
MSI/SC Software Reference
for Windows NT

Copyright © 1997 Dialogic Corporation

PRINTED ON RECYCLED PAPER

COPYRIGHT NOTICE

Copyright 1997 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment
on the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot
guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. No
warranties of any nature are extended by the information contained in these copyrighted materials.
Use or implementation of any one of the concepts, applications, or ideas described on Web pages
maintained by Dialogic-may infringe one or more patents or other intellectual property rights owned
by third parties. Dialogic does not condone or encourage such infringement. Dialogic makes no
warranty with respect to such infringement, nor does Dialogic waive any of its own intellectual
property rights which may cover systems implementing one or more of the ideas contained herein.
Procurement of appropriate intellectual property rights and licenses is solely the responsibility of the
system implementor. The software referred to in this document is provided under a Software License
Agreement. Refer to the Software License Agreement for complete details governing the use of the
software.

All names, products, and services mentioned herein are the trademarks or registered trademarks of
their respective organizations and are the sole property of their respective owners. DIALOGIC
(including the Dialogic logo), DTI/124, SpringBoard, and Signal Computing System Architecture
(SCSA) are registered trademarks of Dialogic Corporation. The following are also trademarks of
Dialogic Corporation Trademarks can be found at http://www.dialogic.com/legal.htm (copyright link
in lower right corner of any Dialogic website page) Board Locator Technology, D/41ESC, D/160SC-
LS, D/240SC, D/240SC-T1, D/300SC-E1, D/320SC, DIALOG/HD, GammaFax CP-4/SC, MSI/SC,
SCbus, SCSA, Signal Computing System Architecture, SpringWare, Voice Driver, VFX/40ESC, and
World Card.

IBM is a registered trademark, and IBM PC is a trademark of International Business Machines
Corporation.
Windows NT is a registered trademark of Microsoft Corporation.

Publication Date: July, 1997

Part Number: 05-0505-002

Dialogic Corporation
1515 Route 10
Parsippany NJ 07054

Technical Support
Phone: 973-993-1443
Fax: 973-993-8387
BBS: 973-993-0864
Email: CustEng@dialogic.com

For Sales Offices and other contact information, visit our website at http://www.dialogic.com

iii

Table Of Contents

About This MSI/SC Guide.. xi
Products Covered by this Guide .. xi
Product Terminology... xi
How to Use this Guide...xiii
Organization of this Guide...xiii

1. MSI/SC Introduction... 1
MSI/SC Product Overview... 1
1.1. Typical Applications .. 1
1.2. Compatibility.. 2
1.3. Conferencing .. 3
1.4. Extended Connections .. 4
1.5. Resource Allocation ... 4
1.6. Functional Description ... 5

2. MSI/SC Library Function Overview ... 9
2.1. Library Function Categories ... 9

2.1.1. Attribute Functions .. 10
2.1.2. Conference Management Functions... 10
2.1.3. Configuration Functions .. 10
2.1.4. Device Management Functions.. 11
2.1.5. Diagnostic Functions ... 11
2.1.6. Extended Connection Functions .. 11
2.1.7. Station Functions ... 12

2.2. Extended Attribute Functions ... 12
2.3. Error Handling.. 12
2.4. Include Files ... 16

3. MSI/SC Function Reference ... 17
3.1. Documentation Conventions.. 17
ATMS_DNLDVER() - returns the MSI/SC firmware version 18
ATMS_STATINFO() - returns information about the MSI/SC board 22
ATMS_TSSGBIT() - retrieves the current station hook status............................ 24
ms_addtoconf() - adds one party to an existing conference................................. 27
ms_chgxtder() - changes the attribute of the connection extender....................... 32
ms_close() - closes the MSI/SC device ... 36
ms_delconf() - deletes a conference .. 38
ms_delxtdcon() - deletes an extended connection ... 41

MSI/SC Software Reference for Windows NT

iv

ms_dsprescount() - returns the available DSP resource count 43
ms_estconf() - establishes a conference... 46
ms_estxtdcon() - establishes an extended connection.. 52
ms_genring() - generates ringing to a station... 58
ms_genziptone() - generates a zip tone.. 63
ms_getbrdparm() - returns board parameters... 65
ms_getcde() - retrieves the attributes of a conferee ... 68
ms_getcnflist() - retrieves a conference list ... 72
ms_getctinfo() - gets device information... 75
ms_getevtmsk() - returns station event mask... 81
ms_monconf() - adds a monitor to a conference.. 84
ms_open() - opens an MSI/SC device ... 87
ms_remfromconf() - removes a party from a conference..................................... 90
ms_setbrdparm() - board parameters ... 93
ms_setcde() - changes the attributes of a party .. 101
ms_setevtmsk() - changes transition event masks.. 105
ms_setstparm() - changes the MSI/SC station level parameters 109
ms_setvol() - changes or resets the station volume.. 112
ms_stopfn() - stops a multitasking function... 115
ms_tstcom() - tests the ability of a board... 117
ms_tstdat() - performs a data test on the MSI/SC board 120
ms_unmonconf() - removes a monitor from a conference................................. 123

4. MSI/SC Application Guidelines ... 127
4.1. General Guidelines ... 127

4.1.1. Use Symbolic Defines.. 127
4.1.2. Include Header Files .. 127
4.1.3. Check Return Codes .. 128

4.2. Initialization.. 129
4.2.1. Set Hardware Configuration .. 130
4.2.2. Set event mask on MSI/SC stations ... 130
4.2.3. Terminating.. 130

4.3. Compiling and Linking... 131
4.4. Aborting.. 131

Appendix A - Standard Runtime Library: MSI/SC Entries and Returns ... 133
Event Management Functions... 133
Standard Attribute Functions.. 135
Dialogic References.. 137

Appendix B - Related MSI/SC Publications ... 137

Table Of Contents

v

Dialogic Application Notes .. 137

Glossary... 139

Index .. 143

MSI/SC Software Reference for Windows NT

vi

vii

List Of Tables

Table 1. Error Types Defined in dtilib.h ... 13
Table 2. Error Types Defined in msilib.h .. 14
Table 3. Returns for Release Type .. 19
Table 4. Valid Attribute Combinations.. 29
Table 5. Valid Attribute Combinations.. 33
Table 6. Valid Attribute Combinations.. 48
Table 7. Valid Attribute Combinations.. 55
Table 8. Possible Returns for Channel Attribute ... 69
Table 9. MSI/SC Board/Device Parameters .. 94
Table 10. MSI/SC Ring Cadence Examples .. 98
Table 11. Guide to Appendix A... 133
Table 12. MSI/SC Inputs for Event Management Functions 133
Table 13. MSI/SC Returns from Event Management Functions........................ 134
Table 14. Standard Attribute Functions ... 135

MSI/SC Software Reference for Windows NT

viii

ix

 List of Figures

Figure 1. The MSI/SC Board... 7

MSI/SC Software Reference for Windows NT

x

xi

About This MSI/SC Guide

Products Covered by this Guide

The MSI/SC refers to the Dialogic modular station interface boards designed for
SCbus support only. This guide covers the software for the products listed in the
table below.

Model Description

MSI/80SC Baseboard-only product with 8 station interfaces.

MSI/160SC Baseboard product with 1 daughterboard module
(16 station interfaces).

MSI/240SC Baseboard product with 2 daughterboard modules
(24 station interfaces).

MSI/SC-R The MSI/80SC, MSI/160SC, or the MSI/240SC with
ringing capability.

NOTE: All boards listed in the table above have conference capability.

Product Terminology

The following product naming conventions are used throughout this guide:

D/41ESC refers to the Dialogic 4-channel voice board with on-board analog loop
start interface.

D/160SC-LS refers to the Dialogic 16-channel voice board with on-board analog
loop start interface.

D/240SC refers to the Dialogic 24-channel voice board for use with a network
interface board.

MSI/SC Software Reference for Windows NT

xii

D/240SC-T1 refers to the Dialogic 24-channel voice board with on-board T-1
digital interface.

D/300SC-E1 refers to the Dialogic 30-channel voice board with on-board E-1
digital interface.

D/320SC refers to the Dialogic 32-channel voice board for use with a network
interface board.

D/xxxSC refers to voice and telephone network interface resource boards that
communicate via the SCbus. These boards include D/41ESC, D/160SC-LS,
D/240SC, D/240SC-T1, D/300SC-E1, and D/320SC.

DIALOG/HD or SpanCard refers to voice and telephone network interface
resource boards that communicate via the SCbus. These boards include D/160SC-
LS, D/240SC, D/240SC-T1, D/300SC-E1, and D/320SC.

MSI refers to the Dialogic modular station interface board for the PCM
Expansion Bus (PEB).

MSI/SC refers to the Dialogic modular station interface product for the SCbus.

MSI/SC-R refers to the Dialogic station interface product with ringing capability.

SCbus is the TDM (Time Division Multiplexed) bus connecting SCSA (Signal
Computing System Architecture) voice, telephone network interface, and other
technology resource boards together.

SpanCard - same as DIALOG/HD.

VFX/40ESC is a Dialogic SCbus voice and fax resource board with on-board
analog loop-start interfaces. The VFX/40ESC board consists of a D/41ESC
baseboard and a FAX/40E daughterboard that provides four channels of enhanced
voice and fax services in a single slot. Throughout this document, all references
to the D/41ESC board apply to the D/41ESC baseboard component of the
VFX/40ESC board.

For additional information on these products, refer to the manuals listed in
Appendix B.

About This MSI/SC Guide

xiii

How to Use this Guide

This guide is written for users who have purchased a Dialogic MSI/SC board and
related software for installation on a PC operating in a Windows NT environment.

The following steps explain the order in which an MSI/SC board and Dialogic
software for Windows NT should be installed, checked, and programmed:

1. Prepare the MSI/SC board for installation using the appropriate hardware
quick installation card (see Appendix B).

2. Install the necessary device drivers following the procedure described in
the System Release Software Installation Reference for Windows NT .

3. Install the MSI/SC board in your PC following the procedure in the
hardware quick installation card (see Appendix B).

4. Refer to this MSI/SC Software Reference for Windows NT to develop
application programs.

To use software for other Dialogic devices, refer to the appropriate software
reference for specific instructions (see Appendix B).

Organization of this Guide

This guide is organized as follows:

Chapter 1 provides a description of the MSI/SC board and presents an overview
of the Dialogic modular station interface technology.

Chapter 2 provides an overview of the MSI/SC device driver library functions.

Chapter 3 is an alphabetical reference to the MSI/SC library functions. It includes
a detailed description and a programming example for each function.

Chapter 4 provides brief guidelines for developing applications.

Appendix A lists entries and returns for the Dialogic Standard Runtime Library
(SRL). For more information, refer to the Standard Runtime Library
Programmer’s Guide in the Voice Software Reference for Windows NT.

MSI/SC Software Reference for Windows NT

xiv

Appendix B lists related publications for further information on the MSI/SC
product and other Dialogic products.

A Glossary and an Index follow the appendices.

1

1. MSI/SC Introduction

MSI/SC Product Overview

The Dialogic MSI/SC board is a modular station interface adding analog devices,
such as modems, fax machines, and audio equipment, into new or existing systems
based on the Dialogic SCbus architecture. With the MSI/SC board, users can
extend the range of their inbound and outbound telemarketing centers.

The MSI/SC product series consists of a baseboard that includes 8 integrated
station interfaces and allows up to 2 additional daughterboard modules, each with
an additional 8 station interfaces. The baseboard-only product is referred to as an
MSI/80SC. A baseboard with 1 daughterboard module is referred to as an
MSI/160SC (16 station interfaces), and a baseboard with 2 daughterboard
modules is referred to as an MSI/240SC (24 station interfaces).

The MSI/SC feature set is based on Dialogic’s MSI-C board; however, its
hardware architecture is based on the D/41E board. This allows the MSI/SC to
take advantage of the D/41E BLT circuit, programmable interrupts, and shared
RAM interface. In addition, the MSI/SC board provides a ring option, making it
capable of generating AC voltage sufficient to ring standard 2500 type telephones.

1.1. Typical Applications

The MSI/SC board and software allows an application program operating in the
host PC to communicate between SCbus-compatible devices and analog station
devices. Applications for the MSI/SC board include:

• Inbound/outbound telemarketing
• Operator services such as billing automation, directory assistance, and

intercept treatments
• Customer service
• Automatic call distribution (ACD)
• Dictation/transcription
• Local information services

MSI/SC Software Reference for Windows NT

2

Conferencing resources serve the SCbus with advanced features such as:

• Two to eight-party conferencing

• Up to 32 resources of total conferencing (4 to 16 conferences)

• Conferences of any combination of stations and network channels

• Hidden training for smooth entry of new conferees without disruptive
training noise

• Monitoring an agent without disrupting the conversation

• Coaching feature to allow a supervisor to speak to an agent without the
client hearing the supervisor. The client can hear the agent at all times
(no switching)

• Tone generation:

Zip tone indicates incoming call to agents using headsets

Notification tones when a party is added to or removed from a
conference (as required by the law in many states)

• User programmable periodic notification tones to indicate units of time
that expired during a call

• Programmable volume control for station devices

Refer to Section 1.3. Conferencing for more information

1.2. Compatibility

The MSI/SC board feature set is based on the Dialogic PEB-based MSI-C board.
The MSI/SC hardware is based on the Dialogic D/41E board. This hardware
design enables the MSI/SC to take advantage of the Board Locator Technology
(BLT) circuit, programmable interrupts, and shared RAM interface.

NOTE: The MSI/SC board is an SCbus-only product, and does not support PEB.

Using the MSI/SC, developers can build large call center configurations without
the need for DMX boards or crossover cables. Other significant differences
between the MSI/SC and the MSI-C board include:

1. MSI/SC Introduction

3

• use of the 1024 time slots available on the SCbus
• ability to ring 2500 type telephones
• on-board ring voltage generator
• relay interlock for loop and ring voltages

Conference-specific differences between the MSI/SC board and the MSI-C board
include:

• pupil/coach feature
• hidden training
• extended connections

1.3. Conferencing

The MSI/SC board features up to 32 resources of total conferencing with up to
eight parties in a conference.

MSI/SC conferencing provides the following features to your application:

Monitor mode This feature allows a conference to be monitored

by several people without interrupting the
conference.

Coach Typically, a supervisor. The coach, while

monitoring a conversation between a pupil and a
client, can talk to the pupil in confidence. The
pupil, however, cannot reply in confidence to the
coach.

Pupil Typically, the agent who is heard by all parties in

the conference. The pupil is the only conference
participant who hears the coach.

NOTE: A conference may include only one coach and one pupil at any given
time. There may be more than one client, but conference size is limited
to the maximum number of participants permitted in the conference.

MSI/SC Software Reference for Windows NT

4

1.4. Extended Connections

An extended connection allows a coach to join a connection at anytime without
interrupting the conversation between the agent and the client.

A connection is defined as a full-duplex, SCbus routing between two parties. One
party must be a station on the MSI/SC board.

An extended connection is a connection where there is a third party. This third
party, herein referred to as the connection extender, can always hear what the
other two parties are saying. The connection extender’s input in the connection is
application defined. If the connection extender has no input, it is in monitor
mode. If the connection extender can talk to only one party, designated as the
pupil, it is in coach mode. If the connection extender can talk to both members of
the connection, it is in participant mode.

NOTES: 1. A connection may be set up using the SCbus routing convenience
function nr_scroute() (see the SCbus Routing Function Reference
Guide for Windows NT).

2. It is the application’s responsibility to set up a connection prior to
extending a connection. The MSI/SC software does not check for
the presence of a connection between parties in order to extend it.

1.5. Resource Allocation

The DSP on the MSI/SC board has 32 resources managed by the application.
Calling any of the following functions will cause the available resource count to
change:

Function Condition

ms_setbrdparm() When parm_id = MSG_ZIPENA and value =
MS_ZIPENABLE, one resource will be used.

When parm_id = MSG_ZIPENA and value =
MS_ZIPDISABLE, one resource will be freed.

ms_estconf() Uses the total number of parties in the conference.

ms_addtoconf() Uses one resource every time a party is added to a
conference.

1. MSI/SC Introduction

5

Function Condition

ms_remfromconf() Frees one resource.

ms_delconf() Frees all resources in use by the conference.

ms_monconf() Uses one resource.

ms_unmonconf() Frees one resource.

ms_estxtdcon() Uses three resources.

ms_delxtdcon() Frees three resources.

NOTES: 1. The channel selector of the party does not affect the resource usage.

2. A conference is limited to eight parties. A monitor is counted as one
of the eight parties.

3. When zip tone support is enabled, 31 conferencing resources will be
available.

1.6. Functional Description

The MSI/SC baseboard and each daughterboard contain eight line interfaces and
eight COder/DECoders (CODECs). Each line interface provides loop-start
current to one 2500 series equivalent station device.

The line interface also separates the inbound signal into an audio signal which is
sent to the CODEC, and an on-hook/off-hook signal which is forwarded by the
control processor to the application program.

The CODEC converts inbound audio to 8-bit PCM data and outbound PCM data
to analog audio. The CODEC gain may be individually set for each station
device.

A cross-point switch on the MSI/SC board routes PCM data between the station
devices, the DSP and the SCbus.

The MSI/SC board conferencing feature allows conferences to be established
between SCbus time slots and/or station interfaces.

MSI/SC Software Reference for Windows NT

6

The control microprocessor executes commands received from the host PC, and
controls all operations of the MSI/SC board. Communications between the
control microprocessor and the host PC is accomplished via a shared RAM
interface mechanism.

Those operations demanding real time response are interrupt driven. All MSI/SC
boards installed in the PC share the same interrupt line. When the system is
initialized, firmware to control all board operations is downloaded from the host
PC to the on-board RAM. The downloadable firmware enables easy feature
enhancements in the future.

The Board Locator Technology (BLT) circuit operates in conjunction with a
rotary switch to determine and set non-conflicting slot and IRQ interrupt-level
parameters. This feature eliminates the need to set jumpers or DIP switches.

1. MSI/SC Introduction

7

D aug h terb o ard # 2 SC2 00 0
Cro ss
Po in t

Sw it ch

M o t o ro la
5 6 0 0 2

D SP

Rin g
M o d u le

(op t io n al)
Co n t ro l

Lo g ic H D LC

Ro tary
Sw it ch

Co d e/ D ata
RAM

8 0 C1 8 6
Co n t ro l

Pro cesso r

D ual Po rt
Sh ared

RAM

Board
Locat o r

Tech n o lo g y

PC ISA Bus

D aug h terb o ard # 1

SCb us

T-R PCM
RJ-2 1 X

Co n n ecto r
t o

Stat io n s

Ex tern al
Po w er

M o d u le
Co n n ecto r

Baseb oard Circu it s

SLiC
(8)

CO D EC
(8)

PCM

PCM

Figure 1. The MSI/SC Board

MSI/SC Software Reference for Windows NT

8

9

2. MSI/SC Library Function Overview

2.1. Library Function Categories

The Dialogic MSI/SC Windows NT library provides support for the Dialogic
MSI/SC boards. This chapter provides an overview of the library functions. A
detailed reference for these functions is located in Chapter 3.

The MSI/SC library functions provide the necessary building blocks to create
MSI/SC applications. These functions can be divided into the following
categories:

Attribute • retrieve device-specific information
Conference Management • control the conferencing features
Configuration • set and retrieve the MSI/SC device parameters
Device Management • open and close devices
Diagnostic • test the MSI/SC device
Extended Connection • control extended connections
Station • control station interfaces

NOTE: Some MSI/SC Windows NT library functions can operate in either
synchronous or asynchronous mode. Synchronous functions do not
return control to the calling process until the function call is completed.
When a function operates in asynchronous mode, the calling process
retains control and a completion event is passed to the application to
notify that the function is complete. Refer to Appendix A for more
information.

The MSI/SC SCbus Routing Functions can be found in the SCbus Routing
Function Reference for Windows NT. Refer to the SCbus Routing Guide for an
explanation of SCbus routing.

NOTE: In order to use the SCbus routing convenience functions nr_scroute()
and nr_unscroute() with the MSI/SC device, the preprocessor directive
DTISC must be defined using the preprocessor option IDs when
compiling the sctools.c file.

MSI/SC Software Reference for Windows NT

10

Each category and its functions are briefly described in the following sections.

2.1.1. Attribute Functions

ms_dsprescount() • returns DSP resource count

ms_getctinfo() • returns information about the station interface
device

These functions are used to retrieve specific information about the MSI/SC board.

2.1.2. Conference Management Functions

ms_addtoconf() • adds a party to an existing conference

ms_delconf() • deletes a conference

ms_estconf() • establishes a conference

ms_getcde() • gets conference descriptor table

ms_getcnflist() • gets conferee list

ms_monconf() • adds a monitor to a conference

ms_remfromconf() • removes a party from a conference

ms_setcde() • changes conference descriptor table

ms_unmonconf() • removes a monitor from a conference

These functions are used to manage all conference activities.

2.1.3. Configuration Functions

ms_getbrdparm() • returns board parameters

ms_getevt() • retrieves an unsolicited event

ms_getevtmsk() • returns the station event mask

ms_setbrdparm() • changes board parameters

ms_setevtmsk() • changes station event mask

2. MSI/SC Library Function Overview

11

ms_setstparm() • changes station level parameters

These functions set the MSI/SC device parameters and event masks and check the
status of the MSI/SC device parameter settings.

2.1.4. Device Management Functions

ms_close() • closes MSI/SC device

ms_open() • opens MSI/SC device

ms_stopfn() • stops a multitasking function in progress

ms_open() and ms_close() open and close devices, respectively. ms_stopfn() is
invoked to stop a multitasking function in progress.

2.1.5. Diagnostic Functions

ms_tstcom() • runs communications test

ms_tstdat() • runs data test

Diagnostic functions check the functionality of the MSI/SC firmware and
hardware. The ms_tstcom() function tests if the PC can communicate with the
MSI/SC board. The ms_tstdat() function tests if data is passed successfully
between the PC and the MSI/SC board.

2.1.6. Extended Connection Functions

ms_chgxtder() • changes the attributes of the connection extender

ms_delxtdcon() • deletes the extended connection

ms_estxtdcon() • establishes an extended connection

These functions are used to manage all extended connection activities.

MSI/SC Software Reference for Windows NT

12

2.1.7. Station Functions

ms_genring() • generates a ring to a station

ms_genziptone() • generates zip tone to a station

ms_setvol() • sets station volume

ms_setvol()controls the station interface volume and ms_genring() generates
ringing to the station. ms_genziptone() generates zip tone to a station.

NOTE: ms_genring() is only supported on the MSI/SC-R boards.

2.2. Extended Attribute Functions

ATMS_DNLDVER() • returns the downloaded firmware version

ATMS_STATINFO() • gets the station information on the MSI/SC

ATMS_TSSGBIT() • gets channel signaling bit status

Attribute functions return information about the specified device. Standard
Attribute functions, which are contained in the Dialogic Standard Runtime
Library (see Appendix A), provide generic information about a device, such as its
name, or the last error that occurred on the device. Extended Attribute functions
return information that is specific to the device.

Errors for Extended Attribute functions are handled in the same way as all other
functions described in this chapter. Refer to Section 2.3. Error Handling for
information about retrieving the errors.

2.3. Error Handling

All the MSI/SC library functions return a value that indicates the success or failure
of the function call. MSI/SC library functions can return one of the following
values:

 0 function success

2. MSI/SC Library Function Overview

13

AT_FAILURE function error

If a function fails, the error can be retrieved using the Standard Runtime Library
(SRL) ATDV_LASTERR() function.

NOTES: 1. The function ms_open() is the exception to the above error-
handling rules. A ms_open() function call returns a device handle if
the function call is successful. A device handle is a non-zero value.
If ms_open() fails, the return code is AT_FAILURE and the specific
error is found in the global variable errno defined in errno.h.

2. The Standard Attribute functions ATDV_LASTERR() and
ATDV_ERRMSGP() can be used to obtain the last error that
occurred on a device. Refer to Appendix A for more information.

3. If the error returned by ATDV_LASTERR() is E_MSSYSTEM, a
Windows NT system error has occurred. Check the global variable
errno defined in errno.h.

Some of the causes and values of error codes that may be returned to the
application by the MSI/SC board are identical to those used for Dialogic Digital
Network Interface products. The following tables list possible error codes for all
Network boards and MSI/SC-specific error codes.

Table 1. Error Types Defined in dtilib.h

Error Returned Description

EDT_SH_LIBBSY Switching Handler Library is busy.
EDT_SH_BADINDX Invalid Switching Handler index number.
EDT_SH_LIBNOTINIT Switching Handler Library has not been initialized.
EDT_SH_NOCLK Switching Handler Clock fallback failed.
EDT_SH_MISSING Switching Handler is not present.
EDT_SH_BADLCLTS Invalid local time slot number.
EDT_SH_BADTYPE Invalid local time slot type.

MSI/SC Software Reference for Windows NT

14

Table 2. Error Types Defined in msilib.h

Error Returned Description
E_MSABORT Abort received response.
E_MSADDRS Incorrect address.
E_MSBADBRDERR Board is missing or defective.
E_MSBADCMDERR Invalid or undefined command to driver.
E_MSBADCNT Incorrect count of bytes requested.
E_MSBADGLOB Incorrect global parameter number.
E_MSBADPORT First byte appeared on reserved port.
E_MSBADVAL Invalid parameter value passed in value pointer.
E_MSCHKSUM Incorrect checksum.
E_MSDATTO Data reception timed out.
E_MSDTTSTMOD In test mode; cannot set board mode.
E_MSFWERR Firmware returned an error.
E_MSINVBD Invalid board.
E_MSINVMSG Invalid message.
E_MSINVTS Invalid time slot.
E_MSMBFMT Wrong number of bytes for multiple byte request.
E_MSMBIMM Received an immediate termination.
E_MSMBINV First byte appeared on data port.
E_MSMBOVR Message was too long, overflow.
E_MSMBPORT Received multiple byte data on port other than 0 or 1.
E_MSMBTERM Terminating byte other than FEH or FFH.
E_MSMBUND Under the number of bytes for a multibyte request.
E_MSMSGCNT Count received did not match actual count.
E_MSNOCLK No clock source present.
E_MSNOIDLEERR Time slot is not in idle/closed state.
E_MSNOMEMERR Cannot map or allocate memory in driver.
E_MSNOTDNLD Not downloaded.
E_MSPARAMERR Invalid parameter.
E_MSRANGEERR Bad/overlapping physical memory range.
E_MSSIGINS Insertion signaling not enabled.
E_MSSIGTO Transmit/receive did not update in time.
E_MSSIZEERR Message too big or too small.
E_MSSKIPRPLYERR A required reply was skipped.
E_MSSTARTED Cannot start when already started.
E_MSSUCC No error.
E_MSSYSTEM Windows NT system error - check the global variable

2. MSI/SC Library Function Overview

15

Error Returned Description
errno for more information.

E_MSTMOERR Timed out waiting for reply from firmware.
E_MSTSASN Time slot already assigned.
E_MS1PTY Cannot remove party from one party conference.
E_MSBADCHPARM Invalid channel parameter number.
E_MSBADRNGSTA Cannot ring station. Station already off-hook.
E_MSBADVAL Invalid parameter value.
E_MSCHASNCNF Channel is assigned to conference.
E_MSCNFFUL Conference system is full.
E_MSCNFLMT Exceeds conference limit.
E_MSCNTXTD Station is in extended connection.
E_MSGLOBREAD Cannot read parameter globally.
E_MSINVCB Invalid control block ID.
E_MSINVCATTR Invalid conference attribute selector.
E_MSINVCNF Invalid conference number.
E_MSINVDSP Invalid DSP specified.
E_MSINVMT Invalid multitasking function.
E_MSINVPATTR Invalid party attribute.
E_MSINVPTNUM Invalid party number.
E_MSINVPTYCNT Invalid number of parties specified.
E_MSINVPTYTYPE Invalid conference member type.
E_MSINVRNGCNT Invalid number of ring counts.
E_MSINVST Invalid station.
E_MSINVVAL Bad global parameter value.
E_MSINVTS Invalid time slot number specified.
E_MSINVXTD Invalid extended connection number.
E_MSINVXTDM Invalid extended connection member.
E_MSMONEXT Monitor already exists for this conference.
E_MSNOCNF No conferencing available on device.
E_MSNOCT Station not connected.
E_MSNODSPTS All time slots going to the DSP are busy.
E_MSNOFEMCH No MSI/SC daughterboard to support this channel.
E_MSNOMON No monitor exists for this conference.
E_MSNONCNFCH Channel not assigned to specified conference.
E_MSNOTS No time slot assigned to channel.
E_MSNOTSALLOC No time slots allocated to the board.
E_MSPTYASN Party already assigned.
E_MSSNDZIP Sending a zip tone to this station.

MSI/SC Software Reference for Windows NT

16

Error Returned Description
E_MSSTASN Time slot already assigned to station.
E_MSSYSTEM System error- see erro for actual error.
E_MSTSASN Time slot already assigned to a station.
E_MSTSASNCNF Time slot already assigned to a conference.
E_MSTSNOTEQ Time slots not equal for zip tones.
E_MSZIPON Station is currently “zipping.”
E_MSZIPEN Zip tones disabled - message not allowed.

2.4. Include Files

Function prototypes and equates are defined in dtilib.h and msilib.h. Applications
that use the MSI/SC Windows NT library functions for MSI/SC support must
include the following statements:

#include <windows.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

To perform error handling in your routines, your source code must include the
following line:

#include <errno.h>

Code that uses Voice boards with the current version of the Windows NT Voice
Driver must include the following statements in the order shown:

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dxxxlib.h”
#include “dtilib.h”
#include “msilib.h”

The current version of the Windows NT voice driver requires that srllib.h
precedes any other Dialogic header file include statements.

17

3. MSI/SC Function Reference

This chapter contains an alphabetical listing of the Dialogic MSI/SC library
functions used to interface with the MSI/SC board. For information about
Standard Attribute functions, refer to Appendix A. For information on the SCbus
Routing functions, refer to the SCbus Routing Function Reference for Windows
NT.

3.1. Documentation Conventions

Each function is listed in alphabetical order and provides the following
information:

Function Header Located in the beginning of each function. The header lists
the function name, function syntax, input parameters,
outputs or returns, includes, category, and mode
(asynchronous and/or synchronous). The function syntax
and inputs are shown using standard C language syntax.

Description Provides a detailed description of the function operation,
including parameter descriptions.

Cautions Provides warnings and reminders.

Example Provides one or more C language coding examples showing
how the function can be used.

Errors Lists specific error codes for each function.

See Also Provides a list of related functions.

ATMS_DNLDVER() returns the MSI/SC firmware version

18

Name: long ATMS_DNLDVER(devh)
Inputs: int devh • MSI/SC board device handle

Returns: version of MSI/SC firmware used by the device
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Extended Attribute
Mode: synchronous

n Description

The ATMS_DNLDVER() function returns the MSI/SC firmware version that
was downloaded to the device specified in devh. This number is returned in the
standard Dialogic version numbering format.

Parameter Description

devh: The MSI/SC board device handle returned by a
call to ms_open().

n Dialogic Version Numbering

A Dialogic version number consists of two parts that provide:

• The release TYPE
(For example: Production or Beta)

• The release NUMBER, consisting of different elements depending on the
type of release.

 Example: 1.00 Production
 1.00 Beta 5

NOTE: The examples above are shown in the convention used by Dialogic to
display version numbers.

This function returns the version number as a long integer (32 bits) in binary
coded decimal format. Table 3 shows the values returned by each nibble in the
long integer.

returns the MSI/SC firmware version ATMS_DNLDVER()

19

Table 3. Returns for Release Type

Nibble (4 bits)

1 2 3 & 4 5 & 6 7 & 8

TYPE
PRODUCTION

RELEASE NUMBER
INTERNAL
NUMBER

Production Major
Release No.

Minor
Release No.

N/A N/A

Beta Major
Release No.

Minor
Release No.

Beta
Number

N/A

Major and Minor Release Numbers

Major and minor release numbers distinguish major revisions from minor
revisions to production releases. The major number converts to a single digit
integer that increases with each major revision to the release. The minor number
converts to a two digit integer that increases with each minor revision to the
release.

In decimal number format, the major number is the number before the decimal
point, and the minor number is the number after the decimal point.

The following list gives examples of each type of release. The values used in
these examples have been converted from the binary coded decimal numbers
returned in the long integer and are displayed according to Dialogic convention.

1.00 Production
1.00 Beta 5

n Cautions

The function fails if an invalid device handle is passed.

n Example

#include <windows.h>
#include <errno.h>

ATMS_DNLDVER() returns the MSI/SC firmware version

20

#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

/* Basic error handler */
do_error(devh, funcname)
 int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);

 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d.", errorval);
 printf("\n");
}

main()
{
 int bddev; /* Board device descriptor variable */
 long version; /* Version number of firmware */

 /*
 * Open board 1 device
 */
 if ((bddev = ms_open("msiB1", 0)) == AT_FAILURE) {
 printf("Cannot open board msiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Get the version number of the firmware
 */
 version = ATMS_DNLDVER(bddev);
 if (version == AT_FAILURE) {
 do_error(bddev, "ATMS_DNLDVER()");
 exit(1);
 }
 /*
 * Display it
 */
 printf("MSI/SC Download version number is %d.%02x\n",
 (int)((version>>24L)&0x0F), ((version >>16L)&0xFF));

 /*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device. */
 if (ms_close(bddev) == AT_FAILURE) {
 printf("Cannot close board msiB1. errno = %d", errno);
 }
}

returns the MSI/SC firmware version ATMS_DNLDVER()

21

n Errors

If the function does not complete successfully, it will return AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

ATMS_STATINFO() returns information about the MSI/SC board

22

Name: long ATMS_STATINFO (devh,statinfop)
Inputs: int devh • MSI/SC board device handle

 char * statinfop • pointer to four bytes containing station
information

Returns: station information
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Extended Attribute
Mode: synchronous

n Description

The ATMS_STATINFO() function returns information about the MSI/SC board.
This information includes the number and location of the stations on the MSI/SC
board. The application is responsible for allocating the space (4 bytes) for the
station information buffer.

Parameter Description

devh: The valid MSI/SC board device handle returned by a call
to ms_open().

statinfop: Pointer to four bytes. When the function returns, the first
byte will contain the total number of stations on the
MSI/SC board. Bytes two through four will indicate the
status of the baseboard and two daughterboards,
respectively.

n Cautions

This function fails if an invalid device handle is specified.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”

returns information about the MSI/SC board ATMS_STATINFO()

23

#include “dtilib.h”
#include “msilib.h”

int i;
int devh; /* Board device handle */
unsigned char statinfo[4];

/* Open board 1, device */
if ((devh = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSI B1, errno=%d", errno);
 exit(1);
}

/*
 * Continue processing
 */
/* Get board Ids and number of stations */
if ((ATMS_STATINFO(devh,statinfo)==-1){
 printf(“Error getting station info\n”);
 /* Close device and exit */
}

printf(“Number of stations = %d\n”,statinfo[0]);

for (i=1;i<4;i++){
 switch (statinfo[i]){
 case 0x01:
 printf(“Board #%d present\n”,i);
 break;
 case 0xff:
 printf(“Board #%d not present\n”,i);
 break;
 default:
 printf(“Invalid module number %d\n”,i);
 break;
 }
}
/*
 * Continue Processing
 */

 /* Done processing - close device */
if (ms_close(devh) == -1) {
 printf("Cannot close device msiB1. errno = %d", errno);
 exit(1);
}

n Errors

If the function does not complete successfully, it will return AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

ATMS_TSSGBIT() retrieves the current station hook status

24

Name: long ATMS_TSSGBIT(devh)
Inputs: int devh • MSI/SC station device handle

Returns: state of channel
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Extended Attribute
Mode: synchronous

n Description

The ATMS_TSSGBIT() function retrieves the current station hook status.

Parameter Description

devh: The MSI/SC station device handle returned by a
call to ms_open().

The returned bitmask represents the following:

 MS_ONHOOK MSI/SC station is on-hook
 MS_OFFHOOK MSI/SC station is off-hook

These equates are defined in msilib.h.

n Cautions

This function fails if an invalid device handle is specified.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

/* Basic error handler */
do_error(devh, funcname)
 int devh;

retrieves the current station hook status ATMS_TSSGBIT()

25

 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);

 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d.", errorval);
 printf("\n");
}

main()
{
 int tsdev; /* Station device descriptor variable */
 long tsbits; /* Time slot signaling bits */

 /*
 * Open board 1 channel 1 device
 */
 if ((tsdev = ms_open("msiB1C1", 0)) == AT_FAILURE) {
 printf("Cannot open station msiB1C1. errno = %d", errno);
 exit(1);
 }

 /*
 * Get station signaling bits
 */
 tsbits = ATMS_TSSGBIT(tsdev);
 if (tsbits == AT_FAILURE) {
 do_error(tsdev, "ATMS_TSSGBIT()");
 exit(1);
 }

 switch(tsbits) {
 case MS_ONHOOK:
 /* continue processing (on-hook) */
 break;
 case MS_OFFHOOK:
 /* continue processing (off-hook) */
 break;
 default:
 printf("undefined parameter value = %d\n", tsbits);
 break;
 }

 /*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device. */
 if (ms_close(tsdev) == AT_FAILURE) {
 printf("Cannot close station msiB1C1. errno = %d", errno);
 }
}

ATMS_TSSGBIT() retrieves the current station hook status

26

n Errors

If the function does not complete successfully, it will return AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

adds one party to an existing conference ms_addtoconf()

27

Name: int ms_addtoconf(devh,confID,cdt)
Inputs: int devh • MSI/SC board device handle

 int confID • conference identifier
 MS_CDT *cdt • pointer to conference

descriptor table
Returns: 0 on success

 AT_FAILURE on failure
Includes: srllib.h

 dtilib.h
 msilib.h

Category: Conference Management
Mode: synchronous

n Description

The ms_addtoconf() function adds one party to an existing conference. The
conference identifier specifies the conference to which the party will be added.

Parameter Description

devh: The MSI/SC board device handle.

confID: The conference identifier number.

cdt: Pointer to the conference descriptor table.

NOTES: 1. If the coach speaks before any conversation has taken place between
the client and the pupil, the client will hear some background noise
for a fraction of a second. Under most circumstances, this will not
be a problem since the coach usually will not need to speak before
some conversation has taken place between the client and the pupil.

2. Only one party at a time can be added using this function.

3. Successfully invoking this function causes a conferencing resource
to be used when a party is successfully added to a conference.

ms_addtoconf() adds one party to an existing conference

28

The MS_CDT structure has the following format:

typedef struct {
 int chan_num; /* channel/time slot number */
 int chan_sel; /* meaning of channel/time slot number */
 int chan_attr; /* channel attribute description */
} MS_CDT;

The chan_num denotes the station number or SCbus time slot number of the
device to be included in the conference. The chan_sel defines the meaning of
chan_num. Valid choices are as follows:

• MSPN_STATION MSI/SC station number

• MSPN_TS SCbus time slot number

Channel attribute is a bitmask describing the party’s properties within the
conference. Valid choices are:

• MSPA_NULL No special attributes for party.

• MSPA_RO Party participates in conference in receive-only
mode.

• MSPA_TARIFF Party receives periodic tone for duration of call.

• MSPA_COACH Party is a coach. Coach heard by pupil only.

• MSPA_PUPIL Party is a pupil. Pupil hears everyone including
coach.

adds one party to an existing conference ms_addtoconf()

29

Table 4. Valid Attribute Combinations

Pupil Coach Periodic Tone Receive-only mode

 X

 X

 X X

 X

X

X X

NOTES: 1. Only one coach and one pupil are allowed in a conference at any
time.

2. The default MSPA_NULL must be used if channel attributes are not
set.

3. For SCbus time slot members of a conference, the number of the
time slot to listen to (MSPN_TS) is returned in the chan_lts field.
This information is used by the application to listen to the
conferenced signal. This is not applicable to MSI/SC stations
because the stations (MSPN_STATION) do not use SCbus time
slots.

The chan_attr field in the CDT structure is redefined as follows:

#define chan_lts chan_attr

NOTE: The cdt structure is reused to return the listen SCbus time slot
information. The application is responsible for maintaining the integrity
of the data in the structure.

n Cautions

This function fails when:

• The device handle specified is invalid.
• Too many parties are specified for a single conference.

ms_addtoconf() adds one party to an existing conference

30

• The party is part of another conference.
• The conference ID is invalid.
• The board is out of DSP conferencing resources.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

#define NUM_PARTIES 2

int dev1; /* Board dev descriptor variables */
int chdev2; /* Channel dev descriptor */
int tsdev1, tsdev2; /* Time slot dev desc */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */
SC_TSINFO tsinfo; /* Time slot info */
int ts1, ts2; /* SCbus time slots */
int station; /* Station number */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: errno=%d", errno);
 exit(1);
}

/* Open board 1, channel 2 device */
if ((chdev2 = ms_open("msiB1C2",0) == -1) {
 printf("Cannot open MSIB1C2. errno = %d", errno);
 exit(1);
}

/* Assume MSI/SC is connected to a DTI via SCbus. */
/* Need to do a dt_open() for DTI time slots */
/* followed by dt_getxmitslot() to get SCbus time slots */
/* These SCbus time slots are passed on to the CDT */
/* ts1 & ts2 are used as the time slots */

/* Set up CDT structure */
cdt[0].chan_num = station ; /* station is a valid station number */
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

/* SCbus time slot to be conferenced */
cdt[1].chan_num = ts1 ; /* ts1 should be a valid time slot */
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_NULL;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Do a listen for the TS */

adds one party to an existing conference ms_addtoconf()

31

tsinfo.sc_numts = 1;
tsinfo.sc_tsarray = &cdt[1].chan_lts;

if (dt_listen(tsdev1, &tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev1));
 exit(1);
}

/* Continue processing */

/* Add another party to conference */
cdt[0].chan_num = ts2; /* ts2 should be a valid time slot */
cdt[0].chan_sel = MSPN_TS;
cdt[0].chan_attr = MSPA_RO|MSPA_TARIFF;

if (ms_addtoconf(dev1, confID,&cdt[0]) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}
/* Do a listen for the TS */

tsinfo.sc_numts = 1;
tsinfo.sc_tsarray = &cdt[0].chan_lts;

if (dt_listen(tsdev2, &tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev2));
 exit(1);
}
/* Continue processing */

n Errors

If the function does not complete successfully, it will return AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_delconf()
• ms_estconf()
• ms_monconf()
• ms_remfromconf()
• ms_unmonconf()

ms_chgxtder() changes the attribute of the connection extender

32

Name: int ms_chgxtder(devh,xid, cdt)
Inputs: int devh • MSI/SC board device handle

 int xid • extended connection identifier
 MS_CDT *cdt • pointer to descriptor table

Returns: 0 on success
 AT_FAILURE on failure

Includes: srllib.h
 dtilib.h
 msilib.h

Category: Extended Connection
Mode: synchronous

n Description

The ms_chgxtder() function changes the attribute of the connection extender.
After an extended connection has been established, only the channel attributes of
the connection extender may be changed.

NOTE: There can be only one connection extender per extended connection.

Parameter Description

devh: The MSI/SC board device handle.

xid: The extended connection identifier.

cdt: Pointer to the conference descriptor table element.

The characteristics of the connection extender are described by the MS_CDT
structure:

 typedef struct {
 int chan_num;
 int chan_sel;
 int chan_attr;
 } MS_CDT;

The chan_num denotes the station number or the SCbus time slot number of the
connection extender. The chan_sel can be one of the following:

• MSPN_STATION MSI/SC station number

changes the attribute of the connection extender ms_chgxtder()

33

• MSPN_TS SCbus time slot number

Channel attribute is a bitmask describing the connection extender’s properties
within the extended connection. The valid values are:

• MSPA_TARIFF Party receives a periodic tone for the duration of call.

• MSPA_NULL No special attributes for party.

• MSPA_RO Party participates in conference in receive-only mode.

• MSPA_COACH Party is a coach. Coach heard by pupil only.

• MSPA_PUPIL Party is a pupil. Pupil hears everyone including
coach.

Table 5. Valid Attribute Combinations

Pupil Coach Periodic Tone Receive-only mode

 X

 X

 X X

 X

X

X X

NOTES: 1. Only one coach and one pupil are allowed in an extended
connection.

2. The default MSPA_NULL must be used if channel attributes are not
specified.

3. The signal that the connection extender should listen to is always
present on the SCbus, irrespective of the chan_sel of the connection
extender.

ms_chgxtder() changes the attribute of the connection extender

34

n Cautions

This function fails when:

• The device handle specified is invalid.
• The board is not an MSI/SC board.
• The connection ID is invalid.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

int dev1; /* Device handle for board */
int chdev2; /* Station dev descriptor */
int tsdev1,tsdev2; /* DTI time slot device handles */
MS_CDT cdt[3]; /* Connection descriptors */
int xid; /* Connection ID */
long lts; /* listen time slot */
SC_TSINFO tsinfo; /* Time slot information structure */
int rc; /* Return Code */
int station, ts1, ts2;
/* Start System */

/* Assume that there is a DTI in the system.
 * Assume two DTI transmit time slots. ts1 and
 * ts2, are identified by device handles tsdev1
 * and tsdev2, respectively.
 */
/*
 * Continue processing
 */

/*
 * Establish connection between a station and time slot ts1
 */
if ((rc=nr_scroute(tsdev1,SC_DTI,chdev2,SC_MSI,SC_FULLDUP))!= -1) {
 printf("Error making connection between DTI timeslot\n");
 printf("and MSI station. rc = 0x%x\n",rc);
 exit(1);
}

/*
 * Now extend the connection established earlier
 */
cdt[0].chan_num = station ; /* Use MSI station as connection identifier*/
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_PUPIL;

cdt[1].chan_num = ts2; /* DTI time slot ts2 for connection extender */
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_RO;

changes the attribute of the connection extender ms_chgxtder()

35

/* Establish extended connection. Since the extender is in receive only mode,
 * the connection will be extended without interrupting the conversation between the
 * external party and the station
 */

if (ms_estxtdcon(dev1,cdt,&xid) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Make tsdev2 listen to time slot returned by the ms_estxtdcon function */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarray = &cdt[1].chan_lts;
if (dt_listen(tsdev2,&tsinfo) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev2));
 exit(1);
}
/* Prepare cdt to change the attribute of the connection extender */
cdt[0].chan_num = ts2 ; /* Required station number */
cdt[0].chan_sel = MSPN_TS;
cdt[0].chan_attr = MSPA_COACH;

/* Change extender to coach */
if (ms_chgxtder(dev1,xid,cdt)== -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);

}

n Errors

If the function does not complete successfully, it will return AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_delxtdcon()
• ms_estxtdcon()

ms_close() closes the MSI/SC device

36

Name: int ms_close(devh)
Inputs: int devh • MSI/SC device handle

Returns: 0 on success
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Device Management
Mode: synchronous

n Description

The ms_close() function closes the MSI/SC device previously opened by the
calling process and ms_open(). The devices are either MSI/SC boards or
stations. The ms_close() function releases the handle and breaks the link between
the calling process and the device.

Parameter Description

devh: The valid MSI/SC device handle returned by a call to
ms_open().

n Cautions

1. This function fails if the device handle is invalid.
2. The ms_close() function affects only the link between the calling process and

the device. Other processes are unaffected by ms_close().
3. If event notification is active for the device to be closed, call the SRL

sr_dishdlr() function prior to calling ms_close().
4. A call to ms_close() does not affect the configuration of the MSI/SC.
5. Dialogic devices should never be closed using the Windows NT close().

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

closes the MSI/SC device ms_close()

37

main()
{
 int bddev; /* Board device descriptor variable */

 /* Open board 1 device */
 if ((bddev = ms_open("msiB1", 0)) == AT_FAILURE) {
 printf("Cannot open board msiB1. errno = %d\n", errno);
 exit(1);
 }

 /*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device */
 if (ms_close(bddev) == AT_FAILURE) {
 printf("Cannot close board msiB1. errno = %d", errno);
 }

}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_open()

ms_delconf() deletes a conference

38

Name: int ms_delconf(devh, confID)
Inputs: int devh • MSI/SC board device handle

 int confID • conference identifier
Returns: 0 on success

 AT_FAILURE on failure
Includes: srllib.h

 dtilib.h
 msilib.h

Category: Conference Management
Mode: synchronous

n Description

The ms_delconf() function deletes a conference previously established. The
conference ID is the value previously returned by ms_estconf()

Parameter Description

devh: The MSI/SC board device handle.

confID: The MSI/SC conference identifier.

NOTES: 1. Calling this function frees all resources in use by the conference.

2. It is the responsibility of the application to perform an unlisten for
each party of the conference.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

#define NUM_PARTIES 3

int dev1; /* Board dev descriptor variables */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: errno=%d", errno);

deletes a conference ms_delconf()

39

 exit(1);
}

/*
 * Continue processing
 */

/* Set up CDT structure */
/* station 2, 4 and 7 are used to establish a conference */
cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

cdt[1].chan_num = 4;
cdt[1].chan_sel = MSPN_STATION;
cdt[1].chan_attr = MSPA_PUPIL;

cdt[2].chan_num = 7;
cdt[2].chan_sel = MSPN_STATION;
cdt[2].chan_attr = MSPA_COACH;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) != 0) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 * Continue processing
 *
 */

if (ms_delconf(dev1, confID) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Continue processing */

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_addtoconf()
• ms_estconf()
• ms_monconf()

ms_delconf() deletes a conference

40

• ms_remfromconf()
• ms_unmonconf()

deletes an extended connection ms_delxtdcon()

41

Name: int ms_delxtdcon(devh,xid)
Inputs: int devh • MSI/SC board device handle

 int xid • extended connection identifier
Returns: 0 on success

 AT_FAILURE on failure
Includes: srllib.h

 dtilib.h
 msilib.h

Category: Extended Connection
Mode: synchronous

n Description

The ms_delxtdcon() function deletes an extended connection. The connection
extender is removed on successful completion of this function. Calling this
function does not affect the integrity of the connection. The two parties in
conversation by virtue of SCbus routing will still remain in a connection.

Parameter Description

devh: The MSI/SC board device handle.

xid: The extended connection identifier number.

NOTES: 1. It is the responsibility of the application to do an ms_unlisten for the
connection extender.

2. Calling this function frees three resources.

n Cautions

This function fails when:

• The device handle specified is invalid.
• The device is not an MSI/SC board.
• The connection ID is invalid.

n Example

#include <windows.h>

ms_delxtdcon() deletes an extended connection

42

#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

int dev1; /* Device handle for board */
int xid; /* Connection ID */
SC_TSINFO tsinfo; /* Time slot information structure */

/* Start System */

/*
 * Assume that there is an extended connection between a
 * station and a time slot. xid is obtained from the previous
 * extended connection.
*/
/*
 * Continue processing
 */
/*
 * Do an unlisten for the connection extender if it is a external
 * party
 */
/*
 * Delete the extended connection
 */
if (ms_delxtdcon(dev1,xid) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}
/*
 * Continue processing

 */

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_chgxtder()
• ms_estxtdcon()

returns the available DSP resource count ms_dsprescount()

43

Name: int ms_dsprescount(devh,valuep)
Inputs: int *devh • MSI/SC board device handle

 int *valuep • pointer to the memory location
to receive the free DSP
resource count

Returns: 0 on success
 AT_FAILURE on failure

Includes: srllib.h
 dtilib.h
 msilib.h

Category: Attribute
Mode: synchronous

n Description

The ms_dsprescount() function returns the available DSP resource count.

Parameter Description

devh: The MSI/SC board device handle.

valuep: Pointer to the location to contain the free DSP resource count.

Each DSP has 32 resources managed by the application. Calling any of the
following functions may cause the available resource count to change.

Function Condition

ms_setbrdparm() When parm_id = MSG_ZIPENA and value =
MS_ZIPENABLE, one resource will be used.
When parm_id = MSG_ZIPENA and value =
MS_ZIPDISABLE, one resource will be freed.

ms_estconf() Uses the total number of parties in the conference.

ms_addtoconf() Uses one resource every time a party is added to a
conference.

ms_remfromconf() Frees one resource.

ms_delconf() Frees all resources in use by the conference.

ms_monconf() Uses one resource.

ms_dsprescount() returns the available DSP resource count

44

ms_unmonconf() Frees one resource.

ms_estxtdcon() Uses three resources.

ms_delxtdcon() Frees three resources.

NOTES: 1. A conference is limited to eight parties. A monitor is counted as one
of the eight parties.

2. When zip tone support is enabled, 31 conferencing resources will be
available.

n Cautions

This function fails when the device handle specified is invalid.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

int dev1; /* Board dev descriptor variables */
int valuep; /* Resource count */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: errno=%d", errno);
 exit(1);
}

/* Get DSP resource count */
if (ms_dsprescount(dev1, &valuep) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

printf(“Free DSP resource count = %d\n”, valuep);

/*
 * Continue processing
 *
 */

if (ms_close(dev1)== -1){
 printf("Cannot Close MSIB1: errno=%d", errno);
 exit(1);
}

returns the available DSP resource count ms_dsprescount()

45

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_addtoconf()
• ms_delconf()
• ms_delxtdcon()
• ms_estconf()
• ms_estxtdcon()
• ms_monconf()
• ms_remfromconf()
• ms_setbrdparm()
• ms_unmonconf()

ms_estconf() establishes a conference

46

Name: int ms_estconf(devh,cdt,numpty,confattr,confID)
Inputs: int devh • MSI/SC board device handle

 MS_CDT *cdt • pointer to conference
descriptor table

 int numpty • number of parties in
conference

 int confattr • conference attributes
 int *confID • pointer to memory location to

receive the conference
identifier

Returns: 0 on success
 AT_FAILURE on failure

Includes: srllib.h
 dtilib.h
 msilib.h

Category: Conference Management
Mode: synchronous

n Description

The ms_estconf() function establishes a conference of up to four parties.

Parameter Description

devh: The MSI/SC board device handle.

cdt: The pointer to the conference descriptor table.

numpty: Number of parties in the conference.

confattr: The conference attributes.

confID: Pointer to the memory location containing the conference ID
number.

NOTES: 1. If the coach speaks before any conversation has taken place between
the client and the pupil, the client will hear some background noise
for a fraction of a second. Under most circumstances, this will not
be a problem since the coach usually will not need to speak before
some conversation has taken place between the client and the pupil.

establishes a conference ms_estconf()

47

2. Calling this function causes numpty resources to be used when the
conference is successfully established.

The conference descriptor table is an array of MS_CDT structures. The MS_CDT
structure has the following format:

typedef struct {
 int chan_num; /* channel/time slot number */
 int chan_sel; /* meaning of channel/time slot number */
 int chan_attr; /* channel attribute description */
} MS_CDT;

The chan_num denotes the station number or SCbus time slot number of the
device to be included in the conference. The chan_sel defines the meaning of the
chan_num. Valid choices are as follows:

• MSPN_STATION MSI station number

• MSPN_TS SCbus time slot number

The chan_attr is a bitmask describing the party’s properties within the conference.
Valid choices are:

• MSPA_NULL No special attributes for party.

• MSPA_RO Party participates in conference in receive-only
mode.

• MSPA_TARIFF Party receives periodic tone for duration of call.

• MSPA_COACH Party is a coach. Coach is heard by pupil only.

• MSPA_PUPIL Party is a pupil. Pupil hears everyone including
coach.

ms_estconf() establishes a conference

48

Table 6. Valid Attribute Combinations

Pupil Coach Periodic Tone Receive-only mode

 X

 X

 X X

 X

X

X X

NOTES: 1. Only one coach and one pupil are allowed in a conference at any
time. Specifying more than one of either will cause unexpected
results.

2. The default MSPA_NULL must be used if channel attributes are not
specified.

Conference attribute is a bitmask describing the properties of the conference.
These properties affect all parties in the conference.

• MSCA_ND All parties in conference are notified by a tone if
another party is being added or removed from a
conference.

• MSCA_NN If MSCA_ND is set, do not notify conferees if a party
joins the conference in "receive-only" mode or as a
monitor.

• MSCA_NULL No special attributes.

NOTE: The default MSCA_NULL must be used if the conference attribute is
not specified.

For SCbus time slot members of a conference, the number of the time slot to listen
to is returned in the chan_lts field.

The chan_attr field in the CDT structure is redefined as follows:

#define chan_lts chan_attr

establishes a conference ms_estconf()

49

This information is used by the application to listen to the conferenced signal.
This is not applicable to MSI/SC stations because the stations do not use SCbus
time slots.

NOTES: 1. MSI/SC stations (those with chan_sel set to MSPN_STATION) do
not use SCbus time slots.

2. This function may be used to establish a conference of up to 4
parties. ms_addtoconf() must be used to increase the size of the
conference beyond 4 and up to 8 parties.

3. The cdt structure is reused to return the listen SCbus time slot
information. The application is responsible for maintaining the
integrity of the data in the structure.

n Cautions

Dialogic does not support any form of cascading conferences. If you attempt
cascading conferences, conference quality may deteriorate significantly.

This function fails when:

• An invalid device handle is specified.
• More than four parties are specified using ms_estconf().
• DSP resources are not available.
• Any of the parties specified are already in another conference on this device.
• Any of the stations specified are already listening to an SCbus time slot.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

#define NUM_PARTIES 3

int dev1; /* Board dev descriptor variables */
int chdev1,chdev2; /* Channel dev descriptor */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */
int ts1, ts2;

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {

ms_estconf() establishes a conference

50

 printf("Cannot open MSI B1: errno=%d", errno);
 exit(1);
}

/* Assume MSI/SC is connected to a DTI via SCbus. */
/* Need to do a dt_open() for DTI time slots */
/* This returns tsdev1 and tsdev2 as 2 device handles
/* for 2 time slots. Follow this by dt_getxmitslot()
/* to get SCbus time slots */
/* These SCbus time slots are passed on to the CDT */

/*
 * Continue processing
 */

/* Set up CDT structure */
/* Include station 2 on MSI board in conference */
cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

/* The chan_num below is the SCbus time slot for tsdev1 on which */
/* DTI time slot is transmitting. It is received as a result of */
/* dt_getxmitslot() function above */
cdt[1].chan_num = ts1;
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_PUPIL;

/* Set up another SCbus time slot for tsdev2 to be part of a 3 party conference. Another
DTI time slot transmits on this SCbus time slot, just like above */
cdt[2].chan_num = ts2;
cdt[2].chan_sel = MSPN_TS;
cdt[2].chan_attr = MSPA_COACH;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) != 0) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Note no listen required for cdt[0] because it is a station */
/* Do a listen for cdt[1] */
/* Set up SC_TSINFO structure for SCbus tslot */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarray = &cdt[1].chan_lts;

/* Now, listen to TS */
if (dt_listen(tsdev1,&tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev1));
 exit(1);
}

/* Do a listen for cdt[2] */
/* Set up SC_TSINFO structure for SCbus tslot */
tsinfo.sc_tsarray = &cdt[2].chan_lts;

/* Now, listen to TS */
if (dt_listen(tsdev2,&tsinfo) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev2));
 exit(1);
}

establishes a conference ms_estconf()

51

/*
 * Continue processing
 *
 */
if (ms_delconf(dev1, confID) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Continue processing */

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_addtoconf()
• ms_delconf()
• ms_remfromconf()

ms_estxtdcon() establishes an extended connection

52

Name: int ms_estxtdcon(devh,cdt,xid)
Inputs: int devh • MSI/SC board device handle

 MS_CDT *cdt • pointer to descriptor table
 int *xid • pointer to memory location

containing the extended
connection identifier

Returns: 0 on success
 AT_FAILURE on failure

Includes: srllib.h
 dtilib.h
 msilib.h

Category: Extended Connection
Mode: synchronous

n Description

The ms_estxtdcon() function establishes an extended connection. An extended
connection is a connection in which there is a third party.

Parameter Description

devh: The MSI/SC board device handle.

cdt: Pointer to the conference descriptor table.

xid: The pointer to the memory location containing the extended
connection number.

For the purpose of this function, a connection is a full-duplex, SCbus routing
between two parties. A connection may be set up using the convenience function
nr_scroute().

One party of the connection to be extended must be a station on the board for
which the ms_estxtdcon() function is issued. The other party is another station
or an SCbus time slot. Extended connections have a connection extender and a
connection identifier. The differences are as follows:

• A connection extender is always the third party in a connection and can be
either a station or an SCbus time slot.

establishes an extended connection ms_estxtdcon()

53

• A connection identifier must be a station. The attributes of the connection
identifier can only be set at the time the extended connection is established.

NOTES: 1. Calling this function uses three resources.

2. If the coach speaks before any conversation has taken place between
the client and the pupil, the client will hear some background noise
for a fraction of a second. Under most circumstances, this will not
be a problem since the coach usually will not need to speak before
some conversation has taken place between the client and the pupil.

3. It is the responsibility of the application to set up the connection
prior to extending it. No verification of the presence of a connection
between parties is made prior to extending the connection.

The extended connection is described by the descriptor table. A descriptor table
is simply an array of MS-CDT structures. There are two entries in the table. The
order of the entries in the table is significant. The first entry must be the
connection identifier, the second must be the connection extender. The structure
of each descriptor table entry is as follows:

 typedef struct {
 int chan_num;
 int chan_sel;
 int chan_attr;
 } MS_CDT;

The chan_num denotes the station number or SCbus time slot number of a party
within an extended connection. The chan_sel defines the meaning of chan_num.
Valid choices are as follows:

• MSPN_STATION MSI/SC station number

• MSPN_TS SCbus time slot number

The chan_attr is a bitmask describing a party’s properties within an extended
connection. Valid choices for the attributes of the first entry (connection
identifier) in the descriptor table are:

• MSPA_NULL No special attributes for party.

• MSPA_TARIFF Party receives periodic tone for duration of call.

ms_estxtdcon() establishes an extended connection

54

• MSPA_PUPIL Party is a pupil. Pupil hears everyone including
coach.

NOTE: If the first party (connection identifier) is in a pupil-coach situation, the
party must be defined with the MSPA_PUPIL attribute when the
extended connection is established. There is no way of changing the
attribute of the first party once an extended connection has been
established.

Valid values for the second entry (connection extender) in the descriptor table are:

• MSPA_NULL Party can talk to members in extended connection.

• MSPA_RO Party participates in conference in receive only mode.

• MSPA_TARIFF Party receives periodic tone for duration of call.

• MSPA_COACH Party is a coach. Coach heard by pupil only.

• MSPA_PUPIL Party is a pupil. Pupil hears everyone including
coach.

• MSPA_NOAGC Disables automatic gain control.

establishes an extended connection ms_estxtdcon()

55

Table 7. Valid Attribute Combinations

AGC Disabled Pupil Coach Periodic Tone Receive-only mode

 X

 X

 X X

 X

 X

 X X

X X

X X X

NOTES: 1. Only one coach and one pupil are allowed in an extended connection.

2. The default MSPA_NULL must be used if channel attributes are not
specified.

3. The “MSPA_NOAGC” option should only be used when the connection
identifier is a pupil. This ensures that the client will not hear a change in
the pupil’s volume when the connection is extended. We recommend that
MSPA_NOAGC only be used when there is a pupil.

n Cautions

• Stations to be added to an extended connection must be off-hook when
ms_estxtdcon() is called.

• This function fails when an invalid device handle is specified.
• This function fails when DSP resources are not available.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

int dev1; /* Device handle for board */
int chdev2; /* Station dev descriptor */

ms_estxtdcon() establishes an extended connection

56

int tsdev1,tsdev2; /* DTI time slot device handles */
MS_CDT cdt[3]; /* Connection descriptors */
int xid; /* Connection ID */
long lts; /* listen time slot */
SC_TSINFO tsinfo; /* Time slot information structure */
int rc; /* Return Code */
int station, ts1, ts2;
/* Start System */

/* Assume that there is a DTI in the system.
 * Assume two DTI transmit time slots. ts1 and
 * ts2, are identified by device handles tsdev1
 * and tsdev2, respectively.
 */
/*
 * Continue processing
 */

/*
 * Establish connection between a station and time slot ts1
 */
if ((rc=nr_scroute(tsdev1,SC_DTI,chdev2,SC_MSI,SC_FULLDUP))!= -1) {
 printf("Error making connection between DTI time slot\n");
 printf("and MSI station. rc = 0x%x\n",rc);
 exit(1);
}

/*
 * Now extend the connection established earlier
 */
cdt[0].chan_num = station ; /* Use MSI station as connection identifier*/
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_PUPIL;

cdt[1].chan_num = ts2; /* DTI time slot ts2 for connection extender */
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_RO;

/* Establish extended connection. Since the extender is in receive only mode,
 * the connection will be extended without interrupting the conversation between the
 * external party and the station
 */

if (ms_estxtdcon(dev1,cdt,&xid) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Make tsdev2 listen to time slot returned by the ms_estxtdcon function */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarray = &cdt[1].chan_lts;
if (dt_listen(tsdev2,&tsinfo) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev2));
 exit(1);
}
/* Prepare cdt to change the attribute of the connection extender */
cdt[0].chan_num = ts2 ; /* Required station number */
cdt[0].chan_sel = MSPN_TS;
cdt[0].chan_attr = MSPA_COACH;

/* Change extender to coach */
if (ms_chgxtder(dev1,xid,cdt)== -1) {

establishes an extended connection ms_estxtdcon()

57

 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);

}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_chgxtder()
• ms_delxtdcon()

ms_genring() generates ringing to a station

58

Name: int ms_genring(devh,len,mode)
Inputs: int devh • device handle for station

 unsigned short len • length in cycles for ring
 unsigned short

mode
• asynchronous/synchronous

Returns: 0 on success for asynchronous
>0 on success for synchronous
AT_FAILURE on failure

Includes: srllib.h
dxxxlib.h

 dtilib.h
 msilib.h

Category: Station
Mode: synchronous/asynchronous

n Description

The ms_genring() function generates ringing to a station. The function will
terminate when the phone goes off-hook or the specified number of rings has been
generated.

Parameter Description

devh: The station device handle.

len: The number of cycles to ring a station. A maximum value of
255 is allowed.

mode: The operation mode

For synchronous mode, EV_SYNC must be specified as the
third parameter. The function will return only on
termination of ringing due to an error, off hook, or
completion of ring cycles.

For asynchronous mode, EV_ASYNC must be specified as
the third parameter. The function will return on initiation of
ringing or on error. To get the completion status, a
termination event is generated.

NOTES: 1. Dialogic recommends specifying at least two rings. If you specify
one ring, the phone may not ring.

generates ringing to a station ms_genring()

59

2. A ring duty cycle includes an on time (ring generation) and off time
(no ring). If ms_genring() is received by the MSI/SC board during
off time, ring generation will be delayed until the on time portion of
the duty cycle is reached. This delay can be up to approximately
four seconds.

3. This function is only supported on MSI/SC-R boards.

4. ms_genring() will fail when executed on a station currently off-
hook. The error returned is E_MSBADRNGSTA.

5. A glare condition occurs when two parties seize the same line for
different purposes. Although very rare, if glare occurs in your
application the function returns successfully. However, it is followed
by the event MSEV_NORING. The data associated with the event is
E_MSBADRNGSTA, indicating that the station was off-hook when
the ring was attempted.

In asynchronous mode, 0 indicates that the function was initiated while
AT_FAILURE indicates error. For successful completion of ringing,
MSEV_RING will be returned. MSEV_NORING will be returned if the ring is
not successful. The event data for MSEV_RING is as follows:

• MSMM_RNGOFFHK Solicited off-hook detected

• MSMM_TERM Ringing terminated

In synchronous mode, AT_FAILURE indicates failure and a positive value (>0)
indicates the reason for termination. Reasons for termination are:

• MSMM_RNGOFFHK Solicited off-hook detected

• MSMM_TERM Ringing terminated

n Cautions

This function fails when:

• The board is not an MSI/SC-R board.
• The device handle is invalid.

ms_genring() generates ringing to a station

60

n Example

Synchronous mode:

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

int dev1; /* Station device descriptor */
int rc; /* Return code */

/* Open board 1, station 1 device */
if ((dev1 = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSI B1, station 1: errno=%d", errno);
 exit(1);
}

/*
 * Continue processing
 */
/* Generate ringing for 10 cycles in sync mode*/
if ((rc =ms_genring(dev1,10,EV_SYNC)) == -1) {
 /* process error */
}
/* If timeout, process the condition */
if (rc=MSMM_TERM) {
 printf("Station not responding");
}
/*
 * Continue Processing
 */

 /* Done processing - close device */
if (ms_close(dev1) == -1) {
 printf("Cannot close device msiB1C1. errno = %d", errno);
 exit(1);
}

Asynchronous mode:

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

int dev1; /* Station dev descriptor */
int srlmode; /* SRL mode indicator */

/* Open board 1, station 1 device */
if ((dev1 = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSI B1, station 1: errno=%d", errno);
 exit(1);
}

/* Set SRL to run in polled mode */
srlmode = SR_POLLMODE;

generates ringing to a station ms_genring()

61

if (sr_setparm(SRL_DEVICE,SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
}

/* Set up handler function to handle play completion */
if (sr_enbhdlr(dev1,MSEV_RING,sig_hdlr) == -1) {
 /* process error */
}

/*
 * Continue processing
 */
/* Generate ringing */
if (ms_genring(dev1,10,EV_ASYNC) == -1) {
 printf("Error could not set up ringing. Errno = %d", errno);
 exit(1);
}

/* Use sr_waitevt to wait for the completion of ms_genring().
 On receiving the completion event, MSEV_RING, control is
 transferred to the handler function previously established
 using sr_enbhdlr().
*/

/*
 * Continue Processing
 */

 /* Done processing - close device */
if (ms_close(dev1) == -1) {
 printf("Cannot close device msiB1C1. errno = %d", errno);
 exit(1);
}
/*
 * Continue processing
 */

int sig_hdlr()
{
 int dev = sr_getevtdev();
 unsigned short *sigtype = (unsigned short *)sr_getevtdatap();

 if (sigtype != NULL) {
 switch (*sigtype) {
 case MSMM_TERM:
 printf("Station does not answer");
 return 0;

 case MSMM_RNGOFFHK:
 printf("Station offhook detected\n");
 return 0;

 default:
 return 1;
 }
 }

 /*
 * Continue processing
 */
}

ms_genring() generates ringing to a station

62

n Errors

If the function does not complete successfully, it will return AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_setevtmsk()

generates a zip tone ms_genziptone()

63

Name: int ms_genziptone(devh)
Inputs: int devh • MSI/SC station device handle

Returns: 0 on success
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Station
Mode: synchronous

n Description

The ms_genziptone() function generates a zip tone to the station associated with
the device handle. The tone generated is defined by the zip tone block specified
in the ms_setbrdparm() function description.

Tone will only be generated to an MSI/SC station that is not part of a conference
or routed to an SCbus time slot.

Parameter Description

devh: The valid MSI/SC station device handle returned by a call
to ms_open().

n Cautions

This function fails when:

• The station device handle is invalid.
• Zip tone is disabled.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

int chdev1; /*Station dev descriptor variable */

ms_genziptone() generates a zip tone

64

/* Open station 1 device */

if ((chdev1 = ms_open("msiB1C1",0)) == -1) {
 printf("Cannot open MSIB1C1: errno=%d", errno);
 exit(1);
}

/* Generate Ziptone */
if (ms_genziptone(chdev1) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

/* Close station 1 */

if (ms_close(chdev1)) == -1) {
 printf("Cannot Close MSIB1C1: errno=%d", errno);
 exit(1);
}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

returns board parameters ms_getbrdparm()

65

Name: int ms_getbrdparm(devh,param,valuep)
Inputs: int devh

unsigned long param

void *valuep

• MSI/SC device handle
• device parameter defined name
• pointer to variable where the

parameter value will be placed
Returns: 0 on success

AT_FAILURE on failure
Includes: srllib.h

dtilib.h
msilib.h

Category: Configuration
Mode: synchronous

n Description

The ms_getbrdparm() function returns board parameters. Each parameter has a
symbolic name that is defined in dtilib.h and msilib.h. The parameters are
explained in ms_setbrdparm() function description.

Parameter Description

devh: The valid device handle returned by a call to ms_open().

param: The parameter to be examined.

valuep: Pointer to the variable where the parameter value will be
returned.

n Cautions

This function fails when:

• The device handle is invalid.
• The parameter specified is invalid.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”

ms_getbrdparm() returns board parameters

66

#include “dtilib.h”
#include “msilib.h”

main()
{
 int devh; /* MSI/SC board device descriptor */
 int value; /* Parameter value */
 int cadence[8]; /* Ring cadence length and pattern */
 int cadence_len; /* Cadence active period length (in bytes) */

 if ((devh = ms_open(“msiB1”, 0)) == -1) {
 printf(“Error opening msiB1 : errno = %d\n”, errno);
 exit(1);
 }

 /* Determine board type : Ringing or Non-ringing */

 if (ms_getbrdparm(devh, MSG_RING, (void *)&value)) == -1) {
 printf("Error retrieving board parameter : %s\n ",
 ATDV_ERRMSGP(devh));
 exit(1);
 }

 if (value == MS_RNGBRD){
 printf(“You have a ringing MSI/SC board\n”);
 }
 else
 printf(“You have a non-ringing MSI/SC board\n”);

 /* Retrieve the board’s ring-cadence pattern */

 if (ms_getbrdparm(devh, MSG_RNGCAD, (void *)&cadence[0]))== -1) {
 printf("Error retrieving board parameter : %s\n ",
 ATDV_ERRMSGP(devh));
 exit(1);
 }
 printf(“The ring cadence is %d x 250ms long\n”, cadence[0]);
 cadence_len = (cadence[0]+7)/8;

 for (index = 1; index <= cadence_len; index++) {
 printf(“Active period cadence pattern is 0x%x\n”,
 cadence[index]);
 }

 if (ms_close(devh) == -1) {
 printf(“Error Closing msiB1 : errno = %d\n”, errno);
 exit(1);
 }
 return;
}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

returns board parameters ms_getbrdparm()

67

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_setbrdparm()

ms_getcde() retrieves the attributes of a conferee

68

Name: int ms_getcde(devh,confID,cdt)
Inputs: int devh • MSI/SC board device handle

 int confID • conference identifier
 MS_CDT *cdt • pointer to MS_CDT structure

Returns: 0 on success
 AT_FAILURE on failure

Includes: srllib.h
 dtilib.h
 msilib.h

Category: Conference Management
Mode: synchronous

n Description

The ms_getcde() function retrieves the attributes of a conferee in an existing
conference.

Parameter Description

devh: The MSI/SC board device handle.

confID: The conference identifier.

cdt: Pointer to an MS_CDT structure.

This function requires that the conferee’s chan_num and chan_sel be specified in
the MS_CDT structure. On successful completion, the conference party attribute
will be returned in the chan_attr field of the MS_CDT structure.

The MS_CDT structure has the following format:

typedef struct {
 int chan_num; /* channel/time slot number */
 int chan_sel; /* meaning of channel/time slot number */
 int chan_attr; /* channel attribute description */
} MS_CDT;

The chan_num denotes the station number or the SCbus time slot number of the
device. The chan_sel defines the meaning of chan_num. Valid choices are as
follows:

• MSPN_STATION MSI/SC station number

retrieves the attributes of a conferee ms_getcde()

69

• MSPN_TS SCbus time slot number

The chan_attr is a bitmask describes the party’s properties within the conference.
Possible returns are listed in the table below. It is possible that a combination of
any of the attributes shown in the table will be returned.

Table 8. Possible Returns for Channel Attribute

Channel Attribute Description

MSPA_NULL No special attributes for party.

MSPA_RO Party participates in conference in receive-only
mode.

MSPA_TARIFF Party receives periodic tone for duration of call.

MSPA_COACH Party is a coach. Coach is heard by pupil only.

MSPA_PUPIL Party is a pupil. Pupil hears everyone including
coach.

MSPA_NOAGC Disabled automatic gain control.

NOTE: Invoke ms_getcde() multiple times if the attributes of more than one
party are desired.

n Cautions

This function fails when:

• The device handle specified is invalid.
• An invalid conference ID is specified.
• The queried party is not in the conference.

n Example

#include <windows.h>
#include <errno.h>

ms_getcde() retrieves the attributes of a conferee

70

#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

#define NUM_PARTIES 2

int dev1=1; /* Board dev descriptor variables */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */
int attr; /* Channel attribute */
int station, ts;

/* Start the system */

/* Set up CDT structure */
cdt[0].chan_num = station ; /* station is a valid station number */
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

/* SCbus time slot to be conferenced */
cdt[1].chan_num = ts ; /* ts should be a valid time slot */
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_NULL;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 *
 * Continue processing
 *
 */

/* Now get the attribute of MSI Station */
cdt[0].chan_num = station; /* Station in the conference */
cdt[0].chan_sel = MSPN_STATION;

if(ms_getcde(dev1, confID, &cdt[0])== -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

attr = cdt[0].chan_attr;
/*
 * Continue Processing
 *
 */

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

retrieves the attributes of a conferee ms_getcde()

71

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_setcde()

ms_getcnflist() retrieves a conference list

72

Name: int ms_getcnflist(devh,confID,numpty,cdt)
Inputs: int devh • MSI/SC board device handle

 int confID • conference identifier
 int *numpty • pointer to the number of parties

in the conference
 MS_CDT *cdt • pointer to conference

descriptor table
Returns: 0 on success

 AT_FAILURE on failure
Includes: srllib.h

 dtilib.h
 msilib.h

Category: Attribute
Mode: synchronous

n Description

The ms_getcnflist() function retrieves a conference list. The function returns the
total number of parties within a conference, and information specific to each party
in that conference. The party-specific information retrieved includes a party’s
channel/ SCbus time slot number, selector, and attribute description.

NOTE: The list is not returned in any specified order.

Parameter Description

devh: The MSI/SC board device handle.

confID: The conference identifier.

numpty: Pointer to the party count.

cdt: Pointer to the conference descriptor table.

NOTE: The application is responsible for allocating an MS_CDT table with
sufficient elements.

If the conference is being monitored, one member of the conference list will be the
monitor. chan_num will equal 0x7FFF and chan_sel will be MSPN_TS.

The conference descriptor table is an array of the MS_CDT structure. The
MS_CDT structure has the following format:

retrieves a conference list ms_getcnflist()

73

typedef struct {
 int chan_num; /* channel/time slot number */
 int chan_sel; /* meaning of channel/time slot number */
 int chan_attr; /* channel attribute description */
} MS_CDT;

n Cautions

This function fails when an invalid conference ID is specified.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

int dev1; /* Board dev descriptor variables */
int partycnt; /* Number of parties*/
MS_CDT cdtp[8]; /* Conf. desc. table */
int confID; /* Conf. ID */
int i;

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSIB1: errno=%d", errno);
 exit(1);
}

/* Get conference list */
if (ms_getcnflist(dev1, confID, &partycnt, &cdtp[0]) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

printf(“Number of parties = %d\n”, partycnt);

for (i=0; i<partycnt; i++){
printf(“Chan_num = %x”, cdtp[i].chan_num);
printf(“Chan_sel = %x”, cdtp[i].chan_sel);
printf(“Chan_att = %x’, cdtp[i].chan_attr);
 }

if (ms_close(dev1)== -1){
 printf("Cannot Close MSIB1: errno=%d", errno);
 exit(1);
}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to

ms_getcnflist() retrieves a conference list

74

obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_estconf()

gets device information ms_getctinfo()

75

Name: int ms_getctinfo (devh,ct_devinfop)
Inputs: int devh • MSI/SC station device handle

 CT_DEVINFO
*ct_devinfop

• pointer to information structure

Returns: 0 on success
AT_FAILURE on failure

Includes: srllib.h
 dtilib.h
 msilib.h

Category: Attribute
Mode: synchronous

n Description

 The ms_getctinfo() function gets device information related to a station device
on the MSI/SC board.

Parameter Description

devh: The station device handle.

ct_devinfop: Pointer to the channel/station information structure.

On return from the function, the CT_DEVINFO structure contains the relevant
information. The CT_DEVINFO structure is declared as follows:-

 typedef struct {
 unsigned long ct_prodid; /* Dialogic product ID */
 unsigned char ct_devfamily; /* Device family */
 unsigned char ct_devmode; /* Device mode */
 unsigned char ct_nettype; /* Network device type */
 unsigned char ct_busmode; /* Bus mode (PEB/SCbus) */
 unsigned char ct_busencoding; /* PCM encoding (Mu-Law/A-Law) */
 unsigned char ct_rfu[7]; /* reserved for future use */
 } CT_DEVINFO;

The valid choices for each member of the CT_DEVINFO structure are defined in
dtilib.h.

The ct_prodid field contains a valid Dialogic product identification number for the
device. The MSI/SC board’s product ID is found in the msilib.h file.

The ct_devfamily specifies the device family and will contain the following:

ms_getctinfo() gets device information

76

CT_DFMSI MSI/SC station device

NOTE: The device mode (ct_devmode) field is not relevant for the MSI/SC
board.

The ct_nettype member of the CT_DEVINFO structure contains the following for
the MSI/SC:

CT_NTSTATION Station front end

The ct_busmode specifies the bus architecture the device uses to communicate
with other devices in the system.

CT_BMSCBUS Signal Computing System Architecture bus (SCbus)

The ct_busencoding field describes the PCM encoding being used on the bus.
Valid choices are:

CT_BEULAW Mu-law encoding

CT_BEALAW A-law encoding

n Cautions

This function fails if an invalid station handle is specified.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

int devh; /* Time slot device handle */
CT_DEVINFO ct_devinfo; /* Device information structure */

/* Open board 1 station 1 device */
if ((devh = ms_open("msiB1C1", 0)) == -1) {
 printf("Cannot open station msiB1C1. errno = %d", errno);
 exit(1);
}

/* Get Device Information */
if (ms_getctinfo(devh, &ct_devinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(devh));
 exit(1);
}

gets device information ms_getctinfo()

77

printf("%s Product Id = 0x%x, Family = %d, Network = %d, Bus mode = %d, Encoding = %d",
ATDV_NAMEP(devh), ct_devinfo.ct_prodid, ct_devinfo.ct_devfamily, ct_devinfo.ct_nettype,
ct_devinfo.ct_busmode, ct_devinfo.ct_busencoding);

n Errors

If the function does not complete successfully, it will return AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ag_getctinfo()
• dx_getctinfo()
• dt_getctinfo()

ms_getevt() blocks and returns control to the application

78

Name: int ms_getevt(devh,eblkp,timeout)
Inputs: int devh

EV_EBLK * eblkp
int timeout

• MSI/SC device handle
• pointer to event block
• timeout value

Returns: 0 on success
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration
Mode: synchronous

n Description

The ms_getevt() function blocks and returns control to the application. This
happens after one of the unsolicited events set by ms_setevtmsk() occurs on the
station device specified by the devh parameter or if a timeout occurs.

Parameter Description

devh: The valid device handle returned by a call to ms_open().

evtblkp: Pointer to the event that ended the blocking.

timeout: Specifies the maximum amount of time to wait for an event
to occur. If timeout is set to -1, the ms_getevt() function
does not timeout and blocks until an event occurs. If
timeout is set to 0 and an event is not present, the function
returns immediately with a AT_FAILURE return code.

ms_getevt()

79

On successful return from the function, the event block structure, EV_EBLK, will
have the following information.

eblk.ev_dev The device on which the event occurred. This is the same
as the devh passed to the function.

eblk.ev_event MSEV_SIGEVT indicating signaling transition event.

eblk.ev_data An array of bytes where ev_data[0] and ev_data[1] contain
the signaling information. Signaling information is
retrieved in short variable. Refer to the example below for
information on retrieving this data.

The event block structure is defined as follows:

typedef struct ev_eblk {
 int ev_dev; /* Device on which event occurred */
 unsigned long ev_event; /* Event type */
 int ev_len; /* Length of data associated with event */
 unsigned char ev_data[8]; /* 8 byte data buffer */
 void ev_datap; /* variable pointer if more than 8 bytes of data */
 } EV_EBLK;

n Cautions

This function fails when:

• The device handle is invalid for an MSI/SC device.
• The event field is invalid.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

EV_EBLK eblk;

main()
{
 int devh; /* Board device handle */
 unsigned short sigmsk = MSMM_ONHOOK | MSMM_OFFHOOK | MSMM_HOOKFLASH;
 short sig;

ms_getevt()

80

 /*
 * Open station 1 device
 */

 if ((devh = ms_open("msiB1C1",0)) == -1) {
 printf("Error: Cannot open board 1 station 1. errno = 0x%x\n",errno);
 exit(1);
 }

 if (ms_setevtmsk(devh, MSEV_SIG, sigmsk, DTA_SETMSK) == -1) {
 printf("%s: ms_setevtmsk MSEV_SIGMSK DTA_SETMSK ERROR %d: %s:Mask = 0x%x\n",
 ATDV_NAMEP(devh),ATDV_LASTERR(devh),ATDV_ERRMSGP(devh),sigmsk);
 ms_close(devh);
 exit(1);
 }

 /*
 * Wait for events on this time slot
 */
 while(1) {
 ms_getevt (devh, &eblk, AT_FAILURE); /* Wait forever */
 if (eblk.ev_event == MSEV_SIGEVT) {
 sig = eblk.ev_data[0] | (short) eblk.ev_data[1] << 8 ;
 if ((sig & MSMM_ONHOOK) == MSMM_ONHOOK)
 printf("Onhook signal received\n");
 if ((sig & MSMM_OFFHOOK) == MSMM_OFFHOOK)
 printf("Offhook signal received\n");
 if ((sig & MSMM_HOOKFLASH) == MSMM_HOOKFLASH)
 printf("Hook flash signal received\n");
 }
 } /* end of while statement */

}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_getevtmsk()

returns station event mask ms_getevtmsk()

81

Name: int ms_getevtmsk(devh,event,bitmaskp)
Inputs: int devh

int event
unsigned short *bitmaskp

• MSI/SC station device handle
• event to retrieve
• pointer to bitmask variable

Returns: 0 on success
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration
Mode: synchronous

n Description

The ms_getevtmsk() function returns station event mask for a specified event.

Parameter Description

devh: The valid station device handle returned by a call to
ms_open().

event: Specifies an event’s mask:

• MSEV_SIGMSK
On-hook transition event
Off-hook transition event
Hookflash event

bitmaskp: Points to a variable that will contain the value of the
bitmask. Refer to ms_setevtmsk() for the valid bitmask
values.

n Cautions

This function fails when:

• The device handle is invalid for an MSI/SC station device.
• The event field is invalid.

ms_getevtmsk() returns station event mask

82

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

/* Basic error handler */
do_error(devh, funcname)
 int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);

 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d.", errorval);
 printf("\n");
}

main()
{
 int tsdev; /* Station device descriptor variable */
 unsigned short bitmask; /* Bitmask variable */

 /* Open board 1 device */
 if ((tsdev = ms_open("msiB1C1", 0)) == AT_FAILURE) {
 printf("Cannot open board msiB1C1. errno = %d", errno);
 exit(1);
 }
 /* Get signaling event mask*/
 if (ms_getevtmsk(tsdev, MSEV_SIGMSK, &bitmask) == AT_FAILURE) {
 do_error(tsdev, "ms_getevtmsk()");
 }

 if (bitmask & MS_ONHOOK) {
 /* continue processing (ON-HOOK event is set) */
 printf("ON-HOOK event is set\n");
 }

 if (bitmask & MS_OFFHOOK) {
 /* continue processing (OFF-HOOK event is set) */
 printf("OFF-HOOK event is set\n");

 }
 if (bitmask & MS_HOOKFLASH) {
 /* continue processing (HOOK FLASH event is set) */
 printf("HOOK FLASH event is set\n");
 }

 /*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device */
 if (ms_close(tsdev) == AT_FAILURE) {
 printf("Cannot close board msiB1C1. errno = %d", errno);
 }
}

returns station event mask ms_getevtmsk()

83

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_setevtmsk()

ms_monconf() adds a monitor to a conference

84

Name: int ms_monconf(devh,confID,lts)
Inputs: int devh • MSI/SC board device handle

 int confID • conference identifier
 long *lts • pointer to listen SCbus time

slot
Returns: 0 on success

 AT_FAILURE on failure
Includes: srllib.h

 dtilib.h
 msilib.h

Category: Conference Management
Mode: synchronous

n Description

The ms_monconf() function adds a monitor to a conference. Monitoring a
conference guarantees that the conferenced signal will be placed on the SCbus.
This is slightly different from when a receive-only party is added to a conference.
In case of a receive-only party, the conferenced signal may or may not be placed
on the SCbus, depending on the chan_sel of the party.

Since the monitored signal is on the SCbus, several parties can listen to the
monitored signal simultaneously.

Parameter Description

devh: The MSI/SC board device handle.

confID: The conference identifier.

lts: Pointer to the listen SCbus time slot. The monitored signal
will be present on this time slot.

NOTES: 1. This function can only be issued once per conference. If you attempt
to add another monitor using ms_monconf(), you will receive the
E_MSMONEXT error message.

2. Calling this function uses one resource.

adds a monitor to a conference ms_monconf()

85

A monitor counts as one of the parties in the conference. If the maximum number
of parties allowed is used, it is not possible to monitor the conference. When a
conference is deleted, the conference monitor is also deleted.

NOTE: It is the application’s responsibility to listen to the SCbus time slot on
which the monitored signal is transmitted.

n Cautions

This function fails when:

• The device handle specified is invalid.
• The conference is full.
• The board is out of DSP resources.
• The conference ID is invalid.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

#define NUM_PARTIES 2

int dev1; /* Board dev descriptor variables */
int tsdev1; /* DTI time slot device handle */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */
long lts; /* listen time slot */
SC_TSINFO tsinfo; /* Time slot information structure */
int ts1;

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: errno=%d", errno);
 exit(1);
}

/* Assume that there is a DTI in the system.
 * Assume the device handle for a time slot on the DTI
 * is tsdev1 and time slot it is assigned to is ts1
*/

/* Set up CDT structure */
cdt[0].chan_num = station ; /* Valid MSI Station */
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr =MSPA_NULL;

cdt[1].chan_num = ts1; /* ts1 is a valid DTI time slot */
cdt[1].chan_sel = MSPN_TS;

ms_monconf() adds a monitor to a conference

86

cdt[1].chan_attr =MSPA_TARIFF;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 * Continue Processing
 */

/* Now monitor the conference */

if (ms_monconf(dev1, confID,<s) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}
/* Assume that a DTI device tsdev1 is available */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarray = <s;
if (dt_listen(tsdev1,&tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev1));
 exit(1);
}
/*
 * Continue Processing
 */

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_unmonconf()

opens an MSI/SC device ms_open()

87

Name: int ms_open(name,oflags)
Inputs: char *name

int oflags

• MSI/SC station or board device name
• open attribute flags

Returns: device handle
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Device Management
Mode: synchronous

n Description

The ms_open() function opens an MSI/SC device and returns a unique handle to
identify the device. All subsequent references to the opened device must be made
using the device handle.

NOTE: If a parent process opens a device and enables events, there is no
guarantee that the child process will receive a particular event.

Parameter Description

name: Points to an ASCIIZ string that contains the name of a valid
MSI/SC station or board device.

The name of the station device should be msiBbCc where:

b is the board number (1 based)
c is the station number (1 to 24)

The name of the board device should be msiBb where:

b is the board number (1 based)

oflags: Reserved for future use. Set this parameter to 0.

n Cautions

Dialogic devices should never be opened using the Windows NT open().

ms_open() opens an MSI/SC device

88

This function fails when:

• The device name is invalid.
• The device is already open.
• The system has insufficient memory to complete the open.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

main()
{
 int bddev; /* Board device descriptor variable */

 /* Open board 1 device */
 if ((bddev = ms_open("msiB1", 0)) == AT_FAILURE) {
 printf("Cannot open board msiB1. errno = %d\n", errno);
 exit(1);
 }

 /*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device */
 if (ms_close(bddev) == AT_FAILURE) {
 printf("Cannot close board msiB1. errno = %d", errno);
 }

}

n Errors

The ms_open() function does not return errors in the standard return code format.
If an error occurred during the ms_open() call, a AT_FAILURE will be returned,
and the specific error number will be returned in the errno global variable. If a
call to ms_open() is successful, the return value will be a handle for the opened
device.

opens an MSI/SC device ms_open()

89

n See Also

• ms_close()

ms_remfromconf() removes a party from a conference

90

Name: int ms_remfromconf(devh,confID,cdt)
Inputs: int devh

int confID
MS_CDT *cdt

• MSI/SC board device handle
• conference identifier
• pointer to MS_CDT structure

Returns: 0 on success
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Conference Management
Mode: synchronous

n Description

The ms_remfromconf() function removes a party from a conference. The
conference ID is the value previously returned by the ms_estconf() function. In
this case, the channel attributes of the MS_CDT structure are ignored. For a full
description of the MS_CDT structure, see the ms_estconf() function.

Parameter Description

devh: The MSI/SC board device handle.

confID: The conference identifier number.

cdt: Pointer to an MS_CDT structure.

NOTES: 1. Dialogic recommends that you unlisten before removing the SCbus
time slot member.

2. Calling this function frees one resource.

n Cautions

An error will be returned if this function is used to remove the last remaining party
from a conference. The ms_delconf() function must be used to end a conference.

This function fails when:

removes a party from a conference ms_remfromconf()

91

• The device handle passed is invalid.
• The conference ID is invalid.
• The party to be removed is not part of the specified conference.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

#define NUM_PARTIES 3

int dev1; /* Board dev descriptor variables */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: errno=%d", errno);
 exit(1);
}

/*
 * Continue processing
 */

/* Set up CDT structure */
/* Assume MSI stations 2, 4 and 7 are in the conference */
cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

cdt[1].chan_num = 4
cdt[1].chan_sel = MSPN_STATION;
cdt[1].chan_attr = MSPA_PUPIL;

cdt[2].chan_num = 7;
cdt[2].chan_sel = MSPN_STATION;
cdt[2].chan_attr = MSPA_COACH;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) != 0) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 * Continue processing
 *
 */

cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;

if (ms_remfromconf(dev1, confID, &cdt[0]) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));

ms_remfromconf() removes a party from a conference

92

 exit(1);
}

if (ms_delconf(dev1, confID) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Continue processing */

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_addtoconf()
• ms_delconf()
• ms_estconf()

board parameters ms_setbrdparm()

93

Name: int ms_setbrdparm(devh,param, valuep)
Inputs: int devh

unsigned long param

void * valuep

• MSI/SC board device handle
• device parameter defined name
• pointer to parameter value

Returns: 0 on success
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration
Mode: synchronous

n Description

The ms_setbrdparm() function changes board parameters.

Parameter Description

devh: The valid board device handle returned by a call to
ms_open().

param: The parameter whose value is to be altered.

valuep: Void pointer to location containing the parameter value.

NOTE: Calling this function may cause the available resource count to change.
When parm_id = MSG_ZIPENA and value = MS_ZIPENABLE, one
resource will be used. When parm_id = MSG_ZIPENA and value =
MS_ZIPDISABLE, one resource will be freed.

Typically, the default value for each MSI/SC parameter is adequate for operation.
However, the user may need to change the following conditions:

• MSG_DBONTM Debounce on time

• MSG_DBOFFTM Debounce off time

• MSG_MINFLASH Minimum hook flash time

• MSG_MAXFLASH Maximum hook flash time

ms_setbrdparm() board parameters

94

• MSG_PDRNGCAD Select predefined ring cadence pattern

• MSG_RING Ringing capability support information

• MSG_RNGCAD Ring cadence pattern

• MSG_UDRNGCAD Set user-defined ring cadence pattern

• MSG_ZIPENA Ziptone enable

• MSCB_ND Notify on add

• MSCB_ZIP Zip tone notification

The following table contains a description of MSI/SC device parameters:

Table 9. MSI/SC Board/Device Parameters

Parameter ID Description

MSCB_ND Defines the notify-on-add tone generated to notify
conference parties that a party has joined or left the
conference. valuep must be set to point to an
MS_NCB structure that specifies tone
characteristics. Note that the pulse repetition field
is ignored by the function. The MS_NCB structure
is as follows:
typedef struct ms_ncb{
 unsigned char volume; /* volume */
 unsigned char tone; /* tone frequency */
 short duration; /* tone duration */
 short pulse; /* pulse repetition
 interval */
} MS_NCB

Defaults: volume =7, frequency = 24H or 1125 Hz,
duration = 14H or 200 ms.

MSCB_ZIP Zip tone controls the characteristics of the tone
generated to notify a party that they are about to be
connected with a call. The volume, tone frequency
and duration fields of the MS_NCB block are set

board parameters ms_setbrdparm()

95

Parameter ID Description
but the pulse repetition field is ignored by the
function.

Defaults: Volume = 7, frequency = 18H, duration =
64H or 1sec.

MSG_DBOFFTM Defines the minimum length of time (50 ms units)
before an off-hook transition is detected. Off-hook
debounce time range: 2-14H, default = 3H. A
pointer to a short containing this duration is passed
as the third parameter.

MSG_DBONTM Defines the minimum length of time (50 ms units)
before an on-hook transition is detected. On-hook
debounce time range: 5-3CH, default: 15H. A
pointer to a short containing this duration is passed
as the third parameter.

NOTE: The MSG_DBONTM must be set to a
greater unit than MSG_MAXFLASH. If
set to a lesser unit, the unit will
automatically be made equal to or 1 unit
greater than MSG_MAXFLASH.

MSG_MAXFLASH Defines a maximum length of time for a station to
be in an on-hook state before a hook flash signal is
detected. Maximum hook flash time range: 4-3CH,
default = 14H. A pointer to a short containing this
duration is passed as the third parameter.

MSG_MINFLASH Defines a minimum length of time for a station to
be in an on-hook state before a hook flash signal is
detected. Minimum hook flash time range: 2-14H,
default = 6H. A pointer to a short containing this
duration is passed as the third parameter.

MSG_PDRNGCAD This parameter is used to select one of the
following predefined ring cadence patterns on the
MSI/SC board (duration in seconds):

Value Cadence Pattern

ms_setbrdparm() board parameters

96

Parameter ID Description

 1 1 on
 5 off

 2 1 on
 2.75 off

 3 1.5 on
 3 off

 4 1 on
 4.25 off

 5 .5 on, 2.5 off
 .5 on, 2.5 off

 6 2 on
 4 off

The default is value 6.

MSG_RING This parameter is used to find out whether the
board supports ringing capabilities. For a ringing
board, the parameter value returned is
MS_RNGBRD and for a non-ringing board the
parameter value is MS_NONRNGBRD.

MSG_RNGCAD This parameter is used to get the ring cadence
pattern. The length, in bytes, of this parameter is
variable and is determined by the number of bits of
the active period cadence information specified.
The first byte of this parameter, specifies the total
number (count) of cadence bits being specified. A
zero value for this first byte indicates the default
number of bits (currently 8) is being specified. The
next byte(s) correspond to the bit pattern(s).

MSG_UDRNGCAD Specifies the user-defined ring cadence. This
parameter is used to set the station ring cadence
(the repeating pattern of ringing ON/OFF
durations) for all stations attached to the MSI/SC
board.

board parameters ms_setbrdparm()

97

Parameter ID Description

MSG_ZIPENA
The zip tone setting. MS_ZIPENABLE enables zip
tone generation. MS_ZIPDISABLE disables zip
tone generation. Default = MS_ZIPENABLE.

The ring cadence is 1/3 active and 2/3 inactive. The active period defines an
ON/OFF pattern of ringing in units of 250ms and is specified in the value pointed
to by valuep. The value can be from 2 to 7 bytes, depending on the duration of
the active period.

Byte 1 specifies the total number of bits in the active period, ranging from 01H to
30H (1-48 bits). Since each bit represents a 250 ms duration, the active period can
range from 250 ms to 12 seconds.

Bytes 2-7 (the number of bytes depends upon the value specified in Byte 1)
specifies the active period ring pattern. Each bit represents the state of the ring
current (1=ON, 0=OFF) for a 250 ms duration in a sequence from left to right.

The inactive period is a mandatory time of no ringing that is twice the active
period duration. An inactive periods can range from 500 ms to 24 seconds and is
created from the active period duration. The default ring cadence is 2 seconds on
and 4 seconds off.

ms_setbrdparm() board parameters

98

Table 10. MSI/SC Ring Cadence Examples

Desired Cadence
 (seconds)

Parameter Value
 (hexadecimal)

Example
Number

Ring ON Time
(embedded off time)

Ring OFF
 Time

Total Bits
(byte 1)

Active Pattern
(bytes 2-n)

Single Ring Patterns:

1 .75 7.5 0B E000

2 1 2 04 F0

3 1 2.75 05 F0

4 1 4.25 07 F0

5 1 5 08 F0

6 1.25 4.75 08 F8

7 1.5 3 06 FC

8 1.5 3.75 07 FC

9 2 4 08 FF

Double Ring Patterns:

10 .5, (.25), .5 2.5 05 D8

11 .5, (.25), .5 4 07 D8

12 1, (.75), 1 5.5 0B F1E0

Triple Ring Patterns:

13 1, (.5), .25, (.25), .25 4.5 09 F280

14 1, (.5), .25, (.25), .25 5.25 0A F280

15 1, (1), .25, (.25), .25 5.5 0B F-A-

16 .5, (.25), .5, (.25), 1 5 0A DBC0

board parameters ms_setbrdparm()

99

n Cautions

Most parameter values are integers. However, because this routine expects a void
pointer to valuep, the address must be cast as a void*.

This function fails when:

• The device handle is invalid.
• The parameter specified is invalid.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

main()
{
 int devh; /* Board device descriptor variable */
 char cadence[7]; /* Cadence parameter array */

 if ((devh = ms_open("msiB1", 0)) == -1) {
 printf("Error opening msiB1 : errno = %d\n", errno);
 exit(1);
 }

 /*
 * Set cadence bit pattern
 * (Active cadence : 1 sec on, 0.75 secs off, 1 sec on)
 * (Inactive period : 5.5 secs off)
 */
 cadence[0] = 0x0b; /* Bit pattern 11 bits wide */
 cadence[1] = 0xf1; /* Pattern : 11110001 */
 cadence[2] = 0xeo; /* Pattern : 11100000 */

 /* Set ring cadence to the user-defined pattern */
 if (ms_setbrdparm(devh,MSG_UDRNGCAD,(void *)&cadence[0])) == -1){
 printf("Error setting board parameter : %s\n",
 ATDV_ERRMSGP(devh));
 exit(1);
 }

 /* Predefined selection 3 from Table 1 */
 cadence[0] = 3;

 /* Set ring-cadence to predefined pattern 3 */
 if (ms_setbrdparm(devh,MSG_PDRNGCAD,(void *)&cadence[0])) == -1){
 printf("Error setting board parameter : %s\n",
 ATDV_ERRMSGP(devh));
 exit(1);
 }

 if (ms_close(devh) == -1) {

ms_setbrdparm() board parameters

100

 printf("Error Closing msiB1 : errno - %d\n", errno);
 exit(1);
 }
}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_getbrdparm()

changes the attributes of a party ms_setcde()

101

Name: int ms_setcde(devh,confID,cdt)
Inputs: int devh • MSI/SC device handle

 int confID • conference identifier
 MS_CDT *cdt • pointer to an MS_CDT

structure
Returns: 0 on success

 AT_FAILURE on failure
Includes: srllib.h

 dtilib.h
 msilib.h

Category: Conference Management
Mode: synchronous

n Description

The ms_setcde() function changes the attributes of a party in an existing
conference.

Parameter Description

devh: The MSI/SC device handle.

confID: The conference identifier number.

cdt: Pointer to an MS_CDT structure.

The MS_CDT structure has the following format:

typedef struct {
 int chan_num; /* channel/time slot number */
 int chan_sel; /* meaning of channel/time slot number */
 int chan_attr; /* channel attribute description */
} MS_CDT;

The chan_num denotes the station number or the SCbus time slot number of the
party in the conference. The chan_sel defines the meaning of the chan_num.
Valid choices are as follows:

• MSPN_STATION MSI/SC station number

• MSPN_TS SCbus time slot number

ms_setcde() changes the attributes of a party

102

Channel attribute is a bitmask describing the party’s properties within the
conference. It will return one or more of the following values ORed together:

• MSPA_NULL No special attributes.

• MSPA_RO Party participates in conference in receive-only mode.

• MSPA_TARIFF Party receives periodic tone for duration of call.

• MSPA_COACH Party is a coach. Coach is heard by pupil only.

• MSPA_PUPIL Party is a pupil. Pupil hears everyone including
coach.

NOTE: If the party attributes of more than one party are to be set, this function
must be called multiple times.

n Cautions

This function fails when:

• The device handle specified is invalid.
• The device is not connected to the SCbus.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

#define NUM_PARTIES 2

int dev1; /* Board dev descriptor variables */
int chdev2; /* Channel dev descriptor */
MS_CDT cdt[NUM_PARTIES]; /* Conf. desc. table */
int confID; /* Conf. ID */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: errno=%d", errno);
 exit(1);
}

/* Open board 1, channel 2 device */
if ((chdev2 = ms_open("msiB1C2",0) == -1) {

changes the attributes of a party ms_setcde()

103

 printf("Cannot open MSI B1, C2. errno = %d", errno);
 exit(1);
}

/*
 *
 * Continue processing
 *
 */

/* Set up CDT structure */
cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_COACH;

cdt[1].chan_num = 1;
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_PUPIL;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) != 0) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 *
 * Continue processing
 *
 */

/* Now change the attribute of MSI Station 2 */
cdt[0].chan_num = 2;
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

if((ms_setcde(dev1, confID, cdt)) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 * Continue Processing
 *
 */

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

ms_setcde() changes the attributes of a party

104

n See Also

• ms_addtoconf()
• ms_estconf()
• ms_getcde()

changes transition event masks ms_setevtmsk()

105

Name: ms_setevtmsk(devh,event,bitmask,action)
Inputs: int devh

int event
unsigned short bitmask
int action

• MSI/SC station device handle
• event to be enabled/disabled
• bitmask for events
• set, add, or subtract bitmask

Returns: 0 on success
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration
Mode: synchronous

n Description

The ms_setevtmsk() function changes transition event masks and enables and
disables messages from a station.

Parameter Description

devh: The valid station device handle returned by a call to
ms_open().

event: One type of transition event to be enabled or disabled:

• MSEV_SIGMSK - Hook switch transition event.
Notification of specific signaling events is enabled or
disabled by setting the bitmask parameter (see below).

bitmask: The event to be enabled by setting the bitmask for that
event. Multiple transition events may be enabled or
disabled with one function call if the bitmasks are ORed
together.

The possible values for the bitmask parameter are:

• MSMM_OFFHOOK - enables off-hook detection

• MSMM_ONHOOK - enables on-hook detection

• MSMM_HOOKFLASH - enables hook flash detection

ms_setevtmsk() changes transition event masks

106

Parameter Description

action: Specifies how the transition event mask is changed. Events
can be added to or subtracted from those specified in
bitmask. The possible values for the action parameter are:

• DTA_SETMSK - enables notification of events
specified in bitmask and disables notification of
previously set events.

• DTA_ADDMSK - enables messages from the channel
specified in bitmask, in addition to previously set
events.

• DTA_SUBMSK - disables messages from the channel
specified in bitmask.

For example, to enable notification of the events specified in the bitmask
parameter and disable notification of previously set events:

• specify the events to enable in the bitmask field
• specify the DTA_SETMSK bitmask in the action field

To enable an additional event specified in bitmask without disabling the currently
enabled events:

• specify the events in bitmask
• specify DTA_ADDMSK in the action field

To disable events in bitmask without disabling any other events:

• specify the events in bitmask
• specify DTA_SUBMSK in the action field

To disable all currently enabled events:

• specify 0 in bitmask
• specify DTA_SETMSK in the action field

changes transition event masks ms_setevtmsk()

107

n Processing an Event:

When a hook switch transition event occurs, the application receives an
MSEV_SIG event as the event type. The associated event data will contain the
bitmask of the specific transition that caused the event. To enable an event handler
for a specified event, follow these steps:

1. Call sr_enbhdlr(). This function specifies the event and the application
defined event handler that is called from a signal handler.

2. Call ms_setevtmsk(). This function specifies the list of events the
application should be notified of.

NOTE: For an event to be handled, it must be specified in both
sr_enbhdlr() and ms_setevtmsk().

3. The event data is retrieved using the sr_getevtdatap() function. Refer to
Appendix A for more information.

n Cautions

This function fails when:

• The device handle is invalid.
• The event specified is invalid.
• The action specified is invalid.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

/* Basic error handler */
do_error(devh, funcname)
 int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);

 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d.", errorval);
 printf("\n");
}

ms_setevtmsk() changes transition event masks

108

main()
{
 int tsdev; /* Channel device descriptor variable */

 /* Open board 1 time slot 1 device */
 if ((tsdev = ms_open("msiB1C1", 0)) == AT_FAILURE) {
 printf("Cannot open device msiB1C1. errno = %d", errno);
 exit(1);
 }

 /* Enable signaling transition events (off-hook event) */
 if (ms_setevtmsk(tsdev, MSEV_SIGMSK, MSMM_OFFHOOK, DTA_SETMSK) == AT_FAILURE){
 do_error(tsdev, "ms_setevtmsk()");
 exit(1);
 }

 /*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device */
 if (ms_close(tsdev) == AT_FAILURE) {
 printf("Cannot close board msiB1C1. errno = %d", errno);
 }
}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_getevtmsk()

changes the MSI/SC station level parameters ms_setstparm()

109

Name: ms_setstparm(devh,param,valuep)
Inputs: int devh

unsigned char param
void *valuep

• MSI/SC station device handle
• parameter name
• pointer to parameter value

Returns: 0 on success
AT_FAILURE on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Configuration
Mode: synchronous

n Description

The ms_setstparm() function changes the MSI/SC station level parameters.

Parameter Description

devh: The valid station device handle returned by a call to
ms_open().

param: Specifies the station level parameter.

• MSSP_STPWR - station power status.

valuep: Specifies the address of the parameter value. Possible
values are:

• MS_PWROFF - power down station. Selecting this
value turns off the loop current to the specified station.

• MS_PWRON - power up station. Selecting this value
turns on the loop current to the specified station.

n Cautions

This function fails when:

ms_setstparm() changes the MSI/SC station level parameters

110

• The station device handle is invalid.
• The parameter specified is invalid.
• The parameter value specified is invalid.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

main()
{
 int devh; /* MSI/SC station device descriptor */
 int value; /* Parameter value */

 if ((devh = ms_open(“msiB1C1”, 0)) == -1) {
 printf(“Error opening msiB1C1 : errno = %d\n”, errno);
 exit(1);
 }

 /* Power off the station */
 value = MS_PWROFF;
 if (ms_setstparm(devh, MSSP_STPWR, (void *)&value)) == -1) {
 printf("Error setting board parameter : %s\n",
 ATDV_ERRMSGP(devh));
 exit(1);
 }

 if (ms_close(devh) == -1) {
 printf(“Error Closing msiB1C1 : errno = %d\n”, errno);
 exit(1);
 }
}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_getbrdparm()

changes the MSI/SC station level parameters ms_setstparm()

111

• ms_setbrdparm()

ms_setvol() changes or resets the station volume

112

Name: int ms_setvol (devh,type,steps)
Inputs: int devh • MSI/SC station device handle

 int type • volume adjust or reset
 int steps • number of steps to increase or

decrease volume
Returns: 0 on success

 AT_FAILURE on failure
Includes: srllib.h

 dtilib.h
 msilib.h

Category: Station
Mode: synchronous

n Description

The ms_setvol() function changes or resets the station volume.

Parameter Description

devh: The station handle.

type: Specifies whether to adjust or to reset current mode.

steps: The number of steps to increase or decrease volume.

The type parameter dictates whether the volume will be adjusted from its current
level or reset to the default value. The type parameter must be set to one of the
following values:

VOLADJ - Adjusts station volume
VOLRES - Resets station volume back to the default

If the type parameter is VOLRES, the volume is returned to the default setting of
-3 dB and the third parameter, steps, is ignored. For VOLADJ, each step
increases or decreases from the current volume by 1 dB. A positive step value
increases the volume, and a negative step value decreases the volume. The
volume ranges from -9 dB to 3 dB, with a default value of -3 dB. Hence, the
volume can be changed 6 dB higher or lower from the default value. However,
depending on the current volume setting, the number of steps in either direction
will be limited.

changes or resets the station volume ms_setvol()

113

NOTE: An error will NOT be returned if the saturation point is reached in either
direction.

n Cautions

This function fails when:

• An invalid device handle is specified.
• The device is not connected to the MSI/SC board.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

int chdev2; /* Station dev descriptor */

/* Open board 1, station 2 device */
if ((chdev2 = ms_open("msiB1C2",0) == -1) {
 printf("Cannot open MSI B1, C2. errno = %d", errno);
 exit(1);
}

/*
 *
 * Continue processing
 *
 */
/* Increase volume by 2 dB from current level */
if (ms_setvol(chdev2,VOLADJ,2)==-1) {
 printf("Error setting volume: %s", ATDV_ERRMSGP(chdev2));
 exit(1);
}
/*
 * Continue Processing
 *
 */

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

ms_setvol() changes or resets the station volume

114

Error defines can be found in dtilib.h or msilib.h.

stops a multitasking function ms_stopfn()

115

Name: int ms_stopfn(devh,funcid)
Inputs: unsigned int devh • MSI/SC station device handle

 unsigned int funcid • ID of multitasking function
Returns: 0 on success

 AT_FAILURE on failure
Includes: srllib.h

 dtilib.h
 msilib.h

Category: Device Management
Mode: synchronous

n Description

The ms_stopfn() function stops a multitasking function in progress for a station.

Parameter Description

devh: The MSI/SC station device handle.

funcid: The identification of the multitasking function that must be
stopped. The valid value is:

MTF_RING: Stops ringing on a station, if in progress.

NOTE: Currently, only ringing can be stopped using ms_stopfn(). The ringing
must have been started by issuing a ms_genring() for that station.

n Cautions

This function fails when the device is not an MSI/SC station.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

 int chdev1 ;

/* Open board 1, station 2 device */
if ((chdev1 = ms_open("msiB1C2",0) == -1) {

ms_stopfn() stops a multitasking function

116

 printf("Cannot open MSI B1, C2. errno = %d", errno);
 exit(1);
}

/* ring the station 2 five times */
if (ms_genring(chdev1, 5, EV_ASYNC)== -1){
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

/* 2 seconds later, ringing has not completed and station 2
 * has not gone off-hook. However, there is a need to abort the
 * ringing on station 2. Issue the abort command
 */

if (ms_stopfn(chdev1,MTF_RING)== -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(chdev1));
 exit(1);
}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_genring()

tests the ability of a board ms_tstcom()

117

Name: int ms_tstcom(devh,tmo)
Inputs: int devh

int tmo
• MSI/SC board device handle
• timeout value

Returns: 0 on success
AT_FAILURE
on failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Diagnostic
Mode: synchronous/asynchronous

n Description

The ms_tstcom() function tests the ability of a board to communicate with the
system. This function can operate in either blocking or non-blocking mode.

Parameter Description

devh: The valid board device handle returned by a call to
ms_open().

tmo: The maximum amount of time that the function will block
while waiting for a response from the board. If a response
is not returned within tmo seconds, an error will be
returned.

n Synchronous Mode

To run this function in synchronous (blocking) mode, set tmo to the length of
time, in seconds, to await a return. I f a response is not returned within tmo
seconds, an error is returned.

n Asynchronous Mode

To operate this function in asynchronous (non-blocking) mode, specify 0 for tmo.
This allows the application to continue processing while awaiting a completion
event. If event handling is properly set up for your application, DTEV_COMRSP

ms_tstcom() tests the ability of a board

118

will be returned by the sr_getevttype() function included in the SRL when the
test completes successfully. See Appendix A for information on event handling.

n Cautions

This is a board level function only.

This function fails when:

• The device handle is invalid.
• There is a hardware problem on the board.
• There is a configuration problem (IRQ conflict).

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

/* Basic error handler */
do_error(devh, funcname)
 int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);

 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d.", errorval);
 printf("\n");
}

main()
{
 int bddev; /* Board device descriptor variable */

 /* Open board 1 device */
 if ((bddev = ms_open("msiB1", 0)) == AT_FAILURE) {
 printf("Cannot open board msiB1. errno = %d", errno);
 exit(1);
 }

 /*
 * Test the board's ability to communicate with the system.
 */
 if (ms_tstcom(bddev, 60) == AT_FAILURE) {
 do_error(bddev, "ms_tstcom()");
 exit(1);
 }

 printf("Communications test completed successfully\n");

tests the ability of a board ms_tstcom()

119

 /* Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device */
 if (ms_close(bddev) == AT_FAILURE) {
 printf("Cannot close board msiB1. errno = %d", errno);
 }
}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_tstdat()

ms_tstdat() performs a data test on the MSI/SC board

120

Name: int ms_tstdat(devh,tmo)
Inputs: int devh

int tmo
• MSI/SC board device handle
• timeout value

Returns: 0 on success
AT_FAILURE on
failure

Includes: srllib.h
dtilib.h
msilib.h

Category: Diagnostic
Mode: synchronous/asynchronous

n Description

The ms_tstdat() function performs a data test on the MSI/SC board and verifies
the integrity of the MSI/SC interface to the PC. The data test is performed by
sending a series of bytes to the MSI/SC and by checking the integrity of the bytes
returned. The function can operate in blocking or non-blocking mode.

Parameter Description

devh: The valid board device handle returned by a call to
ms_open().

tmo: The maximum amount of time that the function will block
while waiting for a response from the board. If a response is
not returned within tmo seconds, an error will be returned.

n Asynchronous Mode

To operate this function in (non-blocking) mode, specify 0 for tmo. This allows
the application to continue processing while awaiting a completion event. If event
handling is properly set up for your application, DTEV_DATRSP will be returned
by the sr_getevttype() function included in the SRL when the test completes
successfully. See Appendix A for information on event handling.

performs a data test on the MSI/SC board ms_tstdat()

121

n Synchronous Mode

To run this function in (blocking) mode, set tmo to the length of time, (in
seconds), to await a return. If a response is not returned within tmo seconds, an
error is returned.

n Cautions

This is a board level function only.

This function fails when:

• The test data is corrupted.
• The device handle is invalid.

n Example

Synchronous mode:

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

/* Basic error handler */
do_error(devh, funcname)
 int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);

 printf("Error while calling function %s.\n", funcname);
 printf("Error value = %d.", errorval);
 printf("\n");
}

main()
{
 int bddev; /* Board device descriptor variable */

 /* Open board 1 device */
 if ((bddev = ms_open("msiB1", 0)) == AT_FAILURE) {
 printf("Cannot open board msiB1. errno = %d", errno);
 exit(1);
 }

 /* Perform a data integrity test between the board and PC. */
 if (ms_tstdat(bddev, 60) == AT_FAILURE) {
 do_error(bddev, "ms_tstdat()");

ms_tstdat() performs a data test on the MSI/SC board

122

 exit(1);
 }

 printf("Data integrity test completed successfully\n");

/*
 * Continue processing
 * .
 * .
 * .
 */

 /* Done processing - close device */
 if (ms_close(bddev) == AT_FAILURE) {
 printf("Cannot close board msiB1. errno = %d", errno);
 }
}

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_tstcom()

removes a monitor from a conference ms_unmonconf()

123

Name: int ms_unmonconf(devh,confID)
Inputs: int devh • MSI/SC board device handle

 int confID • conference ID
Returns: 0 on success

 AT_FAILURE on failure
Includes: srllib.h

 dtilib.h
 msilib.h

Category: Conference Management
Mode: synchronous

n Description

The ms_unmonconf() function removes a monitor from a conference.

NOTE: Calling this function frees one resource.

Parameter Description

devh: The MSI/SC board device handle.

confID: The conference identifier.

n Cautions

This function fails when:

• The device handle specified is invalid.
• An invalid conference is specified.
• A monitor does not exist in the conference.

n Example

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

#define NUM_PARTIES 2

int dev1; /* Board dev descriptor variables */

ms_unmonconf() removes a monitor from a conference

124

int tsdev1; /* DTI time slot device handle */
MS_CDT cdt[NUM_PARTIES]; /* conference descriptor table */
int confID; /* conference ID */
long lts; /* listen time slot */
SC_TSINFO tsinfo; /* time slot information structure */

/* Open board 1 device */
if ((dev1 = ms_open("msiB1",0)) == -1) {
 printf("Cannot open MSI B1: errno=%d", errno);
 exit(1);
}

/* Assume that there is a DTI in the system.
 * Assume the device handle for a time slot on the DTI
 * is tsdev1 and time slot it is assigned to is ts1
*/

/* Set up CDT structure */
cdt[0].chan_num = station ; /* Valid MSI Station */
cdt[0].chan_sel = MSPN_STATION;
cdt[0].chan_attr = MSPA_NULL;

cdt[1].chan_num = ts1 ; /* ts1 is the DTI time slot */
cdt[1].chan_sel = MSPN_TS;
cdt[1].chan_attr = MSPA_RO;

/* Establish conference */
if (ms_estconf(dev1, cdt, NUM_PARTIES, MSCA_ND, &confID) == -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/*
 * Continue Processing
 */

/* Now monitor the conference */
if (ms_monconf(devh,confID,<s)== -1) {
 printf("Error Message = %s",ATDV_ERRMSGP(dev1));
 exit(1);
}

/* Assume that a DTI time slot tsdev1 is the available */
tsinfo.sc_numts = 1;
tsinfo.sc_tsarray = <s;

if (dt_listen(tsdev1,&tsinfo) == -1){
 printf("Error Message = %s",ATDV_ERRMSGP(tsdev1));
 exit(1);
}
/*
 * Continue processing
 */

/* Unlisten to the monitor’s time slot first */
if (dt_unlisten(tsdev1) == -1) {
 printf("Error message = %s\n", ATDV_ERRMSGP(tsdev1);
 exit(1);
}

/* Now unmonitor the conference */
if (ms_unmonconf(devh, confID) == -1) {

removes a monitor from a conference ms_unmonconf()

125

 printf("Error message = %s\n", ATDV_ERRMSGP(devh));
 exit(1);
}

/* Continue processing */

n Errors

If the function does not complete successfully, it will return a AT_FAILURE to
indicate error. Use the Standard Attribute function ATDV_LASTERR() to
obtain the applicable error value(s). Refer to the error type tables found in
Chapter 2. MSI/SC Library Function Overview of this guide.

Error defines can be found in dtilib.h or msilib.h.

n See Also

• ms_estconf()
• ms_monconf()

ms_unmonconf() removes a monitor from a conference

126

127

4. MSI/SC Application Guidelines

4.1. General Guidelines

This chapter contains suggestions to guide programmers in designing and coding a
Dialogic MSI/SC application for Windows NT.

This section provides the following MSI/SC general and task-specific
programming guidelines:

• General Guidelines
• Initialization
• Compiling and Linking
• Aborting

The following general guidelines for writing Dialogic applications are explained
in this section:

NOTE: These guidelines are not a comprehensive guide to developing or
debugging MSI/SC applications.

• Using symbolic defines
• Including header files
• Checking return codes

4.1.1. Use Symbolic Defines

Dialogic does not guarantee the numerical values of defines will remain the same
as new versions of a software package are released. In general, do not use a
numerical value in your application when an equivalent symbolic define is
available. Symbolic defines are found in the dtilib.h and msilib.h files.

4.1.2. Include Header Files

Various header files must be included in your application to test for error
conditions, to use library functions from other Dialogic products, or to perform

MSI/SC Software Reference for Windows NT

128

event-management and standard-attribute functions. An example is shown below.
See 2. MSI/SC Library Function Overview for details.

#include <windows.h>
#include <errno.h>
#include “srllib.h”
#include “dtilib.h”
#include “msilib.h”

NOTE: To avoid redundancy in the remaining programming examples in this
chapter, #include statements will not be shown.

4.1.3. Check Return Codes

Most Network and MSI/SC Windows NT library functions return a value of
AT_FAILURE if they fail (extended attribute functions return AT_FAILURE or
AT_FAILUREP). Therefore, any call to a library function should check for a
return value indicating an error. This can be done by using a format similar to the
following:

/* call to Dialogic MSI/SC library function */

if (ms_xxx(arguments) == -1) {
 /* error handling routine */
}
/* successful function call -
 continue processing ... */

Using this technique ensures that all errors resulting from a library call will be
trapped and handled properly by the application. In many cases, you can check
for a return value of other than zero (0), as shown in the example below.
However, this should only be used where a nonzero value is returned when the
function fails. For details, see 2. MSI/SC Library Function Overview and 3.
MSI/SC Function Reference.

/* error handling routine */
void do_error(devh, funcname)

int devh;
 char *funcname;
{
 int errorval = ATDV_LASTERR(devh);
 printf("Error while calling function %s on device %s. \n", funcname,
 ATDV_NAMEP(devh));
 if (errorval == E_MSSYSTEM) {
 printf("errno = %d\n", errno);
 perror("");
 } else {
 printf("Error value = %d\n Error message = %s\n",

4. MSI/SC Application Guidelines

129

 errorval,ATDV_ERRMSGP(devh));
 }
 return;
}
main()
{
 .
 .
 .
 /* call to Dialogic MSI/SC library function */
 if (ms_setevtmsk(devh, MSEV_SIGMSK, 0, DTA_SETMSK)) != 0) {
 do_error(devh, "ms_setevtmsk()");
 }
 /* successful function call -
 continue processing ... */
 .
 .
 .
}

NOTES: 1. Calls to ms_open() return either AT_FAILURE or a nonzero device
handle. Therefore, when issuing the ms_open() function, check for
a return of -1. The specific error can be found in the global variable
errno, contained in errno.h.

2. Calls to ATMS_TSSGBIT() return the pointer AT_FAILUREP
when the function fails.

3. To avoid redundancy in the remaining programming examples in this
chapter, the do_error() function will not be shown.

4.2. Initialization

Before an MSI/SC application can perform any processing or access devices, it
should initialize the MSI/SC hardware to correspond with the physical
configuration of your system and set other parameters needed to support the
application. Tasks that are performed as a part of initialization generally include:

• Set hardware configuration
• Set event masks
• Initialize stations

These involve the following MSI/SC Windows NT functions:

• ms_setevtmsk()
• ms_setbrdparm()

MSI/SC Software Reference for Windows NT

130

4.2.1. Set Hardware Configuration

Use ms_setbrdparm() to set hardware configuration, debounce times, minimum
and maximum hook flash times,. ring cadence patterns, and ziptone. Specific
settings include:

• MSG_DBONTM Debounce on time

• MSG_DBOFFTM Debounce off time

• MSG_MINFLASH Minimum hook flash time

• MSG_MAXFLASH Maximum hook flash time

• MSG_PDRNGCAD Select the predefined ring cadence pattern

• MSG_RING Ringing capability support information

• MSG_RNGCAD Ring cadence pattern

• MSG_UDRNGCAD Set user-defined ring cadence pattern

• MSG_ZIPENA Ziptone enable

• MSCB_ND Notify on add

• MSCB_ZIP Zip tone notification

4.2.2. Set event mask on MSI/SC stations

Use the ms_setevtmsk() function for setting and clearing the mask for on-hook
transitions, off-hook transitions, and hook flash detection. The MS_OFFHOOK,
MS_ONHOOK, and MS_HOOKFLASH equates are used for setting and clearing
respective bits in the message mask.

4.2.3. Terminating

When your process completes, devices should be shut down in an orderly fashion.
Tasks that are performed to terminate an application generally include:

• Disabling events
• Resetting time slots
• Closing devices

4. MSI/SC Application Guidelines

131

The ms_setevtmsk() function can disable all currently enabled event notification
masks.

NOTE: SRL Event Management functions such as sr_dishdlr(), (which disables
an event handler), must be called before closing the device that is
sending the handler event notifications (see Appendix A for SRL details).

4.3. Compiling and Linking

To compile and link your application, follow the syntax instructions for your
version of the Windows NT C Development Package.

Include the following libraries when using the MSI/SC:

libsrlnt.lib
libdtint.lib

Depending on your application, you may need to link with other libraries. Refer to
the appropriate documentation for other Dialogic products.

4.4. Aborting

If you abort an MSI/SC Windows NT application by pressing the interrupt key,
the Windows NT system will terminate the current process but may leave devices
in an unknown state. The next time you run your application, therefore, you may
encounter errors.

To avoid errors of this type, your application should include an event handler that
traps the interrupt key and performs the actions listed in Section 4.2.3.
Terminating.

MSI/SC Software Reference for Windows NT

132

133

Appendix A
Standard Runtime Library: MSI/SC Entries and
Returns

The Standard Runtime Library is a device-independent library containing Event
Management functions, Standard Attribute functions, and the DV_TPT
Termination Parameter table. SRL functions and data structures are described in
detail in the Standard Runtime Library Programmer’s Guide and the Voice
Software Reference for Windows NT.

This appendix lists the MSI/SC entries and returns for each of the Standard
Runtime Library (SRL) components.

Table 11. Guide to Appendix A

SRL Component MSI/SC Data Listed in Appendix A

Event Management
functions

MSI/SC inputs for Event Management functions.

MSI/SC returns from Event Management functions.

Standard Attribute
functions

MSI/SC values returned by the Standard Attribute
functions.

DV_TPT table Termination conditions and related data. Not used
by the MSI/SC device.

Event Management Functions

The Event Management functions retrieve and handle MSI/SC termination events
for the ms_setevtmsk(), ms_tstcom(), and ms_tstdat() functions.

The Event Management functions are listed in the following tables.

Table 12. MSI/SC Inputs for Event Management Functions

Event Management Function MSI/SC specific Input Value

sr_enbhdlr() event type MSEV_NORING

MSI/SC Software Reference for Windows NT

134

Event Management Function MSI/SC specific Input Value

Enable event handler MSEV_RING

MSEV_SIGEVT

DTEV_COMRSP

DTEV_DATRSP

sr_dishdlr()

Disable event handler

event type Same as above.

sr_waitevt()

Wait for next event

N/A N/A

sr_waitevtEX()

Extended wait event

list of device handles N/A

Table 13. MSI/SC Returns from Event Management Functions

Event Management Function MSI/SC specific Input Value

sr_getevtdev()

Get Dialogic device handle

device MSI/SC device
handle.

sr_getevttype()

Get event type

event type MSEV_NORING

MSEV_RING

MSEV_SIGEVT

DTEV_COMRSP

DTEV_DATRSP

sr_getevtlen()

Get event length

event length Number of bytes in
the data returned.

sr_getevtdatap()

Get pointer to event data

event data Pointer to variable
containing the
value of a selected
bitmask.

Appendix A - Standard Runtime Library: MSI/SC Entries and Returns

135

Standard Attribute Functions

Standard Attribute functions return general device information such as the device
name, or the last error that occurred on the device. The Standard Attribute
functions and the MSI/SC-specific information returned are listed below.

Table 14. Standard Attribute Functions

Standard Attribute Function Information Returned for MSI/SC

ATDV_ERRMSGP() Pointer to string describing the error that
occurred during the last function call on a
device.

ATDV_IRQNUM() Interrupt number for a specified device.

ATDV_LASTERR() The error that occurred during the last
function call on a specified device.

ATDV_NAMEP() Pointer to device name (MSIBb).

ATDV_SUBDEVS() Number of channels. The MSI/240SC board
has 24 channels. Refer to the Standard
Runtime Library Programmer’s Guide for
information on subdevices.

MSI/SC Software Reference for Windows NT

136

137

Appendix B
Related MSI/SC Publications

Below is a list of Dialogic publications to read for information on products related
to the MSI/SC.

Dialogic References

• Digital Network Interface Software Reference for Windows NT
• MSI/SC Quick Install Card
• Voice Software Reference for Windows NT
• System Release Software Installation Reference for Windows NT
• SCbus Routing Guide
• SCbus Routing Function Reference for Windows NT

Dialogic Application Notes

• Converting a Windows NT Application from PEB to SCbus

MSI/SC Software Reference for Windows NT

138

139

Glossary

 ACD: Automatic call distributor. An automated (usually software-driven) system
that connects incoming calls to agents based on a distribution algorithm. The
system also gathers traffic-analysis statistics, such as number of calls per hour,
average time holding, and call length.

 agent: An operator, transcriber, telemarketing or sales representative, or other
employee. In this guide, agent refers to any person using an analog station
device who can be connected to a caller or recorded message through the
MSI/SC board.

 A-Law: A pulse-code modulation (PCM) algorithm used in digitizing telephone
audio signals in E-1 areas.

 analog: In this guide, analog refers to agent communications between a headset
and the MSI/SC or to the loop-start type of network interface.

 asynchronous function: Allows program execution to continue without waiting
for a task to complete. See synchronous function.

 automatic call distribution: See ACD.

 baseboard: A term used in voice processing to mean a printed circuit board
without any daughterboards attached.

 blocking mode: When a telephone call cannot be completed, it is said that the
call is “blocked.” In blocking mode, it is said that the caller is “receiving a
busy.”

 channel: 1. When used in reference to a Dialogic digital expansion board, a data
path, or the activity happening on that data path. 2. When used in reference to
the CEPT telephony standard, one of 32 digital data streams (30 voice, 1
framing, 1 signaling) carried on the 2.048 MHz/sec E-1 frame. (See time slot.)
3. When used in reference to a bus, an electrical circuit carrying control
information and data.

 data structure: C programming term for a data element consisting of fields,
where each field may have a different type definition and length. The
elements of a data structure usually share a common purpose or functionality,
rather than being similar in size, type, etc.

MSI/SC Software Reference for Windows NT

140

 daughterboard: In the context of this guide, the MSI/SC daughterboard
assembly. The daughterboard enables the MSI/SC hardware to interface to
analog station devices.

 device: Any computer peripheral or component that is controlled through a
software device driver.

 digital: Information represented as binary code.

 DIP switch: A switch usually attached to a printed circuit board with two
settings- on or off. DIP switches are used to configure the board in a
semipermanent way.

 driver: A software module that provides a defined interface between a program
and the hardware.

 DTMF: Dual Tone Multi-Frequency. DTMF refers to the combination of two
tones which represents a number on a telephone key pad. Each push-button
has its own unique combination of tones.

 E-1: Another name given to the CEPT digital telephony format devised by the
CCITT that carries data at the rate of 2.048 Mbps (DS-1level). This service is
available in Europe and some parts of Asia.

 event: An unsolicited communication from a hardware device to an operating
system, application, or driver. Events are generally attention-getting
messages, allowing a process to know when a task is complete or when an
external event occurs.

 Extended Attribute functions: Class of functions that take one input parameter
(a valid Dialogic device handle) and return device-specific information.

 full-duplex: Transmission in two directions simultaneously, or more technically,
bidirectional, simultaneous two-way communications.

 host PC: The system PC in which Dialogic hardware and software are installed
and applications are run and/or developed.

 IRQ: Interrupt request. A signal sent to the central processing unit (CPU) to
temporarily suspend normal processing and transfer control to an interrupt
handling routine. Interrupts may be generated by conditions such as
completion of an I/O process, detection of hardware failure, power failures,
etc.

Glossary

141

 loop start interfaces: Devices, such as an analog telephones, that receive an
analog electric current. For example, taking the receiver off hook closes the
current loop and initiates the calling process.

 Mu-Law: The PCM coding and companding standard used in Japan and North
America (T-1 areas).

 MSI: Modular Station Interface. A PEB-based Dialogic expansion board that
interfaces PEB time slots to analog station devices by way of modular
daughterboards.

 MSI/SC: Modular Station Interface. An SCbus-based Dialogic expansion board
that interfaces SCbus time slots to analog station devices.

 PC: Personal computer. In this guide, the term refers to an IBM Personal
Computer or compatible machine.

 PCM: Pulse Code Modulation. The most common method of encoding an analog
voice signal into a digital bit stream. PCM refers to one technique of
digitization. It does not refer to a universally accepted standard of digitizing
voice.

 PEB: PCM Expansion Bus. The common communication medium for passing
signaling, audio, and control information between Dialogic and other
PEB-compatible expansion boards. Information on the PEB is encoded
differently depending on the telephony standard implemented by board
hardware and firmware.

 rfu: Reserved for future use.

 SCbus: Signal Computing bus. A hardwired connection between Switch
Handlers (SC2000 chips) on SCbus-based products for transmitting
information over 1024 time slots to all devices connected to the SCbus.

 SCbus routing functions: Setup communications between devices connected to
the SCbus. These functions enable an application to connect or disconnect
(make or break) the receive (listen) channel of a device to or from an SCbus
time slot.

 SCSA: Signal Computing System Architecture. A generalized open-standard
architecture describing the components and specifying the interfaces for a
signal processing system for the PC-based voice processing, call processing
and telecom switching industry.

 Signal Computing System Architecture: See SCSA.

MSI/SC Software Reference for Windows NT

142

 SpringBoard: A Dialogic expansion board using digital signal processing to
emulate the functions of other products. The SpringBoard is a development
platform for Dialogic products such as the D/121B.

 SRL: Standard Runtime Library containing Event Management functions,
Standard Attribute functions, and data structures that are used by all Dialogic
devices.

 Standard Attribute functions: Class of functions that take one input parameter
(a valid Dialogic device handle) and return generic information about the
device. For instance, Standard Attribute functions return IRQ and error
information for all device types.The Dialogic SRL contains Standard Attribute
functions for all Dialogic devices. Standard Attribute function names are case-
sensitive and must be in capital letters. See Extended Attribute functions.

 synchronous function: Blocks program execution until a value is returned by
the device. Also called a blocking function. See asynchronous function.

 T-1: The digital telephony format used in North America and Japan that carries
data at the rate of 1.544 Mbps (DS-1 level).

 time slot: In a digital telephony environment, a normally continuous and
individual communication (for example, someone speaking on a telephone) is
(1) digitized, (2) broken up into pieces consisting of a fixed number of bits, (3)
combined with pieces of other individual communications in a regularly
repeating, timed sequence (multiplexed), and (4) transmitted serially over a
single telephone line. The process happens at such a fast rate that, once the
pieces are sorted out and put back together again at the receiving end, the
speech is normal and continuous. Each individual pieced-together
communication is called a time slot.

 ziptone: Short burst of a specified tone to an ACD agent headset usually
indicating a call is being connected to the agent console.

143

Index

A
aborting an application, 131

Allocating resources, 4

Application guidelines, 127
writing an application, 127

asynchronous mode, 9, 117, 120

ATMS_DNLDVER(), 18

ATMS_STATINFO(), 22

ATMS_TSSGBIT(), 24

Attribute functions, 10
ms_dsprescount(), 43
ms_getctinfo(), 75

B
baseboard

D/41ESC, xii

C
Coach, 3

Compatibility, 2

compile and link, 131

Conference descriptor table, 47, 72, 101

Conference Management functions, 10
ms_addtoconf(), 27
ms_delconf(), 38
ms_estconf(), 46
ms_getcde(), 68
ms_getcnflist(), 72
ms_monconf(), 84
ms_remfromconf(), 90
ms_setcde(), 101
ms_unmonconf(), 123

Conferencing
features, 2

Configuration functions, 11
ms_getbrdparm(), 65
ms_getevt(), 78
ms_getevtmsk(), 81
ms_setbrdparm(), 93
ms_setevtmsk(), 105
ms_setstparm(), 109

D
D/160SC-LS, xi

D/240SC, xi

D/240SC-T1, xii

D/300SC-E1, xii

D/320SC, xii

D/41ESC, xi
baseboard, xii

D/xxxSC, xii

daughterboard
FAX/40E, xii

defines, 127

Device Management functions, 11
ms_close(), 36
ms_open(), 87
ms_stopfn(), 115

Diagnostic functions, 11
ms_tstcom(), 117
ms_tstdat(), 120

DIALOG/HD, xii

Documentation
conventions, 17

MSI/SC Software Reference for Windows NT

144

DV_TPT Termination Parameter table,
133

E
Error codes, 13

Error handling, 12

Event Management functions, 133

Extended Attribute functions, 12
ATMS_DNLDVER(), 18
ATMS_STATINFO(), 22
ATMS_TSSGBIT(), 24

Extended connection, 4

Extended Connection functions, 11
ms_chgxtder(), 32
ms_delxtdcon(), 41
ms_estxtdcon(), 52

F
FAX/40E

daughterboard, xii

features
conferencing, 2

Function reference, 17
ms_close(), 36
ms_getevt(), 78
ms_getevtmsk(), 81
ms_open(), 87
ms_remfromconf(), 90
ms_setbrdparm(), 93

Functional description, 5

H
hardware configuration, 130

header files, 127

How to use this guide, xiii

I
Include files, 16, 127

Initialization, 129
set event mask, 130

L
Library functions

categories, 9
overview, 9

M
Monitor, 3

ms_addtoconf(), 27

MS_CDT, 28, 32, 47, 68, 101

ms_chgxtder(), 32

ms_close, 36

ms_delconf(), 38

ms_delxtdcon(), 41

ms_dsprescount(), 43

ms_estconf(), 46

ms_estxtdcon(), 52

ms_genring(), 58

ms_genziptone, 63

ms_getbrdparm(), 65

ms_getcde(), 68

ms_getcnflist(), 72

ms_getctinfo(), 75

ms_getevt(), 78

ms_getevtmsk(), 81

ms_monconf(), 84

ms_open(), 87

Index

145

ms_remfromconf(), 90

ms_setbrdparm(), 93

ms_setcde(), 101

ms_setevtmsk(), 105

ms_setstparm(), 109

ms_setvol(), 112

ms_stopfn(), 115

ms_tstcom(), 117

ms_tstdat(), 120

ms_unmonconf(), 123

MSI, xii

MSI/SC, xi, xii
compatibility, 2
conferencing, 2
features, 1
functional description, 5
hardware configuration, 130
introduction, 1
library function reference, 17
MSI/160SC, xi, 1
MSI/240SC, xi, 1
MSI/80SC, xi, 1
typical applications, 1

MSI/SC device parameters, 94

MSI/SC hardware
Board Locator Technology (BLT), 6
CODEC, 5
control microprocessor, 6
cross-point switch, 5
functional description, 5
line interface, 5

MSI/SC parameters
MSCB_ND, 93
MSCB_ZIP, 93
MSG_DBOFFTM, 93
MSG_DBONTM, 93

MSG_MAXFLASH, 93
MSG_MINFLASH, 93
MSG_ZIPENA, 93

O
Organization of this guide, xiii

P
Parameters

see MSI/SC parameters, 93

Product terminology, xi

Products
listing of, xi

Pupil, 3

R
Related publications, 137

Resource allocation, 4

return codes, 128

Returns for release type, 18

S
SCbus, xii

SCSA
Signal Computing System

Architecture, xii

Signal Computing System Architecture
SCSA, xii

SpanCard, xii

Standard Attribute functions, 133, 135

Standard Runtime Library, 133

Station functions, 12
ms_genring(), 58
ms_genziptone(), 63
ms_setvol(), 112

MSI/SC Software Reference for Windows NT

146

synchronous mode, 9, 117, 121

T
terminating an application, 130

Tone generation, 2

V
version numbering, 19

:

NOTES

NOTES

NOTES

