/* Start 6KHz ADPCM playback */
if (dx_playvox(chdev,&tpt,"HELLO.VOX",NULL,0) == -1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
}

n Errors

If this function returns -1 to indicate failure, one of the following reasons will be
contained by ATDV_LASTERR():

Equate Returned When

EDX_BUSY Channel is busy

EDX_XPBPARM Invalid DX_XPB setting

EDX_BADIOTT Invalid DX_IOTT setting

EDX_SYSTEM System I/O errors

EDX_BADWAVFILE Invalid WAV file

plays voice data stored in a single VOX file dx_playvox()

249-CD

Equate Returned When

EDX_SH_BADCMD Unsupported command or WAV file format

n See Also

• dx_playiottdata()
• dx_playwav()

dx_playwav() plays voice data stored in a single WAVE file

250-CD

Name: SHORT dx_playwav(chdev, filenamep, tptp, mode)
Inputs: int chdev • valid Dialogic channel device

handle
char *filenamep • pointer to name of file to play
DV_TPT*tptp • pointer to termination

parameter block
unsigned short mode • play mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Convenience function
Mode: synchronous

n Description

The dx_playwav() convenience function plays voice data stored in a single
WAVE file. This function calls dx_playiottdata().

The function does not specify a DX_XPB stucture because the WAVE file
contains the necessary format information.

Parameter Description

chdev Channel device descriptor

tcbp Pointer to termination parameter table

filenamep Pointer to name of file to play

mode specifies the play mode:

PM_TONE play 200 ms audible tone
EV_SYNC synchronous operation

(must be specified)

NOTE: Both PM_TONE and EV_SYNC can be specified
by ORing the two values.

plays voice data stored in a single WAVE file dx_playwav()

251-CD

n Cautions

This function fails when an unsupported data waveform attempts to play. The
supported waveforms are:

• 6, 8, and 11KHz linear 8-bit PCM (WAVE_FORMAT_PCM)

• 6, 8, and 11KHz mu-law 8-bit PCM (WAVE_FORMAT_MULAW)

• 6, 8, and 11KHz a-law 8-bit PCM (WAVE_FORMAT_ALAW)

• 6 and 8KHz 4-bit Oki ADPCM
(WAVE_FORMAT_DIALOGIC_OKI_ADPCM)

n Example

#include "srllib.h"
#include “dxxxlib.h”

int chdev; /* channel descriptor */
DV_TPT tpt; /* termination parameter table */
.
.
.

/* Open channel */
if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 printf("errno = %d\n",errno);
 exit(1);
}
/* Set to terminate play on 1 digit */
tpt.tp_type = IO_EOT;
tpt.tp_termno = DX_MAXDTMF;
tpt.tp_length = 1;
tpt.tp_flags = TF_MAXDTMF;
/* Wait forever for phone to ring and go offhook */
if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(3);
}
/* Start playback */
if (dx_playwav(chdev,&tpt,"HELLO.WAV",EV_SYNC) == -1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
}

n Errors

If this function returns -1 to indicate failure, one of the following reasons will be
contained by ATDV_LASTERR():

dx_playwav() plays voice data stored in a single WAVE file

252-CD

Equate Returned When

EDX_BUSY Channel is busy

EDX_XPBPARM Invalid DX_XPB setting

EDX_BADIOTT Invalid DX_IOTT setting

EDX_SYSTEM System I/O errors

EDX_BADWAVFILE Invalid WAV file

EDX_SH_BADCMD Unsupported command or WAV file format

n See Also

• dx_playiottdata()
• dx_playvox()

records voice data from a single channel dx_rec()

253-CD

Name: int dx_rec(chdev,iottp,tptp,mode)
Inputs: int chdev • valid Dialogic channel device

handle
DX_IOTT *iottp • pointer to I/O Descriptor Table
DV_TPT *tptp • pointer to Termination

Parameter Table Structure
unsigned short mode • asynchronous/synchronous

setting and recording mode bit
mask for this record session

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O
Mode: synchronous/asynchronous

n Description

The dx_rec() function records voice data from a single channel. The data may be
recorded to a combination of data files, memory, or custom devices.

The order in which voice data is recorded is specified in the DX_IOTT structure.
The DX_IOTT structure must remain in scope for the duration of the function if
running asynchronously.

After dx_rec() is called, recording continues until dx_stopch() is called, the data
requirements specified in the DX_IOTT are fulfilled, or until one of the
conditions for termination in the DV_TPT is satisfied. When dx_rec() terminates,
the current channel’s status information, including the reason for termination, can
be accessed using Extended Attribute functions.

NOTE: For a single file synchronous record, dx_recf() is more convenient
because you do not have to set up a DX_IOTT structure. See the function
description of dx_recf() for information.

n Asynchronous Operation

To run this function asynchronously set the mode field to EV_ASYNC. When
running asynchronously, this function will return 0 to indicate it has initiated

dx_rec() records voice data from a single channel

254-CD

successfully, and will generate a termination event (see below) to indicate
completion.

Set termination conditions using the DV_TPT structure. This structure is pointed
to by the tptp parameter described below.

Termination of asynchronous recording is indicated by a TDX_RECORD event.

Use the SRL Event Management functions to handle the termination event. See
Appendix A for more information about the Event Management functions.

After dx_rec() terminates, use the ATDX_TERMMSK() function to determine
the reason for termination.

n Synchronous Operation

By default, this function runs synchronously, and will return a 0 to indicate that it
has completed successfully.

Set termination conditions using the DV_TPT structure. This structure is pointed
to by the tptp parameter described below. After dx_rec() terminates, use the
ATDX_TERMMSK() function to determine the reason for termination.

The function parameters are defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

iottp: points to the I/O Transfer Table Structure, DX_IOTT, which
specifies the order in which and media onto which the voice
data will be recorded. This structure is defined in Chapter 4.
Voice Data Structures and Device Parameters and must remain
in scope for the duration of the function if using
asynchronously.

tptp: points to the Termination Parameter Table Structure, DV_TPT,
which specifies termination conditions for recording. Valid
termination conditions for this function are listed below:

DX_DIGTYPE • Digit termination for user defined tone

records voice data from a single channel dx_rec()

255-CD

Parameter Description

DX_MAXDTMF • Maximum number of digits received

DX_MAXSIL • Maximum silence

DX_MAXNOSIL • Maximum non-silence

DX_LCOFF • Loop current off

DX_IDDTIME • Inter-digit delay

DX_MAXTIME • Function time

DX_DIGMASK • Digit mask termination

DX_PMOFF • Pattern match silence off

DX_PMON • Pattern match silence on

DX_TONE • Tone-off or Tone-on detection

See Appendix A, which describes the Standard Runtime
Library, for information about this structure.

NOTE: In addition to DV_TPT terminations, the function can
fail due to maximum byte count, dx_stopch(), or end
of file. See ATDX_TERMMSK() for a full list of
termination reasons.

mode: defines the recording mode. One or more of the values listed
below may be selected in the bit mask (see Table 5 for record
mode combinations).

Choose one only:

EV_ASYNC: Run dx_rec() asynchronously.

EV_SYNC: Run dx_rec() synchronously (default).

Choose one or more:

MD_ADPCM: Record using Adaptive Differential Pulse
Code Modulation encoding algorithm (4 bits
per sample). Recording with ADPCM is the
default setting.

dx_rec() records voice data from a single channel

256-CD

Parameter Description

MD_PCM: Record using Pulse Code Modulation
encoding algorithm (8 bits per sample).

MD_GAIN: Record with Automatic Gain Control
(AGC). Recording with AGC is the default
setting.

MD_NOGAIN: Record without AGC.

RM_ALAW: Record using A-Law.

RM_TONE: Transmit a tone before initiating record. If
this mode is not selected, no tone will be
transmitted (the default setting).

RM_SR6: Record using 6KHz sampling rate (6,000
samples per second). This is the default
setting.

RM_SR8: Record using 8KHz sampling rate (8,000
samples per second).

NOTES: 1. The rate specified in the last record function will apply to the next
record function, unless the rate was changed in the parameter
DXCH_RECRDRATE using dx_setparm().

2. Specifying RM_SR6 or RM_SR8 in mode changes the setting of
the parameter DXCH_RECRDRATE. DXCH_RECRDRATE can
also be set and queried using dx_setparm() and dx_getparm().
The default setting for DXCH_RECRDRATE is 6KHz.

3. If both MD_ADPCM and MD_PCM are set, MD_PCM will take
precedence. If both MD_GAIN and MD_NOGAIN are set,
MD_NOGAIN will take precedence. If both RM_TONE and
NULL are set, RM_TONE takes precedence. If both RM_SR6 and
RM_SR8 are set, RM_SR6 will take precedence.

4. MD_PCM and MD_NOGAIN can be used on D/12x or D/81A
boards.

records voice data from a single channel dx_rec()

257-CD

Parameter Description

5. When playing pre-recorded data, make sure it is played using the
same encoding algorithm and sampling rate used when the data was
recorded.

6. dx_rec() will run synchronously if you do not specify
EV_ASYNC, or if you specify EV_SYNC (default).

7. The D/21E, D/41E, D/41ESC, D/160SC-LS, D/240SC, D/240SC-
T1, D/300SC-E1 and D/320SC boards enable the user to select
either A-Law or mu-Law encoding of data. The default on the
board is set to mu-Law and returns to mu-Law after each record.
The A-Law parameters must be passed each time the record
function is called. Enable A-Law record by OR’ing the new record,
RM_ALAW.

Table 5 shows recording mode selections. The first column of the table lists all
possible combinations of record features, and the first row lists each type of
encoding algorithm (ADPCM or PCM) and the data-storage rate for each
algorithm/sampling rate combination in parenthesis (24 Kbps, 32 Kbps, 48 Kbps,
or 64 Kbps).

Select the desired record feature in the first column of the table and move across
that row until the column containing the desired encoding algorithm and
data-storage rate is reached. The record modes that must be entered in dx_rec()
are provided where the features row, and encoding algorithm/data-storage rate
column intersect. Parameters listed in { } are default settings and do not have to
be specified.

dx_rec() records voice data from a single channel

258-CD

Table 5. Record Mode Selections

Feature
ADPCM
(24 Kbps)

ADPCM
(32 Kbps)

PCM
(48 Kbps)

PCM
(64 Kbps)

ì AGC
ì No Tone

RM_SR6
{MD_ADPCM
}
{MD_GAIN}

RM_SR8
{MD_ADPCM
}
{MD_GAIN}

RM_SR6
RM_ALAW*
MD_PCM
{MD_GAIN}

RM_SR8
RM_ALAW*
MD_PCM
{MD_GAIN}

ì No AGC
ì No Tone

MD_NOGAIN
RM_SR6
{MD_ADPCM
}

MD_NOGAIN
RM_SR8
{MD_ADPCM
}

MD_NOGAI
N
RM_SR6
MD_PCM

MD_NOGAIN
RM_SR8
MD_PCM

ì AGC
ì Tone

RM_TONE
RM_SR6
{MD_ADPCM
}
{MD_GAIN}

RM_TONE
RM_SR8
{MD_ADPCM
}
{MD_GAIN}

RM_TONE
RM_ALAW*
RM_SR6
MD_PCM
{MD_GAIN}

RM_TONE
RM_ALAW*

RM_SR8
MD_PCM
{MD_GAIN}

ì No AGC
ì Tone

MD_NOGAIN
RM_TONE
RM_SR6
{MD_ADPCM
}

MD_NOGAIN
RM_TONE
RM_SR8
{MD_ADPCM
}

MD_NOGAI
N
MD_PCM
RM_SR6
RM_TONE
RM_ALAW*

MD_NOGAIN
MD_PCM
RM_SR8
RM_TONE
RM_ALAW*

{ } = Default modes.
 * = Select if A-Law encoding is required (supported on D/41ESC, D/160SC-LS, D/240SC,
D/240SC-T1, D/300SC-E1 and D/320SC boards only).

NOTE: dx_rec() will run synchronously if you do not specify EV_ASYNC, or if
you specify EV_SYNC (default).

n Cautions

None.

records voice data from a single channel dx_rec()

259-CD

n Example 1: Using dx_rec() in synchronous mode

#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
#define MAXLEN 10000
main()
{
 DV_TPT tpt;
 DX_IOTT iott[2];
 int chdev;
 char basebufp[MAXLEN];
 /*
 * open the channel using dx_open()
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }
 /*
 * Set up the DV_TPT structures for MAXDTMF
 */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* last entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 1; /* terminate on the first digit */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */
 /*
 * Set up the DX_IOTT. The application records the voice data to memory
 * allocated by the user.
 */
 iott[0].io_type = IO_MEM|IO_CONT; /* Record to memory */
 iott[0].io_bufp = basebufp; /* Set up pointer to buffer */
 iott[0].io_offset = 0; /* Start at beginning of buffer */
 iott[0].io_length = MAXLEN; /* Record 10,000 bytes of voice data */
 iott[1].io_type = IO_DEV|IO_EOT; /* Record to file, last DX_IOTT
 * entry */
 iott[1].io_bufp = 0; /* Set up pointer to buffer */
 iott[1].io_offset = 0; /* Start at beginning of buffer */
 iott[1].io_length = MAXLEN; /* Record 10,000 bytes of voice
 * data */
 if((iott[1].io_fhandle = dx_fileopen("file.vox",
 O_RDWR|O_CREAT|O_TRUNC|O_BINARY,0666)) == -1) {
 /* process error */
 }
 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }
 if (dx_rec(chdev,&iott[0],&tpt,RM_TONE|EV_SYNC) == -1) {
 /* process error */
 }
 /* Analyze the data recorded */
 .
 .
}

n Example 2: Using dx_rec() in asynchronous mode

#include <stdio.h>
#include <fcntl.h>

dx_rec() records voice data from a single channel

260-CD

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
#define MAXLEN 10000
#define MAXCHAN 24
int record_handler();
DV_TPT tpt;
DX_IOTT iott[MAXCHAN];
int chdev[MAXCHAN];
char basebufp[MAXCHAN][MAXLEN];
main()
{
 int i, srlmode;
 char *chname;
 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }
/* Start asynchronous dx_rec() on all the channels. */
 for (i=0; i<MAXCHAN; i++) {
 /* Set chname to the channel name, e.g., dxxxB1C1, dxxxB1C2,... */
 /*
 * open the channel using dx_open()
 */
 if ((chdev[i] = dx_open(chname,NULL)) == -1) {
 /* process error */
 }
 /* Using sr_enbhdlr(), set up handler function to handle record
 * completion events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_RECORD, record_handler) == -1) {
 /* process error */
 }
 /*
 * Set up the DV_TPT structures for MAXDTMF
 */
 dx_clrtpt(&tpt,1);
 tpt.tp_type = IO_EOT; /* last entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 1; /* terminate on the first digit */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */
 /*
 * Set up the DX_IOTT. The application records the voice data to memory
 * allocated by the user.
 */
 iott[i].io_type = IO_MEM|IO_EOT; /* Record to memory, last DX_IOTT
 * entry */
 iott[i].io_bufp = basebufp[i]; /* Set up pointer to buffer */
 iott[i].io_offset = 0; /* Start at beginning of buffer */
 iott[i].io_length = MAXLEN; /* Record 10,000 bytes voice data */
 /* clear previously entered digits */
 if (dx_clrdigbuf(chdev) == -1) {
 /* process error */
 }

 /* Start asynchronous dx_rec() on the channel */
 if (dx_rec(chdev[i],&iott[i],&tpt,RM_TONE|EV_ASYNC) == -1) {
 /* process error */
 }
 }
/* Use sr_waitevt to wait for the completion of dx_rec().
 * On receiving the completion event, TDX_RECORD, control is transferred
 * to a handler function previously established using sr_enbhdlr().
 */

records voice data from a single channel dx_rec()

261-CD

 .
 .
}

int record_handler()
{
 long term;
 /* Use ATDX_TERMMSK() to get the reason for termination. */
 term = ATDX_TERMMSK(sr_getevtdev());
 if (term & TM_MAXDTMF) {
 printf("record terminated on receiving DTMF digit(s)\n");
 } else if (term & TM_NORMTERM) {
 printf("normal termination of dx_rec()\n");
 } else {
 printf("Unknown termination reason: %x\n", term);
 }
 /* Kick off next function in the state machine model. */
 .
 .
 return 0;
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADDEV Invalid Device Descriptor

EDX_BADPARM Invalid Parameter

EDX_BADIOTT Invalid DX_IOTT entry

EDX_BADTPT Invalid DX_TPT entry

EDX_BUSY Busy executing I/O function

EDX_SYSTEM Windows NT system error - check errno

n See Also

Related Functions:

• dx_recf()
• dx_play()
• dx_playf()
• dx_setparm(), dx_getparm()

Setting Order and Location for Voice Data:

• DX_IOTT (Chapter 4. Voice Data Structures and Device Parameters)

dx_rec() records voice data from a single channel

262-CD

Retrieving and Handling Record Termination Events:

• Event Management functions (Standard Runtime Library Programmer’s
Guide for Windows NT and Appendix A of this guide)

• ATDX_TERMMSK()
• DV_TPT (Appendix A)

permits voice data to be recorded dx_recf()

263-CD

Name: int dx_recf(chdev,fnamep,tptp,mode)
Inputs: int chdev • valid Dialogic channel device

handle
char *fnamep • pointer to file to record to
DV_TPT *tptp • pointer to Termination Parameter

Table Structure
unsigned short mode • recording mode bit mask for this

record session
Returns: 0 if success

-1 if failure
Includes: srllib.h

dxxxlib.h
Category: Convenience

Mode: synchronous/Asynchronous

n Description

The dx_recf() function permits voice data to be recorded from a channel to a
single file. dx_recf() performs the same as synchronous dx_rec() does with a
DX_IOTT structure that specified a single file. dx_recf() is provided as a
convenient method for recording to one file without having to specify a DX_IOTT
structure. dx_recf() opens and closes the file pointed to by fnamep while
dx_rec() uses a DX_IOTT structure that requires the application to open the file.

Parameter Description

fnamep: points to the file from to which voice data will be
recorded.

For information about other function arguments and other function information,
see dx_rec().

n Source Code

/***
 * NAME: int dx_recf(devd,filep,tptp,mode)
 * DESCRIPTION: Record data to a file
 * INPUTS: devd - channel descriptor
 * tptp - TPT pointer
 * filep - ASCIIZ string for name of file to read into
 * mode - tone initiation flag
 * OUTPUTS: Data stored in file, status in CSB pointed to by csbp

dx_recf() permits voice data to be recorded

264-CD

 * RETURNS: 0 or -1 on error
 * CALLS: open() dx_rec() close()
 * CAUTIONS: none.
**
*/
int dx_recf(devd,filep,tptp,mode)
 int devd;
 char *filep;
 DV_TPT *tptp;
 USHORT mode;
{
 int rval;
 DX_IOTT iott;
 /*
 * If Async then return Error
 * Reason: IOTT’s must be in scope for the duration of the record
 */
 if (mode & EV_ASYNC) {
 return(-1);
 }

 /* Open the File */
 if ((iott.io_fhandle = dx_fileopen(filep,(O_WRONLY|O_CREAT|O_TRUNC),0666)) == -
 1) {
 return -1;
 }

 /* Use dx_rec() to do the record */
 iott.io_type = IO_EOT | IO_DEV;
 iott.io_offset = (long)0;
 iott.io_length = -1;

 rval = dx_rec(devd,&iott,tptp,mode);

 if (dx_fileclose(iott.io_fhandle) == -1) {
 return -1;
 }

 return rval;
}

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int chdev;
 long termtype;
 DV_TPT tpt[2];

 /* Open the channel using dx_open(). Get channel device descriptor in
 * chdev
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */

permits voice data to be recorded dx_recf()

265-CD

 }

 /* Set the DV_TPT structures up for MAXDTMF and MAXSIL */
 dx_clrtpt(tpt,2);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt[0].tp_length = 1; /* terminate on the first digit */
 tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */

 /*
 * If the initial silence period before the first non-silence period
 * exceeds 4 seconds then terminate. If a silence period after the
 * first non-silence period exceeds 2 seconds then terminate.
 */
 tpt[1].tp_type = IO_EOT; /* last entry in the table */
 tpt[1].tp_termno = DX_MAXSIL; /* Maximum silence */
 tpt[1].tp_length = 20; /* terminate on 2 seconds of
 * continuous silence */
 tpt[1].tp_flags = TF_MAXSIL|TF_SETINIT; /* Use the default flags and
 * initial silence flag */
 tpt[1].tp_data = 40; /* Allow 4 seconds of initial
 * silence */
 if (dx_recf(chdev,"weather.vox",tpt,RM_TONE) == -1) {
 /* process error */
 }
 termtype = ATDX_TERMMSK(chdev); /* investigate termination reason */
 if (termtype & TM_MAXDTMF) {
 /* process DTMF termination */
 }
 . . .
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM Invalid Parameter

EDX_BADIOTT Invalid DX_IOTT entry

EDX_BADTPT Invalid DX_TPT entry

EDX_BUSY Busy executing I/O function

EDX_SYSTEM Windows NT system error - check errno

n See Also

Related Functions:

• dx_rec()
• dx_play()

dx_recf() permits voice data to be recorded

266-CD

• dx_playf()
• dx_setparm(), dx_getparm()

Setting and Handling Record Termination:

• ATDX_TERMMSK()
• DV_TPT (Appendix A)

records voice data to multiple destinations, dx_reciottdata()

267-CD

Name: short dx_reciottdata(chdev, iottp, tptp, xpbp, mode)
Inputs: int chdev • valid Dialogic channel device

handle
DX_IOTT *iottp • pointer to I/O Transfer Table
DV_TPT *tptp • pointer to Termination

Parameter Table Stucture
DX_XPB *xpbp • pointer to I/O Transfer

Parameter block
unsigned short mode • play mode

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O function
Mode: synchronous or asynchronous

n Description

The dx_reciottdata() function records voice data to multiple destinations, a
combination of data files, memory, or custom devices.

Parameter Description

chdev channel device descriptor.

iottp Pointer to DX_IOTT table that specifies the order
and media onto which the voice data will be
recorded.

tptp pointer to Termination Parameter Table structure

xpbp pointer to I/O transfer parameter block

mode specifies the record mode:

PM_TONE play 200 ms audible tone
EV_SYNCH synchronous mode
EV_ASYNCH asynchronous mode

dx_reciottdata() records voice data to multiple destinations,

268-CD

n Cautions

1. All files specified in the DX_IOTT table will be of the file format described in
DX_XPB.

2. All files recorded to will have the data encoding and rate as described in
DX_XPB.

3. When playing or recording VOX files, the data format is specified in
DX_XPB rather than through the dl_stprm() function.

n Example

#include "srllib.h"
#include “dxxxlib.h”

int chdev; /* channel descriptor */
int fd; /* file descriptor for file to be played */
DX_IOTT iott; /* I/O transfer table */
DV_TPT tpt; /* termination parameter table */
DX_XPB xpb; /* I/O transfer parameter block */

.

.

/* Open channel */
if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 printf("errno = %d\n",errno);
 exit(1);
}
/* Set to terminate play on 1 digit */
tpt.tp_type = IO_EOT;
tpt.tp_termno = DX_MAXDTMF;
tpt.tp_length = 1;
tpt.tp_flags = TF_MAXDTMF;
/* Open file */
if ((fd = dx_fileopen("MESSAGE.VOX",O_RDWR|O_BINARY)) == -1) {
 printf("File open error\n");
 exit(2);
}
/* Set up DX_IOTT */
iott.io_fhandle = fd;
iott.io_bufp = 0;
iott.io_offset = 0;
iott.io_length = -1;
iott.io_typ = IO_DEV | IO_EOT;

/*
 * Specify VOX file format for PCM at 8KHz.
 */
xpb.wFileFormat = FILE_FORMAT_VOX;
xpb.wDataFormat = DATA_FORMAT_PCM;
xpb.nSamplesPerSec = DRT_8KHZ;
xpb.nBitsPerSample = 8;

/* Wait forever for phone to ring and go offhook */
if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));

records voice data to multiple destinations, dx_reciottdata()

269-CD

 exit(3);
}
/* Play intro message */
if (dx_playwav(chdev,&tpt,"HELLO.WAV",EV_SYNC) == -1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
}

/* Start recording */
if (dx_reciottdata(chdev,&iott,&tpt,&xpb,PM_TONE|EV_SYNC) == -1) {
 printf("Error recording file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
}

n Errors

In asynchronous mode, function returns immediately and a TDX_RECORD
event is queued upon completion. Check ATDX_LASTTERM() for the
termination reason. If a failure occurs, then a TDX_ERROR event will be queued.
Use ATDV_LASTERR() to determine the reason for error.

In synchronous mode, if this function returns -1 to indicate failure, one of the
following reasons will be contained by ATDV_LASTERR() :

Equate Returned When

EDX_BUSY Channel is busy

EDX_XPBPARM Invalid DX_XPB setting

EDX_BADIOTT Invalid DX_IOTT setting

EDX_SYSTEM System I/O errors

EDX_BADWAVFILE Invalid WAV file

EDX_SH_BADCMD Unsupported command or WAV file format

n See Also

• dx_recwav()
• dx_recvox()

dx_recvox() records voice data to a single VOX file

270-CD

Name: SHORT dx_recvox(chdev, filenamep, tptp, xpbp, mode)
Inputs: int chdev • valid Dialogic channel device

handle
char *filenamep • pointer to name of file to

record to
DV_TPT*tptp • pointer to Termination

Parameter Table
DX_XPB *xpbp • pointer to I/O Transfer

Parameter Block
unsigned short mode • play mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Convenience function
Mode: synchronous

n Description

The dx_recvox() convenience function records voice data to a single VOX file. If
xpbp is set to NULL, it will interpret the data as 6KHz linear ADPCM.

Parameter Description

chdev Channel device descriptor

tcbp Pointer to Termination Parameter Table

filenamep Pointer to name of file to record to

xpbp Pointer to I/O Transfer Parameter Block (See the
DX_XPB data structure)

mode specifies the play mode:

PM_TONE play 200 ms audible tone
EV_SYNC synchronous operation

(must be specified)

NOTE: Both PM_TONE and EV_SYNC can be specified by ORing the two
values.

records voice data to a single VOX file dx_recvox()

271-CD

n Cautions

When playing or recording VOX files, the data format is specified in DX_XPB
rather than through the mode parameter of dx_recvox().

n Example

#include "srllib.h"
#include “dxxxlib.h”

int chdev; /* channel descriptor */
DV_TPT tpt; /* termination parameter table */
DX_XPB xpb; /* I/O transfer parameter block */
.
.
.
/* Open channel */
if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 printf("errno = %d\n",errno);
 exit(1);
}
/* Set to terminate play on 1 digit */
tpt.tp_type = IO_EOT;
tpt.tp_termno = DX_MAXDTMF;
tpt.tp_length = 1;
tpt.tp_flags = TF_MAXDTMF;
/* Wait forever for phone to ring and go offhook */
if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(3);
}
/* Start playback */
if (dx_playwav(chdev,&tpt,"HELLO.WAV",EV_SYNC) == -1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
}
/* clear digit buffer */
dx_clrdigbuf(chdev);
/* Start 6KHz ADPCM recording */
if (dx_recvox(chdev,"MESSAGE.VOX", &tpt, NULL,PM_TONE|EV_SYNC) == -1) {
 printf("Error recording file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
}

n Errors

If this function returns -1 to indicate failure, one of the following reasons will be
contained by ATDV_LASTERR() :

Equate Returned When

EDX_BUSY Channel is busy

dx_recvox() records voice data to a single VOX file

272-CD

Equate Returned When

EDX_XPBPARM Invalid DX_XPB setting

EDX_BADIOTT Invalid DX_IOTT setting

EDX_SYSTEM System I/O errors

EDX_SH_BADCMD Unsupported command or VOX file
format

n See Also

• dx_reciottdata()
• dx_recwav()

records voice data to a single WAVE file dx_recwav()

273-CD

Name: SHORT dx_recwav(chdev, filenamep, tptp, xpbp, mode)
Inputs: int chdev • valid Dialogic channel device

handle
char *filenamep • pointer to name of file to

record to
DV_TPT *tptp • pointer to termination

parameter block
DX_XPB *xpbp • pointer to I/O Transfer Block
unsigned short mode • record mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Convenience function
Mode: synchronous

n Description

The dx_recwav() convenience function records voice data to a single WAVE
file. If xpbp is set to NULL, the function will record in 11 KHz linear 8-bit PCM.
This function calls dx_reciottdata().

Parameter Description

chdev channel device descriptor

tcbp pointer to termination parameter table

filenamep pointer to name of file to play

xpbp pointer to I/O Transfer Parameter Block

mode specifies the play mode:

PM_TONE play 200 ms audible tone
EV_SYNC synchronous operation
 (must be specified)

NOTE: Both PM_TONE and EV_SYNC can be specified by ORing the two
values.

dx_recwav() records voice data to a single WAVE file

274-CD

n Cautions

None.

n Example

#include "srllib.h"
#include “dxxxlib.h”

int chdev; /* channel descriptor */
DV_TPT tpt; /* termination parameter table */
DX_XPB xpb; /* I/O transfer parameter block */
.
.
.
/* Open channel */
if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 printf("Cannot open channel\n");
 printf("errno = %d\n",errno);
 exit(1);
}
/* Set to terminate play on 1 digit */
tpt.tp_type = IO_EOT;
tpt.tp_termno = DX_MAXDTMF;
tpt.tp_length = 1;
tpt.tp_flags = TF_MAXDTMF;
/* Wait forever for phone to ring and go offhook */
if (dx_wtring(chdev,1,DX_OFFHOOK,-1) == -1) {
 printf("Error waiting for ring - %s\n", ATDV_LASTERR(chdev));
 exit(3);
}
/* Start playback */
if (dx_playwav(chdev,&tpt,"HELLO.WAV",EV_SYNC) == -1) {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
}
/* clear digit buffer */
dx_clrdigbuf(chdev);
/* Start 11KHz PCM recording */
if (dx_recwav(chdev,"MESSAGE.WAV", &tpt, (DX_XPB *)NULL,PM_TONE|EV_SYNC) == -1) {
 printf("Error recording file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);

}

n Errors

If this function returns -1 to indicate failure, one of the following reasons will be
contained by ATDV_LASTERR() :

Equate Returned When

EDX_BUSY Channel is busy

records voice data to a single WAVE file dx_recwav()

275-CD

Equate Returned When

EDX_XPBPARM Invalid DX_XPB setting

EDX_BADIOTT Invalid DX_IOTT setting

EDX_SYSTEM System I/O errors

EDX_BADWAVFILE Invalid WAV file

EDX_SH_BADCMD Unsupported command or WAV file
format

n See Also

• dx_reciottdata()

• dx_recvox()

dx_setdigbuf() sets the digit buffering mode

276-CD

Name: int dx_setdigbuf(chdev,mode)
Inputs: int chdev • valid Dialogic channel device

handle
int mode • digit buffering mode

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O
Mode: synchronous

n Description

The dx_setdigbuf() function sets the digit buffering mode that will be used by the
Voice Driver. Once the digit buffer is full (31 digits), the application may select
whether subsequent digits will be ignored or will overwrite the oldest digits in the
queue.

The function parameters are defined as follows:

Parameter Description

chdev: specifies the valid Dialogic channel device handle obtained by
a call to dx_open().

mode: specifies the type of digit buffering that will be used. Mode
can be:

• DX_DIGTRUNC Incoming digits will be ignored if
the digit buffer is full (default).

• DX_DIGCYCLIC Incoming digits will overwrite the
oldest digits in the buffer if the
buffer is full.

n Cautions

None.

sets the digit buffering mode dx_setdigbuf()

277-CD

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

int chfd;

int init_digbuf()
{

 /* open the device using dx_open, chfd has the device handle */

 /*
 * Set up digit buffering to be Cyclic. When digit
 * queue overflows oldest digit will be overwritten
 */
 if (dx_setdigbuf(chfd, DX_DIGCYCLIC) == -1) {
 printf("Error during setdigbuf %s\n", ATDV_ERRMGSP(chfd));
 return(1);
 }
 return(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_SYSTEM • Windows NT system error - check errno
EDX_TIMEOUT • Timeout limit is reached

dx_setdigtyp() controls the types of digits

278-CD

Name: int dx_setdigtyp(chdev,dmask)
Inputs: int chdev • valid Dialogic channel device

handle
unsigned short dmask • type of digit the channel will

detect
Returns: 0 if successful

-1 if failure
Includes: srllib.h

dxxxlib.h
Category: Configuration

n Description

The dx_setdigtyp() function controls the types of digits the Voice channel
detects.

NOTE: This function only applies to the standard Voice board digits (i.e.,
DTMF, MF, LPD). To set user-defined digits, use the dx_addtone()
function.

dx_setdigtyp() does not clear the previously detected digits in the digit buffer.

The function parameters are defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

dmask: sets the type of digits the channel will detect. More than one
type of digit detection can be enabled in single function call,
as shown in the function example. dmask can have one, or a
combination of several, of the following values:

DM_DTMF
:

enable DTMF digits; detection (default
setting)

DM_LPD: enable loop pulse detection
DM_APD: enable audio pulse digits detection
DM_MF: enable MF digit detection
DM_DPD: enable dial pulse digit (DPD) detection

controls the types of digits dx_setdigtyp()

279-CD

Parameter Description
DM_DPD2: enable zero train DPD detection

To disable digit detection, set dmask to NULL.

NOTES: 1. MF detection can only be enabled on systems with MF capability,
such as D/4xD boards with MF support.

2. The digit detection type specified in dmask will remain valid after
the channel has been closed and reopened.

dx_setdigtyp() disables any digit detection enabled in a previous call to
dx_setdigtyp().

n Cautions

1. Some MF digits use approximately the same frequencies as DTMF digits
(see Appendix C). Because there is a frequency overlap, if you have the
incorrect kind of detection enabled, MF digits may be mistaken for
DTMF digits, and vice versa. To ensure that digits are correctly detected,
DTMF and MF detection should not be enabled at the same time.

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int chdev;
 .
 .
 /* Open Voice channel */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* Set channel to detect DTMF and loop pulse digits */
 if (dx_setdigtyp(chdev, DM_DTMF|DM_LPD) == -1) {
 /* error routine */
 }
 .
 .
}

dx_setdigtyp() controls the types of digits

280-CD

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_SYSTEM • Windows NT system error - check errno

n See Also

Specifying user-defined digits:

• dx_addtone()

enables detection of Call Status Transition (CST) event dx_setevtmsk()

281-CD

Name: int dx_setevtmsk(chdev,mask)
Inputs: int chdev • valid Dialogic channel device

handle
unsigned int mask • event mask of events to wait for

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Call Status Transition Event

n Description

The dx_setevtmsk() function enables detection of Call Status Transition (CST)
event or group of events. This function can be used by synchronous or
asynchronous applications waiting for a CST event.

NOTE: This function enables detection for all CST events except user-defined
tone detection. See dx_addtone() and dx_enbtone() for information.

The function parameters are defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

mask: specifies the event(s) dx_getevt() will wait for. mask can
have one or more of the following values:
DM_LCOFF • wait for loop current to be off
DM_LCON • wait for loop current to be on
DM_RINGS • wait for rings
DM_RNGOFF • wait for ring to drop (hang-up)
DM_SILOF • wait for non-silence
DM_SILON • wait for silence
DM_WINK • wait for wink to occur on an E&M

line
DM_DIGITS • turns off digit reporting and digits

flag set by DM_DIGITS
DM_LCREV • wait for flow of current to reverse

(D/41ESC and D/160SC-LS boards

dx_setevtmsk() enables detection of Call Status Transition (CST) event

282-CD

Parameter Description
only)

When the event mask is set with DM_DIGITS, a digits flag
is set that causes individual digit events to queue until this
flag is turned off by the DM_DIGOFF equate. Setting the
event mask for DM_DIGITS and then subsequently
resetting the event mask without DM_DIGITS does not
disable the queueing of digit events. Digit events will
remain in the queue until collected by dx_getevt(). This
queue is not affected by dx_getdig() calls. The digits flag
is set by:

/* Set event mask to collect digits */
if (dx_setevtmsk(chdev, DM_DIGITS) == -1) {

To turn off the digits flag and stop queueing digits:

dx_setevtmsk(DM_DIGOFF);
dx_cirdigbuf(chdev); /*Clear out queue*/

To poll for multiple events, perform an OR operation on the
bit masks of the events you want to wait for. The first
enabled CST event to occur will be returned. On the
D/21E, D/41E, or D/160SC-LS board, when the DM-
LCREV bit is OR’ed, a new event message DE_LCREV is
queued when the flow of current over the line is reversed.

For configurations using the DID/120 Direct Inward Dialing
board, you may need to check whether the caller has hung-
up after the DID/120 board received the DNIS digits. DID
systems often get the digits for a call back without ever
going off hook. You can check for hang up as follows:

In asynchronous mode: look for a ring off event using
dx_setevtmsk(DM_RNGOFF) and dx_getevt() to get the
event. After the event is received, issue a dx_stopch() to
stop the current multitasking function.

Alternatively, you can poll using ATDX_LINEST() to
determine when ring is not present (returns RLS_RING)

enables detection of Call Status Transition (CST) event dx_setevtmsk()

283-CD

Parameter Description
and then issue a dx_stopch() to stop the current
multitasking function.

The following table outlines the synchronous or asynchronous handling of CST
events:

Synchronous Asynchronous

1. Call dx_setevtmsk() to
enable CST event(s)

Call dx_setevtmsk() to enable
CSTevent(s)

2. Call dx_getevt() to
wait for CST event(s).
Events are returned to
the DX_EBLK
structure.

Use SRL to asynchronously wait for for
TDX_CST event(s).

3.
Use sr_getevtdatap() to retrieve
DX_CST structure.

NOTE: If DM_WINK is not specified in the mask parameter, and
DM_RINGS is specified, a wink will be interpreted as an
incoming call depending on the setting of the DXBD_R_ON
parameter.

n Cautions

1. Events are preserved between dx_getevt() function calls. The event that
was set remains the same, until another call to dx_setevtmsk() or
dx_wtring() changes it. See dx_wtring() for more information on how
it changes the event mask.

2. If you call this function on a busy device, and specify DM_DIGITS as
the mask argument, the function will fail.

n Example 1: Using dx_setevtmsk() to wait for ring events -
synchronous processing

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

dx_setevtmsk() enables detection of Call Status Transition (CST) event

284-CD

main()
{
 int chdev;
 DX_EBLK eblk;
 .
 .
 /* open a channel with chdev as descriptor */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }
 .
 .
 /* Set event mask to receive ring events */
 if (dx_setevtmsk(chdev, DM_RINGS) == -1) {
 /* error setting event */
 }
 .
 .
 /* check for ring event, timeout set to 20 seconds */
 if (dx_getevt(chdev,&eblk,20) == -1) {
 /* error timeout */
 }

 if(eblk.ev_event==DE_RINGS) {
 printf("Ring event occurred\n");
 }
 .
 .
}

n Example 2: Using dx_setevtmsk() to handle call status transition
events - asynchronous processing

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define MAXCHAN 24

int cst_handler();

main()
{
 int chdev[MAXCHAN];
 char *chname;
 int i, srlmode;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 for (i=0; i<MAXCHAN; i++) {

 /* Set chname to the channel name, e.g., dxxxB1C1, dxxxB1C2,... */

enables detection of Call Status Transition (CST) event dx_setevtmsk()

285-CD

 /* Open the device using dx_open(). chdev[i] has channel device
 * descriptor.
 */
 if ((chdev[i] = dx_open(chname,NULL)) == -1) {
 /* process error */
 }

 /* Use dx_setevtmsk() to enable call status transition events
 * on this channel.
 */
 if (dx_setevtmsk(chdev[i],
 DM_LCOFF|DM_LCON|DM_RINGS|DM_SILOFF|DM_SILON|DM_WINK) == -1) {
 /* process error */
 }

 /* Using sr_enbhdlr(), set up handler function to handle call status
 * transition events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_CST, cst_handler) == -1) {
 /* process error */
 }
 /* Use sr_waitevt to wait for call status transition event.
 * On receiving the transition event, TDX_CST, control is transferred
 * to the handler function previously established using sr_enbhdlr().
 */
 .
 .
 }
}

int cst_handler()
{
 DX_CST *cstp;

 /* sr_getevtdatap() points to the event that caused the call status
 * transition.
 */
 cstp = (DX_CST *)sr_getevtdatap();

 switch (cstp->cst_event) {
 case DE_RINGS:
 printf("Ring event occurred on channel %s\n",
 ATDX_NAMEP(sr_getevtdev()));
 break;
 case DE_WINK:
 printf("Wink event occurred on channel %s\n",
 ATDX_NAMEP(sr_getevtdev()));
 break;
 case DE_LCON:
 printf("Loop current ON event occurred on channel %s\n",
 ATDX_NAMEP(sr_getevtdev()));
 break;
 case DE_LCOFF:
 .
 .
 }

 /* Kick off next function in the state machine model. */
 .
 .

dx_setevtmsk() enables detection of Call Status Transition (CST) event

286-CD

 return 0;
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_SYSTEM • Windows NT system error - check errno

n See Also

CST Event Handling and Retrieval:

• dx_getevt() - synchronous operation
• sr_getevtdatap() - asynchronous operation (Standard Runtime Library

Programmer’s Guide for Windows NT)
• DX_CST data structure

Enabling User-Defined Tone Detection:

• dx_addtone()

sets up the amplitudes dx_setgtdamp()

287-CD

Name: void dx_setgtdamp(gtd minampl1, gtd maxampl1, gtd
minampl2, gtd maxampl2)

Inputs: short int gtd_minampl1 • Minimum amplitude of the first
frequency

short int gtd_maxampl1 • Maximum amplitude of the
first frequency

short int gtd_minampl2 • Minimum amplitude of the
second frequency

short int gtd_maxampl2 • Maximum amplitude of the
second frequency

Returns: void
Includes: srllib.h

dxxxlib.h
Category: GTD Function

n Description

The dx_setgtdamp() function sets up the amplitudes to be used by the general
tone detection. This function must be called before calling dx_bld...() functions
and dx_addtone(). Once called, the values set will take effect for all dx_bld...()
function calls.

If this function is not called, then the MINERG firmware parameters that were
downloaded remain at the following settings: -42dBm for minimum amplitude
and 0dBm for maximum amplitude.

Default Value Description

GT_MIN_DEF Default value in dB for minimum GTD amplitude that
can be entered for gtd_minampl* parameters.

GT_MAX_DEF Default value in dB for maximum GTD amplitude that
can be entered for gtd_maxampl* parameters.

Parameter Description

gtd minampl1: specifies the minimum amplitude in dB of tone 1.

dx_setgtdamp() sets up the amplitudes

288-CD

Parameter Description

gtd maxampl1: specifies the maximum amplitude in dB of tone 1.

gtd minampl2: specifies the minimum amplitude in dB of tone 2.

gtd maxampl2: specifies the maximum amplitude in dB of tone 2.

n Cautions

If this function is called, then the amplitudes set will take effect for all tones added
afterwards. To reset the amplitudes back to the defaults, then call this function
with the defines GT_MIN_DEF and GT_MAX_DEF for minimum and maximum
defaults.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
#include "voxlib.h" /* Dialogic voice library header file */

#define TID 1; /* Tone ID */

.

.

.
/*
 * Set amplitude for GTD;
 * freq1 -30dBm to 0 dBm
 * freq2 -30dBm to 0 dBm
 */
dx_setgtdamp(-30,0,-30,0);

/*
 * Build temporary simple dual tone frequency tone of
 * 950-1050 Hz and 475-525 Hz. using trailing edge detection, and
 * -30dBm to 0dBm.
if (dx_blddt(TID1, 1000, 50, 500, 25, TN LEADING) ==-1) {
 printf("Error building temporary tone: %d\n",dx_errno);
 exit(3);
}

.

.

.

sets up the amplitudes dx_setgtdamp()

289-CD

n Errors

None.

dx_sethook() provides control of the hookswitch status

290-CD

Name: int dx_sethook(chdev,hookstate,mode)
Inputs: int chdev • valid Dialogic channel device

handle
int hookstate • hook state (on-hook or off-hook)
unsigned short mode • asynchronous/synchronous

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration
Mode: asynchronous/synchronous

n Description

The dx_sethook() function provides control of the hookswitch status of the
specified channel. A hookswitch state may be either on-hook or off-hook.

NOTE: Do not call this function for a digital T-1 SCbus configuration that
includes a D/240SC, D/240SC-T1, DTI/241SC, or DTI/301SC board.
Transparent signaling for SCbus digital interface devices is not supported
in System Release 4.1SC.

Parameter Description

dx_sethook() clears loop current and silence history from the
channel’s buffers.

n Asynchronous Operation

To run dx_sethook() asynchronously, set the mode field to EV_ASYNC. The
function will return 0 to indicate it has initiated successfully, and will generate a
termination event to indicate completion. Use the SRL Event Management
functions to handle the termination event.

If running asynchronously, termination is indicated by a TDX_SETHOOK event.
The cst_event field in the data structure will specify one of the following:

• DX_ONHOOK if the hookstate has been set to on-hook

• DX_OFFHOOK if the hookstate has been set to off-hook

provides control of the hookswitch status dx_sethook()

291-CD

(Use the Event Management function sr_getevtdatap() to return a pointer to the
DX_CST structure). See Appendix A for more information about the Event
Management functions.

ATDX_HOOKST() will also return the type of hookstate event.

n Synchronous Operation

By default, this function runs synchronously.

If running synchronously (default) dx_sethook() will return 0 when complete.

The function parameters are defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

hookstate: forces the hookstate of the specified channel to on-hook or
off-hook. The following values can be specified:

DX_ONHOOK: set to on-hook state
DX_OFFHOOK: set to off-hook state

mode: specifies whether to run dx_sethook() asynchronously or
synchronously. Specify one of the following:

EV_ASYNC: Run dx_sethook() asynchronously.

EV_SYNC: Run dx_sethook() synchronously
(default).

n Cautions

None.

n Example 1: Using dx_sethook() in synchronous mode

#include <srllib.h>
#include <dxxxlib.h>

dx_sethook() provides control of the hookswitch status

292-CD

#include <windows.h>

main()
{
 int chdev;
 /* open a channel with chdev as descriptor */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* put the channel on-hook */
 if (dx_sethook(chdev,DX_ONHOOK,EV_SYNC) == -1) {
 /* error setting hook state */
 }
 .
 .
 /* take the channel off-hook */
 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC) == -1) {
 /* error setting hook state */
 }
 .
 .
}

n Example 2: Using dx_sethook() in asynchronous mode

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define MAXCHAN 24

int sethook_hdlr();

main()
{
 int i, chdev[MAXCHAN];
 char *chnamep;
 int srlmode;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 for (i=0; i<MAXCHAN; i++) {

 /* Set chnamep to the channel name - e.g, dxxxB1C1, dxxxB1C2,... */

 /* open a channel with chdev[i] as descriptor */
 if ((chdev[i] = dx_open(chnamep,NULL)) == -1) {
 /* process error */
 }

provides control of the hookswitch status dx_sethook()

293-CD

 /* Using sr_enbhdlr(), set up handler function to handle sethook
 * events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_SETHOOK, sethook_hdlr) == -1) {
 /* process error */
 }

 /* put the channel on-hook */
 if (dx_sethook(chdev[i],DX_ONHOOK,EV_ASYNC) == -1) {
 /* error setting hook state */
 }
 }

 /* Use sr_waitevt() to wait for the completion of dx_sethook().
 * On receiving the completion event, TDX_SETHOOK, control is transferred
 * to the handler function previously established using sr_enbhdlr().
 */
 .
 .
}

int sethook_hdlr()
{
 DX_CST *cstp;

 /* sr_getevtdatap() points to the call status transition
 * event structure, which contains the hook state of the
 * device.
 */
 cstp = (DX_CST *)sr_getevtdatap();

 switch (cstp->cst_event) {
 case DX_ONHOOK:
 printf("Channel %s is ON hook\n", ATDX_NAMEP(sr_getevtdev()));
 break;
 case DX_OFFHOOK:
 printf("Channel %s is OFF hook\n", ATDX_NAMEP(sr_getevtdev()));
 break;
 default:
 /* process error */
 break;
 }

 /* Kick off next function in the state machine model. */
 .
 .

 return 0;
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter

dx_sethook() provides control of the hookswitch status

294-CD

EDX_SYSTEM • Windows NT system error - check errno

n See Also

• DX_CST structure
• sr_getevtdatap() (Standard Runtime Library Programmer’s Guide for

Windows NT, and Appendix A)
• ATDX_HOOKST()
• DV_TPT (Appendix A)

allows you to set the physical parameters dx_setparm()

295-CD

Name: int dx_setparm(dev,parm,valuep)
Inputs: int dev • valid Dialogic channel or board

device handle
unsigned long parm • parameter type to set
void *valuep • pointer to parameter value

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

n Description

The dx_setparm() function allows you to set the physical parameters of a
channel or board device, such as off-hook delay, length of a pause, and flash
character. Parameters can be set only one at a time. The possible values of parm
are defined in (Chapter 4. Voice Data Structures and Device Parameters).

The channel must be idle (i.e., no I/O function running) when calling
dx_setparm(). Board and channel resources have different parameters that can be
set. Setting board parameters affects all the channels on the board. Setting channel
parameters only affects the specified channel.

To set board parameters the following requirements must be met:

• the board must be open
• all channels on the board must be closed

The function parameters are defined as follows:

Parameter Description

dev: specifies the valid channel or board device handle obtained
when the channel or board was opened using dx_open().

parm: specifies the channel or board parameter to set.

Board and channel parameter defines, defaults and
descriptions are listed in Section 5.2. Clearing Voice
Structures

NOTE: The parameters set in parm will remain valid after the device has

dx_setparm() allows you to set the physical parameters

296-CD

Parameter Description
been closed and reopened.

valuep: points to the variable that specifies the channel or board
parameter to set.

NOTE: You must use a void* cast on the address of the parameter being sent
to the driver in valuep as shown in the example.

n Cautions

1. A constant cannot be used in place of valuep. The value of the parameter
to be set must be placed in a variable and the address of the variable cast
as void * must be passed to the function.

2. When setting channel parameters, the channel must be open and in the
idle state.

3. When setting board parameters, all channels on that board must be idle.

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int bddev, parmval;
 /* Open the board using dx_open(). Get board device descriptor in
 * bddev.
 */
 if ((bddev = dx_open("dxxxB1",NULL)) == -1) {
 /* process error */
 }
 /* Set the inter-ring delay to 6 seconds (default = 8) */
 parmval = 6;
 if (dx_setparm(bddev, DXBD_R_IRD, (void *)&parmval) == -1) {
 /* process error */
 }
 /* now wait for an incoming ring */
 . . .
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

allows you to set the physical parameters dx_setparm()

297-CD

EDX_BADPARM • Invalid Parameter
EDX_SYSTEM • Windows NT system error - check errno

n See Also

• dx_getparm()

dx_setsvcond() sets adjustments and adjustment conditions

298-CD

Name: int dx_setsvcond(chdev, numblk, svcbp)
Inputs: int chdev • valid channel device handle

unsigned short numblk • number of DX_SVCB blocks
DX_SVCB * svcbp • pointer to array of DX_SVCB

structures
Returns: 0 if success

-1 if failure
Includes: srllib.h

dxxxlib.h
Category: Speed and Volume

n Description

The dx_setsvcond() function sets adjustments and adjustment conditions for all
subsequent plays on the specified channel (until changed or cancelled). An
adjustment is a modification to play-speed or play-volume that takes place due to
an adjustment condition such as start of play, or the occurrence of an incoming
digit during play. This function uses the specified channel’s speed or volume
Speed/Volume Modification Table. Detailed information about these tables are
contained in the Voice Features Guide for Windows NT.

NOTE: Calls to dx_setsvcond() are cumulative. If adjustment blocks have been
set previously, calling this function adds more adjustment blocks to the
list. To replace existing adjustment blocks, clear the current set of blocks
using dx_clrsvcond() before issuing a dx_setsvcond().

The following adjustments and adjustment conditions are defined in the
Speed/Volume Adjustment Condition Blocks (DX_SVCB):

• which Speed/Volume Modification Table to use (speed or volume)
• adjustment type (increase/decrease, absolute value, toggle)
• adjustment conditions (incoming digit, beginning of play)
• level/edge sensitivity for incoming digits

See 5.2. Clearing Voice Structures for a full description of the DX_SVCB
structure. Up to 20 DX_SVCB blocks can be specified in the form of an array.

NOTES: 1. This function is similar to dx_adjsv(). Use dx_adjsv() to explicitly
adjust the play immediately and use dx_setsvcond() to adjust the

sets adjustments and adjustment conditions dx_setsvcond()

299-CD

play in response to specified conditions. See the description of
dx_adjsv() for more information.

2. Whenever the play is started its speed and volume is based on the
most recent modification.

Parameter Description

chdev: specifies the valid channel device handle obtained by a
call to dx_open().

numblk: specifies the number of DX_SVCB blocks in the array.
Set to a value between 1 and 20.

svcbp: points to an array of DX_SVCB structures.

n Cautions

1. Condition blocks can only be added to the array (up to a maximum of 20). To
reset or remove any condition, you should clear the whole array, and reset all
conditions if required. (e.g., If DTMF digit "1" has already been set to
increase play-speed by one step, a second call that attempts to redefine "1" to
the origin, will have no affect. The digit will retain its original setting).

2. The digit that causes the play adjustment will not be passed to the digit buffer,
so it cannot be retrieved using dx_getdig() or ATDX_BUFDIGS().

3. Digits that are used for play adjustment will not be used as a terminating
condition. If a digit is defined as both, then the play adjustment will take
priority.

4. Speed and volume control is supported on the D/21D, D/21E, D/41D, D/41E,
D/41ESC, D/81A, D/121B, D/160SC-LS, D/240SC, D/240SC-T1, D/300SC-
E1 and D/320SC boards only. Do not use the Speed and Volume control
functions to control speed on the D/120, D/121, or D/121A boards.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

/*
 * Global Variables
 */

dx_setsvcond() sets adjustments and adjustment conditions

300-CD

DX_SVCB svcb[10] = {
 /* BitMask AjustmentSize AsciiDigit DigitType */
 { SV_SPEEDTBL | SV_RELCURPOS, 1, ’1’, 0 }, /* 1 */
 { SV_SPEEDTBL | SV_ABSPOS, -4, ’2’, 0 }, /* 2 */
 { SV_VOLUMETBL | SV_ABSPOS, 1, ’3’, 0 }, /* 3 */
 { SV_SPEEDTBL | SV_ABSPOS, 1, ’4’, 0 }, /* 4 */
 { SV_SPEEDTBL | SV_ABSPOS, 1, ’5’, 0 }, /* 5 */
 { SV_VOLUMETBL | SV_ABSPOS, 1, ’6’, 0 }, /* 6 */
 { SV_SPEEDTBL | SV_RELCURPOS, -1, ’7’, 0 }, /* 7 */
 { SV_SPEEDTBL | SV_ABSPOS, 6, ’8’, 0 }, /* 8 */
 { SV_VOLUMETBL | SV_RELCURPOS, -1, ’9’, 0 }, /* 9 */
 { SV_SPEEDTBL | SV_ABSPOS, 10, ’0’, 0 }, /* 10 */ };

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Set Speed and Volume Adjustment Conditions
 */
 if (dx_setsvcond(dxxxdev, 10, svcb) == -1) {
 printf("Unable to Set Speed and Volume");
 printf(" Adjustment Conditions\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }
 /* Terminate the Program */
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

sets adjustments and adjustment conditions dx_setsvcond()

301-CD

EDX_BADPARM • Invalid Parameter
EDX_BADPROD • Function not supported on this board
EDX_SVADJBLKS • Invalid Number of Speed/Volume Adjustment

blocks
EDX_SYSTEM • Windows NT system error - check errno

n See Also

Setting Speed and Volume conditions:

• dx_clrsvcond()
• DX_SVCB (Chapter 4. Voice Data Structures and Device Parameters)

Related to Speed and Volume:

• dx_setsvmt()
• dx_getcursv()
• dx_getsvmt()
• "Speed and Volume Modification Tables" (Voice Features Guide for

Windows NT)
• dx_adjsv()

dx_setsvmt() updates the speed or volume

302-CD

Name: int dx_setsvmt(chdev,tabletype,svmtp,flag)
Inputs: int chdev • valid channel device handle

unsigned short tabletype • table to update (speed or
volume)

DX_SVMT * svmtp • pointer to DX_SVMT
unsigned short flag • optional modification flag

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Speed and Volume

n Description

The dx_setsvmt() function updates the speed or volume Speed/Volume
Modification Table for a channel, with the values contained in a specified
DX_SVMT structure.

NOTE: Refer to the Voice Features Guide for Windows NT for a detailed
description of the Speed and Volume Modification Tables, including a
description of default values and refer to Section 4.1.6. DX_SVMT -
speed/volume modification table structure for a description of the
DX_SVMT structure.

This function can also modify the Speed or Volume Modification Table to do one
of the following:

• When speed or volume adjustments reach their highest or lowest value,
wrap the next adjustment to the extreme opposite value. For example, if
volume reaches a maximum level during a play, the next adjustment
would modify the volume to its minimum level.

• Reset the Speed/Volume Modification Table to its default values.
Defaults are listed in the Voice Features Guide for Windows NT which
describes the Speed and Volume Modification Tables in full detail.

Parameter Description

chdev: specifies the valid channel device handle obtained by a call
to dx_open().

updates the speed or volume dx_setsvmt()

303-CD

Parameter Description

tabletype: specifies whether to retrieve the Speed or the Volume
Modification Table.

SV_SPEEDTBL Update the Speed Modification
Table values

SV_VOLUMETBL Update the Volume Modification
Table values

svmtp: points to the DX_SVMT structure whose contents are used
to update either the speed or the volume Speed/Volume
Modification Table.

This structure is not used when SV_SETDEFAULT has
been set in the mode parameter.

flag: specifies one of the following:

SV_WRAPMOD Wrap around the speed or
volume adjustments that occur at
the top or bottom of the
Speed/Volume Modification
Table.

SV_SETDEFAULT Reset the table to its default
values. See the Voice Features
Guide for Windows NT for the
default values of the table.

In this case, the DX_SVMT
pointed to by svmtp is ignored

NOTE: Set flags to 0 If you do not want to use either SV_WRAPMOD or
SV_SETDEFAULT.

n Cautions

Speed and volume control are supported on D/21D, D/41D, D/21E, D/41E,
D/41ESC, D/81A, D/121B, D/160SC-LS, D/240SC, D/240SC-T1, D/300SC-E1
and D/320SC boards. Speed control is not supported on the D/121A board.

dx_setsvmt() updates the speed or volume

304-CD

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

/*
 * Global Variables
 */

main()
{
 DX_SVMT svmt;
 int dxxxdev, index;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Set up the Speed/Volume Modification
 */
 memset(&svmt, 0, sizeof(DX_SVMT));
 svmt.decrease[0] = -128;
 svmt.decrease[1] = -128;
 svmt.decrease[2] = -128;
 svmt.decrease[3] = -128;
 svmt.decrease[4] = -128;
 svmt.decrease[5] = -20;
 svmt.decrease[6] = -16;
 svmt.decrease[7] = -12;
 svmt.decrease[8] = -8;
 svmt.decrease[9] = -4;
 svmt.origin = 0;
 svmt.increase[0] = 4;
 svmt.increase[1] = 8;
 svmt.increase[2] = 10;
 svmt.increase[3] = -128;
 svmt.increase[4] = -128;
 svmt.increase[5] = -128;
 svmt.increase[6] = -128;
 svmt.increase[7] = -128;
 svmt.increase[8] = -128;
 svmt.increase[9] = -128;

 /*
 * Update the Volume Modification Table without Wrap Mode.
 */
 if (dx_setsvmt(dxxxdev, SV_VOLUMETBL, &svmt, 0) == -1){
 printf("Unable to Set the Volume");
 printf(" Modification Table\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);

updates the speed or volume dx_setsvmt()

305-CD

 }

 /*
 * Continue Processing
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }
 /* Terminate the Program */
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_BADPROD • Function not supported on this board
EDX_NONZEROSIZE • Reset to Default was Requested but size was non-zero
EDX_SPDVOL • Must Specify either SV_SPEEDTBL or

SV_VOLUMETBL
EDX_SVMTRANGE • An Entry in DX_SVMT was out of Range
EDX_SVMTSIZE • Invalid Table Size Specified
EDX_SYSTEM • Windows NT system error - check errno

n See Also

• dx_adjsv()
• dx_getcursv()
• dx_getsvmt()
• "Speed and Volume Modification Tables" (Voice Features Guide for

Windows NT)
• DX_SVMT (Chapter 4. Voice Data Structures and Device Parameters)

dx_setuio() allows an application to install a user I/O routine

306-CD

Name: int dx_setuio(uioblk)
Inputs: uioblk • DX_UIO structure

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: miscellaneous function

n Description

The dx_setuio() function allows an application to install a user I/O routine
read(), write(), and lseek() functions. These functions are then used by the
dx_play() and dx_rec() functions to read and/or write to nonstandard storage
media.

The application provides the addresses of user-defined read(), write() and,
optionally, lseek() functions by initializing the DX_UIO structure. The
application then installs the functions by invoking the dx_setuio() function.

The application can override the standard I/O functions on a file-by-file basis by
setting the IO_UIO flag in the io_type field of the DX_IOTT structure (see
Chapter 4. Voice Data Structures and Device Parameters for details).

NOTE: The IO_UIO flag must be ORed with the IO_DEV flag for this feature to
function properly.

When using the dx_setuio() function to record, a user-defined write() function
must be provided. User-defined read() and lseek() functions are optional.

When using the dx_setuio() function to play, a user-defined read() function
must be provided. User-defined write() and lseek() functions are optional.

n Cautions

In order for the application to work properly, the user-provided functions must
conform to standard I/O function semantics.

allows an application to install a user I/O routine dx_setuio()

307-CD

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
#include "VOXLIB.H" /* Dialogic voice library header file */
int cd; /* channel descriptor */
DX_UIO myio; /* user definable I/O structure */
/*
 * User defined I/O functions
 */
int my_read9(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
 printf("My read\n");
 return(read(fd,ptr,cnt));
}
/*
 * my write function
 */
int my_write(fd,ptr,cnt)
int fd;
char * ptr;
unsigned cnt;
{
printf("My write \n");
 return(write(fd,ptr,cnt));
}
/*
 * my seek function
 */
long my_seek(fd,offset,whence)
int fd;
long offset;
int whence;
{
 printf("My seek\n");
 return(lseek(fd,offset,whence));
}
void main(argc,argv)
int argc;
char *argv[];
{
 .
 . /* Other initialization */
 .
 DX_UIO uioblk;
/* Initialize the UIO structure */
uioblk.u_read=my_read;
uioblk.u_write=my_write;
uioblk.u_seek=my_seek;
/* Install my I/O routines */
dx_setuio(uioblk);
vodat_fd = dx_fileopen("JUNK.VOX",O_RDWR|O_BINARY);
/*This block uses standard I/O functions */
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 0;
iott->io_length = 20000;
/*This block uses my I/O functions */
iottp++;

dx_setuio() allows an application to install a user I/O routine

308-CD

iottp->io_type = IO_DEV|IO_UIO|IO_CONT
iottp->io_fhandle = vodat_fd;
iott->io_offset = 20001;
iott->io_length = 20000;
/*This block uses standard I/O functions */
iottp++
iott->io_type = IO_DEV|IO_CONT
iott->io_fhandle = vodat_fd;
iott->io_offset = 20002;
iott->io_length = 20000;
/*This block uses my I/O functions */
iott->io_type = IO_DEV|IO_UIO|IO_EOT
iott->io_fhandle = vodat_fd;
iott->io_offset = 10003;
iott->io_length = 20000;
devhandle = dx_open("dxxxB1C1", NULL);
dx_sethook(devhandle, DX-ONHOOK,EV_SYNC)
dx_wtring(devhandle,1,DX_OFFHOOK,EV_SYNC);
dx_clrdigbuf;
 if(dx_rec(devhandle,iott,(DX_TPT*)NULL,RM_TONE|EV_SYNC) == -1) {
 perror("");
 exit(1);
}
dx_clrdigbuf(devhandle);
 if(dx_play(devhandle,iott,(DX_TPT*)EV_SYNC) == -1 {
 perror("");
 exit(1);
 }
 dx_close(devhandle);

n Errors

None.

forces termination of currently active I/O functions dx_stopch()

309-CD

Name: int dx_stopch(chdev,mode)
Inputs: int chdev • valid Dialogic channel device

handle
unsigned short mode • Reserved for future use

Returns: 0 if success
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: I/O
Mode: asynchronous/synchronous

n Description

The dx_stopch() function forces termination of currently active I/O functions on
a channel. It forces a channel in the busy state to become idle. If the channel
specified in chdev already is idle, dx_stopch() has no effect and will return a
success.

Running this function asynchronously will initiate the dx_stopch() without
affecting processes on other channels.

Running this function synchronously within a process does not block other
processing. Other processes continue to be serviced.

When an I/O function terminates due to a dx_stopch() being issued on the
channel, the termination reason returned by ATDX_TERMMSK() will be
TM_USRSTOP. (If running the dx_dial() function with Call Analysis, you can
call ATDX_CPTERM() to determine the reason for Call Analysis termination.
This will return CR_STOPD if Call Analysis stopped due to a dx_stopch().)

The function parameters are defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

mode: Set to EV_ASYNC. The stop will be issued, but the driver
does not sleep and wait for the channel to become idle
before dx_stopch() returns.

dx_stopch() forces termination of currently active I/O functions

310-CD

n Cautions

1. dx_stopch() will have no effect on a channel that has either of the
following functions issued:

• dx_dial() without Call Analysis enabled
• dx_wink()

The functions will continue to run normally, dx_stopch() will
return a success. For dx_dial(), the digits specified in the
dialstrp parameter will still be dialed.

2. If dx_stopch() is called on a channel dialing with Call Analysis enabled,
the Call Analysis process will stop but dialing will be completed. Any
Call Analysis information collected prior to the stop will be returned by
Extended Attribute functions.

3. If an I/O function terminates (due to another reason) before dx_stopch()
is issued, the reason for termination will not indicate dx_stopch() was
called.

4. When calling dx_stopch() from a signal handler, mode must be set to
EV_ASYNC.

n Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int chdev, srlmode;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 /* Open the channel using dx_open(). Get channel device descriptor in
 * chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* continue processing */
 .
 .

forces termination of currently active I/O functions dx_stopch()

311-CD

 /* Force the channel idle. The I/O function that the channel is
 * executing will be terminated, and control passed to the handler
 * function previously enabled, using sr_enbhdlr(), for the
 * termination event corresponding to that I/O function.
 * In the asynchronous mode, dx_stopch() returns immediately,
 * without waiting for the channel to go idle.
 */
 if (dx_stopch(chdev, EV_ASYNC) == -1) {
 /* process error */
 }

}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_SYSTEM • Windows NT system error - check

errno

n See Also

Related I/O functions:

• dx_dial()
• dx_getdig()
• dx_play()
• dx_playf()
• dx_playtone()
• dx_rec()
• dx_recf()
• dx_wink()

Retrieving I/O termination reason due to dx_stopch():

• ATDX_TERMMSK()
• ATDX_CPTERM() - dx_dial() with Call Analysis

dx_wink() generates an outbound wink

312-CD

Name: int dx_wink(chdev,mode)
Inputs: int chdev • valid Dialogic channel device

handle
unsigned short mode • synchronous/asynchronous

setting
Returns: 0 if successful

-1 if failure
Includes: srllib.h

dxxxlib.h
Category: I/O

Mode: synchronous/asynchronous

n Description

The dx_wink() function generates an outbound wink on the specified channel. A
wink from a Voice board is a momentary rise of the A signaling bit, which
corresponds to a wink on an E&M line. This is used for signaling T-1 spans. A
wink’s typical duration of 150 to 250 milliseconds used for communication
purposes between the called and calling stations.

NOTE: Do not call this function on a non-E&M line or for a SCbus T-1 digital
interface device on a D/240SC or a D/240SC-T1 board. Transparent
signaling for SCbus digital interface devices is not supported in System
Release 4.1SC. See the Digital Network Interface Software Reference for
Windows NT for information about E&M lines.

n Asynchronous Operation

To run this function asynchronously set the mode field to EV_ASYNC. When
running asynchronously, this function will return 0 to indicate it has initiated
successfully, and will generate a TDX_WINK termination event to indicate
completion. Use the SRL Event Management functions to handle the termination
event. See Appendix A for more information about the Event Management
functions.

generates an outbound wink dx_wink()

313-CD

n Synchronous Operation

By default, this function runs synchronously, and will return a 0 to indicate that it
has completed successfully.

The function parameters are defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when
the channel was opened using dx_open().

mode: specifies whether to run dx_wink() asynchronously or
synchronously. Specify one of the following:

EV_ASYNC: Run dx_wink() asynchronously.
EV_SYNC: Run dx_wink() synchronously (default).

NOTES: 1. The dx_wink() function is supported on a T-1 E&M line
connected to a DTI/101 board. In addition, the dx_wink()
function is supported on the DTI/211 board in transparent mode.

2. The channel must be on-hook when dx_wink() is called.

3. All values referenced for this function are subject to a 10 ms
clocking resolution. Actual values will be in a range: (parameter
value - 9 ms) < actual value < (parameter value)

n Setting Delay Prior to Wink

The default delay prior to generating the outbound wink is 150 ms. To change the
delay, use the dx_setparm() function to enter a value for the DXCH_WINKDLY
parameter where:

delay = the value entered x 10 ms

The syntax of the function is:

 int delay;
 delay = 15;
 dx_setparm(dev,DXCH_WINKDLY,(void*)&delay)

If delay = 15, then DXCH_WINKDLY = 15 x 10 or 150 ms.

dx_wink() generates an outbound wink

314-CD

n Setting Wink Duration

The default outbound wink duration is 150 ms. To change the wink duration, use
the dx_setparm() function to enter a value for the DXCH_WINKLEN parameter
where:

duration = the value entered x 10 ms

The syntax of the function is:

 int duration;
 duration = 15;
 dx_setparm(dev,DXCH_WINKLEN,(void*)&duration)

If duration = 15, then DXCH_WINKLEN = 15 x 10 or 150 ms.

n Receiving an Inbound Wink

NOTE: The inbound wink duration must be between the values set for
DXCH_MINRWINK and DXCH_MAXRWINK. The default value for
DXCH_MINRWINK is 100 ms, and the default value for
DXCH_MAXRWINK is 200 ms. Use the dx_setparm() function to
change the minimum and maximum allowable inbound wink duration.

To receive an inbound wink on a channel:

1. Using the dx_setparm() function, set the off-hook delay interval
(DXBD_OFFHDLY) parameter to 1 so that the channel is ready to detect
an incoming wink immediately upon going off hook.

2. Using the dx_setevtmsk() function, enable the DM_WINK event.

NOTE: If DM_WINK is not specified in the mask parameter of the
dx_setevtmsk() function, and DM_RINGS is specified, a wink will be
interpreted as an incoming call.

A typical sequence of events for an inbound wink is:

1. The application calls the dx_sethook() function to initiate a call by
going off hook.

2. When the incoming call is detected by the Central Office, the CO
responds by sending a wink to the board.

generates an outbound wink dx_wink()

315-CD

3. When the wink is received successfully, a DE_WINK event is sent to the
application.

n Cautions

Make sure the channel is on-hook when dx_wink() is called.

n Example 1: Using dx_wink() in synchronous mode.

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int chdev;
 DV_TPT tpt;
 DV_DIGIT digitp;
 char buffer[8];

 /* open a channel with chdev as descriptor */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* set hookstate to on-hook and wink */
 if (dx_sethook(chdev,DX_ONHOOK,EV_SYNC) == -1) {
 /* process error */
 }

 if (dx_wink(chdev,EV_SYNC) == -1) {
 /* error winking channel */
 }

 dx_clrtpt(&tpt,1);

 /* set up DV_TPT */
 tpt.tp_type = IO_EOT; /* only entry in the table */
 tpt.tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt.tp_length = 1; /* terminate on the first digit */
 tpt.tp_flags = TF_MAXDTMF; /* Use the default flags */

 /* get digits while on-hook */

 if (dx_getdig(chdev,&tpt, &digitp, EV_SYNC) == -1) {
 /* error getting digits */
 }

 /* now we can go off-hook and continue */

 if (dx_sethook(chdev,DX_OFFHOOK,EV_SYNC)== -1) {
 /* process error */

dx_wink() generates an outbound wink

316-CD

 }
 .
 .
}

n Example 2: Using dx_wink() in asynchronous mode.

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

#define MAXCHAN 24

int wink_handler();

main()
{
 int i, chdev[MAXCHAN];
 char *chnamep;
 int srlmode;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 for (i=0; i<MAXCHAN; i++) {

 /* Set chnamep to the channel name - e.g., dxxxB1C1 */

 /* open the channel with dx_open(). Obtain channel device
 * descriptor in chdev[i]
 */
 if ((chdev[i] = dx_open(chnamep,NULL)) == -1) {
 /* process error */
 }

 /* Using sr_enbhdlr(), set up handler function to handle wink
 * completion events on this channel.
 */
 if (sr_enbhdlr(chdev[i], TDX_WINK, wink_handler) == -1) {
 /* process error */
 }

 /* Before issuing dx_wink(), ensure that the channel is onhook,
 * else the wink will fail.
 */
 if(dx_sethook(chdev[i], DX_ONHOOK, EV_ASYNC)==-1){
 /* error setting channel on-hook */
 }
 /* Use sr_waitevt() to wait for the completion of dx_sethook(). */
 if (dx_wink(chdev[i], EV_ASYNC) == -1) {
 /* error winking channel */
 }
 }

generates an outbound wink dx_wink()

317-CD

 /* Use sr_waitevt() to wait for the completion of wink.
 * On receiving the completion event, TDX_WINK, control is transferred
 * to the handler function previously established using sr_enbhdlr().
 */
 .
 .
}

int wink_handler()
{
 printf("wink completed on channel %s\n", ATDX_NAMEP(sr_getevtdev()));
 return 0;
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_SYSTEM • Windows NT system error - check errno

n See Also

Related Functions:

• dx_setparm()
• dx_getparm()

Handling and Retrieving dx_wink Termination Events:

• Event Management functions (Standard Runtime Library Programmer’s
Guide for Windows NT and Appendix A)

• DV_TPT
• ATDX_TERMMSK()

Handling outbound winks:

• dx_wtring()

Handling inbound winks:

• dx_setevtmsk()
• dx_sethook()
• DX_CST (Chapter 4. Voice Data Structures and Device Parameters)

dx_wink() generates an outbound wink

318-CD

• dx_getevt() - synchronous
• EV_EBLK - synchronous applications (Chapter 4. Voice Data

Structures and Device Parameters)
• sr_getevtdatap() - asynchronous (Standard Runtime Library

Programmer’s Guide for Windows NT and Appendix A)

waits for a specified number of rings dx_wtring()

319-CD

Name: int dx_wtring(chdev,nrings,hstate,timeout)
Inputs: int chdev • valid Dialogic channel device handle

int nrings • number of rings to wait for
int hstate • hook state to set after rings are

detected
int timeout • in seconds

Returns: 0 if successful
-1 if failure

Includes: srllib.h
dxxxlib.h

Category: Configuration

n Description

The dx_wtring() function waits for a specified number of rings and sets the
channel to on-hook or off-hook after the rings are detected. Using dx_wtring() is
equivalent to using dx_setevtmsk(), dx_getevt(), and dx_sethook() to wait for
a ring. When dx_wtring() is called, the specified channel’s event is set to
DM_RINGS.

NOTE: Do not call this function for a digital T-1 SCbus configuration that
includes a D/240SC, D/240SC-T1, or DTI/241SC board. Transparent
signaling for SCbus digital interface devices is not supported in System
Release 4.1SC.

The function parameters are defined as follows:

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

nrings: specifies the number of rings to wait for before setting the
hook state.

hstate: sets the hookstate of the channel after the number of rings
specified in nrings are detected. hstate can have either of the
following values:

DX_ONHOOK: channel remains on-hook when nrings
number of rings are detected

dx_wtring() waits for a specified number of rings

320-CD

Parameter Description

DX_OFFHOOK: channel goes off-hook when nrings
number of rings are detected

timeout: specifies the maximum length of time in tenths of seconds to
wait for a ring. timeout can have one of the following values:

of seconds: maximum length of time to wait for a
ring.

-1: dx_wtring() waits forever and never
times out.

0: dx_wtring() returns -1 immediately if
a ring event does not already exist.

n Cautions

1. dx_wtring() changes the event enabled on the channel to DM_RINGS.
For example, "process A" issues dx_setevtmsk() to enable detection of
another type of event, e.g., DM_SILON, on channel one. If "process B"
issues dx_wtring() on channel one, then process A will now be waiting
for a DM_RINGS event since process B has reset the channel event to
DM_RINGS with dx_wtring().

2. A channel can detect rings immediately after going on hook. Rings may
be detected during the time interval between dx_sethook() and
dx_wtring(). Rings are counted as soon as they are detected.

NOTE: If the number of rings detected before dx_wtring() returns is
equal to or greater than nrings, dx_wtring() will not terminate.
This may cause the application to miss calls that are already
coming in when the application is first started.

3. Do not use the Windows NT sigset() system call with SIGALRM while
waiting for rings.

n Example

#include <srllib.h>
#include <dxxxlib.h>

waits for a specified number of rings dx_wtring()

321-CD

#include <windows.h>

main()
{
 int chdev; /* channel descriptor */
 .
 .
 /* Open Channel */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* process error */
 }

 /* Wait for two rings on this channel - no timeout */
 if (dx_wtring(chdev,2,DX_OFFHOOK,-1) == -1) {
 /* process error */
 }
 .
 .
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid Parameter
EDX_SYSTEM • Windows NT system error - check errno
EDX_TIMEOUT • Timeout limit is reached

n See Also

• dx_setevtmsk()
• dx_getevt()
• dx_sethook()
• DX_EBLK (Chapter 4. Voice Data Structures and Device Parameters)

r2_creatfsig() defines and enables leading edge detection

322-CD

Name: int r2_creatfsig(chdev,forwardsig)
Inputs: int chdev • channel device handle

int forwardsig • group I/II forward signal
Returns: 0 if success

-1 if failure
Includes: srllib.h

dxxxlib.h
Category: R2MF Convenience

n Description

r2_creatfsig() is a convenience function that defines and enables leading edge
detection of an R2MF forward signal on a channel.

NOTE: This function calls the dx_blddt() function to create the template.

User-defined tone IDs 101 through 115 are used by this function.

For detailed information about R2MF signaling see the Voice Features Guide for
Windows NT.

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

forwardsig: specifies the name of a Group I or Group II forward signal
which provides the tone ID for detection of the associated
R2MF tone (or tones). Set to R2_ALLSIG to enable detection
of all 15 tones or set to one of the following defines:

Specify one of:
Group I Group II

Associated
Tone ID

SIGI_1 SIGII_1 101
SIGI_2 SIGII_2 102
SIGI_3 SIGII_3 103
SIGI_4 SIGII_4 104
SIGI_5 SIGII_5 105
SIGI_6 SIGII_6 106

defines and enables leading edge detection r2_creatfsig()

323-CD

Parameter Description
SIGI_7 SIGII_7 107
SIGI_8 SIGII_8 108
SIGI_9 SIGII_9 109
SIGI_10 SIGII_10 110
SIGI_11 SIGII_11 111
SIGI_12 SIGII_12 112
SIGI_13 SIGII_13 113
SIGI_14 SIGII_14 114
SIGI_15 SIGII_15 115

NOTE: Either the Group I or the Group II define can be used to specify the
forward signal, because the Group I and Group II defines correspond to
the same set of 15 forward signals, and the same user-defined tones are
used for Group I and Group II.

n Cautions

1. The channel must be idle when calling this function.

2. Prior to creating the R2MF tones on a channel, you should delete any
previously created user-defined tones (including non-R2MF tones) to
avoid getting an error for having too many tones enabled on a channel.

3. This function creates R2MF tones with user-defined tone IDs from 101
to 115, and you should reserve these tone IDs for R2MF. If you attempt
to create a forward signal tone with this function and you previously
created a tone with the same tone ID, an invalid tone ID error will occur.

4. Maximum number of user-defined tones is on a per board basis.

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int dxxxdev;

r2_creatfsig() defines and enables leading edge detection

324-CD

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Create all forward signals
 */
 if (r2_creatfsig(dxxxdev, R2_ALLFSIG) == -1) {
 printf("Unable to Create the Forward Signals\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

EDX_BADPARM • Invalid parameter
EDX_BADPROD • Function not supported on this board
EDX_SYSTEM • Windows NT System error - check errno
EDX_TONEID • Invalid tone template ID
EDX_MAXTMPLT • Maximum number of user-defined tones for the

board
EDX_INVSUBCMD • Invalid sub-command
EDX_FREQDET • Invalid tone frequency
EDX_CADENCE • Invalid cadence component value

defines and enables leading edge detection r2_creatfsig()

325-CD

EDX_ASCII • Invalid ASCII value in tone template description
EDX_DIGTYPE • Invalid Dig_Type value in tone template description

n See Also

• r2_playbsig()
• dx_addtone()
• dx_blddt()
• "R2MF Signaling" - (Voice Features Guide for Windows NT)

r2_playbsig() plays a specified backward R2MF signal

326-CD

Name: int r2_playbsig(chdev,backwardsig,forwardsig,mode)
Inputs: int chdev • channel device handle

int backwardsig • group A/B backward signal
int forwardsig • group I/II forward signal
int mode • asynchronous/synchronous

Returns: 0 if success
error return code

Includes: srllib.h
dxxxlib.h

Category: R2MF
Mode: asynchronous/synchronous

n Description

The r2_playbsig() function plays a specified backward R2MF signal on the
specified channel until a tone-off event is detected for the specified forward
signal.

The r2_playbsig() function is a convenience function that plays a tone and
controls the timing sequence required by the R2MF compelled signaling
procedure.

Compelled signaling sends each signal, until it is responded to by a return signal,
which in turn is sent until responded to by the other party. See the Voice Features
Guide for Windows NT for more information about R2MF Compelled signaling.

NOTE: This function calls the dx_playtone() function to play the tone.

n Asynchronous Operation

1. Enable forward signal detection using r2_creatfsig().

2. Use SRL to asynchronously wait for TDX_CST event(s).

3. Use sr_getevtdatap() to retrieve the DX_CST structure, which will
contain a DE_TONEON event in the cst_event field.

4. Determine which forward signal was detected by matching the tone ID
returned cst_data field (from 101 to 115) with the forward signal
Group I or Group II defines (see forwardsig argument description for a
list of the forward signal defines).

plays a specified backward R2MF signal r2_playbsig()

327-CD

5. Decide which backward signal should be played in response to the
forward signal.

6. Use the r2_playbsig() function to play the desired backward signal.

7. r2_playbsig() will terminate automatically when a tone-off event is
detected. There is a 60-second default duration for playing the backward
signal. If the forward signal tone-off is not detected within 60 seconds,
the backward signal will terminate with a TDX_PLAYTONE event, and
ATDX_TERMMSK will return TM_MAXTIME.

n Synchronous Operation

8. Enable forward signal detection using r2_creatfsig().

9. Call dx_getevt() to wait for a DX_TONEON event. Events are returned
in the DX_EBLK structure.

10. Determine which forward signal was detected by matching the tone ID
contained in the ev_data field (from 101 to 115) with the forward signal
Group I or Group II defines (see forwardsig argument description for a
list of the forward signal defines).

11. Decide which backward signal should be played in response to the
forward signal.

12. Use the r2_playbsig() function to play the desired backward signal.

13. r2_playbsig() will terminate automatically when a tone-off event is
detected. There is a 60-second default duration for playing the backward
signal. If the forward signal tone-off is not detected within 60 seconds,
the backward signal will terminate, and ATDX_TERMMSK() will
return TM_MAXTIME.

Parameter Description

chdev: specifies the valid channel device handle obtained when the
channel was opened using dx_open().

backwardsig: specifies the name of a Group A or Group B backward signal
to play. Set to one of the defines in Group A or one of the
defines in Group B:

r2_playbsig() plays a specified backward R2MF signal

328-CD

Parameter Description

Specify one of:
Group A Group B

Associated
Tone ID

SIGA_1 SIGB_1 101
SIGA_2 SIGB_2 102
SIGA_3 SIGB_3 103
SIGA_4 SIGB_4 104
SIGA_5 SIGB_5 105
SIGA_6 SIGB_6 106
SIGA_7 SIGB_7 107
SIGA_8 SIGB_8 108
SIGA_9 SIGB_9 109
SIGA_10 SIGB_10 110
SIGA_11 SIGB_11 111
SIGA_12 SIGB_12 112
SIGA_13 SIGB_13 113
SIGA_14 SIGB_14 114
SIGA_15 SIGB_15 115

forwardsig: specifies the name of the Group I or Group II forward signal
for which a tone-on event was detected, and for which a tone-
off event will terminate this function. Set to one of defines
from Group I or one of the defines from Group II:

Specify one of:
Group I Group II

Associated
Tone ID

SIGI_1 SIGII_1 101
SIGI_2 SIGII_2 102
SIGI_3 SIGII_3 103
SIGI_4 SIGII_4 104
SIGI_5 SIGII_5 105
SIGI_6 SIGII_6 106
SIGI_7 SIGII_7 107
SIGI_8 SIGII_8 108
SIGI_9 SIGII_9 109
SIGI_10 SIGII_10 110
SIGI_11 SIGII_11 111
SIGI_12 SIGII_12 112
SIGI_13 SIGII_13 113
SIGI_14 SIGII_14 114

plays a specified backward R2MF signal r2_playbsig()

329-CD

Parameter Description
SIGI_15 SIGII_15 115

The following procedure describes how to use the r2_playbsig() function:

n Example

#include <stdio.h>
#include <errno.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>

main()
{
 int dxxxdev;

 /*
 * Open the Voice Channel Device and Enable a Handler
 */
 if ((dxxxdev = dx_open("dxxxB1C1", NULL)) == -1) {
 perror("dxxxB1C1");
 exit(1);
 }

 /*
 * Create all forward signals
 */
 if (r2_creatfsig(dxxxdev, R2_ALLFSIG) == -1) {
 printf("Unable to Create the Forward Signals\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 *
 * Detect an incoming call using dx_wtring()
 *
 * Enable the detection of all forward signals using
 * dx_enbtone(). In this example, only the first
 * forward signal will be enabled.
 */
 if (dx_enbtone(dxxxdev, SIGI_1, DM_TONEON | DM_TONEOFF) == -1) {
 printf("Unable to Enable Detection of Tone %d\n", SIGI_1);
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);

r2_playbsig() plays a specified backward R2MF signal

330-CD

 }

 /*
 * Now wait for the TDX_CST event and event type,
 * DE_TONEON. The data part contains the ToneId of
 * the forward signal detected. Based on the forward
 * signal, determine the backward signal to generate.
 *
 * In this example, we will be generating the Group A
 * backward signal A-1 (send next digit) assuming
 * forward signal received is SIGI_1.
 */

 if (r2_playbsig(dxxxdev, SIGA_1, SIGI_1, EV_SYNC) == -1) {
 printf("Unable to generate the backward signals\n");
 printf("Lasterror = %d Err Msg = %s\n",
 ATDV_LASTERR(dxxxdev), ATDV_ERRMSGP(dxxxdev));
 dx_close(dxxxdev);
 exit(1);
 }

 /*
 * Continue Processing
 * .
 * .
 * .
 */

 /*
 * Close the opened Voice Channel Device
 */
 if (dx_close(dxxxdev) != 0) {
 perror("close");
 }

 /* Terminate the Program */
 exit(0);
}

n Errors

If this function returns -1 to indicate failure, use ATDV_LASTERR() and
ATDV_ERRMSGP() to retrieve one of the following error reasons:

plays a specified backward R2MF signal r2_playbsig()

331-CD

EDX_BADPARM • Invalid parameter
EDX_BADPROD • Function not supported on this board
EDX_BADTPT • Invalid DV_TPT entry
EDX_BUSY • Busy executing I/O function
EDX_AMPLGEN • Invalid amplitude value in TN_GEN structure
EDX_FREQGEN • Invalid frequency component in TN_GEN

structure
EDX_FLAGGEN • Invalid tn_dflag field in TN_GEN structure
EDX_SYSTEM • Windows NT system error - check errno

n Cautions

The channel must be idle when calling this function.

n See Also

• r2_creatfsig()
• dx_blddt()
• dx_playtone()
• "R2MF Signaling" - (Voice Features Guide for Windows NT)

r2_playbsig() plays a specified backward R2MF signal

332-CD

333-CD

4. Voice Data Structures and Device
Parameters

This chapter provides a description of the voice library data structures and voice
board parameters. The following topics are included:

• Data Structures and Tables from the Voice Library (Section 4.1)

• Parameters used by dx_setparm() and dx_getparm() (Section 4.2)

4.1. Voice Library Data Structures

The following sections describe each of the data structures used by the Voice
Library functions.

The voice software includes structures that indicate I/O termination, contain a
device’s status information, or provide other function-specific information. The
following structures are used:

DV_DIGIT • User Digit Buffer Structure
DX_CST • Call Status Transition Structure
DX_CAP • Call Analysis Parameter Structure
DX_EBLK • Event Block Structure
DX_IOTT • I/O Transfer Table Structure
DX_SVCB • Speed/Volume Adjustment Condition Block
DX_SVMT • Speed/Volume Modification Block
DX_TPB • Test Parameter Block Structure
DX_UIO • User-definable I/O Structure
DX_XPB • I/O Transfer Parameter Block
TN_GEN • Tone Generation Template structure

NOTE: DV_TPT termination parameter structure, which is defined in the Standard
Runtime Library is described in Appendix A.

Voice Programmer’s Guide for Windows NT

334-CD

4.1.1. DV_DIGIT - user digit buffer

When a dx_getdig() is performed, the digits are collected from the firmware and
transferred to the user’s digit buffer. The digits are stored as an array inside the
DV_DIGIT structure.

The typedef for the structure is shown below:

 typedef struct DV_DIGIT {
 char dg_value[DG_MAXDIGS +1]; /* ASCII values of digits */
 char dg_type[DG_MAXDIGS +1]; /* Type of digits */
 } DV_DIGIT;

where:

dg_value is a NULL-terminated string of the ASCII values of the digits collected.

dg_type is an array (terminated by DG_END) of the digit types corresponding to
each of the digits contained in dg_value. The defines for the digit types are:

DG_DTMF • DTMF digit
DG_LPD • Loop Pulse digit
DG_MF • MF digit
DG_USER1 • User defined tone
DG_USER2 • User defined tone
DG_USER3 • User defined tone
DG_USER4 • User defined tone
DG_USER5 • User defined tone

DG_MAXDIGS is the define for the maximum number of digits (31) that can be
returned by a single call to dx_getdig(). Refer to dxxxlib.h for the value of
DG_MAXDIGS.

4.1.2. DX_CAP - change default call analysis parameters

The DX_CAP structure modifies parameters that control Frequency Detection,
Cadence Detection, Loop Current, and Positive Voice Detection. DX_CAP
structure is used for input to the setcparm() function to modify call analysis
channel parameters when using dx_dial().

4. Voice Data Structures and Device Parameters

335-CD

This structure provides the ability to change the default Call Analysis parameters
when using dx_dial(). This structure may be used only under the following
circumstances:

• When dialing on D/41ESC, D/xxxSC (D/160SC-LS, D/240SC,
D/240SC-T1, D/300SC-E1, D/320SC, DTI/241SC, DTI/301SC,
LSI/81SC, or LSI/161SC) channels

• When clearing DX_CAP fields using dx_clrcap()

NOTE: For more detail about Call Analysis and how and when to use the
DX_CAP structure see the Voice Features Guide for Windows NT.

To clear the fields in a DX_CAP structure, use the dx_clrcap() function.

If you set any DX_CAP field to 0, the field will be reset to the default value for
the field. The setting used by a previously called dx_dial() function is ignored.

The typedef for the structure is shown on the following pages.

 * DX_CAP
 *
 * Call Analysis parameters
 * [NOTE: All user-accessible structures must be defined so as to be
 * unaffected by structure packing.]
 */
typedef struct DX_CAP {
 unsigned short ca_nbrdna; /* # of rings before no answer. */
 unsigned short ca_stdely; /* Delay after dialing before
 analysis. */
 unsigned short ca_cnosig; /* Duration of no signal time out
 delay. */
 unsigned short ca_lcdly; /* Delay after dial before lc drop
 connect */
 unsigned short ca_lcdly1; /* Delay after lc drop con. before
 msg. */
 unsigned short ca_hedge; /* Edge of answer to send connect
 message. */
 unsigned short ca_cnosil; /* Initial continuous noise timeout
 delay. */
 unsigned short ca_lo1tola; /* % acceptable pos. dev of short low
 sig. */
 unsigned short ca_lo1tolb; /* % acceptable neg. dev of short low
 sig. */
 unsigned short ca_lo2tola; /* % acceptable pos. dev of long low
 sig. */
 unsigned short ca_lo2tolb; /* % acceptable neg. dev of long low
 sig. */
 unsigned short ca_hi1tola; /* % acceptable pos. dev of high
 signal. */
 unsigned short ca_hi1tolb; /* % acceptable neg. dev of high
 signal. */

Voice Programmer’s Guide for Windows NT

336-CD

 unsigned short ca_lo1bmax; /* Maximum interval for shrt low for
 busy. */
 unsigned short ca_lo2bmax; /* Maximum interval for long low for
 busy. */
 unsigned short ca_hi1bmax; /* Maximum interval for 1st high for
 busy */
 unsigned short ca_nsbusy; /* Num. of highs after nbrdna busy
 check. */
 unsigned short ca_logltch; /* Silence deglitch duration. */
 unsigned short ca_higltch; /* Non-silence deglitch duration. */
 unsigned short ca_lo1rmax; /* Max. short low dur. of double
 ring. */
 unsigned short ca_lo2rmin; /* Min. long low dur. of double
 ring. */
 unsigned short ca_intflg; /* Operator intercept mode. */
 unsigned short ca_intfltr; /* Minimum signal to qualify freq.
 detect. */
 unsigned short rfu1; /* reserved for future use */
 unsigned short rfu2; /* reserved for future use */
 unsigned short rfu3; /* reserved for future use */
 unsigned short rfu4; /* reserved for future use */
 unsigned short ca_hisiz; /* Used to determine which lowmax to
 use. */
 unsigned short ca_alowmax; /* Max. low before con. if high
 >hisize. */
 unsigned short ca_blowmax; /* Max. low before con. if high
 <hisize. */
 unsigned short ca_nbrbeg; /* Number of rings before analysis
 begins. */
 unsigned short ca_hi1ceil; /* Maximum 2nd high dur. for a
 retrain. */
 unsigned short ca_lo1ceil; /* Maximum 1st low dur. for a
 retrain. */
 unsigned short ca_lowerfrq; /* Lower allowable frequency in hz. */
 unsigned short ca_upperfrq; /* Upper allowable frequency in hz. */
 unsigned short ca_timefrq; /* Total duration of good signal
 required. */
 unsigned short ca_rejctfrq; /* Allowable % of bad signal. */
 unsigned short ca_maxansr; /* Maximum duration of answer. */
 unsigned short ca_ansrdgl; /* Silence deglitching value for
 answer. */
 unsigned short ca_mxtimefrq; /* max time for 1st freq to remain in
 bounds */
 unsigned short ca_lower2frq; /* lower bound for second frequency */
 unsigned short ca_upper2frq; /* upper bound for second frequency */
 unsigned short ca_time2frq; /* min time for 2nd freq to remains in
 bounds */
 unsigned short ca_mxtime2frq; /* max time for 2nd freq to remain in
 bounds */
 unsigned short ca_lower3frq; /* lower bound for third frequency */
 unsigned short ca_upper3frq; /* upper bound for third frequency */
 unsigned short ca_time3frq; /* min time for 3rd freq to remains in
 bounds */
 unsigned short ca_mxtime3frq; /* max time for 3rd freq to remain in
 bounds */
 unsigned short ca_dtn_pres; /* Length of a valid dial tone
 (def=1sec) */
 unsigned short ca_dtn_npres; /* Max time to wait for dial tone
 (def=3sec)*/
 unsigned short ca_dtn_deboff; /* The dialtone off debouncer
 (def=100ms) */

4. Voice Data Structures and Device Parameters

337-CD

 unsigned short ca_pamd_failtime; /* Wait for AMD/PVD after cadence
 break(default=4sec)*/
 unsigned short ca_pamd_minring; /* min allowable ring duration
 (def=1.9sec)*/
 byte ca_pamd_spdval; /* Set to 2 selects quick decision
 (def=1) */
 byte ca_pamd_qtemp; /* The Qualification template to use
 for PAMD */
 unsigned short ca_noanswer; /* time before no answer after first
 ring (default=30sec) */
 unsigned short ca_maxintering; /* Max inter ring delay before connect
 (8 sec) */
} DX_CAP;

DX_CAP Parameter Descriptions

ca_nbrdna Number of Rings Before Detecting No Answer: The
number of single or double rings to wait before returning a
no answer. (CA: Basic only)

Length: 1. Default: 4. Units: rings.

ca_stdely Start Delay: The delay after dialing has been completed
and before starting analysis for Cadence Detection,
Frequency Detection, and Positive Voice Detection. (CA)

Length: 2. Default: 25. Units: 10 ms.

ca_cnosig Continuous No Signal: The maximum time of silence (no
signal) allowed immediately after Cadence Detection
begins. If exceeded, a no ringback is returned. (CA)

Length: 2. Default: 4000. Units: 10 ms.

ca_lcdly Loop Current Delay: The delay after dialing has been
completed and before beginning Loop Current Detection.
(CA)

-1: Disable Loop Current Detection.

Length: 2. Default: 400. Units: 10 ms.

ca_lcdly1 Loop Current Delay 1: The delay after Loop Current
Detection detects a transient drop in loop current and
before Call Analysis returns a connect to the application.
(CA)

Voice Programmer’s Guide for Windows NT

338-CD

Length: 2. Default: 10. Units: 10 ms.

ca_hedge Hello Edge: The point at which a connect will be returned
to the application. (CA)

1: Rising Edge (immediately when a connect is detected).

2: Falling Edge (after the end of the salutation).

Length: 1. Default: 2. Units: edge.

ca_cnosil Continuous Nonsilence: The maximum length of the first
or second period of nonsilence allowed. If exceeded, a no
ringback is returned. (CA)

Length: 2. Default: 650. Units: 10 ms.

ca_lo1tola Low 1 Tolerance Above: Percent acceptable positive
deviation of short low signal. (CA: Basic only)

Length: 1. Default: 13. Units: %.

ca_lo1tolb Low 1 Tolerance Below: Percent acceptable negative
deviation of short low signal. (CA: Basic only)

Length: 1. Default: 13. Units: %.

ca_lo2tola Low 2 Tolerance Above: Percent acceptable positive
deviation of long low signal. (CA: Basic only)

Length: 1. Default: 13. Units: %.

ca_lo2tolb Low 2 Tolerance Below: Percent acceptable negative
deviation of long low signal. (CA: Basic only)

Length: 1. Default: 13. Units: %.

ca_hi1tola High 1 Tolerance Above: Percent acceptable positive
deviation of high signal. (CA: Basic only)

Length: 1. Default: 13. Units: %.

ca_hi1tolb High 1 Tolerance Below: Percent acceptable negative
deviation of high signal. (CA: Basic only)

Length: 1. Default: 13. Units: %.

4. Voice Data Structures and Device Parameters

339-CD

ca_lo1bmax Low 1 Busy Maximum: Maximum interval for short low
for busy. (CA: Basic only)

Length: 2. Default: 90. Units: 10 ms.

ca_lo2bmax Low 2 Busy Maximum: Maximum interval for long low
for busy. (CA: Basic only)

Length: 2. Default: 90. Units: 10 ms.

ca_hi1bmax High 1 Busy Maximum: Maximum interval for first high
for busy. (CA: Basic only)

Length: 2. Default: 90. Units: 10 ms.

ca_nsbusy Nonsilence Busy: The number of nonsilence periods in
addition to nbrdna to wait before returning a busy. (CA:
Basic only)

Length: 1. Default: 0. Negative values are valid.

ca_logltch Low Glitch: The maximum silence period to ignore. Used
to help eliminate spurious silence intervals. (CA)

Length: 2. Default: 15. Units: 10 ms.

ca_higltch High Glitch: The maximum nonsilence period to ignore.
Used to help eliminate spurious nonsilence intervals. (CA)

Length: 2. Default: 19. Units: 10 ms.

ca_lo1rmax Low 1 Ring Maximum: Maximum short low duration of
double ring. (CA: Basic only)

Length: 2. Default: 90. Units: 10 ms.

ca_lo2rmin Low 2 Ring Minimum: Minimum long low duration of
double ring. (CA: Basic only)

Length: 2. Default: 225. Units: 10 ms.

ca_intflg Intercept Mode Flag: This parameter enables or disables
SIT Frequency Detection, Positive Voice Detection
(PVD), and/or Positive Answering Machine Detection
(PAMD), and selects the mode of operation for Frequency

Voice Programmer’s Guide for Windows NT

340-CD

Detection. (CA)

DX_OPTEN:
Enable Frequency Detection and
wait for detection of a connect using
Cadence Detection or Loop Current
Detection before returning an
intercept.

DX_OPTDIS: Disable Frequency Detection and
PVD.

DX_OPTNOCON: Enable Frequency Detection return
an intercept immediately after
detecting a valid frequency.

DX_PVDENABLE: Enable PVD.

DX_PVDOPTEN: Enable PVD and DX_OPTEN.

DX_PVDOPTNOCON: Enable PVD and DX_OPTNOCON.

DX_PAMDENABLE: Enable PAMD.

DX_PAMDOPTEN: Enable PAMD and DX_OPTEN.

Length: 1. Default: DX_OPTEN.

ca_intfltr Not used.

ca_hisiz High Size: Used to determine whether to use alowmax or
blowmax. (CA: Basic only)

Length: 2. Default: 90. Units: 10 ms.

ca_alowmax A Low Maximum: Maximum low before connect if high >
hisiz. (CA: Basic only)

Length: 2. Default: 700. Units: 10 ms.

ca_blowmax B Low Maximum: Maximum low before connect if high <
hisiz. (CA: Basic only)

Length: 2. Default: 530. Units: 10 ms.

ca_nbrbeg Number Before Beginning: Number of nonsilence periods
before analysis begins. (CA: Basic only)

4. Voice Data Structures and Device Parameters

341-CD

Length: 1. Default: 1. Units: rings.

ca_hi1ceil High 1 Ceiling: Maximum 2nd high duration for a retrain.
(CA: Basic only)

Length: 2. Default: 78. Units: 10 ms.

ca_lo1ceil Low 1 Ceiling: Maximum 1st low duration for a retrain.
(CA: Basic only)

Length: 2. Default: 58. Units: 10 ms.

ca_lowerfrq Lower Frequency: Lower bound for 1st tone in an SIT.
(CA)

Length: 2. Default: 900. Units: Hz.

ca_upperfrq Upper Frequency: Upper bound for 1st tone in an SIT.
(CA)

Length: 2. Default: 1000. Units: Hz.

ca_timefrq Time Frequency: Minimum time for 1st tone in an SIT to
remain in bounds. The minimum amount of time required
for the audio signal to remain within the frequency
detection range specified by upperfrq and lowerfrq for it to
be considered valid. (CA)

Length: 1. Default: 5. Units: 10 ms.

ca_rejctfrq Not used.

ca_maxansr Maximum Answer: The maximum allowable length of
ansrsize. When ansrsize exceeds maxansr, a connect is
returned to the application. (CA)

Length: 2. Default: 1000. Units: 10 ms.

ca_ansrdgl Answer Deglitcher: The maximum silence period allowed
between words in a salutation. This parameter should be
enabled only when you are interested in measuring the
length of the salutation. (CA)

-1: Disable this condition.

Voice Programmer’s Guide for Windows NT

342-CD

Length: 2. Default: -1. Units: 10 ms.

ca_pvdmxper Not used.

ca_pvdszwnd .Not used.

ca_pvddly Not used.

ca_mxtimefrq Maximum Time Frequency: Maximum allowable time for
1st tone in an SIT to be present.

Default: 0. Units: 10 ms..

ca_lower2frq Lower Bound for 2nd Frequency: Lower bound for 2nd
tone in an SIT.

Default: 0. Units: Hz.

ca_upper2frq Upper Bound for 2nd Frequency: Upper bound for 2nd
tone in an SIT.

Default: 0. Units: Hz. .

ca_time2frq Time for 2nd Frequency: Minimum time for 2nd tone in an
SIT to remain in bounds.

Default: 0. Units: 10 ms.

ca_mxtime2frq Maximum Time for 2nd Frequency: Maximum allowable
time for 2nd tone in an SIT to be present.

Default: 0. Units: 10 ms.

ca_lower3frq Lower Bound for 3rd Frequency: Lower bound for 3rd
tone in an SIT.

Default: 0. Units: Hz.

ca_upper3frq Upper Bound for 3rd Frequency: Upper bound for 3rd tone
in an SIT.

Default: 0. Units: Hz.

ca_time3frq Time for 3rd Frequency: Minimum time for 3rd tone in an
SIT to remain in bounds.

4. Voice Data Structures and Device Parameters

343-CD

Default: 0. Units: 10 ms.

ca_mxtime3frq Maximum Time for 3rd Frequency: Maximum allowable
time for 3rd tone in an SIT to be present.

Default: 0. Units: 10 ms.

ca_dtn_pres Dial Tone Present: Length of time that a dial tone must be
continuously present. (CA: Enhanced only)

Default: 100. Units: 10 ms.

ca_dtn_npres Dial Tone Not Present: Maximum length of time to wait
before declaring dial tone failure. (CA: Enhanced only)

Default: 300. Units: 10 ms.

ca_dtn_deboff Dial Tone Debounce: Maximum gap allowed in an
otherwise continuous dial tone before it is considered
invalid. (CA: Enhanced only)

Default: 10. Units: 10 ms.

ca_pamd_failtime PAMD Fail Time: Maximum time to wait for Positive
Answering Machine Detection or Positive Voice Detection
after a cadence break. (CA: Enhanced only)

Default: 400. Units: 10 ms.

ca_pamd_minring Minimum PAMD Ring: Minimum allowable ring duration
for Positive Answering Machine Detection. (CA:
Enhanced only)

Default: 190. Units: 10 ms.

ca_pamd_spdval PAMD Speed Value: Quick or full evaluation for PAMD
detection.

PAMD_FULL = Full evaluation of response

PAMD_QUICK = Quick look at connect circumstances
(CA: Enhanced only)

Default: PAMD_FULL.

Voice Programmer’s Guide for Windows NT

344-CD

ca_pamd_qtemp PAMD Qualification Template: Which PAMD template to
use. Options are PAMD_QUAL1TMP or
PAMD_QUAL2TMP; at present, only
PAMD_QUAL1TMP is available. (CA: Enhanced only)

Default: PAMD_QUAL1TMP.

ca_noanswer No Answer: Length of time to wait after first ringback
before deciding that the call is not answered. (CA:
Enhanced only)

Default: 3000. Units: 10 ms.

ca_maxintering Maximum Inter-ring Delay: Maximum time to wait
between consecutive ringback signals before deciding that
the call has been connected. (CA: Enhanced only)

Default: 800. Units: 10 ms.

4.1.3. DX_CST - call status transition structure

DX_CST contains call status transition information after an asynchronous
TDX_CST termination or TDX_SETHOOK event occurs. Use the Event
Management function, sr_getevtdatap() (see Appendix A) to retrieve the
structure.

The typedef for DX_CST is shown below:

 typedef struct DX_CST {
 unsigned short cst_event;
 unsigned short cst_data;
 } DX_CST;

cst_event contains one of the following events:

DE_DIGITS • received a digit
DE_LCOFF • loop current off event
DE_LCON • loop current on event
DE_LCREV • loop current reversal event
DE_RINGS • rings received event
DE_RNGOFF • caller hang up (incoming call is dropped before being

4. Voice Data Structures and Device Parameters

345-CD

accepted) event
DE_SILOFF • silence off event
DE_SILON • silence on event
DE_TONEOFF • tone off event
DE_TONEON • tone on event
DE_WINK • received a wink
DX_OFFHOOK • offhook event
DX_ONHOOK • onhook event

NOTE: DX_ONHOOK and DX_OFFHOOK are returned if a
TDX_SETHOOK termination event is received.

cst_data contains data associated with cst_event. Valid values are:

CST event type CST event data

DE_DIGITS ASCII digit (low byte) and the digit type (high byte)

DE_LCOFF time previous last loop current "on" transition in 10 ms units

DE_LCON time since previous loop current "off" transition in 10 ms units

DE_LCREV time since previous loop current reversal transition in 10 ms units

DE_RINGS 0

DE_SILOFF time since previous silence started in 10 ms units

DE_SILON time since previous silence stopped in 10 ms units

DE_TONEOFF user-specified tone ID

DE_TONEON user-specified tone ID

DE_WINK N/A

DX_OFFHOOK N/A

DX_ONHOOK N/A

Voice Programmer’s Guide for Windows NT

346-CD

4.1.4. DX_EBLK- call status event block structure

This structure is returned by dx_getevt() indicates which Call Status Transition
event occurred.

NOTE: dx_getevt() is a synchronous function which blocks until an event
occurs. For information about asynchronously waiting for CST events,
see dx_setevtmsk().

The typedef for the structure is shown below:

 typedef struct DX_EBLK {
 unsigned short ev_event; /* Event that occurred */
 unsigned short ev_data; /* Event specific data */
 unsigned char ev_rfu[12]; /* Reserved for future use*/
 }DX_EBLK;

where:

ev_event specifies the event that occurred on the device. The following defines
can be entered in ev_event:

DE_DIGITS • digit received
DE_LCOFF • loop current off
DE_LCON • loop current on
DE_LCREV • loop current reversal
DE_RINGS • rings received
DE_SILOFF • non-silence detected
DE_SILON • silence detected
DE_TONEOFF • tone off event occurred
DE_TONEON • tone on event occurred
DE_WINK • wink has occurred

ev_data contains data specific to the event contained in ev_event. Table 6 shows
what data is returned for each event that appears in ev_event. All the lengths of
time are in 10 ms units.

4. Voice Data Structures and Device Parameters

347-CD

Table 6. Values Returned in ev_data

Event Data Returned in ev_data

DE_DIGITS Digit and digit type

DE_LCOFF The length of time that loop current was on before
the loop-current-off event was detected

DE_LCON The length of time that loop current was off before
the loop-current-on event was detected

DE_LCREV The length of time that loop current was reversed
before the loop-current-reversal event was detected

DE_RINGS Returns no data

DE_SILOFF The length of time that silence occurred before
non-silence (noise or meaningful sound) was
detected

DE_SILON The length of time that non-silence occurred before
silence was detected

DE_TONEOFF The tone ID for the tone-off event

DE_TONEON The tone ID for the tone-on event

DE_WINK Returns no data

ev_rfu is reserved for future use.

4.1.5. DX_IOTT - I/O transfer table

The DX_IOTT structure identifies a source or destination for voice data. It is used
with the dx_play() and dx_rec() functions.

The typedef for the structure is shown below:

Voice Programmer’s Guide for Windows NT

348-CD

 typedef struct dx_iott {
 unsigned short io_type; /* Transfer type */
 unsigned short rfu; /* Reserved */
 int io_fhandle; /* File descriptor */
 char * io_bufp; /* Pointer to base memory */
 unsigned long io_offset; /* File/Buffer offset */
 long int io_length; /* Length of data */
 DX_IOTT *io_nextp; /* Ptr to next DX_IOTT if IO_LINK set */
 DX_IOTT *io_prevp; /* (Optional) Ptr to previous DX_IOTT */
 }DX_IOTT;

where:

io_type specifies whether the data is stored in a file or in memory. It also
determines if the next DX_IOTT structure is contiguous in memory, linked, or if
this is the last DX_IOTT in the chain. Set the io_type field to an OR combination
of the required defines listed below.

Specify data transfer type as follows:

IO_DEV • data is being played from a file
IO_MEM • data is being played from memory

Specify structure linkage as follows:

IO_CONT • the next DX_IOTT structure is contiguous (default)
IO_LINK • the next DX_IOTT structure is part of a linked list
IO_EOT • this is the last DX_IOTT structure in the chain

If none of IO_CONT, IO_LINK, or IO_EOT are specified, IO_CONT is assumed.

io_fhandle contains a unique file descriptor if IO_DEV is set in io_type. If
IO_DEV is not set in io_type, io_fhandle should be set to 0.

io_bufp field indicates a base memory address if IO_MEM is set in io_type.

io_offset indicates

• an offset from the beginning of a file if IO_DEV is specified in io_type

• an offset from the base buffer address specified in io_bufp if IO_MEM
is specified in io_type.

4. Voice Data Structures and Device Parameters

349-CD

io_length indicates the number of bytes allocated for recording or the byte length
of the playback file. Specify -1 to play until end of data. During dx_play(), a
value of -1 causes playback to continue until an EOF is received or one of the
terminating conditions is satisfied. During dx_rec(), a value of -1 in io_length
causes recording to continue until one of the terminating conditions is satisfied.

io_nextp points to the next DX_IOTT structure in the linked list if IO_LINK is
set in io_type.

io_prevp points to the previous DX_IOTT structure. This field is automatically
filled in when dx_rec() or dx_play() are called. The io_prevp field of the first
DX_IOTT structure is set to NULL.

A DX_IOTT structure describes a single data transfer to or from one file, memory
block, or custom device. If the voice data is stored on a custom device, the device
must have a standard Windows NT device interface. The device must support
open(), close(), read(), and write() and lseek().

To use multiple combinations, each source or destination of I/O is specified as one
element in an array of DX_IOTT structures. The last DX_IOTT entry must have
IO_EOT specified in the io_type field.

For example, to use different sources for playback, an array or linked list of
DX_IOTT structures can be specified as follows:

Playback Array Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
DX_IOTT iott[3];
/* first iott: voice data in a file with descriptor fd1*/
iott[0].io_fhandle = fd1;
iott[0].io_offset = 0;
iott[0].io_length = -1;
iott[0].io_type = IO_DEV;
/* second iott: voice data in a file with descriptor fd2 */
iott[1].io_fhandle = fd2;
iott[1].io_offset = 0;
iott[1].io_length = -1;
iott[1].io_type = IO_DEV;
/* third iott: voice data in a file with descriptor fd3 */
iott[2].io_fhandle = fd3;
iott[2].io_offset = 0;
iott[2].io_length = -1;
iott[2].io_type = IO_DEV|IO_EOT;

Voice Programmer’s Guide for Windows NT

350-CD

 .
 .
/* play all three voice files: pass &iott[0] as argument to dx_play()
 .
 .
/* form a linked list of iott[0] and iott[2] */
iott[0].io_nextp=&iott[2];
iott[0].io_type|=IO_LINK
/* pass &iott[0] as argument to dx_play(). This time only files 1 and 3
 * will be played.
 */
 .

4.1.6. DX_SVMT - speed/volume modification table structure

The DX_SVMT structure has 21 entries that represent different levels of speed or
volume. This structure is used to set or retrieve the Speed/Volume Modification
Table values (using dx_setsvmt() and dx_getsvmt() respectively).

The DX_SVMT typedef is shown below:

 typedef struct DX_SVMT {
 char decrease[10]; /* Ten Downward Steps */
 char origin; /* Regular Speed or Volume */
 char increase[10]; /* Ten Upward Steps */
 } DX_SVMT;

Table 7 describes the valid speed and volume settings for each of the DX_SVMT
entries.

NOTE: Although there are 21 entries available in the DX_SVMT structure, they
do not all have to be utilized for changing speed or volume - the range
can be as small as you require. Ensure that you insert -128 (80h) in any
entries that do not contain a speed or volume adjustment.

Table 7. DX_SVMT Entries

Field Description

decrease[10] Array that provides a maximum of 10 downward steps in speed
or volume. The size of the steps is specified in this table.
Specify the value -128 (80h) in any entries you are not using.

Valid Values:

4. Voice Data Structures and Device Parameters

351-CD

Speed - Percentage decrease from the origin (which is set to
0). Valid Values must be between -1 and -50.

Volume - Step in dB from the origin (which is set to 0). Valid
Values must be between -1 and -30.

origin Represents the standard play speed or volume. This is the
original setting or starting point for Speed and Volume
Control.

Valid Values:

Set to 0 for speed or volume.

increase[10] Array that provides a maximum of 10 upward steps in speed or
volume. The size of the steps is specified in this table. Specify
the value -128 (80h) in any entries you are not using.

Valid Values:

Speed - Percentage increase from the origin (which is set to 0).
Valid Values must be between 1 and 50. Specify the value -
128 (80h) in any entries you are not using.

Volume - Step in dB from the origin (which is set to 0). Valid
Values must be between 1 and 10. Specify the value -128
(80h) in any entries you are not using.

4.1.7. DX_SVCB - speed/volume adjustment condition block

This structure is used by dx_setsvcond() to set the following:

• which Speed/Volume Modification Table to use (speed or volume)

• adjustment type (increase/decrease, absolute value, toggle)

• adjustment conditions (incoming digit, beginning of play)

• level/edge sensitivity for incoming digits

Voice Programmer’s Guide for Windows NT

352-CD

The typedef for the DX_SVCB structure is described below:

 typedef struct DX_SVCB {
 unsigned short type; /* Bit Mask */
 short adjsize; /* Adjustment Size */
 unsigned char digit; /* ASCII digit value that causes the action */
 unsigned char digtype; /* Digit Type (e.g., 0 = DTMF) */
 } DX_SVCB;

NOTES: 1. To clear the DX_SVCB adjustment condition blocks, call the
dx_clrsvcond() function.

2. DX_SVCB adjustment condition blocks can only be added to the
existing conditions. To reset or remove any DX_SVCB adjustment
condition blocks, all conditions must be cleared (using
dx_clrsvcond()).

Table 8 describes each of the valid values for the fields.

Table 8. DX_SVCB Entries

Defines
(type field)

Description
(for type field)

Description
(for adjsize field)

Speed or Volume

Choose one:

SV_SPEEDTBL Modify speed table. N/A.

SV_VOLUMETBL Modify volume table. N/A.

Adjustment Type

Choose one:

SV_ABSPOS Sets adjsize field to
indicate an absolute
volume adjustment
position position in the
Speed or Volume
Modification Tables.

Specify the required
speed or between -10 and
+10 in the Volume
Modification Speed or
Tables.

4. Voice Data Structures and Device Parameters

353-CD

Defines
(type field)

Description
(for type field)

Description
(for adjsize field)

SV_RELCURPOS Sets adjsize field to
indicate a number of
steps by which to adjust
speed or volume.

Specify how many
positive or negative
"steps" in the Speed or
Volume Modification
Tables by which to adjust
the speed or volume. For
example, specify -2 to
lower the speed or
volume by 2 steps in the
Speed or Volume
Modification Tables.

SV_TOGGLE Sets adjsize field to use
one of the toggle defines

Set the "toggle values by
specifying one of the
following:

SV_TOGORIGIN - sets
the current speed or
volume to toggle
between the origin and
the last modified level of
speed or volume.

SV_CURORIGIN -
resets the current speed
or volume level to the
origin (i.e., regular speed
or volume).

SV_CURLASTMOD -
sets the current speed or
volume to the last
modified speed volume
level.

Voice Programmer’s Guide for Windows NT

354-CD

Defines
(type field)

Description
(for type field)

Description
(for adjsize field)

SV_RESETORIG -
resets the current speed
or volume to the origin
and the last modified
speed or volume in the
origin.

Optional -Choose one:

SV_LEVEL Sets the digit
adjustmentcondition to
be level sensitive. At the
start of play, adjustments
will be made according
to adjustment condition
digits contained in the
digit buffer.

N/A.

If SV_LEVEL is not
specified, the digit
adjustment condition is
edge sensitive, and will
wait for a new
occurrence of the digit
before play adjusting.

SV_BEGINPLAY Adjusts speed or volume
at the beginning of each
play. In this case, digit
and digtype fields are
ignored.

N/A.

Choose one:

4. Voice Data Structures and Device Parameters

355-CD

Defines
(type field)

Description
(for type field)

Description
(for adjsize field)

0-9, a-d, #, * ASCII digit that adjusts
play.

N/A.

Digit Type

Specify the following:

DG_DTMF Specifies DTMF digits. N/A.

Volume Example

The following DX_SVCB structure is set to decrease the volume by one step
whenever the DTMF digit "1" is detected:

 svcb[0].type = SV_VOLUMETBL | SV_RELCURPOS;
 svcb[0].adjsize = - 1;
 svcb[0].digit = ’1’;
 svcb[0].digtype = DG_DTMF;

The following DX_SVCB structure will set speed to the value in Speed
Modification Table position 5 whenever the DTMF digit "2" is detected:

 svcb[0].type = SV_SPEEDTBL | SV_ABSPOS;
 svcb[0].adjsize = 5;
 svcb[0].digit = ’2’;
 svcb[0].digtype = DG_DTMF;

4.1.8. DX_UIO - user-definable I/O structure

This structure, returned by dx_setuio(), contains pointers to user-defined I/O
functions for accessing nonstandard storage devices.

 /*
 * Structure for user-defined I/O functions
 */
 typedef struct DX_UIO {

 int (*u_read) ();
 int (*u_write) ();
 int (*u_seek) ();
 } DX_UIO;

Voice Programmer’s Guide for Windows NT

356-CD

The u_read field is a pointer to the user-defined read() function, which returns
an integer equal to the number of bytes read or -1 for error.

The u_write field is a pointer to the user-defined write() function, which returns
an integer equal to the number of bytes written or -1 for error.

The u_seek field is a pointer to the user-defined lseek() function, which returns a
long equal to the offset into the I/O device where the read or write is to start or -1
for error.

4.1.9. TN_GEN - tone generation template structure

The tone generation template defines the frequency, amplitude, and duration of a
single or dual frequency tone to be played. You can use the convenience function
dx_bldtngen() to set up the structure.

Use dx_playtone() to play the tone.

The TN_GEN data structure is shown below:

 typedef struct {
 unsigned short tg_dflag; /* Dual Tone - 1, Single Tone - 0 */
 unsigned short tg_freq1; /* Frequency for Tone 1 (HZ) */
 unsigned short tg_freq2; /* Frequency for Tone 2 (HZ) */
 short tg_ampl1; /* Amplitude for Tone 1 (dB) */
 short tg_ampl2; /* Amplitude for Tone 2 (dB) */
 short tg_dur; /* Duration of the Generated Tone */
 /* Units = 10ms */
 } TN_GEN;

Table 9 lists the valid values for each field.

Table 9. TN_GEN Values

TN_GEN Field Description

tg_dflag Specifies single or dual tone. If single, the values in tg_freq2
and tg_ampl2 will be ignored.

Choose one:
TN_SINGLE single tone
TN_DUAL dual tone

4. Voice Data Structures and Device Parameters

357-CD

TN_GEN Field Description

tg_freq1 Frequency in Hz for tone 1 (range 200 to 2000 Hz)

tg_freq2 Frequency in Hz for tone 2; (range 200 to 2000 Hz)

tg_ampl1 Amplitude in dB for tone 1; (range 0 to -40 dB)

tg_ampl2 Amplitude in dB for tone 2; (range 0 to -40 dB)

tg_dur Duration of the tone in 10 ms units (-1 = infinite duration)

4.1.10. DX_XPB - I/O transfer parameter block

The kI/O Transfer Parameter Block (DX_XPB) data structure is used by the
extended play and record functions to specify the file format (either VOX file or
WAVE file), the data format (ADPCM, Mu-law PCM, A-law PCM, Linear PCM),
the sampling rate (6, 8, or 11 KHz), and the resolution (4 or 8 bits per sample).

 typedef struct {
 USHORT wFileFormat; // file format
 USHORT wDataFormat; // audio data format
 ULONG nSamplesPerSec; // sampling rate
 ULONG nBitsPerSample; // bits per sample
 } DX_XPB;

The dx_playwav() convenience function does not specify a DX_XPB structure
because the WAVE file contains the necessary format information.

DX_XPB Field Description

wFileFormat Specifies one of the following audio file formats. Note
that this field is ignored by the convenience functions
dx_recwav() , dx_playwav() , dx_recvox() ,.and
dx_playvox() .

Choose one:
FILE_FORMAT_VOX Dialogic VOX file format
FILE_FORMAT_WAVE Microsoft WAVE file

format

Voice Programmer’s Guide for Windows NT

358-CD

DX_XPB Field Description

wDataFormat specifies one of the following data formats

Choose one:

DATA_FORMAT_DIALOGI
C_ADPCM

4-bit OKI ADPCM
(Dialogic registered)

DATA_FORMAT_MULAW 8-bit mu-law PCM

DATA_FORMAT_ALAW 8-bit a-law PCM

DATA_FORMAT_PCM 8-bit Linear PCM

nSamplesPerSec specifies one of the following digitization rates

Choose one:

DRT_6KHZ 6 KHz sampling rate.

DRT_8KHZ 8 KHz sampling rate.

DRT_11KHZ 11 KHz sampling rate.
Note: 11KHz OKI
ADPCM is not supported.

nBitsPerSample specifies number of bits per sample. This field must be set
to 4 for ADPCM and 8 for all others.

4.2. Voice Board Parameter Defines for dx_getparm()

The and dx_setparm() file <install drive:>\<install directory>\dialogic
\include\dxxxlib.h contains defined masks for the D/4x parameters that can be
examined and set using dx_getparm() and dx_setparm(). These parameters
apply to any real or emulated D/4x board.

4. Voice Data Structures and Device Parameters

359-CD

Channels and boards have different parameters. The board parameters, their
default settings, read/write privileges, and descriptions are listed in Table 10.

The channel parameters are listed in Table 11. All time units are in 10 ms unless
otherwise noted.

Table 10. Voice Board Parameters

Define Bytes
Read/
Write Default Description

DXBD_CHNUM 1 R - Channel Number -
number of channels
on the board

DXBD_FLASHCHR 1 R/W & Flash character -
character that causes
a hook flash when
detected.

DXBD_FLASHTM 2 R/W 50 Flash Time - length
of time onhook
during flash

DXBD_HWTYPE 1 R - Hardware Type -
value can be:

TYP_D40 D/40 board

TYP_D41 D/21, D/41,
D/xxxSC board

DXBD_MAXPDOFF 2 R/W 50 Maximum Pulse
Digit Off - max. time
loop current may be
off before the
existing loop pulse
digit is considered
invalid and reception
is reinitialized

Voice Programmer’s Guide for Windows NT

360-CD

Define Bytes
Read/
Write Default Description

DXBD_MAXSLOFF 2 R/W 25 Maximum Silence
Off - maximum time
for silence being off,
during audio pulse
detection

DXBD_MINIPD 2 R/W 25 Minimum Loop
Interpulse Detection
- minimum time
between loop pulse
digits during loop
pulse detection

DXBD_MINISL 2 R/W 25 Minimum Interdigit
Silence - minimum
time for silence on
between pulse digits
for audio pulse
detection

DXBD_MINLCOFF 2 R/W 0 Minimum Loop
Current Off -
minimum time
before loop current
drop message is sent

DXBD_MINPDOFF 1 R/W 2 Minimum Pulse
Detection Off -
minimum break
interval for valid
loop pulse detection

DXBD_MINPDON 1 R/W 2 Minimum Pulse
Detection On -
minimum make
interval for valid

4. Voice Data Structures and Device Parameters

361-CD

Define Bytes
Read/
Write Default Description

loop pulse detection

DXBD_MINSLOFF 1 R/W 2 Minimum Silence
Off - min. time for
silence to be off for
valid audio pulse
detection

DXBD_MINSLON 1 R/W 1 Minimum Silence
On - min. time for
silence to be on for
valid audio pulse
detection

DXBD_MINTIOF 1 R/W 5 Minimum DTI Off -
minimum time
required between
rings-received
events

DXBD_MINTION 1 R/W 5 Minimum DTI On -
minimum time
required for rings
received event

DXBD_OFFHDLY 2 R/W 50 Offhook Delay -
period after offhook,
during which no
events are generated
e.g., no DTMF digits
will be detected
during this period.

DXBD_PAUSETM 2 R/W 200 Pause Time - delay
caused by a comma
in the dialing string

Voice Programmer’s Guide for Windows NT

362-CD

Define Bytes
Read/
Write Default Description

DXBD_P_BK 2 R/W 6 Pulse Dial Break -
duration of pulse
dial off-hook
interval

DXBD_P_IDD 2 R/W 100 Pulse Interdigit
Delay - time
between digits in
pulse dialing

DXBD_P_MK 2 R/W 4 Pulse Dial Make -
duration of pulse
dial offhook interval

DXBD_R_EDGE 1 R/W ET_ROFF Ring Edge -
detection of ring
edge, values can be:
ET_RON ·
beginning of ring
ET_ROFF · end of
ring

DXBD_R_IRD 2 R/W 80 Inter-ring Delay -
maximum time to
wait for the next ring
(100 ms units). Used
to distinguish
between calls. Set to
1 for T-1
applications.

DXBD_R_OFF 2 R/W 5 Ring-off Interval -
minimum time for
ring not to be
present before
qualifying as "not
ringing" (100 ms
units)

DXBD_R_ON 2 R/W 3 Ring-on Interval -
minimum time ring
must be present to

4. Voice Data Structures and Device Parameters

363-CD

Define Bytes
Read/
Write Default Description

qualify as a ring
(100 ms units)

DXBD_SYSCFG 1 R - System
Configuration - JP8
status for D/4x
boards: 0 = loop
start interface (JP8
in).; 1 = DTI/xxx
interface (JP8 out):

DXBD_S_BNC 2 R/W 4 Silence and Non-
silence Debounce -
length of a changed
state before Call
Status Transition
message is generated

DXBD_TTDATA 1 R/W 10 Duration of DTMF
digits for dialing.

DXBD_MFMINON 2 R/W 0 Minimum MF On -
The duration to be
added to the
standard MF tone
duration before the
tone is detected. The
minimum detection
duration is 65 ms for
KP tones and 40 ms
for all other tones.
This parameter
affects all the
channels on the
board. (10 ms units)

DXBD_MFTONE 2 R/W 6 MF Minimum Tone
Duration - The
duration of a dialed

Voice Programmer’s Guide for Windows NT

364-CD

Define Bytes
Read/
Write Default Description

MF tone. This
parameter affects all
the channels on the
board.

Maximum value: 10
(10 ms units)

DXBD_MFDELAY 2 R/W 6 MF Interdigit Delay
- The length of the
silence period
between tones
during MF dialing.
This parameter
affects all the
channels on the
board. (10 ms units)

DXBD_MFLKPTONE 2 R/W 10 MF Length of LKP
Tone - The length of
the LKP tone during
MF dialing. This
parameter affects all
the channels on the
specified board.

Maximum value: 15
(10 ms units)

DXBD_T_IDD 2 R/W 5 DTMF Interdigit
Delay - time
between digits in
DTMF dialing

DXBD_MINOFFHKTM 2 R/W 250 Minimum offhook
time (10 ms)

4. Voice Data Structures and Device Parameters

365-CD

Define Bytes
Read/
Write Default Description

DXCH_DFLAGS 2 R/W 0 DTMF detection
edge select

DXCH_DTINITSET 2 R/W 0 Specifies which
DTMF digits to
initiate play on.
Values of different
DTMF digits may be
ORed together to
form the bit mask.
Possible values are
listed below:

Value DTMF Digit

-DM_1 1
-DM_2 2
-DM_3 3
-DM_4 4
-DM_5 5
-DM_6 6
-DM_7 7
-DM_8 8
-DM_9 9
-DM_0 0
-DM_S *
-DM_P #
-DM_A a
-DM_B b
-DM_C c
-DM_D d

DXCH_DTMFTLK 2 R/W 5 Sets the minimum
time for DTMF to be
present during
playback to be
considered valid.

Voice Programmer’s Guide for Windows NT

366-CD

Define Bytes
Read/
Write Default Description

Increasing the value
provides more
immunity to talk-
off/playoff.

Set to -1 to disable.

DXCH_DTMFDEB 2 R/W 0 DTMF debounce
time - maximum
length of time in
which DTMF can be
absent and then
come back on again
and still be
considered the same
DTMF tone.

DXCH_MFMODE 2 R/W 2 This is a word-
length bit mask that
selects the minimum
length of KP tones
to be detected. The
possible values of
this field are:

0 - detect KP tone >
40 ms

2 - detect KP tone >
65 ms

If the value is set to 2, any KP tone greater
than 65ms will be returned to the
application during MF detection. This
ensures that only standard-length KP tones
(100ms) are detected. If set to 0 (zero), any
KP tone longer than 40ms will be detected.

4. Voice Data Structures and Device Parameters

367-CD

Define Bytes
Read/
Write Default Description

DXCH_MAXRWINK 1 R/W 20 Maximum Loop
Current for Wink -
The maximum time
that loop current
needs to be on
before recognizing a
wink (10 ms units)

DXCH_MINRWINK 1 R/W 10 Minimum Loop
Current for Wink -
The minimum time
that loop current
needs to be on
before recognizing a
wink (10 ms units)

DXCH_WINKDLY 1 R/W 15 Wink Delay - The
delay after a ring is
received before
issuing a wink (10
ms units)

DXCH_RINGCNT 2 R/W 4 Number of rings to
wait before returning
a ring event.

DXCH_WINKLEN 1 R/W 15 Wink Length - The
duration of a wink in
the off-hook state
(10 ms units)

DXCH_PLAYDRATE 2 R/W 6000 Play Digitization
Rate - This
parameter sets the
digitization rate of
the voice data that is

Voice Programmer’s Guide for Windows NT

368-CD

Define Bytes
Read/
Write Default Description

played on this
channel. Voice Data
can be played at 6k
or 8k sampling rates.
Valid parameter
values are:

6000 - 6K sampling rate
8000 - 8k sampling rate

Voice data must be played at the same rate
it was recorded at.

DXCH_RECRDRATE 2 R/W 6000 Record Digitization
Rate - This
parameter sets the
rate at which the
recorded voice data
is digitized. Voice
Data can be
digitized at 6k or 8k
sampling rates.
Valid values are:

6000 - 6K sampling
rate
8000 - 8k sampling
rate

Table 11. Voice Channel Parameters

Define Bytes
Read/
Write Default Description

DXCH_DFLAGS 2 R/W 0 DTMF detection edge

4. Voice Data Structures and Device Parameters

369-CD

Define Bytes
Read/
Write Default Description

select

DXCH_DTINITSET 2 R/W 0 Specifies which
DTMF digits to
initiate play on.
Values of different
DTMF digits may be
ORed together to
form the bit mask.
Possible values are
listed below:

Value
DTMF
Digit

-DM_1 1
-DM_2 2
-DM_3 3
-DM_4 4
-DM_5 5
-DM_6 6
-DM_7 7
-DM_8 8
-DM_9 9
-DM_0 0
-DM_S *
-DM_P #
-DM_A a
-DM_B b
-DM_C c
-DM_D d

DXCH_DTMFTLK 2 R/W 5 Sets the minimum time
for DTMF to be
present during
playback to be
considered valid.

Voice Programmer’s Guide for Windows NT

370-CD

Define Bytes
Read/
Write Default Description

Increasing the value
provides more
immunity to talk-
off/playoff.

Set to -1 to disable.

DXCH_DTMFDEB 2 R/W 0 DTMF debounce time
- maximum length of
time in which DTMF
can be absent and then
come back on again
and still be considered
the same DTMF tone.

DXCH_MFMODE 2 R/W 2 This is a word-length
bit mask that selects
the minimum length of
KP tones to be
detected. The possible
values of this field are:

0 - detect KP tone >
40 ms

2 - detect KP tone >
65 ms

If the value is set to 2,
any KP tone greater
than 65ms will be
returned to the
application during MF
detection. This ensures
that only standard-
length KP tones
(100ms) are detected.

4. Voice Data Structures and Device Parameters

371-CD

Define Bytes
Read/
Write Default Description

If set to 0 (zero), any
KP tone longer than
40ms will be detected.

DXCH_MAXRWINK 1 R/W 20 Maximum Loop
Current for Wink -
The maximum time
that loop current needs
to be on before
recognizing a wink (10
ms units)

DXCH_MINRWINK 1 R/W 10 Minimum Loop
Current for Wink -
The minimum time
that loop current
needs to be on
before recognizing
a wink (10 ms
units)

DXCH_WINKDLY 1 R/W 15 Wink Delay - The
delay after a ring is
received before
issuing a wink (10
ms units)

DXCH_RINGCNT 2 R/W 4 Number of rings to
wait before
returning a ring
event.

DXCH_WINKLEN 1 R/W 15 Wink Length - The
duration of a wink
in the off-hook
state (10 ms units)

Voice Programmer’s Guide for Windows NT

372-CD

Define Bytes
Read/
Write Default Description

DXCH_PLAYDRATE 2 R/W 6000 Play Digitization
Rate - This
parameter sets the
digitization rate of
the voice data that
is played on this
channel. Voice
Data can be played
at 6k or 8k
sampling rates.
Valid parameter
values are:

6000 - 6K
sampling rate
8000 - 8k
sampling rate

Voice data must be
played at the same
rate it was
recorded at.

DXCH_RECRDRATE 2 R/W 6000 Record
Digitization Rate -
This parameter
sets the rate at
which the recorded
voice data is
digitized. Voice
Data can be
digitized at 6k or
8k sampling rates.
Valid values are:

6000 - 6K

4. Voice Data Structures and Device Parameters

373-CD

Define Bytes
Read/
Write Default Description

sampling rate
8000 - 8k
sampling rate

Voice Programmer’s Guide for Windows NT

374-CD

375-CD

5. Voice Programming Conventions

This chapter provides several techniques that you can use to simplify
programming with the Dialogic Voice Library.

5.1. Always Check Return Code in Voice Programming

All the Dialogic Voice Library functions return a value to indicate success or
failure of the function. All Voice Library functions indicate success by a return
value of zero or a non-negative number.

NOTE: Asynchronous I/O functions return immediately to indicate success or
failure of the function initiating.

Extended Attribute functions that return pointers return a pointer to the ASCIIZ
string "Unknown device" if they fail.

Extended Attribute functions that do not return pointers return a value of
AT_FAILURE if they fail.

Non-attribute functions return a value of -1 to indicate a failure.

If a function has failed, the reason for failure can be found by calling the Standard
Attribute functions ATDV_LASTERR() and ATDV_ERRMSGP(). These
functions are described in the Standard Runtime Library Programmer’s Guide for
Windows NT.

If the error is EDX_SYSTEM check errno.

When using the asynchronous programming model you should always install a
handler to get TDX_ERROR events.

5.2. Clearing Voice Structures

Two library functions are provided to clear structures. dx_clrcap() clears
DX_CAP structures and dx_clrtpt() clears DV_TPT structures. See the function
descriptions for details.

Voice Programmer’s Guide for Windows NT

376-CD

It is good practice to clear the field values of any structure before using the
structure in a function call. Doing so will help prevent unintentional settings or
terminations.

5.3. Using the Voice dx_playf() and dx_recf()
Convenience Functions

dx_playf() and dx_recf() are synchronous Voice Library functions provided as a
convenience to the programmer. These functions are specific cases of the
dx_play() and dx_rec() functions.

For example, dx_playf() performs a playback from a single file by specifying the
filename. The same operation can be done using dx_play() and specifying a
DX_IOTT structure with only one entry for that file. Using dx_playf() is more
convenient for a single file playback, because you do not have to set up a
DX_IOTT structure for the one file and the application does not need to open the
file. The dx_recf() provides the same single file convenience for the dx_rec()
function.

5.4. Using the Voice Asynchronous Programming Model

Asynchronous programming allows you to have multiple threads of control within
the one process. Each of the I/O functions can operate synchronously or
asynchronously. See the Standard Runtime Library Programmer’s Guide for
Windows NT for information about asynchronous programming models.

5.5. Using Multiple Processes in Voice Synchronous
Applications

When writing multiple processes for synchronous applications, you should use the
following model: Create a master control process and spawn of a child process for
each channel. Each child process is responsible for:

• opening and closing the channel
• adjusting the channel parameters
• performing channel-specific operations
• monitoring events that occur on the channel

5. Voice Programming Conventions

377-CD

NOTE: In an application that spawns a child process from a parent process, a
device handle is not inheritable by the child process. Devices must be
opened in the child process.

Voice Programmer’s Guide for Windows NT

378-CD

379-CD

Appendix A
Standard Runtime Library

Voice Device Entries and Returns

The Standard Runtime Library is a device-independent library containing Event
Management functions, Standard Attribute functions and the DV_TPT
Termination Parameter Table. Dialogic SRL functions and data structures are
described fully in the Standard Runtime Library Programmer’s Guide for
Windows NT.

This appendix lists the Voice board entries and returns for each of the Standard
Runtime Library (SRL) components.

Event Management Functions

The Event Management functions retrieve and handle Voice device termination
events for the following functions:

• dx_dial()
• dx_getdig()
• dx_play()
• dx_rec()
• dx_playtone()
• dx_sethook()
• dx_wink()
• r2_playbsig()

Each of the Event Management functions applicable to the Voice boards are listed
in the following tables. Table 12 and Table 13 list values that are required by or
returned for event management functions that are used with Voice devices.

Table 12. Voice Device Inputs for Event Management Functions

Voice Programmer’s Guide for Windows NT

380-CD

Event Management
Function

Voice Device
Input

Valid
Value

sr_enbhdlr()
Enable event handler

evt_type TDX_PLAY

TDX_PLAYTONE
TDX_RECORD
TDX_GETDIG
TDX_DIAL
TDX_CALLP
TDX_CST
TDX_SETHOOK
TDX_WINK
TDX_ERROR

sr_dishdlr()
Disable event handler

evt_type As Above

Table 13. Voice Device Returns from Event Management Functions

Event Management
Function

Return
Description

Returned
Value

sr_getevtdev()
Get Dialogic Device
handle

device Voice device handle

sr_getevttype()Get
event type

event type TDX_PLAY

TDX_PLAYTONE
TDX_RECORD
TDX_GETDIG
TDX_DIAL
TDX_CALLP
TDX_CST
TDX_SETHOOK
TDX_WINK
TDX_ERROR

Appendix A - Standard Runtime Library

381-CD

sr_getevtlen()
Get event data length

event length sizeof (DX_CST)

sr_getevtdatap()
Get pointer to event data

event data pointer to DX_CST
structure

Standard Attribute Functions

Standard Attribute functions return general Dialogic device information, such as
the device name or the last error that occurred on the device. The Standard
Attribute functions and the Voice device information they return are listed in
Table 14.

Table 14. Standard Attribute Functions

Standard Attribute
Function

Information Returned for Voice Devices

ATDV_ERRMSGP() Pointer to string describing the error that
occurred during the last function call on the
specified device. (See Appendix B for a list of
all the possible errors, and see each function
description for possible errors for that
function).

ATDV_IOPORT() 0 for D/21D, D/41D, D/21E, D/41E, D/41ESC,
D/160SC-LS, D/240SC, D/240SC-T1,
D/300SC-E1, and D/320SC boards. Valid port
address of the SpringBoard device.

ATDV_IRQNUM() Interrupt number for the specified device.

ATDV_LASTERR() The error that occurred during the last function
call on a specified device. See the function
description for possible errors for the function.

ATDV_NAMEP() Pointer to device name (e.g., dxxxBbCc). Refer

Voice Programmer’s Guide for Windows NT

382-CD

to the System Release Software Installation
Reference for Windows NT for information
about device names.

ATDV_SUBDEVS() Number of sub-devices (channels) (Refer to the
Standard Runtime Library Programmer’s
Guide for Windows NT for information on sub-
devices):

4 for a D/4x board (emulated or real)
2 for a D/2x board

DV_TPT Structure

The DV_TPT termination parameter table sets termination conditions for a range
of Dialogic products. The valid values for the DV_TPT when using a Voice board
are contained in this section.

The DV_TPT structure is used to set I/O function termination conditions. This
structure is used by the following I/O functions:

• dx_clrtpt()
• dx_getdig()
• dx_play()
• dx_rec()
• dx_playtone()

The I/O functions will terminate when one of the conditions set in the DV_TPT
structure occurs. If you set more than one termination condition, the first one that
occurs will terminate the I/O function. The DV_TPT structures can be configured
as a linked list or array, with each DV_TPT specifying a terminating condition.

The structure has the following format:

 typedef struct DV_TPT {
 unsigned short tp_type; /* Flags describing this entry */
 unsigned short tp_termno; /* Termination Parameter number */
 unsigned short tp_length; /* Length of terminator */
 unsigned short tp_flags; /* Parameter attribute flag */
 unsigned short tp_data; /* Optional additional data */
 unsigned short rfu; /* Reserved */
 DV_TPT *tp_nextp; /* Pointer to next termination
 * parameter if IO_LINK set

Appendix A - Standard Runtime Library

383-CD

 */
 }DV_TPT;

Each field is defined in the sections that follow. Table 15 located after the field
descriptions, contains a summary of the valid field settings for each termination
condition.

tp_type

tp_type specifies whether the structure is part of a linked list, part of an array, or
the last DV_TPT entry in the DV_TPT table. Enter one of the following defines in
tp_type:

IO_LINK • tp_nextp points to next DV_TPT structure
IO_EOT • last DV_TPT in the chain
IO_CONT • next DV_TPT entry is contiguous

tp_termno

tp_termno specifies the termination condition. The Voice device termination
defines are

DX_MAXDTMF • Maximum number of digits received
DX_MAXSIL • Maximum length of silence
DX_MAXNOSIL • Maximum length of non-silence
DX_LCOFF • Loop current drop
DX_IDDTIME • Maximum delay between digits
DX_MAXTIME • Maximum function time
DX_DIGMASK • Specific digit received
DX_PMOFF • Pattern of non-silence
DX_PMON • Pattern of silence

• Digit termination for user-defined tone. (D/21D,
D/41D, D/21E, D/41E, D/41ESC, D/81A, D/12x,
D/160SC-LS, D/240SC, D/240SC-T1, D/300SC-E1
and D/320SC only).

DX_TONE • Tone On/Off termination (D/21D, D/41D, D/41E,
D/41ESC, D/81A, D/12x, D/160SC-LS, D/240SC,
D/240SC-T1, D/300SC-E1 and D/320SC onlyGTD
term conditions)

Voice Programmer’s Guide for Windows NT

384-CD

A more detailed description of these I/O terminations is contained in the Voice
Features Guide for Windows NT.

NOTE: When using the DX_PMON and DX_PMOFF termination conditions,
some of the DV_TPT fields are set differently from the other termination
conditions. See the section, Using DX_PMOFF and DX_PMON, located
at the end of this appendix for information.

You can call the Extended Attribute function ATDX_TERMMSK() to determine
all the terminating conditions that occurred. This function returns a bitmap of
terminating conditions. The "TM_" defines corresponding to this bitmap of
terminating conditions are provided in the function description for
ATDX_TERMMSK().

tp_length

tp_length refers to the length or size for each specific terminating condition.
When tp_length represents length of time for a terminating condition, the
maximum value allowed is 6000. The field can represent the following:

Table 15. tp_length Settings

tp_length value tp_length description

time in 10 or
100ms units

Applies to any terminating condition that specifies
termination after a specific period of time, up to 6000.

of digits Applies when using DX_MAXDTMF which specifies
termination after a certain number of digits is received.

digit type
description

Applies when using DX_DIGTYPE which specifies
termination on a user-specified digit. Specify the digit type
in the high byte and the ASCII digit value in the low byte.
See the Global Tone Detection functions in the Voice
Features Guide for Windows NT for information.

digit bit mask Applies to DX_DIGMASK, which specifies a bit mask of
digits to terminate on. Set the digit bitmask using one or

Appendix A - Standard Runtime Library

385-CD

more of the appropriate "Digit Defines" from the table
below:

Digit Digit
Define

Digit
Define

Digit
Define

Digit Digit
Define

0 DM_0
1 DM_1 6 DM_6 # DM_P
2 DM_2 7 DM_7 a DM_A
3 DM_3 8 DM_8 b DM_B
4 DM_4 9 DM_9 c DM_C
5 DM_5 * DM_S d DM_D

number of pattern repetitions Applies to DX_PMOFF, which specifies the
number of times a pattern should repeat before
termination.

NOTE: Then DX_PMON is the termination condition, tp_length contains the
tp_flags information. See the tp_flags description and the Using
DX_PMON and DX_PMOFF section (at the end of this Appendix) for
information.

tp_flags

tp_flags is a bit mask representing various characteristics of the termination
condition to use.

The defines for the termination flags are:

TF_EDGE • termination condition is edge-sensitive
TF_LEVEL • termination condition is level-sensitive
TF_CLREND • history cleared when function terminates
TF_CLRBEG • history cleared when function begins
TF_USE • terminator used for termination
TF_SETINIT • DX_MAXSIL only - initial length of silence to

terminate on
TF_10MS • set units of time to 10 ms (default is 100 ms)
TF_FIRST • DX_IDDTIME only - start looking for termination

condition (interdigit delay) to be satisfied after first
digit is received

Voice Programmer’s Guide for Windows NT

386-CD

A set of default tp_flags values for the termination conditions is available. These
default values are:

TF_MAXDTMF (TF_LEVEL|TF_USE)
TF_MAXSIL (TF_EDGE|TF_USE)
TF_MAXNOSIL (TF_EDGE|TF_USE)
TF_LCOFF (TF_LEVEL|TF_USE|TF_CLREND)
TF_IDDTIME (TF_EDGE)
TF_MAXTIME (TF_EDGE)
TF_DIGMASK (TF_LEVEL)

(TF_EDGE)
TF_TONE (TF_LEVEL|TF_USE|TF_CLREND)
TF_DIGTYPE (TF_LEVEL)

NOTES: 1. DX_PMOFF and DX_PMON

2. DX_PMOFF does not have a default tp_flags value.

The tp_flags value for is set in tp_length (i.e., TF_PMON is set in
tp_length). See the tp_length description and the Using
DX_PMON and DX_PMOFF section (at the end of this Appendix)
for information.

3. TF_IDDTIME or TF_MAXTIME must be specified in
tp_flags if DX_IDDTIME or DX_MAXTIME are specified in
tp_termno. Other flags may be set at the same time using an
OR combination.

The bitmap for the tp_flags field is as follows:

rfu rfu units ini use beg end level

7 bits 0

The descriptions of each bit are listed below:

bit 0 (level): If set, the termination condition is level-sensitive.

Level-sensitive means that if the condition is satisfied when
the function starts, termination will occur immediately.

Appendix A - Standard Runtime Library

387-CD

Terminating conditions that can be level have a ’history’
associated with them which records the state of the
terminator before the function started. If this bit is not set,
the termination condition is edge-sensitive and the function
will not terminate unless the condition occurs after the
function starts. The table below shows which terminating
conditions can be edge-sensitive and which can be level-
sensitive.terminationsedge-sensitive

NOTE: A level-sensitive termination condition only has to
have occurred sometime in the history associated
with that terminator to cause the function to
terminate; the condition does not have to be present
when the function starts in order to terminate the
function.

Term. Condition Level-sensitive Edge-sensitive

DX_DIGTYPE X X

DX_MAXDTMF X X

DX_MAXSIL X X

DX_MAXNOSIL X X

DX_LCOFF X X

DX_DIGMASK X X

DX_IDDTIME - X

DX_MAXTIME - X

DX_PMON/OFF - X

DX_TONE X X

Voice Programmer’s Guide for Windows NT

388-CD

bit 1 (end): If set, the history of this terminator will be cleared when the
function terminates. This bit has special meaning for
DX_IDDTIME. If set, the terminator will be started after the
first digit is received. Otherwise it will be started as soon as
the function is started.

bit 2 (beg): If set, the history of this terminator will be cleared when the
function starts. This bit will override the level bit (bit 0). If
both are set, the history will be cleared and no past history
of this terminator will be taken into account.

bit 3 (use): If this bit is set, the terminator will be used for termination.
If the bit is not set, the history for the terminator will be
cleared (depending on bits 1 & 2), but the terminator will
still not be used for termination. This bit is not valid for the
following terminating conditions:

• DX_MAXTIME
• DX_IDDTIME
• DX_DIGMASK
• DX_PMOFF
• DX_PMON

bit 4 (ini): This bit is only used for DX_MAXSIL termination. If the
termination is edge-sensitive and this bit is set, the tp_data
field should contain an initial length of silence to terminate
upon if silence is detected before non-silence. In general, the
initial length of silence to terminate on in tp_data should be
greater than the value in tp_length.

If the termination is level sensitive then this bit must be set
to 0 and tp_length will be used for the termination.

bit 5 (units): If set the units of time will be in 10 ms. The default is 100
ms units.

NOTES: 1. The 10 ms timer resolution is only available
with version 0.62 or later of the D/4x firmware.

Appendix A - Standard Runtime Library

389-CD

2. tp_flags is used differently for DX_PMON.
See Using DX_PMOFF and DX_PMON at the
end of this Appendix for information.

tp_data

tp_data specifies optional additional data. This bit can be set as follows:

Table 16. tp_data Valid Values

Value in tp_termno tp_data Entry

DX_MAXSIL initial length of silence to terminate on
DX_PMOFF maximum time of silence off
DX_PMON maximum time of silence on

DX_TONEON - terminate after a "tone-on" event
DX_TONEOFF - terminate after a "tone-off" event

tp_nextp

tp_nextp contains a pointer to the next DV_TPT structure in a linked list. The
tp_type field must be set to IO_LINK in this case.

The table that follows indicates how DV_TPT fields should be filled.

NOTE: An asterisk indicates the default tp_flags setting, defined when tp_flags
is set to TF_(term name), where (term name) is the suffix of the
tp_termno setting, as in DX_(term name). To override defaults, set the
bits in tp_flags individually, as required.

Table 17. DV_TPT Fields Settings Summary

NOTE: The tp_flags column describes the effect of the field when set to one and
not set to one. "*" indicates the default value for each bit. The defaults
defines for the tp_flags field are listed in the tp_flags description in this
Appendix.

Voice Programmer’s Guide for Windows NT

390-CD

tp_termno tp_type tp_length
tp_flags:
not set

tp_flags:
set tp_data tp_nextp

DX_MAXDTMF IO_LINK
IO_EOT
IO_CONT

max
number of
digits

bit 0:
TF_EDGE
bit 1: no clr*
bit 2: no clr*
bit 3: clr hist

TF_LEVEL*
TF_CLREND
TF_CLRBEG
TF_USE*

N/A pointer to
next
DV_TPT
if linked
list

DX_MAXSIL IO_LINK
IO_EOT
IO_CONT

max length
silence

bit 0:
bit 1: no clr*
bit 2: no clr*
bit 3: clr hist
bit 4: no-
setinit
bit 5:
100ms*

TF_EDGE*
TF_LEVEL
TF_CLREND
TF_CLRBEG
TF_USE*
TF_SETINIT
TF_10MS

length of
init
silence

pointer to
next
DV_TPT
in linked
list

DX_MAXNOSIL IO_LINK
IO_EOT
IO_CONT

max length
non-silence

bit 0:
TF_EDGE*
bit 1: no clr*
bit 1: no clr*
bit 2: no clr*
bit 3: clr hist
bit 4: N/A
bit 5:
100ms*

TF_LEVEL
TF_CLREND
TF_CLRBEG
TF_USE*
N/A
TF_10MS

N/A pointer to
next
DV_TPT
if linked
list

DX_LCOFF IO_LINK
IO_EOT
IO_CONT

max length
loop current
drop

bit 0:
TF_EDGE
bit 1: no clr
bit 2: no clr*
bit 3: clr hist
bit 4: N/A
bit 5:
100ms*

TF_LEVEL*
TF_CLREND
*
TF_CLRBEG
TF_USE*
N/A
TF_10MS

N/A pointer to
next
DV_TPT
if linked
list

DX_IDDTIME IO_LINK
IO_EOT
IO_CONT

max length
interdigit
delay

bit 0:
TF_EDGE*
bit 1:
strt@call*
bit 2: N/A
bit 3: N/A
bit 4: N/A
bit 5:
100ms*

N/A
strt@1st
N/A
N/A
N/A
TF_10MS

N/A pointer to
next
DV_TPT
if linked
list

DX_MAXTIME IO_LINK
IO_EOT
IO_CONT

max length
function time

bit 0:
TF_EDGE*
bit 1: N/A
bit 2: N/A
bit 3: N/A
bit 4: N/A
bit 5: 100ms*

N/A
N/A
N/A
N/A
N/A
TF_10MS

N/A pointer to
next
DV_TPT if
linked list

DX_DIGMASK IO_LINK bit 0: d (set) bit 0: TF_LEVEL* N/A pointer to

Appendix A - Standard Runtime Library

391-CD

IO_EOT
IO_CONT

bit 1: 1 .
bit 2: 2 .
bit 3: 3 .
bit 4: 4
bit 5: 5
bit 6: 6
bit 7: 7
bit 8: 8
bit 9: 9
bit 10: 0
bit 11: *
bit 12: #
bit 13: a
bit 14: b
bit 15: c

TF_EDGE next
DV_TPT if
linked list

DX_PM-+OFF IO_LINK
IO_EOT
IO_CONT

number of
pattern
repetitions

minimum time silence off max time
silence off

pointer to
next
DV_TPT
iflinked list

DX_PMON IO_LINK
IO_EOT
IO_CONT

bit 0:
TF_EDGE*/

TF_LEVEL
bit 1: N/A
bit 2: N/A
bit 3: N/A
bit 4: N/A
bit 5: 100ms/

TF_10MS

maximum
time silence
on

max time silence
on

pointer to
next
DV_TPT if
linked list

DX_TONE IO_LINK
IO_EOT
IO_CONT

Tone ID bit 0:
TF_EDGE
bit 1: no clr
bit 2: no clr*
bit 3: clr hist

TF_LEVEL*
TF_CRLREND*
TF_CLRBEG
TF_USE*

DX_
TONEON
DX_
TONEOFF

pointer to
next
DV_TPT if
linked list

DX_DIGTYPE IO_LINK
IO_EOT
IO_CONT

low
byte:ASCII
val.
*hi byte:digit
type

bit 0:
TF_EDGE

TF_LEVEL N/A pointer to
next
DV_TPT if
linked list

*The tp_flags column describes the effect of the field when set to one and not set to
one. "*" indicates the default value for each bit. The defaults defines for the tp_flags
field are listed in the tp_flags description in this Appendix.

Since DX_PMON requires that the tp_length field is set with tp_flags values, the
previous statements apply to tp_length for DX_PMON.

Voice Programmer’s Guide for Windows NT

392-CD

Using DX_PMOFF and DX_PMON

The DX_PMOFF and DX_PMON termination conditions must be used in tandem.
In other words, the DX_PMON terminating condition must directly follow the
DX_PMOFF terminating condition. A combination of both DV_TPT structures
using these conditions is used to form a single termination condition. When used,
both must be specified together or else an error will result in the execution of the
function.

In the first block, tp_termno is set to DX_PMOFF. The tp_length holds the
number of patterns before termination. tp_flags holds the minimum time for
silence off while tp_data holds the maximum time for silence off. In the next
DV_TPT structure, tp_termno is DX_PMON, and the tp_length field holds the
flag bit mask as shown above. Only the "units" bit is valid; all other bits must be
0. The tp_flags field holds the minimum time for silence on, while tp_data holds
the maximum time for silence on. An example of this would be:

DV_TPT Example

#include <srllib.h>
#include <dxxxlib.h>
#include <windows.h>
DV_TPT tpt[2];

/*
 * detect a pattern which repeats 4 times of approximately 2 seconds
 * off 2 seconds on.
 */
tpt[0].tp_type = IO_CONT; /* next entry is contiguous */
tpt[0].tp_termno = DX_PMOFF; /* specify pattern match off */
tpt[0].tp_length = 4; /* terminate if pattern repeats 4 times */
tpt[0].tp_flags = 175; /* minimum silence off is 1.75 seconds
 * (10 ms units) */
tpt[0].tp_data = 225; /* maximum silence off is 2.25 seconds
 * (10 ms units) */
tpt[1].tp_type = IO_EOT; /* This is the last in the chain */
tpt[1].tp_termno = DX_PMON; /* specify pattern match on */
tpt[1].tp_length = TF_10MS; /* use 10 ms timer units */
tpt[1].tp_flags = 175; /* minimum silence on is 1.75 seconds
 * (10 ms units) */
tpt[1].tp_data = 225; /* maximum silence on is 2.25 seconds
 * (10 ms units) */
/* issue the function */

393-CD

Appendix B
Error Defines

Errors - Voice Library

This appendix lists the error defines that may be returned for the Voice Library
functions.

For error codes returned for SCbus functions and a description of the error, refer
to the SCbus Routing Function Reference for Windows NT .

The following table contains the list of errors that can be returned using
ATDV_LASTERR() and ATDV_ERRMSGP() functions

 Table 18. Voice Library Function Errors

Error Define Error String
EDX_AMPLGEN Invalid Amplitude Value in Tone Generation

Template
EDX_ASCII Invalid ASCII Value in Tone Template

Description
EDX_BADDEV Device Descriptor error
EDX_BADIOTT DX_IOTT structure error
EDX_BADPARM Parameter error
EDX_BADPROD Function Not Supported on this Board
EDX_BADTPT DX_TPT structure error
EDX_BUSY Device or channel is Busy
EDX_CADENCE Invalid Cadence Component Values in Tone

Template Description
EDX_CHANNUM Invalid Channel Number Specified
EDX_DIGTYPE Invalid Dig_type Value in Tone Template

Description
EDX_FLAGGEN Invalid tn_dflag field in Tone Generation

Template
EDX_FREQDET Invalid Frequency Component Values in Tone

Template Description
EDX_FREQGEN Invalid Frequency Component in Tone

Voice Programmer’s Guide for Windows NT

394-CD

Generation Template
EDX_FWERROR Firmware Error
EDX_IDLE Device is Idle
EDX_INVSUBCMD Invalid sub-command number
EDX_MAXTMPLT Max number of Tone Templates Exist or user-

defined tones for the board[from
r2_creatfsig()]

EDX_MSGSTATUS Invalid Message Status Setting
EDX_NOERROR No Error
EDX_NONZEROSIZE Reset to Default was Requested but size was

non-zero
EDX_SPDVOL Must Specify either SV_SPEEDTBL or

SV_VOLUMETBL
EDX_SVADJBLKS Invalid Number of Speed/Volume Adjustment

Blocks
EDX_SVMTRANGE An Entry in SV_SVMT was out of Range
EDX_SVMTSIZE Invalid Table Size Specified
EDX_SYSTEM Windows NT System Error; check the global

variable errno for more information
EDX_TIMEOUT I/O Function Timed Out
EDX_TONEID Invalid Tone Template ID

395-CD

Appendix C
DTMF and MF Tone Specifications

The following two charts show the tone specifications for MF and DTMF
tones.

MF Tone Specifications (CCITT R1 Tone Plan)

Code

Tone Pair
Frequencies

(Hz)

Default
Length
(ms) Name

1 700, 900 60 1

2 700, 1100 60 2

3 900, 1100 60 3

4 700, 1300 60 4

5 900, 1300 60 5

6 1100, 1300 60 6

7 700, 1500 60 7

8 900, 1500 60 8

9 1100, 1500 60 9

0 1300, 1500 60 0

* 1100, 1700 100 KP

1500, 1700 60 ST

a 900, 1700 60 ST1

b 1300, 1700 60 ST2

c 700, 1700 60 ST3

Voice Programmer’s Guide for Windows NT

396-CD

∗ The standard length of a KP tone is 100 ms.

Appendix C - DTMF and MF Tone Specifications

397-CD

DTMF Tone Specifications

Code
Tone Pair Frequencies

(Hz)
Default Length

(ms)

1 697, 1209 100

2 697, 1336 100

3 697, 1477 100

4 770, 1209 100

5 770, 1336 100

6 770, 1477 100

7 852, 1209 100

8 852, 1336 100

9 852, 1477 100

0 941, 1336 100

* 941, 1209 100

941, 1477 100

a 697, 1633 100

b 770, 1633 100

c 852, 1633 100

d 941, 1633 100

Voice Programmer’s Guide for Windows NT

398-CD

Using MF Detection

Some MF digits use approximately the same frequencies as DTMF digits
(see above charts). Because there is a frequency overlap, if you have the
incorrect kind of detection enabled, MF digits may be mistaken for DTMF
digits, and vice versa. To ensure that digits are correctly detected, only one
kind of detection should be enabled at any time.

Digit detection accuracy depends on two things:

• which digit is sent

• the kind of detection enabled when the digit is detected

The two tables that follow show the digits that are detected when each type
of detection is enabled. Table 19 shows which digits are detected when MF
digits are sent. Table 20 shows which digits are detected when DTMF
digits are sent.

Appendix C - DTMF and MF Tone Specifications

399-CD

Table 19. Detecting MF Digits

String Received

MF
Digit
Sent

Only
MF

Detection
Enabled

Only
DTMF

Detection
Enabled

MF and
DTMF

Detection
Enabled

1 1 1

2 2 2

3 3 3

4 4 2* 4,2*

5 5 5

6 6 6

7 7 3* 7,3*

8 8 8

9 9 9

0 0 0

* * *
#

a a a

b b b

c c c

 * = detection error

Voice Programmer’s Guide for Windows NT

400-CD

Table 20. Detecting DTMF Digits

String Received

DTMF
Digit
Sent

Only DTMF
Detection
Enabled

Only MF
Detection
Enabled

DTMF & MF
Detection
Enabled

1 1 1

2 2 4* 4,2*

3 3 7* 7,3*

4 4 4

5 5 4* 4,5*

6 6 7* 7,6*

7 7 7

8 8 5* 5,8*

9 9 8* 8,9*

0 0 5* 5,0*

* * *

8* 8,#*

a a c* c,a*

b b c* c,b*

c c a* a,c*

d d a* a,d*

* = detection error

401-CD

Appendix D
Related Voice Publications

For more information on Voice hardware and software products see the
following Dialogic publications:

• For information about installing Voice software, see the System
Release Software Installation Reference for Windows NT.

• For information about the Standard Runtime Library, see the
Standard Runtime Library Programmer’s Guide for Windows NT.

• For information about the SCbus, see the SCbus Routing Guide
and the SCbus Routing Function Reference for Windows NT .

• For information about the D/2x, D/4x, D/81A, D/12x, and
D/xxxSC (D/160SC-LS, D/240SC, D/240SC-T1, D/300SC-E1
and D/320SC) voice boards, see the Quick Install Cards shipped
with the boards.

• For information about the digital interface device functions for the
D/240SC-T1 and D/300SC-E1 boards, see the Digital Network
Interface Software Reference for Windows NT.

• For information about the primary rate functions, see the Primary
Rate Software Reference for Windows NT.

Voice Programmer’s Guide for Windows NT

402-CD

403-CD

Glossary

Mu-law: (1) A pulse-code modulation (PCM) algorithm used in digitizing
telephone audio signals in T-1 areas. (2) The PCM coding and compounding
standard used in Japan and North America.

A-LAW: Pulse Code Modulation (PCM) algorithm used in digitizing telephone
audio signals in E-1 areas.

 Adaptive Differential Pulse Code Modulation: See ADPCM.

ADPCM: Adaptive Differential Pulse Code Modulation. A sophisticated
compression algorithm for digitizing audio that stores the differences between
successive samples rather than the absolute value of each sample. This method
of digitization also reduces storage requirements from 64K bits/second to as
low as 24K bits/second.

ADSI: Analog Display Services Interface. A Bellcore standard defining a
protocol on the flow of information between a switch, a server, a voice mail
system, a service bureau, or a similar device and a subscriber’s telephone, PC,
data terminal, or other communicating device with a screen. The idea of ADSI
is to add words to a system that usually only uses touch tones. In a typical
voice mail system, you call up and hear choices: "to listen to new messages,
press 1, to hear saved messages, press 2," etc. ADSI is designed to display the
choices you’re hearing on a screen attached to your phone. Your response is
the same: a touch tone button. ADSI’s signaling is DTMF and standard Bell
202 modem signals from the service to your 202-modem equipped phone.
From the phone to the service it’s only touch tone. ADSI works on every phone
line in the world.

AGC: Automatic Gain Control. An electronic circuit used to maintain the audio
signal volume at a constant level.

AMIS: Audio Messaging Interchange Specification. A series of standards aimed
at addressing the problem of how voice messaging systems produced by
different vendors can network or inter-network. It deals specifically with the
interaction of the systems and does not affect the systems themselves. There
are two specifications: 1. AMIS-digital: All the control information and the
voice messages are ported between systems digitally. 2. AMIS-analog:
Control information and messages are transferred in analog form. For AMIS
specifications, call Hartfield Associates (Boulder, CO) at (303) 442-5395.

Voice Programmer’s Guide for Windows NT

404-CD

 analog: 1. A method of telephony transmission in which the signals from the
source (for example, speech in a human conversation) are converted into an
electrical signal that varies continuously over a range of amplitude values
analogous to the original signals. 2. Not digital signaling. 3. Used to refer to
applications that use loop start signaling.

Analog Expansion Bus (AEB): Analog electrical connection (bus) between
Dialogic network interface modules and analog resource modules. The AEB
interfaces network boards and voice boards, which fit in the AT-expansion slot
of a PC. See Also PEB, SCSA

 ANI: Automatic Number Identification.

Antares: A Dialogic open platform for easily incorporating speech recognition,
Text-To-Speech, fax and many other DSP technologies. Dialogic PC-based
expansion board with fourTI floating point DSPs, SPOX DSP operating
system, and the Antares board downloadable firmware and device driver.

 API: See Application Programming Interface

 Application Programming Interface: A set of standard software interrupts,
calls, and data formats that application programs use to initiate contact with
network services, mainframe communications programs, or other program-to-
program communications.

ASCIIZ string: A null-terminated string of ASCII characters.

 asynchronous function: A function that allows program execution to continue
without waiting for a task to complete. To implement an asynchronous
function, an application-defined event handler must be enabled to trap and
process the completed event. See synchronous function.

 AT: Used to describe an IBM or IBM-compatible Personal Computer (PC)
containing an 80286 or higher microprocessor, a 16-bit bus architecture, and a
compatible BIOS.

 AT bus: The common communication channel in a PC AT. The channel uses a
16-bit data path architecture, which allows up to 16 bits of data transfer. This
bus architecture includes the standard PC bus plus a set of 36 lines for
additional data transmission, addressing, and interrupt request handling.

 Automatic Gain Control: See AGC.

 base memory address: A starting memory location (address) from which other
addresses are referenced.

Glossary

405-CD

 bit mask: A pattern which selects or ignores specific bits in a bit mapped control
or status field.

 bitmap: An entity of data (byte or word) in which individual bits contain
independent control or status information.

 board device: A board-level object that can be manipulated by a physical
library. Board devices can be real physical devices, such as a D/4x board, or
emulated devices, such as one of the D/4x boards that is emulated by a D/81A,
D/12x or D/xxxSC board.

Board Locator Technology: Operates in conjunction with a rotary switch to
determine and set non-conflicting slot and IRQ interrupt-level parameters, thus
eliminating the need to set confusing jumpers or DIP switches.

 buffer: A block of memory or temporary storage device that holds data until it
can be processed. It is used to compensate for the difference in the rate of the
flow of information (or time occurrence of events) when transmitting data
from one device to another.

 bus: An electronic path which allows communication between multiple points or
devices in a system.

 busy device: A device that is stopped, being configured, has a multitasking or
non-multitasking function, or I/O function active on it.

 cadence: A rhythmic sequence or pattern. Once established, it can be classified
as a single ring, a double ring, or a busy signal by comparing the periods of
sound and silence to establish parameters.

cadence detection: A voice driver feature that analyzes the audio signal on the
line to detect a repeating pattern of sound and silence.

Call Progress Analysis: The process used to automatically determine what
happened after an outgoing call is dialed. Also referred to as call analysis or
call progress

Call Status Transition Event Functions: Functions that set and monitor events
on devices.

CCITT: Comite Consultatif Internationale de Telegraphique et Telephonique.
One of the four permanent parts of the International Telecommunications
Union, a United Nations agency based in Geneva. The CCITT is divided into
three sections: 1. Study Groups set up standards for telecommunications
equipment, systems, networks, and services. 2. Plan Committees develop

Voice Programmer’s Guide for Windows NT

406-CD

general plans for the evolution of networks and services. 3. Specialized
Autonomous Groups produce handbooks, strategies, and case studies to
support developing countries.

 channel device: A channel-level object that can be manipulated by a physical
library, such as an individual telephone line connection. A channel is also a
subdevice of a board. See subdevice.

 channel: 1. When used in reference to a Dialogic expansion board that is
analog, an audio path, or the activity happening on that audio path (for
example, when you say the channel goes off-hook). 2. When used in reference
to a Dialogic expansion board that is digital, a data path, or the activity
happening on that data path. 3. When used in reference to a bus, an electrical
circuit carrying control information and data.

CO: Central Office. A local phone exchange. In general, "CO’ refers to the phone
network exchange that provides your phone lines. The term "Central Office" is
used in North America. The rest of the world calls it PTT, for Post, Telephone
and Telegraph. The telephone company facility where subscriber lines are
linked, through switches, to other subscriber lines (including local and long
distance lines).

 computer telephony: The extension of computer-based intelligence and
processing over the telephone network to a telephone. Lets you interact with
computer databases or applications from a telephone and also enables
computer-based applications to access the telephone network. Computer
telephony makes computer-based information readily available over the world-
wide telephone network from your telephone. Computer telephony technology
incorporated into PCs supports applications such as: automatic call
processing; automatic speech recognition; text-to-speech conversion for
information-on-demand; call switching and conferencing; unified messaging
that lets you access or transmit voice, fax, and E-mail messages from a single
point; voice mail and voice messaging; fax systems including fax
broadcasting, fax mailboxes, fax-on-demand, and fax gateways; transaction
processing such as Audiotex and Pay-Per-Call information systems; call
centers handling a large number of agents or telephone operators for
processing requests for products, services or information; etc.

 configuration file: An unformatted ASCII file that stores device initialization
information for an application.

 Configuration Functions: Functions that alter the configuration of devices.

Glossary

407-CD

 Convenience Functions: Functions that simplify application writing.

 D/81A: 8 port DSP-based voice board that runs SpringWare firmware. Connects
via PEB to a standalone telephone network interface board.

 D/120: A 12-channel voice board from Dialogic that consists of a
SpringBoard-based expansion device and downloaded software. On the PEB
bus, the D/120 serves as a resource module to the installed network module.

 D/121: A 12-channel voice-store-and-forward product from Dialogic with all the
features of the D/120 plus patented call analysis algorithms for outbound
applications and multifrequency (MF) tone capability.

 D/12x System: A Voice System that uses D/12x boards. See Voice System.

 D/121A: A 12-channel voice board from Dialogic with all the features of the
D/121 plus additional RAM, increased performance and reliability, and
improved downstream compatibility.

 D/121B: 12 port DSP-based voice board that runs SpringWare firmware.
Connects via PEB to a standalone telephone network interface board.

 D/12x: Any model of the Dialogic series of 12-channel voice-store-and-forward
expansion boards for the AT-bus architecture. Includes: D/120 and D/121
boards.

 D/160SC-LS: 16 port DSP-based voice board that runs SpringWare firmware
and has onboard analog loop start telephone interfaces and an SCbus interface.

 D/21D, D/41D: 2 and 4 port DSP-based voice boards with onboard analog
telephone interface; runs SpringWare downloadable firmware.

 D/21E, D/41E: 2 and 4 port DSP-based voice boards with onboard analog
telephone interface; runs SpringWare downloadable firmware.

 D/2x: A term used to refer to any 2-channel voice-store-and-forward expansion
board made by Dialogic.

 D/40: A model of 4-channel voice-store-and-forward expansion board by
Dialogic with an on-board processor and shared RAM. The D/40 features
real-time digitization, compression and playback of audio, DTMF reception,
automatic answering, DTMF or rotary pulse dialing, and direct connection to
telephone lines.

Voice Programmer’s Guide for Windows NT

408-CD

 D/41: A model of the four-channel voice-store-and-forward expansion boards by
Dialogic that has all of the features of a D/40 plus patented call analysis
algorithms for outbound applications.

 D/4x: Any model of the Dialogic series of 4-channel voice-store-and-forward
expansion boards for the AT-bus architecture. Includes D/4xD and D/4xE
boards.

 D/240SC: 24 port DSP-based voice board that runs SpringWare firmware and
has an onboard SCbus interface. Connects to a standalone telephone network
interface board.

 D/240SC-T1: 24 port DSP-based voice board that runs SpringWare firmware and
has an onboard digital T-1 telephone interface and an SCbus interface.

 D/300SC-E1: 30 port DSP-based voice board that runs SpringWare firmware and
has an onboard digital E-1 telephone interface and an SCbus interface.

 D/320SC: 30 port DSP-based voice board that runs SpringWare firmware and
has an onboard SCbus interface. Connects to a standalone telephone network
interface board.

 data structure: Programming term for a data element consisting of fields, where
each field may have a different type definition and length. A group of data
structure elements usually share a common purpose or functionality.

debouncing: Eliminating false signal detection by filtering out rapid signal
changes. Any detected signal change must last for the minimum duration as
specified by the debounce parameters before the signal is considered valid.
Also known as deglitching.

deglitching: Eliminating false signal detection by filtering out rapid signal
changes. Any signal change shorter than that specified by the deglitching
parameters is ignored.

 device: A computer peripheral or component controlled through a software
device driver. A Dialogic vioce and/or network interface expansion board is
considered a physical board containing one or more logical board devices, and
each channel or time slot on the board is a device.

 device channel: A Dialogic voice data path that processes one incoming or
outgoing call at a time (equivalent to the terminal equipment terminating a
phone line). There are 4 device channels on a D/4x, 12 on a D/12x, 16 on a

Glossary

409-CD

D/160SC-LS, 24 on a D/240SC or D/240SC-T1, 30 on a D/300SC-E1, and 32
on a D/320SC board.

 device driver: Software that acts as an interface between an application and
hardware devices.

 device handle: Numerical reference to a device, obtained when a device is
opened using xx_open(), where xx is the prefix defining the device to be
opened. The device handle is used for all operations on that device.

Device Management Functions: Functions that open and close devices.

 device name: Literal reference to a device, used to gain access to the device via
an xx_open() function, where xx is the prefix defining the device to be
opened.

DIALOG/HD Series: Dialogic High Density products, including the D/160SC-LS,
D/240SC, D/240SC-T1, D/300SC-E1, and D/320SC, provide a powerful set of
advanced computer telephony features that developers can use to create cost-
efficient, high-density systems.

 digitize: The process of converting an analog waveform into a digital data set.

 download: The process where board level program instructions and routines are
loaded during board initialization to a reserved section of shared RAM.

downloadable SpringWare firmware: Software features loaded to Dialogic
voice hardware. Features include voice recording and playback, enhanced
voice coding, tone detection, tone generation, dialing, call progress analysis,
voice detection, answering machine detection, speed control, volume control,
ADSI support, automatic gain control, and silence detection.

 driver: A software module which provides a defined interface between an
application program and the firmware interface.

 DSP: 1. Digital signal processor. A specialized microprocessor designed to
perform speedy and complex operations with digital signals. 2. Digital signal
processing.

DTI/: (Digital Telephony Interface) The naming convention used with Dialogic
boards such as the DTI/211. This interface is designed to work with the T-1
telephony standard used in North American and Japanese markets. A general
term used to refer to any Dialogic digital telephony interface device.

Voice Programmer’s Guide for Windows NT

410-CD

 DTI/124: A model of Dialogic’s digital telephony interface device designed for
use with the T-1 telephony standard used in North American and Japanese
markets. This model connects to D/4x devices.

 DTI/211: 24 port standalone telephone network interface for use with voice-only
boards; digital T-1 interface.

 DTI/212: 24 port standalone telephone network interface for use with voice-only
boards; digital E-1 interface.

 DTI/2xx: Refer’s to Dialogic’s DTI/211 or DTI/212 digital telephony interface
boards.

 DTI/xxx: Refers to any of Dialogic’s second-generation digital telephony
interface boards.

 DTMF: Dual Tone Multi Frequency. Push button or touch tone dialing based on
transmitting a high and a low frequency tone identify each digit on a telephone
keypad. The tones are (Hz):

1: 697,1209 2: 697,1336 3:697,1477
4: 770,1209 5: 770,1336 6: 770,1477
7: 852,1209 8: 852,1336 9: 852,1477
0: 941,1336 *: 941,1209 #: 941,1477

 E-1: A CEPT digital telephony format devised by the CCITT. A digital
transmission channel that carries data at the rate of 2.048 Mbps (DS-1 level).

emulated device: A virtual device whose software interface mimics the interface
of a particular physical device, such as a D/4x boards that is emulated by a
D/12x or a D/xxxSC board. On a functional level, a D/12x board is perceived
by an application as three D/4x boards. See physical device.

 event: An unsolicited or asynchronous message from a hardware device to an
operating system, application, or driver. Events are generally attention-getting
messages, allowing a process to know when a task is complete or when an
external event occurs.

 event handler: A portion of a Dialogic application program designed to trap and
control processing of device-specific events. The rules for creating a DTI/1xx
event handler are the same as those for creating a Windows NT signal handler.

Event Management functions: Class of device-independent functions
(contained in the Standard Runtime Library) that connect events to

Glossary

411-CD

application-specified event handlers, allowing users to retrieve and handle
events that occur on the device. See Standard Runtime Library.

Extended Attribute functions: Class of functions that take one input parameter
(a valid Dialogic device handle) and return device-specific information. For
instance, a Voice device’s Extended Attribute function returns information
specific to the Voice devices. Extended Attribute function names are case-
sensitive and must be in capital letters. See Standard Runtime Library.

 firmware: A set of program instructions that reside on an expansion board.

 flash: A signal which consists of a momentary on-hook condition used by the
Voice hardware to alert a telephone switch. This signal usually initiates a call
transfer.

frequency detection: A voice driver feature that detects the tri-tone Special
Information Tone (SIT) sequences and other single-frequency tones for call
progress analysis.

Global Tone Detection: A feature that allows the creation and detection of
user-defined tone descriptions on a channel by channel basis.

hook state: A general term for the current line status of the channel: either
on-hook or off-hook. A telephone station is said to be on-hook when the
conductor loop between the station and the switch is open and no current is
flowing. When the loop is closed and current is flowing the station is off-hook.
These terms are derived from the position of the old fashioned telephone set
receiver in relation to the mounting hook provided for it.

hook switch: The name given to the circuitry which controls on-hook and off-
hook state of the Voice device telephone interface.

 I/O Functions: Functions that transfer data to and from devices.

 I/O: Input-Output

 idle device: A device that has no functions active on it.

 in-band: Refers to the use of robbed-bit signaling (T-1 systems only) on the
network or PEB. "In-band" refers to the fact that the signaling for a particular
channel or time slot is carried within the voice samples for that time slot, thus
within the 64 kbps (kilobits per second) voice bandwidth.

in-band signaling: (1) In an analog telephony circuit, in-band refers to signaling
that occupies the same transmission path and frequency band used to transmit

Voice Programmer’s Guide for Windows NT

412-CD

voice tones. (2) In digital telephony, "in-band" means signaling transmitted
within an 8-bit voice sample or time slot, as in T-1 "robbed-bit" signaling. (3)
On the Dialogic PCM Expansion Bus (PEB), signaling is considered "in-band"
only if it occupies the same transmission path and frequency band used to
transmit voice data.

interrupt request level: A signal sent to the central processing unit (CPU) to
temporarily suspend normal processing and transfer control to an interrupt
handling routine. Interrupts may be generated by conditions such as
completion of an I/O process, detection of hardware failure, power failures,
etc.

 IRQ: Interrupt ReQuest. A signal sent to the CPU to temporarily suspend normal
processing and transfer control to an interrupt handling routine. A means of
toggling between applications so that your system does not crash.

 kernel: A set of programs in an operating system that implement the system’s
functions.

 loop: The physical circuit between the telephone switch and the D/xxx board.

 loop current: The current that flows through the circuit from the telephone
switch when the Voice device is off-hook.

 loop current detection: A voice driver feature that returns a connect after
detecting a loop current drop.

 loop start: In an analog environment, an electrical circuit consisting of two
wires (or leads) called tip and ring, which are the two conductors of a
telephone cable pair. The CO provides voltage (called "talk battery" or just
"battery") to power the line. When the circuit is complete, this voltage
produces a current called loop current. The circuit provides a method of
starting (seizing) a telephone line or trunk by sending a supervisory signal
(going off-hook) to the CO.

 LSI/120: A Dialogic 12-line loop start interface expansion board.

off-hook: The state of a telephone station when the conductor loop between the
station and the switch is closed and current is flowing. When a telephone
handset is lifted from its cradle (or equivalent condition), the telephone line
state is said to be off-hook.

on-hook: When a telephone handset is returned to its cradle (or equivalent
condition), the telephone line state is said to be on-hook.

Glossary

413-CD

 PC: Personal Computer. In this manual, the term refers to an IBM Personal
Computer or compatible machine.

 PCM Expansion Bus: See PEB.

 PEB: PCM Expansion Bus. A Dialogic open platform, digital voice bus for
electrically and digitally connecting different voice processing components.
Information on the PEB is encoded using the Pulse Code Modulation (PCM)
method. Non-Dialogic products using PCM encoding may interface with
Dialogic products by using this bus.

PerfectDigit: Dialogic SpringWare DTMF or MF signaling.

PerfectLevel: Dialogic SpringWare Volume control

PerfectPitch: Dialogic SpringWare Speed control

PerfectVoice: Dialogic SpringWare Enhanced voice coding

 physical device: A device that is an actual piece of hardware, such as a D/4x
board; not an emulated device. See emulated device.

 polling: The process of repeatedly checking the status of a resource to determine
when state changes occur.

polling functions: Voice library functions check the current status of a voice
device. Polling functions are also used to examine the number and
configuration of devices in the system and to detect when events occur on a
device.

Pulse Code Modulation: PCM. A sophisticated technique for reducing voice
data storage requirements that is used by Dialogic in the DSP voice boards.
Dialogic supports either m-law Pulse Code Modulation, which is used in North
America and Japan, or A-law Pulse Code Modulation, which is used in the rest
of the world.

 resource: Functionality (e.g. voice-store-and-forward) that can be assigned to
call. Resources are shared when functionality is selectively assigned to a call
(usually via a PEB time slot) and may be shared among multiple calls.
Resources are dedicated when functionality is fixed to the one call.

RFU: Reserved for future use.

ring detect: The act of sensing that an incoming call is present by determining
that the telephone switch is providing a ringing signal to the Voice board.

Voice Programmer’s Guide for Windows NT

414-CD

 route: Assign a resource to a time slot.

robbed-bit signaling: The type of signaling protocol implemented in areas using
the T-1 telephony standard. In robbed-bit signaling, signaling information is
carried in-band, within the 8-bit voice samples. These bits are later stripped
away, or "robbed," to produce the signaling information for each of the 24
time slots.

routing functions: For SCbus, functions that assign analog and digital channels
to specific SCbus time slots; these SCbus time slots can then be connected to
transmit or listen to other SCbus time slots. For PEB, functions that change
the routing of channels to the time slots on the PCM Expansion Bus (PEB).

sampling rate: Frequency with which a digitizer takes measurements of the
analog voice signal.

 SCbus: Signal Computing Bus. Third generation TDM (Time Division
Multiplexed) resource sharing bus that allows information to be transmitted
and received among resources over multiple data lines.

 SCSA: See Signal Computing System Architecture.

Signal Computer System Architecture: SCSA. A Dialogic standard open
development platform. An open hardware and software standard that
incorporates virtually every other standard in PC-based switching. All
signaling is out of band. In addition, SCSA offers time slot bundling and
allows for scalability.

signaling insertion: The signaling information (on hook/off hook) associated
with each channel is digitized, inserted into the bit stream of each time slot by
the device driver, and transmitted across the bus to another resource device.
In signaling insertion, the network interface device generates the outgoing
signaling information.

silence threshold: The level that sets whether incoming data to the Voice board
is recognized as silence or non-silence.

solicited event: An expected event. It is specified using one of the device
library’s asynchronous functions. For example, for dx_play(), the solicited
event is "play complete."

Special Information Tones: SIT. (1) Standard Information Tones. Tones sent
out by a central office to indicate that the dialed call has been answered by the

Glossary

415-CD

distant phone. (2) Special Information Tone. Detection of a SIT sequence
indicates an operator intercept or other problem in completing the call.

speed and volume control: Voice software that contains functions and data
structures to control the speed and volume of play on a channel. The end user
controls the speed or volume of a message by entering a DTMF tone.

speed and volume modification table: Each channel on a voice board has a
table with twenty entries that allow for a maximum of ten increases and
decreases in speed or volume, and one "origin" entry that represents regular
speed or volume.

 SpringBoard: A Dialogic expansion board using digital signal processing to
emulate the functions of other products. SpringBoard is a development
platform for Dialogic products such as the D/120 and D/121. The
SpringBoard-MC is a development platform for Dialogic Micro Channel
products such as the D/81-MC.

SpringBoard functions: Functions used on SpringBoard devices only.

SpringWare: Software algorithms build into the downloadable firmware that
provides the voice processing features available on all Dialogic voice boards.

 SRL: See Standard Runtime Library.

Standard Attribute functions: Class of functions that take one input parameter
(a valid Dialogic device handle) and return generic information about the
device. For instance, Standard Attribute functions return IRQ and error
information for all device types. Standard Attribute function names are case-
sensitive and must be in capital letters. Standard Attribute functions for all
Dialogic devices are contained in the Dialogic SRL. See Standard Runtime
Library.

Standard Runtime Library: A Dialogic software resource containing
Event-Management and Standard Attribute functions and data structures used
by all Dialogic devices, but which return data unique to the device. See the
Standard Runtime Library Programmer’s Guide for Windows NT.

 string: An array of ASCII characters.

 subdevice: Any device that is a direct child of another device. Since
"subdevice" describes a relationship between devices, a subdevice can be a
device that is a direct child of another subdevice, as a channel is a child of a
board.

Voice Programmer’s Guide for Windows NT

416-CD

 synchronous function: Blocks program execution until a value is returned by
the device. Also called a blocking function. See asynchronous function.

System Release Development Package: The software and user documentation
provided by Dialogic that is required to develop applications.

 T-1: The digital telephony format used in North America. In T-1, 24 voice
conversations are time-division multiplexed into a single digital data stream
containing 24 time slots, and signaling data are carried "in-band." Since all
available time slots are used for conversations, signaling bits are substituted
for voice bits in certain frames. Hardware at the receiving end must use the
robbed-bit" technique for extracting signaling information. T-1 carries data at
the rate of 1.544 Mbps (DS-1 level).

 termination condition: An event or condition which, when present, causes a
process to stop.

 termination event: An event that is generated when an asynchronous function
terminates. See asynchronous function.

 time slot: In a digital telephony environment, a normally continuous and
individual communication (for example, someone speaking on a telephone) is
(1) digitized, (2) broken up into pieces consisting of a fixed number of bits, (3)
combined with pieces of other individual communications in a regularly
repeating, timed sequence (multiplexed), and (4) transmitted serially over a
single telephone line. The process happens at such a fast rate that, once the
pieces are sorted out and put back together again at the receiving end, the
speech is normal and continuous. Each individual pieced-together
communication is called a time slot.

 time slot assignment: The ability to route the digital information contained in a
time slot to a specific analog or digital channel on an expansion board. See
device channel.

transparent signaling: The mode in which a network interface device accepts
signaling data from a resource device transparently, or without modification.
In transparent signaling, outgoing T-1 signaling bits are generated by a PEB or
SCbus resource device. In effect the resource device performs signaling to the
network.

Universal Dialogic Diagnostic program: Software diagnostic routines for
testing board-level functions of Dialogic hardware.

Glossary

417-CD

 voice processing: Science of converting human voice into data that can be
reconstructed and played back at a later time. Dialogic equipment can place
2-30 ports in one PC slot. They also use common API’s for scalability and the
SCbus to connect to a broad range of technologies.

 Voice System: A combination of expansion boards and software that let you
develop and run high-density voice processing applications.

wink: In T-1 or E-1 systems, a signaling bit transition from on to off, or off to on,
and back again to the original state. In T-1 systems, the wink signal can be
transmitted on either the A or B signaling bit. In E-1 systems, the wink signal
can be transmitted on either the A, B, C, or D signaling bit. Using either
system, the choice of signaling bit and wink polarity (on-off-on or off-on-off
hook) is configurable through DTI/2xx board download parameters.

Voice Programmer’s Guide for Windows NT

418-CD

419-CD

Index

/
/usr/include/dxxxlib.h, 358

6
6KHz sampling rate, 227

8
8KHz sampling rate, 227

A
Adaptive Differential Pulse Code

Modulation, 227, 255

Adjusting Speed and Volume
explicitly, 117
using conditions, 298
using digits, 298

adjustment conditions
digits, 299
maximum number, 299
setting, 298

ADPCM, 255

ADSI, 223
using dx_play() to transfer ADSI

data, 232

AGC, 256

alowmax, 340

ansrdgl, 342

answering machine detection, 32

applications
compiling, 28
controlling the flow, 22

including files, 28
linking, 29
programming guidelines, 375

array, 349

asynchronous operation
dialing, 169
digit collection, 201
playing, 223
playing R2 MF tone, 327
playing tone, 241
recording, 253
setting hook state, 290
stopping I/O functions, 309
wink, 312

asynchronous programming
overview, 7

ATDV_ERRMSGP(), 26, 375, 381

ATDV_IOPORT(), 381

ATDV_IRQNUM(), 381

ATDV_LASTERR(), 26, 209, 375, 381

ATDV_NAMEP(), 381

ATDV_SUBDEVS(), 382

ATDX_ functions, 18, 19

ATDX_ANSRSIZ(), 32, 170

ATDX_BDNAMEP(), 35

ATDX_BDTYPE(), 37

ATDX_BUFDIGS(), 39, 114

ATDX_CHNAMES(), 41

ATDX_CHNUM(), 43

ATDX_CONNTYPE(), 45

Voice Programmer’s Guide for Windows NT

420-CD

ATDX_CPERROR(), 48, 170

ATDX_CPTERM(), 48, 51, 170

ATDX_CRTNID(), 54, 170

ATDX_DEVTYPE(), 57

ATDX_DTNFAIL(), 59, 170

ATDX_EVTCNT(), 61

ATDX_FRQDUR(), 62, 170

ATDX_FRQDUR2(), 65, 170

ATDX_FRQDUR3(), 67, 170

ATDX_FRQHZ(), 69, 170

ATDX_FRQHZ2(), 72, 170

ATDX_FRQHZ3(), 74, 170

ATDX_FRQOUT(), 76, 170

ATDX_FWVER(), 78

ATDX_HOOKST(), 80, 291

ATDX_LINEST(), 82

ATDX_LONGLOW(), 84, 170

ATDX_PHYADDR(), 86

ATDX_SHORTLOW(), 88, 170

ATDX_SIZEHI(), 91, 170

ATDX_STATE(), 93, 166

ATDX_TERMMSK(), 12, 95, 98, 384

ATDX_TONEID(), 98

ATDX_TRCOUNT(), 101

audio pulse digits, 278

Automatic Gain Control, 256

B
backward signal

specifying, 327

base memory address, 348

bddev, 21

blowmax, 340

board
device, 57, 221
device name, 35
parameters, 211, 212, 295, 358, 359

setting, 35
physical address, 86

board
device, 35
device handle, 21

board device
handle, 41

board-channel hierarchy, 21

buffer
firmware digit, 155

busy channel
forcing to idle state, 309

busy state, 21

bytes transferred, 101

C
C functions, 21

ca_dtn_deboff, 343

ca_dtn_npres, 343

ca_dtn_pres, 343

ca_lowerfrq, 76

ca_maxintering, 344

ca_noanswer, 344

ca_pamd_failtime, 343

ca_pamd_minring, 343

Index

421-CD

ca_pamd_qtemp, 344

ca_pamd_spdval, 343

ca_rejctfrq, 76

ca_upperfrq, 76

cadence, 32
repetition for user-defined tones,

126

Call Analysis, 32, 51, 88, 91, 169
answering machine detection, 32
cadence, 32
Enhanced

activating, 217
errors, 48
example with default parameters,

172, 173
example with user-specified

parameters, 171
frequency detection

SIT tones(tone 1), 62, 69
SIT tones(tone 2), 65, 72
SIT tones(tone 3), 67, 74

parameter structure, 153
parameters (listing), 334
results

answer duration, 170
Busy, 51, 170
call connected, 170
Called line answered by, 51
Connect, 51
Error, 51, 170
fax machine or modem, 170
frequency

out of bounds, 170
frequency detection, 170
initial non-silence, 91
last termination, 170
longer silence, 84, 170
No answer, 51, 170
no dial tone, 170
No ringback, 51, 170
non-silence, 170

Operator intercept, 51, 170
shorter silence, 88, 170
Stopped, 51, 170
Timeout, 51

stopping, 171, 310
termination, 51

Call Status Transition
event block structure, 346
event functions, 13
event handling

asynchronous, 107, 283
synchronous, 107, 283

functions
see Call Status Transition, 13

synchronously monitoring events,
208

Call Status Transition Structure, 333,
344

Cautions
dx_chgdur(), 142
dx_chgfreq(), 146
dx_chgrepcnt(), 149
dx_dial(), 171
dx_initcallp(), 219
dx_setgtdamp(), 288

channel
current state, 93
device, 57, 221
digit buffer, 201
monitoring activity, 82
names, 41
number, 43
number of processes, 209
parameters, 295, 359
state during dial, 166
status

Dial, 93
DTMF signal, 82
Get Digit, 93
Idle, 93
no ringback, 82
noLoop current, 82

Voice Programmer’s Guide for Windows NT

422-CD

onhook, 82
Play, 93
Playing tone, 93
Record, 93
ringback present, 82
silence, 82
Stopped, 93

channel parameters, 368, 372, 373

chdev, 20

checking return codes, 375

clearing structures, 153, 160, 375

close(), 151, 349

closing devices, 20, 151

cnosig, 337

cnosil, 338

Compelled signaling, 326

Compiling Applications, 29

CON_CAD, 45

CON_LPC, 45

CON_PAMD, 45

CON_PVD, 45

Configuration Functions, 11

connect
event, 32
type, 45

Convenience Functions, 13

CR_BUSY, 51, 170

CR_CEPT, 51, 72, 170

CR_CNCT, 45, 51, 170

CR_ERROR, 48, 170

CR_FAXTONE, 51, 170

CR_LGTUERR, 48

CR_MEMERR, 48

CR_MXFRQERR, 48

CR_NOANS, 51, 170

CR_NODIALTONE, 51, 170

CR_NORB, 51, 170

CR_OVRLPERR, 48

CR_STOPD, 51, 170

CR_TMOUTOFF, 48

CR_TMOUTON, 48

CR_UNEXPTN, 48

CR_UPFRQERR, 48

CS_CALL, 93, 166

CS_DIAL, 93, 166

CS_GTDIG, 93

CS_HOOK, 93

CS_IDLE, 93

CS_PLAY, 93

CS_RECD, 93

CS_RECVFAX, 93

CS_SENDFAX, 93

CS_STOPD, 93

CS_TONE, 93

CS_WINK, 93

cst_data, 345

cst_event, 344

current parameter settings, 211

Index

423-CD

D
D/120

terminology, 1

D/121
terminology, 1

D/121A
terminology, 1

D/121B
terminology, 1

D/12x
terminology, 1

D/160SC-LS
terminology, 1

D/21D
terminology, 1

D/21E
terminology, 1

D/240SC
terminology, 1

D/240SC-T1
terminology, 1

D/2x
terminology, 1

D/300SC-E1
terminology, 1

D/320SC
terminology, 1

D/41D
terminology, 1

D/41E
terminology, 1

D/41ESC
terminology, 1

D/4x

terminology, 1

D/81A
terminology, 1

D/xxx
terminology, 2

D/xxxSC
terminology, 2

D_APD, 278

D_DPD, 278

D_DPD2, 279

D_DTMF, 278

D_LPD, 278

D_MF, 278

data structures, 31, 327, 333
Channel Parameter Block

overview, 335
typedef struct, 335

clearing, 17

data transfer, 349

data transfer type, 348

DE_DIGITS, 344, 346, 347

DE_LCOFF, 344, 346, 347

DE_LCON, 344, 346, 347

DE_LCREV, 344, 346, 347

DE_RINGS, 344, 346, 347

DE_RNGOFF, 344

DE_SILOFF, 345, 346, 347

DE_SILON, 345, 346, 347

DE_TONEOFF, 345, 346, 347

DE_TONEON, 345, 346, 347

DE_WINK, 315, 345, 346, 347

Voice Programmer’s Guide for Windows NT

424-CD

defines
DXBD_ and DXCH_, 211, 212

device
opening, 221
standard WINDOWS NT, 349
status, 333

device handle, 10, 20, 37, 221
freeing, 151

Device Management Functions, 10

device names
displaying, 41

device type, 57

devices
board, 5
channel, 5
closing, 151
multiple processes, 151
opening, 20
parameters, 327
terminology, 5
type, 37
using, 20
WINDOWS NT, 21

DG_DTMF, 203, 334

DG_END, 334

DG_LPD, 203, 334

DG_MAXDIGS, 203, 334

DG_MF, 203, 334

dg_type, 334

DG_USER1, 203, 334

DG_USER2, 203

DG_USER3, 203

DG_USER4, 203

DG_USER5, 203

dg_value, 334

DI_D20BD, 37

DI_D20CH, 37

DI_D21BD, 37

DI_D21CH, 37

DI_D40BD, 37

DI_D40CH, 37

DI_D41BD, 37

DI_D41CH, 37

Dial
ASCIIZ string, 166
asynchronous, 168, 169
channel state, 166
DTMF, 167
enabling Call Analysis, 168
flash, 167
MF, 167
pause, 167
pulse, 167
specifying dial string, 167
stopping, 171
synchronous, 168, 169
synchronous termination, 169
termination events

TDX_CALLP, 169
TDX_DIAL, 169

with Call Analysis, 168, 169

dial pulse digit (DPD), 278

dial tone
failure, 59

Dialing
see Dial, 166

DIALOG/HD
terminology, 2

digit buffer, 201, 203
flushing, 155

Index

425-CD

digit collection
asynchronous, 201
DTMF digits, 202, 203
loop pulse digits, 202, 203
MF digits, 202, 203
synchronous, 202
termination, 202
user-defined digits, 202, 203

digit detection, 201
accuracy, 398
audio pulse, 278
dial pulse, 278
disabling, 178
DPD, zero-train, 279
DTMF, 278
DTMF vs. MF tones, 279, 398
loop pulse, 278
mask, 278
MF, 278
multiple types, 279
types of digits, 278

digits
adjustment conditions, 299
collecting, 39
collection

see Digit Collection, 201
defines for user-defined tones, 108
detecting, 39
setting to adjust speed or volume,

103, 113
Speed and Volume, 114

disabling detection
user-defined tones, 178

DM_DIGITS, 281

DM_LCON, 281

DM_LCREV, 281

DM_RINGS, 281, 319

DM_RNGOFF, 281

DM_SILOF, 281

DM_SILON, 281

DM_WINK, 281, 314

DT_DXBD, 57

DT_DXCH, 57

DTI/101
terminology, 2

DTI/211
terminology, 2

DTI/212
terminology, 2

DTI/xxx
terminology, 2

DTMF digits, 278
collection, 202, 203
overlap with MF digits, 204
tones, 395

DV_DIGIT, 31, 201, 333
description, 333
specifying, 202

DV_TPT, 17, 22, 31, 160, 375, 382
clearing, 160
example, 392

DV_TPT list
contiguous, 160
last entry in, 160
linked, 160

dx_addspddig(), 103

dx_addtone(), 15, 107

dx_addvoldig(), 113

dx_adjsv(), 117

dx_blddt(), 15, 122

dx_blddtcad(), 15, 125

dx_bldst(), 15, 129

Voice Programmer’s Guide for Windows NT

426-CD

dx_bldstcad(), 15, 132

dx_bldtngen(), 136

DX_CAP, 17, 31, 153, 333, 375
clearing, 153
description, 334
see Data Structures, 335

dx_chgdur(), 139
cautions, 142

dx_chgfreq(), 143
cautions, 146

dx_chgrepcnt(), 147
cautions, 149

dx_close(), 10, 21, 151

dx_clrcap(), 17, 153, 335, 375

dx_clrdigbuf(), 39, 155, 203

dx_clrsvcond(), 157, 298

dx_clrtpt(), 17, 25, 160, 375, 382

DX_CST, 333
description, 344
hook state terminations

DX_OFFHOOK, 290
DX_ONHOOK, 290

dx_dial(), 12, 32, 95, 153, 166, 309,
310, 335, 379

cautions, 171

DX_DIGMASK, 202, 226, 242, 255,
383, 384, 387, 388

DX_DIGTYPE, 202, 226, 383, 384,
387

dx_distone(), 107, 178

DX_EBLK, 31, 208, 346

dx_enbtone(), 107, 181

dx_getcursv(), 198

dx_getdig(), 39, 156, 201, 334, 379,
382

dx_getevt(), 14, 107, 208, 283, 319,
346

dx_getparm(), 31, 211, 228, 256, 358

dx_getsvmt(), 214

DX_IDDTIME, 202, 226, 242, 255,
383, 387, 388

dx_initcallp(), 217
cautions, 219

DX_IOTT, 223, 333
description, 347

DX_LCOFF, 202, 226, 242, 255, 383,
387

DX_MAXDTMF, 202, 226, 242, 255,
383, 384, 387

DX_MAXNOSIL, 202, 226, 242, 255,
383, 387

DX_MAXSIL, 202, 226, 242, 255, 383,
387, 388, 389

DX_MAXTIME, 202, 226, 242, 255,
383, 387, 388

DX_OFFHOOK, 80, 320, 345

DX_ONHOOK, 80, 319, 345

dx_open(), 10, 20, 221

dx_play(), 156, 223, 235, 349, 379, 382

dx_playf(), 13, 235, 376

dx_playiottdata(), 238

dx_playtone(), 241, 326, 379, 382

dx_playvox(), 247

dx_playwav(), 250

Index

427-CD

DX_PMOFF, 202, 226, 242, 255, 383,
385, 386, 388, 389

DX_PMON, 202, 226, 242, 255, 383,
386, 388, 389

DX_PMON/OFF, 387

dx_rec(), 156, 253, 349, 379, 382

dx_recf(), 13, 263, 376

dx_reciottdata(), 267

dx_recvox(), 270

dx_recwav(), 273

dx_setdigbuf(), 276

dx_setdigtyp(), 201, 278

dx_setevtmsk(), 14, 108, 208, 281, 314,
319

dx_setgtdamp(), 287
cautions, 288

dx_sethook(), 95, 290, 314, 319, 379

dx_setparm(), 31, 228, 256, 295, 358

dx_setsvcond(), 298

dx_setsvmt(), 302

dx_setuio(), 306

dx_stopch(), 12, 171, 253, 309

DX_SVCB, 298, 333
adjsize field, 354
digit field, 355
digtype field, 355

DX_SVMT, 302, 333
description, 350, 351

DX_TONE, 202, 226, 242, 255, 383,
387, 389

DX_TPB, 333

DX_UIO, 333
description, 355

dx_wink(), 12, 312, 379

dx_wtring(), 283, 319

DXBD_ and DXCH_ defines, 211, 212

DXBD_OFFHDLY, 314

DXCH_MAXRWINK, 314

DXCH_MINRWINK, 314

DXCH_PLAYDRATE, 228

DXCH_RECRDRATE, 256

DXCH_WINKDLY, 313

DXCH_WINKLEN, 314

dxxxlib.h, 28, 31, 211, 212, 358

E
E&M line, 313

wink, 312

edge-sensitive, 386, 387

Enabling detection
user-defined tones, 181

encoding algorithm, 227, 255

error handling
Voice Library functions, 26

Errors
Call Analysis, 48
defines, 393
listing (voice library), 393

EV_ASYNC, 309

ev_data, 346

ev_event, 346

ev_rfu, 347

Voice Programmer’s Guide for Windows NT

428-CD

event
loop current off, 347
loop current on, 347
mask, 281
non-silence, 347
rings, 347
silence, 347
tone off, 347
tone on, 347
wink, 347

Event Block Structure, 31, 208, 333

Event Management functions, 379

event queue, 61

events, 13
connect, 32
disabling, 151
queue, 61
returning number of, 61

evt_type, 380

Extended Attribute Functions, 19, 375

F
fax, 93

FAX/xxx, 2

Features
Voice board, 5
Voice libraries, 6

file descriptor, 20

Firmware
emulated D/4x version number, 78
returning version number, 78
terminology, 2

firmware
buffer, 39

firmware digit buffer, 155

fixed length string, 211, 212

flash character, 168

flushing digit buffer, 155

forward signal
specifying, 322

function
ATDX_ANSRSIZ(), 32
ATDX_BDNAMEP(), 35
ATDX_BDTYPE(), 37
ATDX_BUFDIGS(), 39
ATDX_CHNAMES(), 41
ATDX_CHNUM(), 43
ATDX_CONNTYPE(), 45
ATDX_CPERROR(), 48
ATDX_CPTERM(), 51
ATDX_CRTNID(), 54
ATDX_DEVTYPE(), 57
ATDX_DTNFAIL(), 59
ATDX_EVTCNT(), 61
ATDX_FRQDUR(), 62
ATDX_FRQDUR2(), 65
ATDX_FRQDUR3(), 67
ATDX_FRQHZ(), 69
ATDX_FRQHZ2(), 72
ATDX_FRQHZ3(), 74
ATDX_FRQOUT(), 76
ATDX_FWVER(), 78
ATDX_HOOKST(), 80
ATDX_LINEST(), 82
ATDX_LONGLOW(), 84
ATDX_PHYADDR(), 86
ATDX_SHORTLOW(), 88
ATDX_SIZEHI(), 91
ATDX_STATE(), 93
ATDX_TERMMSK(), 95
ATDX_TONEID(), 98
ATDX_TRCOUNT(), 101
dx_addspddig(), 103
dx_addtone(), 107
dx_addvoldig(), 113
dx_adjsv(), 117
dx_blddt(), 122
dx_blddtcad(), 125

Index

429-CD

dx_bldst(), 129
dx_bldstcad(), 132
dx_bldtngen(), 136
dx_chgdur(), 139
dx_chgfreq(), 143
dx_chgrepcnt(), 147
dx_close(), 151
dx_clrcap(), 153
dx_clrdigbuf(), 155
dx_clrsvcond(), 157
dx_clrtpt(), 160
dx_dial(), 166
dx_distone(), 178
dx_enbtone(), 181
dx_getcursv(), 198
dx_getdig(), 201
dx_getevt(), 208
dx_getparm(), 211
dx_getsvmt(), 214
dx_initcallp(), 217
dx_open(), 221
dx_play(), 223
dx_playf(), 235
dx_playiottdata(), 238
dx_playtone(), 241
dx_playvox(), 247
dx_playwav(), 250
dx_rec(), 253
dx_recf(), 263
dx_reciottdata(), 267
dx_recvox(), 270
dx_recwav(), 273
dx_setdigbuf(), 276
dx_setdigtyp(), 278
dx_setevtmsk(), 281
dx_sethook(), 290
dx_setparm(), 295
dx_setsvcond(), 298
dx_setsvmt(), 302
dx_setuio(), 306
dx_stopch(), 309
dx_wink(), 312
dx_wtring(), 319
r2_creatfsig(), 322

r2_playbsig(), 326
WINDOWS NT

close(), 151, 349
lseek(), 349
open(), 349
read(), 349
sigset(), 320
write(), 349

Function Reference, 31

functions
ATDX_, 18, 19
call status transition, 13
Call Status Transition Event, 9
categories, 9
Configuration, 9, 11
Convenience, 9, 13
Device Management, 9, 10
dialing

Call Analysis disabled, 170
Call Analysis enabled, 170

error handling, 26
Extended Attribute, 9, 18, 19
Global Tone Detection, 9, 14
Global Tone Generation, 9, 15
I/O, 9, 12, 382
non-attribute, 375
open(), 221
PerfectCall Call Analysis, 17
R2 MF Convenience, 9, 15
reference section, 31
Route, 9, 14
Speed and Volume, 9, 16
Standard Attribute, 375
Structure Clearance, 9, 17
WINDOWS NT open(), 21

G
Global Tone Detection

adding a tone, 107
disabling, 178
dual frequency cadence tones, 125
dual frequency tones, 122

Voice Programmer’s Guide for Windows NT

430-CD

enabling, 181
enabling detection, 107
functions, 14
removing tones, 163
single frequency cadence tones, 132
single frequency tones, 129

Global Tone Generation
functions, 15
playing a tone, 241
template, 356

GTD Frequency Amplitude
setting, 287

H
header files, 31

hedge, 338

hi1bmax, 339

hi1ceil, 341

hi1tola, 338

hi1tolb, 338

hierarchy
board-channel, 21

higltch, 339

hisiz, 340

hook state, 80
setting

see Setting Hook State, 290

hookstate, 151, 290

I
I, 59

I/O
function, 95
functions, 382
terminations, 22

transfer table, 347
Transfer Table Structure, 31, 333
User-definable I/O Structure, 31

I/O Functions, 12

idle state, 21

include files, 28, 31

intflg, 340

io_bufp, 348

IO_CONT, 160, 348, 383

IO_DEV, 348

IO_EOT, 348, 349, 383

IO_EOT, 160

io_fhandle, 348

io_length, 349

IO_LINK, 160, 348, 383, 389

IO_MEM, 348

io_nextp, 349

io_offset, 348

io_prevp, 349

io_type, 348

K
KP tone, 396

L
L, 59

lcdly, 337

lcdly1, 338

leading edge notification
user-defined tones, 122

Level-sensitive, 386

Index

431-CD

libraries
linking, 29

order, 29

library
Voice, 31

line status, 93

linking
Voice libraries, 29

linking libraries
order, 29

lo1bmax, 339

lo1ceil, 341

lo1rmax, 339

lo1tola, 338

lo1tolb, 338

lo2bmax, 339

lo2rmin, 339

lo2tola, 338

lo2tolb, 338

logltch, 339

loop current
drop, 45

loop pulse detection, 278

Loop pulse digits
collection, 202, 203

lower2frq, 342

lower3frq, 342

lowerfrq, 341

lseek(), 349

LSI
terminology, 2

LSI/120
terminology, 2

M
maxansr, 341

MD_ADPCM, 227, 255

MD_GAIN, 256

MD_NOGAIN, 256

MD_PCM, 227, 256

MF
detection, 398
overlap with DTMF digits, 204
tones, 395

MF
capability, 279
digit detection, 278
digits

collection, 202, 203
support, 167, 168, 279

Miscellaneous functions
dx_setuio(), 306

monitor channels, 208

monitoring events, 208

Multitasking
using asynchronous programming, 7

mxtime2frq, 342

mxtime3frq, 343

mxtimefrq, 342

N
names

board device, 35

nbrbeg, 341

nbrdna, 337

Voice Programmer’s Guide for Windows NT

432-CD

Non-attribute functions, 375

Nonstandard I/O devices
dx_setuio(), 306

nsbusy, 339

O
off-hook, 80

off-hook state, 291

offset, 348

on-hook, 80

on-hook state, 291

open(), 349
WINDOWS NT, 21

open() function, 221

opening devices, 20, 221

Operator Intercept, 62

P
parameters

board and channel, 358, 359, 368,
372, 373

Call Analysis, 153
sizes, 211

pause character, 168

PEB
terminology, 2

PerfectCall Call Analysis
activating, 217
example, 174
functions, 17
tone definitions, 139, 143, 147

PerfectCall Call Analysis Functions, 17

physical address, 86

play

6KHz rate, 227
8KHz rate, 227
asynchronous, 223
back voice data, 223, 238
convenience function, 235
default algorithm, 227
default rate, 228
encoding algorithm, 227
mode, 229
R2 MF tone

asynchronous, 326
Synchronous Operation, 327
termination events

TDX_PLAYTONE, 326
specifying mode, 227
specifying number of bytes, 349
synchronous, 224
termination, 224

TDX_PLAY, 224
termination events, 223
tone

asynchronous, 241
asynchronous termination

events
TDX_PLAYTONE, 241

Synchronous Operation, 242
transmitting tone before, 227
using A-Law, 227
voice data, 247
WAVE file, 250

play R2 MF tone, 327

playback
bytes transferred, 101

playing
see Play, 223

PM_ADSI, 228

PM_BYTE, 211

PM_FLSTR, 211, 212

PM_INT, 211

Index

433-CD

PM_LONG, 211

PM_SHORT, 211

PM_SR6, 227

PM_SR8, 227

PM_TONE, 227

PM_VLSTR, 211, 212

Positive Answering Machine Detection,
45

Positive Voice Detection, 45

processes per channel, 209

programming conventions, 375

Programming guidelines
checking return codes, 375
clearing structures, 375
using Convenience functions, 376

Publications
related, 401

Pulse Code Modulation, 227, 256

pvddly, 342

pvdmxper, 342

pvdszwnd, 342

R
R2 MF

compelled signaling, 326
Convenience Functions, 15
enabling signal detection, 322
functions, 15
playing backward signal, 326
playing tone asynchronously, 326
playing tone synchronously, 327
specifying backward signal, 327
specifying forward signal, 322
termination events, 326

user-defined tone IDs, 322, 323,
327

r2_creatfsig(), 322

r2_playbsig(), 326, 379

read(), 349

recording
algorithm, 255
asynchronous, 253
asynchronous termination event

TDX_RECORD, 254
bytes transferred, 101
convenience function, 263
default algorithm, 255
default gain setting, 256
default rate, 256
gain control, 256
mode, 257
mode, 257
sampling rate, 256
specifying mode, 255
specifying number of bytes, 349
stopping, 253
synchronous, 254
synchronous termination, 254
voice data, 253, 267, 270
WAVE data, 273
with A-Law, 256
with tone, 256

recording
mode, 255

related voice publications, 401

return codes, 375
checking, 375

RLS_DTMF, 82

RLS_HOOK, 82

RLS_LCSENSE, 82

RLS_RING, 82

Voice Programmer’s Guide for Windows NT

434-CD

RLS_RINGBK, 82

RLS_SILENCE, 82

RM_ALAW, 256

RM_SR6, 256

RM_SR8, 256

RM_TONE, 256

S
SC_TSINFO

description, 357

SCbus
terminology, 2

SCbus Routing, 5

Setting hook state, 290
asynchronous, 290
synchronous, 291

SIGALRM, 320

sigset(), 320

Silence/non-silence pattern
DX_PMON and DX_PMOFF, 392

SIT tones
detection, 65, 67, 69, 72, 74

software
Voice, 31

Spancard
terminology, 2

Speed and Volume
adjusting, 298
current, 119
digits, 355
dx_addspddig(), 103, 113
explicitly adjusting, 117
functions, 16
last modified, 119
Modification Table

setting, 350
updating, 302

resetting to origin, 119
retrieving current, 198
setting adjustment conditions

also see Adjustment Conditions,
298

Speed and Volume Convenience
Functions, 16

Speed and Volume Functions, 16

Speed and Volume Modification Table
resetting to defaults, 302, 303
retrieving contents, 214
specifying speed, 303
specifying volume, 303
updating, 302

Speed or Volume
adjusting, 103, 113

speed/volume modification table
structure, 350

SpringBoard
terminology, 2

SpringWare
terminology, 2

sr_dishdlr(), 380

sr_enbhdlr(), 380

sr_getevtdatap(), 108, 283, 381

sr_getevtdev(), 380

sr_getevtlen(), 381

sr_getevttype(), 380

SRL
see Standard Runtime Library, 6,

379

srllib.h, 28, 31

Standard Attribute Functions, 381

Index

435-CD

Standard Runtime Library
Entries and Returns, 379
overview, 6

states
busy, 21
dependencies, 22
idle, 21

stdely, 337

stop I/O functions
dial, 309, 310
termination reason

TM_USRSTOP, 309
wink, 310

stopping Call Analysis, 310

stopping I/O functions
Synchronous, 309

Structure Clearance Functions, 17

structure linkage, 348

Structures, 31, 333
as array, 382
as linked list, 382
Call Analysis Parameters, 31, 333

also see Call Analysis, 334
call status transition, 344
clearing, 153, 160, 375
digit buffer, 201
DV_DIGIT, 201
DX_CAP, 153
DX_EBLK, 208
DX_IOTT, 223
Event Block, 31, 208, 333, 346
for setting Speed Modification

Table, 350
I/O

user-definable, 355
I/O Transfer Table, 333, 347
SCbus time slot information, 357
Speed and Volume adjustment

conditions, 351

Termination Parameter Table, 31,
333, 382

tone generation template, 356
user digit buffer, 333
User-definable I/O Structure, 31

SV_ABSPOS, 118

SV_BEGINPLAY, 354

SV_CURLASTMOD, 119

SV_CURORIGIN, 119

SV_LEVEL, 354

SV_RELCURPOS, 118

SV_RESETORIG, 119

SV_SPEEDTBL, 118

SV_TOGGLE, 118

SV_TOGORIGIN, 119

SV_VOLUMETBL, 118

synchronous operation
dial, 169
digit collection, 202
play, 224
playing R2 MF tone, 327
playing tone, 242
record, 254
setting hook state, 291
stopping I/O functions, 309, 310
wink, 313

synchronous operationplaying R2 MF
tone, 327

synchronous programming
overview, 7

T
T-1, 313

TDX_CALLP, 169

Voice Programmer’s Guide for Windows NT

436-CD

TDX_CST events, 107, 108

TDX_DIAL, 169

TDX_PLAY, 224

TDX_PLAYTONE, 241

TDX_RECORD, 254

TDX_SETHOOK, 290, 345

termination
bitmap, 96
Call Analysis, 51
stop I/O function, 309
synchronous record, 254

termination conditions, 12
byte transfer count, 23
dx_stopch() occurred, 23
end of file reached, 23
loop current drop, 23
maximum delay between digits, 23
maximum digits received, 23
maximum function time, 25
maximum length of non-silence, 24
maximum length of silence, 24
pattern of silence and non-silence,

24
specific digit received, 25
user-defined digit received, 25
user-defined tone on/tone off event

detected, 25
user-defined tones, 108

termination events
DX_CST structure, 290
TDX_SETHOOK, 290
TDX_WINK, 312

termination history, 386, 387

Termination Parameter Table Structure,
31

example, 392

terminations, 95
asynchronous play, 224

Digit mask, 202, 226, 242, 255
edge-sensitive, 386, 387
end of data, 95
function stopped, 95
Function time, 202, 226, 242, 255
history, 388
I/O, 22
I/O device error, 95
I/O function, 95
I/O functions, 309
inter-digit delay, 95, 202, 226, 242,

255
level-sensitive, 386
loop current off, 95, 202, 226, 242,

255
maximum DTMF count, 95
maximum function time, 95
Maximum non-silence, 202, 226,

242, 255
Maximum number of digits, 202,

226, 242, 255
maximum period of non-silence, 95
maximum period of silence, 95
Maximum silence, 202, 226, 242,

255
normal termination, 95
Pattern match silence off, 202, 226,

242, 255
Pattern match silence on, 202, 226,

242, 255
pattern matched, 95
specific digit received, 95
synchronous play, 224
Tone-off or Tone-on detection, 202,

226, 242, 255
tone-on/off event, 95
User-defined digits, 202

TF_10MS, 385

TF_CLRBEG, 385

TF_CLREND, 385, 386

TF_DIGMASK, 386

Index

437-CD

TF_DIGTYPE, 386

TF_EDGE, 385, 386

TF_FIRST, 385

TF_IDDTIME, 386

TF_LCOFF, 386

TF_LEVEL, 385, 386

TF_MAXDTMF, 386

TF_MAXNOSIL, 386

TF_MAXSIL, 386

TF_MAXTIME, 386

TF_PMON, 386

TF_SETINIT, 385

TF_TONE, 386

TF_USE, 385, 386

tg_ampl1, 357

tg_ampl2, 357

tg_dflag, 356, 357

tg_dur, 357

tg_freq1, 357, 358

tg_freq2, 357

TID_BUSY1, 54

TID_BUSY2, 54

TID_DIAL_INTL, 54

TID_DIAL_LCL, 54

TID_DIAL_XTRA, 54

TID_FAX1, 54

TID_FAX2, 54

TID_RINGBK1, 54

time2frq, 342

time3frq, 343

timefrq, 341

TM_DIGIT, 95

TM_EOD, 95

TM_ERROR, 95

TM_IDDTIME, 95

TM_LCOFF, 95

TM_MAXDTMF, 95

TM_MAXNOSIL, 95

TM_MAXSIL, 95

TM_MAXTIME, 95, 327

TM_NORMTERM, 95

TM_PATTERN, 95

TM_TONE, 95

TM_USRSTOP, 95

TN_GEN, 333
description, 356

tone
adding, 107
enabling detection, 107

Tone definitions, 139, 143, 147

tone id, 98, 122

tone identifier, 54

tone:user-defined
see User-defined Tone, 107

tp_data, 389

tp_flags, 385
default settings, 389, 392

tp_length, 384

Voice Programmer’s Guide for Windows NT

438-CD

tp_nextp, 389

tp_termno, 383

tp_type, 383

trailing edge notification
user-defined tones, 122

U
upper2frq, 342

upper3frq, 342

upperfrq, 341

user digit buffer, 31

user digit buffer structure, 31, 333

user-defined
cadence, 126

user-defined digits
collection, 202, 203

user-defined tone, 107

user-defined tone id, 98
R2 MF, 322

user-defined tones
cadence repetition, 126
disabling detection, 178
dual frequency, 122
dual frequency cadence, 125
enabling detection, 181
first frequency, 122
first frequency deviation, 122
id, 122
leading or trailing edge notification,

122
playing

also see Playing Tone, 241
removing, 163
second frequency, 122
second frequency deviation, 122
single frequency, 129
single frequency cadence, 132

Tone ID, 323, 327
tp_data, 108
tp_termno, 108

using Convenience functions, 376

Using Devices, 20

Using Multiple Processes in
Synchronous Applications, 376

Using the Asynchronous Programming
Model, 376

Using the Voice Library, 9

V
variable length string, 211, 212

version number
firmware, 78

VFX/40ESC
terminology, 3

Voice
terminology, 3

Voice Board
features, 5

Voice Device Driver
see Voice Driver, 4

Voice devices
opening, 20

Voice Driver
overview, 4

Voice Hardware
see Voice Board, 5

Voice Libraries
features, 6
overview, 6

Voice Software
installation, 4
overview, 4

Index

439-CD

W
WINDOWS NT

close() function, 151, 349
device, 349
open() function, 221, 349
read() function, 349
sigset() function, 320
voice software, 31
write() function, 349

WINDOWS NT
devices, 21
open(), 21

wink, 312
asynchronous, 312
delay, 313
duration, 314
inbound, 314
on non-E&M line, 312
synchronous, 313
termination event, 312

write(), 349

X
X, 59

Z
zero-train DPD, 279

Voice Programmer’s Guide for Windows NT

440-CD

441-CD

Dialogic Sales Offices

North American Sales
1-800-755-4444 or 201-993-3030
fax: 201-631-9631

Corporate Headquarters
1515 Route 10
Parsippany, NJ 07054-4596
USA
201-993-3000
fax: 201-993-3093

Northeastern US
70 Walnut Street
Wellesley, MA 02181

Southeastern US
1040 Crown Pointe Pkwy.
Suite 360
Atlanta, GA 30338

North Central US
1901 North Roselle Road
Suite 800
Schaumburg, IL 60195

South Central US
3307 Northland Drive
Suite 300
Austin, TX 78731

Western US
1314 Chesapeake Terrace
Sunnyvale, CA 94089

Northwestern US
19125 North Creek Parkway #120
Bothell, WA 98011

GammaLink Division
1314 Chesapeake Terrace
Sunnyvale, CA 94089

Computer-Telephone Division
100 Unicorn Park Drive
Woburn, MA 01801

Spectron Microsystems Division
315 Bollay Drive
Santa Barbara, CA 93117
805-968-5100
fax: 805-968-9770

Dialogic On-Line Information Retrieval
System (fax-on-demand)
1-800-755-5599 or 201-993-1063

GammaLink Fax-on-Demand
408-734-9906

computer telephony BBS
(ctBBS)
201-993-0864

CTI@Dialogic WWW Site
http://www.dialogic.com

Dialogic Sales Internet
sales@dialogic.com

Canada
Dialogic Corporation
1033 Oak Meadow Road
Oakville, Ontario
L6M 1J6
Canada

Latin America & Caribbean
Dialogic Latin America and Caribbean
Av. R. S. Peña
730 3º Piso
Oficina 34
(1035) Buenos Aires, Argentina
541-328-1531 or -9943
fax: 541-328-5425

European Headquarters (serving Europe,
Middle East, & Africa)
Dialogic Telecom Europe N.V.-S.A.
Airway Park
Lozenberg 23
Building D, 3rd floor
B-1932 Sint Stevens Woluwe
Belgium
32-2-712-4311
fax : 32-2-712-4300

DTE On-Line Information Retrieval
System
32-2-712-4322

DTE BBS
32-2-725-7846

Dialogic Sales Offices

442-CD

Germany, Switzerland, & Austria
Dialogic Telecom Deutschland GmbH
Industriestrasse 1
D82110 Munich
Germany
49-89-894-362-0
fax: 49-89-894-362-77

France
Dialogic Telecom France S.r.l.
42, Avenue Montaigne
F-75008
Paris
France
33-1-53-67-52-80
fax: 33-1-53-67-52-79

Italy
Dialogic Telecom Italy S.r.l.
Strada Pavese, 1/3
I-20089 Rozzano
Milan
Italy
39-2-575-54302
fax: 39-2-575-54310

United Kingdom, Ireland, & Scandinavian
Countries
Dialogic Telecom U.K. Ltd.
Dialogic House
Dairy Walk
Hartley Wintney
Hampshire
RG27 8XX
United Kingdom
44-1252-844000
fax: 44-1252-844525

People’s Republic of China, Hong Kong,
Macau, and Taiwan
Dialogic Beijing Representative Office
8 North Dongsanhuan Road
Landmark Building, Suite 1308
Chaoyang District
Beijing 100004
People’s Republic of China
86-10-504-5364
fax: 86-10-506-7989

Japan & Korea

Dialogic Systems K.K.
Suntowers Center
Building 18F
2-11-22 Sangenjaya
Setagayaku, Tokyo 154
Japan
81-3-5430-3252
fax: 81-3-5430-3373

East Asia, Southeast Asia, West Asia, &
Australia
Dialogic SEA Pte. Ltd.
150 Beach Road
#17-08 Gateway West Bldg.
Singapore 189720
65-298-8208
fax: 65-298-1820

DSEA BBS
65-291-3249

New Zealand
Dialogic (N.Z.) Ltd.
Level 6
Tower 2
Shortland Towers
55-63 Shortland Street
Auckland
New Zealand
64-9-366-1133
fax: 64-9-302-1793

NOTES

NOTES

NOTES

