
IPTGate Demo
(IP - PSTN Gateway)

User’s Guide
for Windows NT

Copyright © 1998 Dialogic Corporation

PRINTED ON RECYCLED PAPER

05-0923-001

COPYRIGHT NOTICE

Copyright 1998 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment on
the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot guarantee the
accuracy of this material, nor can it accept responsibility for errors or omissions. No warranties of any
nature are extended by the information contained in these copyrighted materials. Use or implementation of
any one of the concepts, applications, or ideas described in this document or on Web pages maintained by
Dialogic-may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not condone or encourage such infringement. Dialogic makes no warranty with respect to
such infringement, nor does Dialogic waive any of its own intellectual property rights which may cover
systems implementing one or more of the ideas contained herein. Procurement of appropriate intellectual
property rights and licenses is solely the responsibility of the system implementer. The software referred to
in this document is provided under a Software License Agreement. Refer to the Software License
Agreement for complete details governing the use of the software.

All names, products, and services mentioned herein are the trademarks or registered trademarks of their
respective organizations and are the sole property of their respective owners. DIALOGIC (including the
Dialogic logo), DTI/124, SpringBoard, and Signal Computing System Architecture (SCSA) are registered
trademarks of Dialogic Corporation. A detailed trademark listing can be found at
http://www.dialogic.com/legal.htm.

Dialogic Corporation
1515 Route 10
Parsippany NJ 07054

Technical Support
Phone: 973-993-1443
Fax: 973-993-8387
Email: CustEng@dialogic.com

For Sales Offices and other contact information, visit our website at http://www.dialogic.com

Publication Date: April, 1998

Part Number: 05-0923-001

iii

Table of Contents

1. Introduction... 9
1.1. About the IPTGate Demo ... 9
1.2. The IPTGate Hardware Components .. 9
1.3. What Does the IPTGate Demo Do? .. 10
1.4. How Does the IPTGate Demo Work? ... 11

1.4.1. Handling a PSTN Call ... 11
1.4.2. Handling an IP Call ... 12
1.4.3. Disconnecting the Calls ... 12

1.5. Where To Go From Here.. 12

2. Running the Demo... 15
2.1. Introduction ... 15
2.2. How Does the IPTGate Demo Choose a Channel? 15
2.3. Downloading the IPTGate Firmware .. 15
2.4. Modifying the IPTGate.cfg File.. 16
2.5. Running the IPTGate Demo ... 19

2.5.1. Starting the Demo.. 19
2.5.2. Answering a PSTN Incoming Call ... 21
2.5.3. Answering an IP Incoming Call... 22
2.5.4. Disconnecting a Call.. 22

3. Application Flow ... 23
3.1. General .. 23
3.2. Programming Model .. 25
3.3. Initialization .. 25

3.3.1. Demo Related Initialization ... 25
3.3.2. IPLink Related Initialization.. 26
3.3.3. PSTN Card Related Initialization... 27

3.4. Retrieving Events... 28
3.4.1. Retrieving D/xxx (SRL) Events.. 28
3.4.2. Retrieving IPT Events.. 29

3.5. Using State Machines... 29
3.6. PSTN Inbound Call.. 29
3.7. IP Inbound Call.. 31

4. PSTN Inbound Call ... 33
4.1. Wait_For_Call State... 33

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

iv

4.1.1. Receiving the PSTN Call... 33
4.1.2. Routing Between DM3 and PSTN Boards.. 34
4.1.3. Making an IP Outbound Call... 34

4.2. Wait_For_Connect State .. 35
4.3. Wait_For_Disconnect (Disconnect Supervision) 36

4.3.1. PSTN Disconnect .. 37
4.3.2. IP Disconnect .. 37

4.4. Wait _For_Idle State(Retrieving Call Status) ... 38
4.4.1. Get Call Info ... 38

4.5. Wait_For_Release (Exiting Call) ... 39

5. IP Inbound Call... 41
5.1. Wait_For_Call State .. 41

5.1.1. Receiving the IP Call... 42
5.2. Wait_For_Connect State .. 43

5.2.1. Making a PSTN Outbound Call ... 44
5.3. Wait_For_Disconnect State (Disconnect Supervision).............................. 44

5.3.1. IP Disconnect .. 45
5.4. Wait_For_Idle State (Retrieving Call Status) ... 45
5.5. Wait_For_Release (Exiting the Call).. 46

6. Advanced Topics... 49
6.1. Collecting Routing Information From the PSTN Call............................... 49
6.2. Connecting the IP call to the PSTN Call .. 49
6.3. Billing ... 49
6.4. Least Cost Routing... 50
6.5. PSTN Disconnect Supervision ... 50

Appendix A - The IPTGate.cfg file ... 51

Appendix B - Make Call Log File ... 55

Appendix C - Call Offering Log File... 59

Appendix D - Digital State Diagrams.. 63

Appendix E - Application Foundation Code Reference................................ 65
What is the Application Foundation Code? .. 65
Foundation Code Architecture ... 66

Core Foundation Code and Core Services... 67
Product-Specific Layers and Services ... 67
Standard and Miscellaneous Services ... 67

Component Interface Attributes ... 68

v

Internal Data Structures ... 69
Core Foundation Code Modules ... 70

Dm3CompProcIoCompletion() Process a message completion 70
Dm3CompEnableSyncMode() Set the host component for synchronous

mode .. 72
Dm3CompSetAsyncParams() Set the asynchronous parameters for the

host component .. 73
Dm3CompEnableAsyncMode() Set the host component for asynchronous

mode .. 74
Dm3CompRecvMsg() Prepare the host component to receive an

asynchronous message.. 75
Standard messages Sends various standard messages to the DM3

components .. 76
IPLink Resource Layer Functions... 79

Dm3Tsp Data Structure Definition ... 79
Dm3TscInit() Initializes a TSC instance.. 81
Dm3TscCleanUp () Releases the resources and handles owned by a TSC

instance.. 84
TSC Command Functions .. 85

Dm3TscMakeCall() Places an outgoing call .. 85
Dm3TscAnswerCall() Seizes the line of an incoming call.......................... 88
Dm3TscAnswerCall() Seizes the line of an incoming call.......................... 90
Dm3TscAcceptCall() Accepts an incoming call ... 92
Dm3TscDropCall() Drops a call ... 94
Dm3TscReleaseCall() Releases the call ID... 96
Dm3TscRejectCall() Rejects an incoming call ... 98
Dm3TscGetChanState() Retrieves channel state information. 100
Error Codes .. 101
Dm3TscGetCallState() Gets the current call state 102
Dm3TscEvtHndlr() Main, top level handler for all Tsc events. 104

Event Handling.. 106
OnTscMakeCallCmplt() Event Handler for TSC_MakeCallCmplt

message.. 106
OnTscStdMsgEvtDetected() Handler for STD_MsgEvtDetected events

on a Tsc instance.. 108
OnTscCallInfoEvent() Handler for Call Information events on a Tsc

instance.. 110
OnTscChanStateEvent() Handler for Channel State transition events on

a Tsc instance... 112

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

vi

Limitations..113
Error Codes...113
OnTscCallStateEvent() Handler for Call State transition events on a Tsc

instance. ...114
NetTSC Functions ..116

Dm3NetTscInit ...116
NetTSCResetSession ...117
Dm3NTscNonStdCmd ..118
Dm3NTscUII ..119
NETTSCClusterInit ..120
NETTSCClusterGetAllComps...121
NETTSCClusterListen ..122
NETTSCClusterUnlisten...123
NETTSCClusterGetXmitSlot ..124
NETTSCClusterRelease ..125
NETTSCClusterCleanup...126
NETTSCClusterGetComponent ..127
NETTSCClusterGotComponent ..128

Index..129

vii

List of Figures

Figure 1. IPTGate Demo Components... 10
Figure 2. Typical Topology ... 11
Figure 3. Running the IPTGate Demo... 21
Figure 4. Incoming IP Call.. 22
Figure 5. State Diagram - Analog PSTN Inbound Call 30
Figure 6. State Diagram - Analog IP Inbound Call .. 31
Figure 7. PSTN Inbound: Wait_For_Call .. 33
Figure 8. PSTN Inbound: Wait for Connect... 36
Figure 9. PSTN Inbound: Wait for Disconnect .. 37
Figure 10. PSTN Inbound: Wait for Idle ... 38
Figure 11. PSTN Inbound: Wait for Release.. 39
Figure 12. IP Inbound: Wait for Call... 41
Figure 13. IP Inbound: Wait for Connect... 43
Figure 14. IP Inbound: Wait for Disconnect .. 45
Figure 15. IP Inbound: Wait for Idle ... 46
Figure 16. IP Inbound: Wait for Release.. 47
Figure 17. Digital PSTN Inbound Call .. 63
Figure 18. Digital IP Inbound Call .. 64
Figure 19. DM3 Direct Interface Foundation Code Architecture...................... 66

9

1. Introduction

This chapter describes the IPTGate demo and suggests various ways to use the
demo to learn about creating an IP Telephony application.

1.1. About the IPTGate Demo

The IPTGate demo is a host based application that demonstrates using the
Dialogic’s DM3 IPLink platform, together with a Dialogic SCbus PSTN
interface card to build a PSTN − IP gateway. The demo can be used as sample
code for those who want to start developing their application with a working
application. The demo uses many of the functions provided by the IPLink
platform. However, it is not designed to implement a complete gateway. In
particular it lacks features such least cost routing, etc. Where possible, this
document tries to point out where things can be done differently, or where
features may be added. However, the variety of options is large, and one demo
cannot cover all the different possibilities.

1.2. The IPTGate Hardware Components

The IPTGate demo requires the following hardware components:

• Pentium 200MHz or better
• At least 32 Mbytes of memory
• Windows NT 4.0
• A Dialogic analog or digital SCbus compatible PSTN board, e.g. D/160SC-

LS, D/240SC-T1, D/300SC-E1
• SCbus cable and H.100 adapter
• A DM3 IPLink board:

• DM/IPLink-T1 or DM/IPLink-E1
• Requires NIC (Network Interface Card) that connects to an IP

network
• DM/IPLink-T1_NIC or DM/IPLink-E1_NIC

• Network Interface is built-in
• Additional 85 MB of available hard disk space

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

10

• CD-ROM drive
• VGA or higher-resolution display adapter
• Microsoft Mouse or compatible pointing device

In addition you will must connect a PSTN line (from a PABX or a line
simulator) to the D/xxx board, and an IP network cable (typically Ethernet) to
the NIC or Network Interface on the IPLink board. And lastly a telephone to
call into the demo. Figure 1 shows the components of the IPTGate demo, using a
separate NIC. If you are using a DM/IPLink-T1_NIC or DM/IPLink-E1_NIC
board, connect the IP network cable directly to the IPLink board.

Ethernet

Telephone

N
IC

IP
Li

nk

DM3 IPT Test Machine

D
/x

xx

SCBus CablePBX

Figure 1. IPTGate Demo Components

1.3. What Does the IPTGate Demo Do?

The IPTGate demo allows you to connect to gateways on an IP network, and
establish calls from telephone to telephone via the IP network. It also allows you
to connect H.323 terminals on the IP network and connect a call from the
terminal to a telephone via one of the gateways. Figure 2 shows a typical
topology for demonstrating the capabilities of the IPTGate demo. Note that the
two PABXs that are shown can be a single PABX. Also note that more than one
PSTN line can be connected to a single IPTGate demo gateway.

1. Introduction

11

IP Network

H.323 Terminal

IPTGate
gateway

Telephone

PABXIPTGate
gateway

Telephone

PABX

Figure 2. Typical Topology

1.4. How Does the IPTGate Demo Work?

The IPTGate demo can receive calls from either the PSTN or the IP. The
IPTGate demo uses a configuration file (IPTGate.cfg) to determine parameters
that are associated with a particular call. The configuration file allows you to
configure different channels with different properties. The exact description of
the IPTGate.cfg file, as well as a description of the different configuration
properties, are described later in this guide.

1.4.1. Handling a PSTN Call

A call that arrives from the PSTN needs to be routed to either a destination
PSTN number (via another gateway) or to an H.323 terminal. The IPTGate demo
uses the IPTGate.cfg file to determine the destination IP address as well as the
(optional) destination PSTN number (Remote Phone Number). The IPTGate
demo initiates an IP (H.323) call to the destination IP address. If the
configuration file indicates a PSTN destination number then that number is
passed to the destination gateway during the call establishment procedure.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

12

Once the destination gateway has answered the H.323 call, the IPTGate demo
connects the PSTN call to the IP call (via the SCBus). An audio path is now
established between the PSTN call and the destination IP station.

1.4.2. Handling an IP Call

A call that arrives from the IP network needs to be routed to a PSTN number.
That number may arrive as part of the call establishment procedure (if the call
was originated by another IPTGate for example). If the destination number had
arrived during call establishment, then the IPTGate demo uses that number to
call on the PSTN. If no destination number was included in the call
establishment procedure, then the IPTGate demo uses the IPTGate.cfg file to
determine the destination number to call (Local Phone Number). Once the
IPTGate demo answers and connects the call on the IP network, it initiates (dial
out) a call on the PSTN and connects the two calls (via the SCBus). This allows
the calling party to hear the call progress tones on the local PSTN (see discussion
later for other possibilities on when to connect the calls).

1.4.3. Disconnecting the Calls

The IPTGate demo monitors both the PSTN call and the IP call for a disconnect
indication. While the IP call provides a certain indication (i.e. an H.323 drop
indication) the IPTGate demo may not recognize a disconnect on the PSTN side,
since it only monitors a loop current drop on the PSTN.

1.5. Where To Go From Here

The IPTGate demo can be used in a variety of ways:

• Run the demo

• Download the DM3 and Dialogic firmware
• Modify the IPTGate.cfg file
• Run the demo

• Explore the IPTGate code

• Read this manual (what’s in it)
• Look in the source code

1. Introduction

13

• Modify the code
• Compile the code

• Build your own gateway

• Read the rest of the documentation
• Design the state machines
• Re-use the code from the demo

15

2. Running the Demo

2.1. Introduction

NOTE: This document assumes that you have installed the necessary HW and
SW on the demo machine and are ready to download and run the demo.

This chapter presents the main flow for running the demo. It explains what you
can expect to see on the screen, as well as what you can expect to happen in the
system.

2.2. How Does the IPTGate Demo Choose a Channel?

When a call comes from the PSTN, the call is connected to a particular telephone
line. This telephone line is associated with a channel number by its physical
connection. For example, if it is connected to the first connection on a D/160LS,
then the call is handled by channel #1.

When a call arrives from the IP network, there is no direct association of a
channel, since there are no physical connections. The call is answered by a
NetTSP cluster (an “IPT channel”. See the IPLink User’s Guide for more
information on NetTSP clusters). The IPTGate demo uses the built in resource
manager of the DM3 driver to select an available NetTSP cluster to handle the
call. It connects the IP call to the highest available PSTN channel.

2.3. Downloading the IPTGate Firmware

Follow the directions for installing and configuring the IPLink SDK in Installing
and Configuring the IPLink SDK for Windows NT. The following parameters
must be set as follows for the IPTGate demo to work properly:

• SCbus Clock Master

The DM3 board must provide the clocking. Configure the D/xxx Board as
SCbusClockMaster = NONE.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

16

• PCD Files

Identify a PCD file that matches your configuration. The PCD files supplied
with the release are described in the Release Catalog.

• Set the SRAM Out Time to 12

2.4. Modifying the IPTGate.cfg File

Before running the demo, modify the IPTGate.cfg file to reflect your system
environment. Click on the Configuration File icon to open the file, or open the
file from samples\ipt\iptgate\debug\IPTGate.cfg. At the minimum, change the
PSTN telephone numbers that are associated with the telephones and PABX that
you are using.

The configuration file includes a prioritized coder list. Coder0 is the preferred
coder. This list is passed to the TSC_MsgMakeCall structure or
TSC_MsgAnswerCall structure. Note: The TSC_MsgMakeCall structure (and
TSC_MsgAnswerCall structure) reflects the coder prioritization by the order of
the coders in the data structure. The highest priority coder is listed first.
“DON’T_CARE” is a valid coder option, however it must appear last in the
coder list. Otherwise, coders listed following the “DON’T_CARE” will be
ignored.

The H.323 component checks the coder capability of the remote side during the
call creation. If the preferred coder is not supported, it will check the next coder
in the list. If no coder compatibility is found, the connection fails. In that case
one of the following events is sent to the application:

• As a response to Make Call: TSC_EvtCallState_Type_Failed
• As a response to Call Offering: TSC_EvtCallState_Type_Idle

The application must then release the call to free the channel.

Below is an example of the IPTGate.cfg file. The fields that you may want to
change include the source and destination IP address, the local and remote phone
numbers, as well as information about the coder that should be used when
originating a call toward the IP network.

2. Running the Demo

17

##
#
Source : My IPTGate machine IP address.
#
Destination: Destination address for MsgMakeCall.
#
RemotePhoneNumber: Destination phone number to call,
Transferred during call establishment to Target GW.
#
LocalPhoneNumber: The number used for PSTN calls,
in case we don't get phone list from MsgGetCallInfo.
#
Coder: Requested coder type during call(G723 or G711MuLaw).
#
FramesPerPkt: Number of coder frames per RTP packet(range 1-3).
#
FrameSize: Coder output frame size in miliseconds
(Valid only for G711: 10 or 20 or 30).
#
Rate: High or low bit rate (Valid only for multiple rate coders)
0 - G723 6.3
1 - G723 5.3
#
VAD: Voice Activity Detector (Valid for G723 & GSM)
0 = disable (No silence suppression).
1 = enable (Suppresses silence packets).
#
Display: Display information that is passed to destination GW
during call establishment.
#
UUI: User to User Information string, Information to send before
Connected state.
#
UII: UII string to send, when send MsgSendUserInputIndication.
#
NonStdCmd: NonStdCmd string to send, when send MsgSendNonStdCmd.
#
##

Source = 146.152.187.51

Channel = 1
{
 Destination = 146.152.187.51
 RemotePhoneNumber = 36
 LocalPhoneNumber = 28
 Coder0
 {
 Type = g711MuLaw
 FramesPerPkt = 1
 FrameSize = 30
 Rate = 0
 VAD = 0
 }
 Display = IPTGate_Chan1
 UUI = User_to_User_1
 UII = 255
 NonStdCmd = NSC_Chan1
}

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

18

Channel = 2
{
 Destination = 146.152.187.51
 RemotePhoneNumber = 30
 LocalPhoneNumber = 28
 Coder0
 {
 Type = g711MuLaw
 FramesPerPkt = 1
 FrameSize = 30
 Rate = 0
 VAD = 0
 }
 Coder1
 {
 Type = g723
 FramesPerPkt = 1
 Rate = 0
 VAD = 0
 }
 Coder2
 {
 Type = Don't_Care
 FramesPerPkt = Don't_Care
 FrameSize = Don't_Care
 Rate = Don't_Care
 VAD = Don't_Care
 }
Display = IPTGate_Chan2
 UUI = User_to_User_2
 UII = 255
 NonStdCmd = NSC_Chan2
}

Channel = 3
{
 Destination = 146.152.187.51
 RemotePhoneNumber = 28
 LocalPhoneNumber = 29
 Coder0
 {
 Type = g711MuLaw
 FramesPerPkt = 1
 FrameSize = 30
 Rate = 0
 VAD = 0
 }

 Display = IPTGate_Chan3
 UUI = User_to_User_3
 UII = 255
 NonStdCmd = NSC_Chan3
}

Channel = 4-6
{
 Destination = 146.152.187.51
 RemotePhoneNumber = 2019933255
 LocalPhoneNumber = 27
 Coder0

2. Running the Demo

19

 {
 Type = g711MuLaw
 FramesPerPkt = 1
 FrameSize = 30
 Rate = 0
 VAD = 0
 }
 Display = IPTGate_Chan4
 UUI = User_to_User_4
 UII = 255
 NonStdCmd = NSC_Chan4
}

2.5. Running the IPTGate Demo

2.5.1. Starting the Demo

Click on “IPTGate” from the IPT SDK menu to run the IPTGate demo using the
default settings. The demo may also be launched from the Windows NT
command line, using the following switches:

Switch Action Default

-f Identifies the front end:

0 = analog
1 = digital T1
2 = digital E1

0

-b Identifies the board
number

0

-r Sets the number of rings
before answering the call
on the PSTN

2

-n Sets the number of
channels

The lesser of PSTN lines
or NetTSC clusters

-c <filename> Configuration file name IPTGate.cfg

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

20

Switch Action Default

-e Encoding type:

m = µLaw
a = A-law

m

NOTE: The default encoding type is µLaw. If you are using A-law encoding,
perform the following additional two steps:

1. Verify that the “PCM Encoding” parameter for the PSTN board
matches the configuration.

2. Open the Dialogic Configuration Manager and double-click on the
PSTN board name.

Select the “Dialogic Bus” tab and click on the PCMEncoding
parameter.

Select either ALAW or MULAW from the pull-down menu in the
Value field in the Edit window.

Each channel is initialized and the log is displayed in a DOS window. See
Appendix B and Appendix C for the log file from a typical “MakeCall” and a
“ReceiveCall” session.

2. Running the Demo

21

Figure 3. Running the IPTGate Demo

2.5.2. Answering a PSTN Incoming Call

A PSTN call arrives when one calls on a PSTN line to the IPTGate demo. You
can follow the call trace, which is displayed in a DOS window. See Appendix B
and Appendix C for the log file from a “MakeCall” and a “ReceiveCall” session.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

22

Figure 4. Incoming IP Call

2.5.3. Answering an IP Incoming Call

An IP call arrives when another H.323 station calls the IPTGate demo. This can
be either another gateway, or an H.323 terminal.

2.5.4. Disconnecting a Call

The IPTGate demo monitors both the IP side and the PSTN side for disconnect
supervision.

NOTE: For the sake of simplicity, on the PSTN side the IPTGate demo
monitors only loop current drops. When you disconnect a telephone
call, your PABX may not generate a loop current drop toward the PSTN
side. In such case the IPTGate demo will not see the disconnect of the
PSTN call, and will not drop the call toward the IP network. In such a
case unplug the PSTN line from the D/xxx board momentarily, to
generate a loop current drop.

23

3. Application Flow

3.1. General

This section presents a closer examination of the IPTGate demo, by looking into
its structure and source code. The IPTGate demo source code is included in the
following files:

IPTGATE.CFG - The demo configuration file

DM3TSC.C - DM3 convenience functions

DM3CLUST.C - DM3 cluster convenience functions

DM3COMP.C - DM3 component convenience functions

DM3NTSC.C - NetTSC component convenience
functions

NTSCCLST.C - NetTSC cluster convenience functions

DM3TSCH.C - TSC component application handler

DM3CLSTH.C - Cluster application handler

DM3NTSCH.C - NetTSC component application handler

NTSCCLSH.C - NetTSC cluster application handler

GATEDBG.C - Debugging & error functions

GATEMAIN.C - Main file (including MAIN loop)

GATEPARS.C - The demo configuration file parsing
functions

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

24

GATEPSTN.C - PSTN-specific functions

GATESTAT.C - State machine functions

GATEDEFS.H - Gateway definitions

GATEVARS.H - Global variables

GATESTRC.H - Demo structure (including MAIN
Structure Session)

GATEDBG.H - Debugging & error definitions and
macros for GATEDBG.C

DM3CLSTH.H - Definitions & macros for
DM3CLSTH.C

DM3CLUST.H - Definitions & macros for
DM3CLUST.C

DM3COMP.H - Definitions & macros for
DM3COMP.H

DM3NTSC.H - Definitions & macros for DM3NTSC.C

DM3NTSCH.H - Definitions & macros for
DM3NTSCH.C

DM3TSC.H - Definitions & macros for DM3TSC.C

DM3TSCH.H - Definitions & macros for DM3TSCH.C

MAIN.H - Function prototype for MAIN.C

NTSCCLSH.H - Definitions & macros for
NTSCCLSH.C

NTSCCLST.H - Definitions & macros for

3. Application Flow

25

NTSCCLST.C

PSTNFP.H - Function prototype for GATEPSTN.C

STATFP.H - Function prototype for GATESTAT.C

PARSFP.H - Function prototype for GATEPARS.C

IPTGATE.MAK - Visual C++ make file

IPTGATE.MDP - Visual C++ project file

3.2. Programming Model

The IPTGate demo is designed to operate in single thread mode. Channels are
designed to operate as independent state machines. The synchronization between
SRL events (the D/xxx events) and IPT specific events is done by using the
WinNT I/O Completion Port mechanism. Because of the nature of a single
threaded application, the state machines do not, and should not, block the
operation on any other operation but the wait for the I/O completion port.

NOTE: The application programming framework also allows multi-thread
operation. It is not demonstrated in the IPTGate demo.

3.3. Initialization

3.3.1. Demo Related Initialization

1. Get any arguments from the command line option.

2. Create I/O Completion Port (WinNT API).

3. Find the DEMO max available channels (the smaller of available PSTN
channels or available NetTSC clusters).

4. Reset the demo data structure. Initialize all channels’ state to
GATE_WAIT_DETECT_CMPLT.

5. Read information from the configuration file (IPTGate.cfg), and update data
structure accordingly.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

26

6. Create waitForKey thread to receive keyboard input.

Input is valid in the Connected state only. The following keyboard input is
recognized:

• “U” or “u”
Send User Input Indication (UII)

• “N” or “n”
Send NonStandard Command

• ^c or “Q” or “q”
Clean-up and quit application

3.3.2. IPLink Related Initialization

The IPLink initialization procedure described in this section is defined in the
clusterInit() and NetTSCCompInit() functions in the GATEMAIN.C file.

1. clusterInit()

• Call NETTSCClusterInit()

• Opens Mercury Message Path device by calling
mntEnumMpathDevice() and CreateFile()

• Gets the Mpath address by calling mntGetMpathAddr()

• Enable ExitNotify for the Mpath device

• Indicate the NetTSC cluster to be used

• Allocates NetTSC cluster and finds the SCbus component
descriptors in the same cluster

• Call NETTSCClusterGetAllComps()

• Get the NetTSC component instance descriptor for the previously
allocated cluster.

• Call NETTSCGetXmitSlot()

• Get the NetTSC transmit timeslot

2. NetTSCCompInit()

3. Application Flow

27

• Call Dm3NetTSCInit()

• Initialize NetTSC structure

• Opens Mercury Message Path device by calling
mntEnumMpathDevice() and CreateFile()

• Gets the Mpath address by calling mntGetMpathAddr()

• Enable Exit Notify for the Mpath device

• Indicate the NetTSC component (found in clusterGetAllComps)
instance to be used

• • Call Dm3CompSetAsyncParams()

• Attach DM3_IPT_KEY to I/O Completion Port created in the
Demo global initialization

• • Call Dm3CompEnableAsyncMode()

• Set the async field to TRUE

• Call IPTEnableAllEvts()

• Enable list of events relevant to the NetTSC component instance.
Once the Std_MsgDetectXEvtsCmplt is received by the application,
the channel state transitions to WAIT_FOR_CALL.

3.3.3. PSTN Card Related Initialization

The IPTGate demo can be run with either a digital or analog PSTN board. The
description detailed in this section assumes an analog PSTN board. See
Appendix D for the state diagrams related to using a digital PSTN board.

The PSTN initialization procedure described in this section is defined in the
pstnOpenFrontEnd() function in the GATEPSTN.C file.

For every demo channel (variable gateChannel), the application:.

1. Opens a voice device, by calling dx_open().

2. Sets the voice channels to ON HOOK, by calling dx_sethook().

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

28

3. Enables the detection of a Call Status Transition event, by calling
dx_setevtmsk(). The events detected are: DM_RINGS and DM_LCOFF.

4. Sets the number of rings (transferred from command line) to wait before
detecting DM_RINGS, by dx_setrings().

5. Removes all user-defined tones, by dx_deltones().

6. Defines a simple dual frequency cadence tone for disconnect detection, by
calling dx_blddtcad().

7. Enables detection of user-defined tones on the channel, by calling
dx_addtone().

8. Get xmitSlot.

3.4. Retrieving Events

The IPTGate demo uses the WinNT I/O Completion Port mechanism to retrieve
events.

1. Create an I/O Completion Port without associating it with a file.

2. Attach SRL_KEY and DM3_IPT_KEY to the I/O Completion Port and
associate the I/O Completion Port with the asynchronous file created (the
asynchronous device handle for retrieving messages).

• DM3_IPT_KEY is used to receive events from the DM3 card

• SRL_KEY is used to receive events from the PSTN card

3.4.1. Retrieving D/xxx (SRL) Events

1. Use the SRL event data retrieval functions:

• sr_getevttype() gets event type for the current event

• sr_getevtdatap(0) returns a pointer to the variable data associated
with the current event

• sr_getevtdev(0) gets the Dialogic handle for the current event

2. Call the related state machine function according to the data retrieved.

3. Application Flow

29

3.4.2. Retrieving IPT Events

1. Use the GetQueuedCompletionStatus() function to get the
OVERLAPPED structure.

2. Call Dm3CompProcIoCompletion() to retrieve the event

3. Call the appropriate call back function to handle the event and to call the
appropriate state machine function.

3.5. Using State Machines

There is an endless loop (while(1)) in the main() function in the Gatemain.c file.
In that loop the application waits for an event by calling the
GetQueuedCompletionStatus() function (WinNT API).

Initialize all channels to the WAIT_FOR_CALL state.

As soon as an event is received, the event type, the channel number and the
reason (reason for the event, if there is one) are analyzed, and the new state
machine function is called.

After all the operations are performed within the channel’s event state, the next
state machine function is updated according to the event received.

The following state diagrams describe the call-states for inbound calls from the
PSTN to the demo (gateway), and inbound calls from the IP to the demo
(gateway). Each state is represented by an ellipse containing the state name, the
event(s) associated with that state, and the actions performed by the application.
The states are connected with arrows indicating the valid state changes.

3.6. PSTN Inbound Call

Figure 5 describes the call states and the state transitions when the demo
(gateway) receives a call from the PSTN.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

30

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Failed
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Send MsgDropCall

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC:TSC_EvtCallState_Type_Connected

PSTN: DE_RINGS

Route, Set Off-hook,
Send MsgMakeCall to NetTSC

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC:
NetTSC_H245Data_Type_UserInputIndication

NetTSC:TSC_MsgMakeCallCmplt

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Drop Call

Figure 5. State Diagram - Analog PSTN Inbound Call

3. Application Flow

31

3.7. IP Inbound Call

Figure 6 describes the call states and the state transitions when the demo
(gateway) receives a call from the IP.

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC: NetTSC_H245Data_Type_UserInputIndication

NetTSC:
TSC_EvtCallState_Type_Failed

Un-route, Send MsgDropCall

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Set On-hook, Un-route, Drop Call

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC: TSC_EvtCallState_Type_Idle

Un-route, Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Connected

Set Off-hook, Dial, Route

NetTSC:TSC_MsgMakeCallCmplt

NetTSC:
TSC_EvtCallState_Type_Offered

Send MsgGetCallInfo and
MsgAnswerCall

Figure 6. State Diagram - Analog IP Inbound Call

33

4. PSTN Inbound Call

This chapter describes the procedure and state transitions for connecting an
inbound call from the PSTN to the IP network.

4.1. Wait_For_Call State

The application waits for a call event in the WAIT_FOR_CALL state.

4.1.1. Receiving the PSTN Call

The application receives the event DE_RINGS from the PSTN. It routes the call
between the PSTN board and the DM3 board and sets the PSTN line to Off-
hook. It then sends a TSC_MsgMakeCall message to the NetTSC component
instance associated with the call. The state transitions to
WAIT_FOR_CONNECT.

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Failed
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Send MsgDropCall

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC:TSC_EvtCallState_Type_Connected

PSTN: DE_RINGS

Route, Set Off-hook,
Send MsgMakeCall to NetTSC

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC:
NetTSC_H245Data_Type_UserInputIndication

NetTSC:TSC_MsgMakeCallCmplt

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Drop Call

Figure 7. PSTN Inbound: Wait_For_Call

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

34

4.1.2. Routing Between DM3 and PSTN Boards

Routing: Listen & Assign/Activate (DM3 listen to PSTN)

NETTSCClusterListen(/*pointer to the NetTSC Cluster*/
&(Session[channel].NetTscClust),
/*The PSTN timeslot to listen to*/
(USHORT)timeslot);

4.1.3. Making an IP Outbound Call

The application sends TSC_MsgMakeCall using the data contained in the
configuration file.

/* Set array of information to make call */
for(infoCount = 0; infoCount < (CFGParm.maxTxCoders);
infoCount++) {
 KV_Info[infoCount].unKeyId = TSC_KVSet_Key_CallInfo;
 KV_Info[infoCount].unId = CallInfo_TxCoder;
 KV_Info[infoCount].unLength = sizeof(NetTSC_Coder_t);
 KV_Info[infoCount].lpData =
&((void)(CFGParm.TxCoder[infoCount]));
}

KV_Info[infoCount].unKeyId = TSC_KVSet_Key_CallInfo;
KV_Info[infoCount].unId = CallInfo_Display;
KV_Info[infoCount].unLength = strlen(CFGParm.display)+1;
KV_Info[infoCount].lpData = ((void *)CFGParm.display);
infoCount++;

KV_Info[infoCount].unKeyId = TSC_KVSet_Key_CallInfo;
KV_Info[infoCount].unId = CallInfo_PhoneList;
KV_Info[infoCount].unLength = strlen(CFGParm.phoneList)+1;
KV_Info[infoCount].lpData = ((void *)CFGParm.phoneList);
infoCount++;

KV_Info[infoCount].unKeyId = TSC_KVSet_Key_CallInfo;
KV_Info[infoCount].unId = CallInfo_UUI;
KV_Info[infoCount].unLength = strlen(CFGParm.UUI)+1;
KV_Info[infoCount].lpData = (void *)CFGParm.UUI;
infoCount++;

KV_Info[infoCount].unKeyId = TSC_KVSet_Key_NULL;
KV_Info[infoCount].unLength = 0;
infoCount++;

4. PSTN Inbound Call

35

/* Set source address of call */
strcpy(srcAddr,"TA:");
strcat(srcAddr,CFGParm.srcAddr);
strcat(srcAddr,":1720");

/* Set destination address of call : i.e. destination a computer
on other end start with the basic TSC make call structure */
strcpy(destAddr,"TA:");
strcat(destAddr,CFGParm.destAddr);
strcat(destAddr,":1720"); /* Add Port id */

Dm3TscMakeCall(lpTsc, /* pointer to DM3TSC structure */
destAddr, /* destination IP address */
srcAddr, /* source IP address */
FALSE, /* set for call progress */
KV_Info, /* array of KV-Set */
infoCount); /* number of KV-Set elements */

4.2. Wait_For_Connect State

The application receives a TSC_EvtCallState_Type_Connected event from the
NetTSC component instance when the far gateway or terminal answers the call.
The call is now connected and the state transitions to
WAIT_FOR_DISCONNECT.

If, for any reason, the call should fail before it is connected, the application
receives a TSC_EvtCallState_Type_Failed message from the NetTSC
component instance, or a DE_LCOFF and DE_TONEON from the PSTN. The
call state transitions to WAIT_FOR_IDLE.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

36

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Failed
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Send MsgDropCall

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC:TSC_EvtCallState_Type_Connected

PSTN: DE_RINGS

Route, Set Off-hook,
Send MsgMakeCall to NetTSC

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC:
NetTSC_H245Data_Type_UserInputIndication

NetTSC:TSC_MsgMakeCallCmplt

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Drop Call

Figure 8. PSTN Inbound: Wait for Connect

4.3. Wait_For_Disconnect (Disconnect Supervision)

The application can receive three types of messages while a call is connected:

• Disconnect message

• Non-standard message

• User Input Indication message

When a call is disconnected, the application receives either a
TSC_EvtCallState_Type_Disconnect event from the NetTSC component
instance, or DE_LCOFF and DE_TONEON from the PSTN. It sets the PSTN
line to On-hook, un-routes the call and issues a TSC_MsgDropCall message to
the NetTSC component instance. The call state transitions to
WAIT_FOR_IDLE.

The application can also receive two non-standard events:

4. PSTN Inbound Call

37

• NetTSC_H245Data_Type_NonStdCmd

• NetTSC_H245Data_Type_UserInputIndicationI

When the application receives either of these events, it prints the received data
on the screen and remains in the WAIT_FOR_DISCONNECT state.

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Failed
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Send MsgDropCall

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC:TSC_EvtCallState_Type_Connected

PSTN: DE_RINGS

Route, Set Off-hook,
Send MsgMakeCall to NetTSC

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC:
NetTSC_H245Data_Type_UserInputIndication

NetTSC:TSC_MsgMakeCallCmplt

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Drop Call

Figure 9. PSTN Inbound: Wait for Disconnect

4.3.1. PSTN Disconnect

Unrouting: Unlisten & Deactivate/Unassign (DM3 unlisten to PSTN)

NETTSCClusterUnlisten(/*pointer to the NetTSC cluster*/
&(Session[channel].NetTscClust));

4.3.2. IP Disconnect

The application sends TSC_MsgDropCall to the NetTSC component instance.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

38

Dm3TscDropCall(lpTsc, /* pointer to DM3TSC structure */
/* reason for dropping call */

CallStateR_RemoteTermination);

4.4. Wait _For_Idle State(Retrieving Call Status)

The application receives a TSC_EvtCallState_Type_Idle event and then gets call
information (e.g., duration time, RTCP info) by sending a TSC_MsgGetCallInfo
message to the TSC component instance.

Once the application receives the requested call information, it sends a
TSC_MsgReleaseCall message and transitions to the WAIT_FOR_RELEASE
state.

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Failed
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Send MsgDropCall

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC:TSC_EvtCallState_Type_Connected

PSTN: DE_RINGS

Route, Set Off-hook,
Send MsgMakeCall to NetTSC

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC:
NetTSC_H245Data_Type_UserInputIndication

NetTSC:TSC_MsgMakeCallCmplt

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Drop Call

Figure 10. PSTN Inbound: Wait for Idle

4.4.1. Get Call Info

/* Set array for get call info message */

4. PSTN Inbound Call

39

InfoArr[0] = CallInfo_RTCPInfo; /*RTCP Information*/
InfoArr[1] = CallInfo_CallDurationTime; /*Call Duration Time*/

Dm3TscGetCallInfo(lpTsc, /* pointer to DM3TSC structure */
 2, /* number for call information elements
*/
 InfoArr); /* the information elements */

4.5. Wait_For_Release (Exiting Call)

The application receives a TSC_EvtCallState_Type_Null event and resets all
data structures to their default values. The call-state transitions to
WAIT_FOR_CALL.

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Failed
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Send MsgDropCall

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC:TSC_EvtCallState_Type_Connected

PSTN: DE_RINGS

Route, Set Off-hook,
Send MsgMakeCall to NetTSC

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC:
NetTSC_H245Data_Type_UserInputIndication

NetTSC:TSC_MsgMakeCallCmplt

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Un-route, Drop Call

Figure 11. PSTN Inbound: Wait for Release

41

5. IP Inbound Call

This chapter describes the procedure and state transitions for connecting an
inbound call from the IP network to the PSTN.

5.1. Wait_For_Call State

The application waits for a call event in the WAIT_FOR_CALL state.

The application receives the event TSC_EvtCallState_Type_Offered from the
IP. It sends TSC_MsgGetCallInfo and a TSC_MsgAnswerCall messages to the
NetTSC component instance associated with the call. The state transitions to
WAIT_FOR_CONNECT.

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC: NetTSC_H245Data_Type_UserInputIndication

NetTSC: TSC_EvtCallState_Type_Failed

Un-route, Send MsgDropCall

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Set On-hook, Un-route, Drop Call

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC: TSC_EvtCallState_Type_Idle

Un-route, Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Connected

Set Off-hook, Dial, Route

NetTSC:TSC_MsgMakeCallCmplt

NetTSC:
TSC_EvtCallState_Type_Offered

Send MsgGetCallInfo and
MsgAnswerCall

Figure 12. IP Inbound: Wait for Call

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

42

5.1.1. Receiving the IP Call

Getting Call Info

The application sends a TSC_MsgGetCallInfo message to the NetTSC
component instance to get the receiving coder type and the PSTN number to dial.

/* Set array for get call info message */
InfoArr[0] = CallInfo_PhoneList; /* Local extention to call */
InfoArr[1] = CallInfo_CallerId; /* Who's calling - Computer IP
*/
InfoArr[2] = CallInfo_Display; /* Who's calling - Caller name
*/
InfoArr[3] = CallInfo_UUI; /* User to User Information */

Dm3TscGetCallInfo(lpTsc, /* pointer to DM3TSC structure */
 4, /* number for call information elements
*/

InfoArr); /* the information elements */

Answering the IP Call

The application sends a TSC_MsgAnswerCall message to the NetTSC
component instance. The data sent is taken from the configuration file.

/* Prepare the KVSet for answering the call */
for(infoCount = 0; infoCount < (CFGParm.maxTxCoders);
infoCount++) {
 KV_Info[infoCount].unKeyId = TSC_KVSet_Key_CallInfo;
 KV_Info[infoCount].unId = CallInfo_TxCoder;
 KV_Info[infoCount].unLength = sizeof(NetTSC_Coder_t);
 KV_Info[infoCount].lpData =
&((void)(CFGParm.TxCoder[infoCount]));
}

KV_Info[infoCount].unKeyId = TSC_KVSet_Key_NULL;
KV_Info[infoCount].unLength = 0;
infoCount++;

rBool = Dm3TscAnswerCall(lpTsc,/* pointer to DM3TSC structure */
2, /* number of rings */
KV_Info, /* KV-Set array */

5. IP Inbound Call

43

infoCount); /* number of KV-Set elements */

5.2. Wait_For_Connect State

The application receives a TSC_EvtCallState_Type_Connected event from the
NetTSC component instance. It then sets the PSTN Off-hook, dials the call to the
PSTN and routes the call over the SCbus. The call is now connected and the state
transitions to WAIT_FOR_DISCONNECT.

If, for any reason, the call should fail before it is connected, the application
receives a TSC_EvtCallState_Type_Failed message from the NetTSC
component instance. The call state transitions to WAIT_FOR_IDLE.

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC: NetTSC_H245Data_Type_UserInputIndication

NetTSC: TSC_EvtCallState_Type_Failed

Un-route, Send MsgDropCall

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Set On-hook, Un-route, Drop Call

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC: TSC_EvtCallState_Type_Idle

Un-route, Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Connected

Set Off-hook, Dial, Route

NetTSC:TSC_MsgMakeCallCmplt

NetTSC:
TSC_EvtCallState_Type_Offered

Send MsgGetCallInfo and
MsgAnswerCall

Figure 13. IP Inbound: Wait for Connect

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

44

5.2.1. Making a PSTN Outbound Call

The application dials the local phone number according to the information it
received from the TSC_MsgGetCallInfo message. If no information was
received, it is taken from the configuration file.

5.3. Wait_For_Disconnect State (Disconnect
Supervision)

The application can receive three types of messages while a call is connected:

• Disconnect message

• Non-standard message

• User Input Indication message

When a call is disconnected, the application receives either a
TSC_EvtCallState_Type_Disconnect event from the NetTSC component
instance, or DE_LCOFF and DE_TONEON from the PSTN. It sets the PSTN
line to On-hook, un-routes the call and issues a TSC_MsgDropCall message to
the NetTSC component instance. The call state transitions to
WAIT_FOR_IDLE.

The application can also receive two non-standard events:

• NetTSC_H245Data_Type_NonStdCmd

• NetTSC_H245Data_Type_UserInputIndication

When the application receives either of these events, it prints the received data
on the screen and remains in the WAIT_FOR_DISCONNECT state.

5. IP Inbound Call

45

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC: NetTSC_H245Data_Type_UserInputIndication

NetTSC: TSC_EvtCallState_Type_Failed

Un-route, Send MsgDropCall

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Set On-hook, Un-route, Drop Call

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC: TSC_EvtCallState_Type_Idle

Un-route, Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Connected

Set Off-hook, Dial, Route

NetTSC:TSC_MsgMakeCallCmplt

NetTSC:
TSC_EvtCallState_Type_Offered

Send MsgGetCallInfo and
MsgAnswerCall

Figure 14. IP Inbound: Wait for Disconnect

5.3.1. IP Disconnect

The application sends TSC_MsgDropCall to the NetTSC component instance.

5.4. Wait_For_Idle State (Retrieving Call Status)

The application receives a TSC_EvtCallState_Type_Idle event and then gets call
information (e.g., duration time, RTCP info) by sending a TSC_MsgGetCallInfo
message to the TSC component instance.

Once the application receives the requested call information, it sends a
TSC_MsgReleaseCall message and transitions to the WAIT_FOR_RELEASE
state.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

46

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC: NetTSC_H245Data_Type_UserInputIndication

NetTSC: TSC_EvtCallState_Type_Failed

Un-route, Send MsgDropCall

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Set On-hook, Un-route, Drop Call

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC: TSC_EvtCallState_Type_Idle

Un-route, Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Connected

Set Off-hook, Dial, Route

NetTSC:TSC_MsgMakeCallCmplt

NetTSC:
TSC_EvtCallState_Type_Offered

Send MsgGetCallInfo and
MsgAnswerCall

Figure 15. IP Inbound: Wait for Idle

5.5. Wait_For_Release (Exiting the Call)

The application receives a TSC_EvtCallState_Type_Null event and resets all
data structures to their default values. The call-state transitions to
WAIT_FOR_CALL.

5. IP Inbound Call

47

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

NetTSC: TSC_EvtCallState_Type_Null

Set On-hook, Reset data structure

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo
Send MsgReleaseCall

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC: NetTSC_H245Data_Type_UserInputIndication

NetTSC: TSC_EvtCallState_Type_Failed

Un-route, Send MsgDropCall

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DE_LCOFF
PSTN: DE_TONEON

Set On-hook, Un-route, Drop Call

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC: TSC_EvtCallState_Type_Idle

Un-route, Send MsgReleaseCall

NetTSC: TSC_EvtCallState_Type_Connected

Set Off-hook, Dial, Route

NetTSC:TSC_MsgMakeCallCmplt

NetTSC:
TSC_EvtCallState_Type_Offered

Send MsgGetCallInfo and
MsgAnswerCall

Figure 16. IP Inbound: Wait for Release

49

6. Advanced Topics

The IPTGate demo is a basic demo that shows simple usage of the DM3 IPLink
platform. Some enhancements that may be useful include:

6.1. Collecting Routing Information From the PSTN Call

There are many ways that a gateway may collect the destination address, both IP
address as well as a target PSTN number. This may include:

• Using DTMF signals

• Using ANI features

• Using a sophisticated IVR system

• Using a sophisticated directory service.

6.2. Connecting the IP call to the PSTN Call

The IPTGate demo connects an originating IP call to the PSTN call as soon as it
completes dialing. This allows the calling party to hear the call progress tones.
However, this indicates to the calling gateway (or terminal) that the call is
established. In some applications, you may want to hold off the connection
(answering the IP call) until after it determines the status of the PSTN call (by
using the call progress analysis features of the PSTN card). It is possible that in
this case the IPTGate demo will play some “music on hold” or other messages to
the calling party.

6.3. Billing

The IPTGate demo includes a billing part. Several options for billing include:

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

50

• Start billing as soon as the remote IP station had answered the call. This
has the following problems:

• If the remote station answers the call immediately after the PSTN
dial, then the billing may start before the call is established.
Moreover, the call may not complete successfully, while the billing
is activated.

• If the remote station answers the call only after it determines a
positive connection on the PSTN call, then the calling party will
not hear the call progress tones.

• Have the gateway answer the IP call immediately after it dials out on the
PSTN to allow for call progress tones. Use the Dialogic non-standard
channel that is established between gateways to exchange billing
information (such as the result of the PSTN call).

6.4. Least Cost Routing

The IPTGate demo does not demonstrate least cost routing.

6.5. PSTN Disconnect Supervision

The IPTGate demo uses a very simple method for determining PSTN disconnect.
More sophisticated methods may be used.

51

Appendix A
The IPTGate.cfg file

##
#
Source : My IPTGate machine IP address.
#
Destination: Destination address for MsgMakeCall.
#
RemotePhoneNumber: Destination phone number to call,
Transferred during call establishment to Target GW.
#
LocalPhoneNumber: The number used for PSTN calls,
in case we don't get phone list from MsgGetCallInfo.
#
Coder: Requested coder type during call(G723 or G711MuLaw).
#
FramesPerPkt: Number of coder frames per RTP packet(range 1-3).
#
FrameSize: Coder output frame size in miliseconds
(Valid only for G711: 10 or 20 or 30).
#
Rate: High or low bit rate (Valid only for multiple rate coders)
0 - G723 6.3
1 - G723 5.3
#
VAD: Voice Activity Detector (Valid for G723 & GSM)
0 = disable (No silence suppression).
1 = enable (Suppresses silence packets).
#
Display: Display information that is passed to destination GW
during call establishment.
#
UUI: User to User Information string, Information to send before
Connected state.
#
UII: UII string to send, when send MsgSendUserInputIndication.
#
NonStdCmd: NonStdCmd string to send, when send MsgSendNonStdCmd.
#
##

Source = 146.152.187.51

Channel = 1
{
 Destination = 146.152.187.51
 RemotePhoneNumber = 36
 LocalPhoneNumber = 28
 Coder0
 {
 Type = g711MuLaw
 FramesPerPkt = 1
 FrameSize = 30
 Rate = 0

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

52

 VAD = 0
 }
 Display = IPTGate_Chan1
 UUI = User_to_User_1
 UII = 255
 NonStdCmd = NSC_Chan1
}

Channel = 2
{
 Destination = 146.152.187.51
 RemotePhoneNumber = 30
 LocalPhoneNumber = 28
 Coder0
 {
 Type = g711MuLaw
 FramesPerPkt = 1
 FrameSize = 30
 Rate = 0
 VAD = 0
 }
 Coder1
 {
 Type = g723
 FramesPerPkt = 1
 Rate = 0
 VAD = 0
 }
 Coder2
 {
 Type = Don't_Care
 FramesPerPkt = Don't_Care
 FrameSize = Don't_Care
 Rate = Don't_Care
 VAD = Don't_Care
 }
Display = IPTGate_Chan2
 UUI = User_to_User_2
 UII = 255
 NonStdCmd = NSC_Chan2
}

Channel = 3
{
 Destination = 146.152.187.51
 RemotePhoneNumber = 28
 LocalPhoneNumber = 29
 Coder0
 {
 Type = g711MuLaw
 FramesPerPkt = 1
 FrameSize = 30
 Rate = 0
 VAD = 0
 }

 Display = IPTGate_Chan3
 UUI = User_to_User_3
 UII = 255
 NonStdCmd = NSC_Chan3

Appendix A

53

}

Channel = 4-6
{
 Destination = 146.152.187.51
 RemotePhoneNumber = 2019933255
 LocalPhoneNumber = 27
 Coder0
 {
 Type = g711MuLaw
 FramesPerPkt = 1
 FrameSize = 30
 Rate = 0
 VAD = 0
 }
 Display = IPTGate_Chan4
 UUI = User_to_User_4
 UII = 255
 NonStdCmd = NSC_Chan4
}

55

Appendix B
Make Call Log File

--
 IPTGate --- Voice over IP Gateway Demo Program.

 Version 1.00 Release 1.00
 Copyright (c) 1997, Dialogic Corp.
--

Can only support 3 channels.

TRACE: File: GATEMISC.C Line: 281
Session 1: Destination 146.152.187.74

 PhoneList 28
 LocalPhoneNumber 27
 Coder 0
 FramesPerPacket 3
 FrameSize 30
 Rate 1
 VAD 0
 Display IPTGate_Chan1
 UUI User_to_User_1
 UII 1#*
 NonStdCmd NSC_Chan1

TRACE: File: GATEMISC.C Line: 281
Session 2: Destination 146.152.187.55

 PhoneList 29
 LocalPhoneNumber 28
 Coder 2
 FramesPerPacket 1
 FrameSize 30
 Rate 1
 VAD 1
 Display IPTGate_Chan2
 UUI User_to_User_2
 UII 22##**
 NonStdCmd NSC_Chan2

TRACE: File: GATEMISC.C Line: 281
Session 3: Destination 146.152.187.51

 PhoneList 28
 LocalPhoneNumber 29

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

56

 Coder 2
 FramesPerPacket 1
 FrameSize 30
 Rate 1
 VAD 1
 Display IPTGate_Chan3
 UUI User_to_User_3
 UII 333###***
 NonStdCmd NSC_Chan3

Waiting for key:
 'Q' - to quit
 'N' - for Non standard command (Active only in connected

state)
 'U' - for User Input Indication (Active only in connected

state)

WAITING FOR EVENT: INCOMING CALL OR OUTGOING CALL.

TRACE: File: GATESTAT.C Line: 76
In WAIT_FOR_CALL on channel 1

 got event DE_RINGS (0x1)

TRACE: File: GATESTAT.C Line: 182
After ROUTE_ALL.

TRACE: File: GATESTAT.C Line: 273
In WAIT_FOR_CONNECT on channel 1

 got event TSC_EvtCallState_Type_Connected (0x1232)

TRACE: File: GATESTAT.C Line: 394
In WAIT_FOR_DISCONNECT on channel 1

 got event DE_TONEON (0x11)

TRACE: File: GATESTAT.C Line: 478
In WAIT_FOR_IDLE on channel 1

 got event TSC_EvtCallState_Type_Idle (0x1239)
Got RTCPInfo LocalSR_TxPackets 474
LocalRR_FructionLost 0
RemoteSR_TxPackets 107
RemoteRR_FructionLost 0
on channel 1
Got 7 second duration time on channel 1

TRACE: File: GATESTAT.C Line: 552

Appendix B

57

In WAIT_FOR_RELEASE on channel 1
 got Event TSC_EvtCallState_Type_Null (0x1230)

59

Appendix C
Call Offering Log File

--
 IPTGate --- Voice over IP Gateway Demo Program.

 Version 1.00 Release 1.00
 Copyright (c) 1997, Dialogic Corp.
--

Can only support 3 channels.

TRACE: File: GATEMISC.C Line: 281
Session 1: Destination 146.152.187.74

 PhoneList 28
 LocalPhoneNumber 27
 Coder 0
 FramesPerPacket 3
 FrameSize 30
 Rate 1
 VAD 0
 Display IPTGate_Chan1
 UUI User_to_User_1
 UII 1#*
 NonStdCmd NSC_Chan1

TRACE: File: GATEMISC.C Line: 281
Session 2: Destination 146.152.187.55

 PhoneList 29
 LocalPhoneNumber 28
 Coder 2
 FramesPerPacket 1
 FrameSize 30
 Rate 1
 VAD 1
 Display IPTGate_Chan2
 UUI User_to_User_2
 UII 22##**
 NonStdCmd NSC_Chan2

TRACE: File: GATEMISC.C Line: 281
Session 3: Destination 146.152.187.51

 PhoneList 28

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

60

 LocalPhoneNumber 29
 Coder 2
 FramesPerPacket 1
 FrameSize 30
 Rate 1
 VAD 1
 Display IPTGate_Chan3
 UUI User_to_User_3
 UII 333###***
 NonStdCmd NSC_Chan3

Waiting for key:
 'Q' - to quit
 'N' - for Non standard command (Active only in connected

state)
 'U' - for User Input Indication (Active only in connected

state)

WAITING FOR EVENT: INCOMING CALL OR OUTGOING CALL.

TRACE: File: GATESTAT.C Line: 76
In WAIT_FOR_CALL on channel 3

 got event TSC_EvtCallState_Type_Offered (0x123b)
Got CallerId TA:146.152.187.74:1171,NAME:ami givati on channel 3
Got display ami givati on channel 3

TRACE: File: GATESTAT.C Line: 138
Answering call on channel 3

TRACE: File: GATESTAT.C Line: 273
In WAIT_FOR_CONNECT on channel 3

 got event TSC_EvtCallState_Type_Connected (0x1232)

TRACE: File: GATESTAT.C Line: 291
Dialing (29) on channel 3

TRACE: File: GATESTAT.C Line: 304
ROUTE_ALL after dial on channel 3

TRACE: File: GATESTAT.C Line: 394
In WAIT_FOR_DISCONNECT on channel 3

 got event TSC_EvtCallState_Type_Disconnected (0x1236)

TRACE: File: GATESTAT.C Line: 428
Got Call State Disconnected the reason is 19

Appendix C

61

TRACE: File: GATESTAT.C Line: 478
In WAIT_FOR_IDLE on channel 3

 got event TSC_EvtCallState_Type_Idle (0x1239)
Got RTCPInfo LocalSR_TxPackets 697
LocalRR_FructionLost 0
RemoteSR_TxPackets 107
RemoteRR_FructionLost 0
on channel 3
Got 7 second duration time on channel 3

TRACE: File: GATESTAT.C Line: 552
In WAIT_FOR_RELEASE on channel 3

 got Event TSC_EvtCallState_Type_Null (0x1230)

63

Appendix D
Digital State Diagrams

WAIT_FOR_CONNECT

NetTSC: TSC_EvtCallState_Type_Failed
PSTN: DIGITAL_ONHOOK

Un-route, Send MsgDropCall

NetTSC:TSC_MsgMakeCallCmplt

WAIT_DETECT_CMPLT

WAIT_FOR_CALL

NetTSC: Std_MsgDetectXEvtsCmplt

If IP Disconnect:
NetTSC: TSC_EvtCallState_Type_Null

Set On-hook

PSTN_RELEASE

WAIT_FOR_IDLE

WAIT_FOR_RELEASE

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo to NetTSC
Send MsgReleaseCall to NetTSC

NetTSC: TSC_EvtCallState_Type_Connected

NetTSC:
NetTSC_H245Data_Type_NonStdCmd
NetTSC:
NetTSC_H245Data_Type_UserInputIndication

if PSTN Disconnect:
NetTSC:TSC_EvtCallState_Type_Null

Set On-hook, Reset Data Structure

TSC: TSC_EvtCallState_Type_Offered

Send MsgRejectCall to NetTSC

WAIT_DONE

PSTN:
DIGITAL_ONHOOK

reset Data Structure

PSTN: DIGITAL_ONHOOK

reset Data Structure

TSC_EvtCallState
_Type_Null

TSC_EvtCallState
_Type_Idle

Send MsgReleaseCall
 to NetTSC

WAIT_FOR_DISCONNECT

NetTSC:TSC_EvtCallState_Type_Disconnect
PSTN: DIGITAL_ONHOOK

Un-route, Send MsgDropCall to NetTSC

PSTN: DIGITAL_OFFHOOK

Route, Set Off-hook,
Send MsgMakeCall to NetTSC

Figure 17. Digital PSTN Inbound Call

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

64

WAIT_FOR_CALL

WAIT_FOR_DISCONNECT

WAIT_FOR_RELEASE

WAIT_FOR_CONNECT

WAIT_FOR_IDLE

NetTSC: NetTSC_H245Data_Type_NonStdCmd
NetTSC: NetTSC_H245Data_Type_UserInputIndication

NetTSC:
TSC_EvtCallState_Type_Failed

Un-route, Send MsgDropCall to
NetTSC

NetTSC: TSC_EvtCallState_Type_Disconnect
PSTN: DIGITAL_ONHOOK

Un-route, Drop Call

WAIT_DETECT_CMPLT

NetTSC: Std_MsgDetectXEvtsCmplt

NetTSC: TSC_EvtCallState_Type_Idle

Un-route, Send MsgReleaseCall to NetTSC

NetTSC: TSC_EvtCallState_Type_Connected

Set Off-hook

NetTSC:
TSC_EvtCallState_Type_Offered

Send MsgGetCallInfo to NetTSC
Send MsgAnswerCall to NetTSC

PSTN_INIT

PSTN: DIGITAL_OFFHOOK

Route

NetTSC: TSC_EvtCallState_Type_Disconnected

Send MsgDropCall to NetTSC

If PSTN Disconnect:
NetTSC:TSC_EvtCallState_Type_Null

Set On-hook

PSTN_RELEASE

TSC: TSC_EvtCallState_Type_Offered

Send MsgRejectCall to NetTSC

WAIT_DONE

PSTN: DIGITAL_ONHOOK

reset Data Structure

PSTN:
DIGITAL_ONHOOK

TSC_EvtCallState
_Type_Null

TSC_EvtCallState
_Type_Idle

Send MsgReleaseCall
 to NetTSC

reset Data Structure

NetTSC: TSC_EvtCallState_Type_Idle

Send MsgGetCallInfo to NetTSC
Send MsgReleaseCall to NetTSC

If IP Disconnect:
NetTSC:TSC_EvtCallState
 _Type_Null

Set On-hook

Figure 18. Digital IP Inbound Call

65

Appendix E
Application Foundation Code Reference

What is the Application Foundation Code?

The Application Foundation Code for the DM3 Direct Interface for Windows
NT is a set of software functions provided with the Development Tool Kits for
the DM3-based products. The primary goal of the foundation code is to give the
DM3 application developers a jumpstart in their application design. C is the
implementation choice for the foundation code. The foundation code is based on
asynchronous model using I/O Completion Ports as the event notification
mechanism.

The foundation code is organized as a collection of header files, source files, and
application handlers. The foundation source files provide the basic DM3
functionality simplifying most of the operations involved in communicating with
the firmware. The handlers are skeletal source that need to be completed by the
application developer to implement the application logic. It is organized as
separate empty functions for each and every incoming event the application has
to respond to. The application developer fills up the function for incoming events
and links it with the other foundation files.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

66

Foundation Code Architecture

Host Sample Apps

Core
services

QVS specific
services

Standard services
(includes RTC, Std messages, switching)

Misc framework services
(dispatching messages and streams events)

Fax Layer
contains fax resource

IPLinkLayer
contains NetTSP resource

IPLink specific
services

Fax specific
services

QS Layer
contains TSP, Player,

Recorder, TG, SD
resources

Core Foundation Code
consists of Component,

Stream and Cluster
modules

Figure 19. DM3 Direct Interface Foundation Code Architecture

Appendix E

67

Core Foundation Code and Core Services

The DM3 Direct Interface core foundation code provides services that are
product-independent. There are three modules in the core foundation code.

• The host component module handles all the messaging aspects of the DM3
platform. This includes sending and receiving messages, and processing
messages. The host component module is not aware of any specifics of DM3
messages; it just acts as a transporter. The host component module provides
a mechanism to register a callback function for each resource instance. For
example, a TSP resource, conforming to the foundation code, would register
a callback function when initializing a host component. This callback
function will be called by the host component module so that the resource
can interpret the messages.

• The cluster module provides SCbus switching functions that are functionally
comparable to the R4 switching functions.

• The stream module abstracts streaming-related aspects of the DM3 platform.
This module is not used by the IPLink platform.

Product-Specific Layers and Services

Product-specific layers are built on top of the core foundation code. The IPLink
specific layer, for example, contains services that are specific to the TSC and the
NetTSC resources that are provided as part of the IPLink platform. This product-
specific layer makes use of the core foundation code services for messaging and
SCbus switching. Each product that conforms to this foundation code has to
publish a set of services/interfaces it supports. Using these interfaces, the
application can access technology-specific services.

As the resource layers are built on top of the core foundation code, they need to
abide by the rules and guidelines set forth by the core foundation code.

Standard and Miscellaneous Services

Sending and receiving standard component interface messages is common to all
components in DM3. Applications would have to directly access these services

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

68

for sending standard messages. Thus, the standard message service is provided
in the host component module.

Dispatching services are needed so that the application code, which contains the
main loop for processing events, can call the appropriate foundation code
function to process the event.

Component Interface Attributes

The following host component interface attributes are contained in DM3COMP
data structures.

Attribute Name Description

hMpath Win32 handle for the DM3 message path to be
used to communicate with the firmware component

qcdHostAddress DM3 component descriptor for the message path

qcdFWAddress DM3 component descriptor for the firmware
component

lpUserInfo Any information that user of the component wants
to associate with this component handle. At
component init time, the user of the component
(like TSC, ToneGen) would pass this pointer as an
argument.

lpfnCallBack Callback function registered by the user of
component. This function will be called by the
component as part of processing a message.

hIOCP Handle for IO Completion port to be used.

dwIOCPKey Key that is used to indicate any message IO
completion for this component.

bSyncMode True à Sends messages in synchronous mode
False à Sends messages in asynchronous mode

Appendix E

69

Attribute Name Description

dwTimeOutInSecs Timeout values in seconds; to be used when
sending messages synchronously

ucExpectedReplyCount Number of replies expected for the command

lpCriticalSection Pointer to the critical section to be used to protect
data structure in multi-threaded environment.

Internal Data Structures

Various elements in the DM3MSGOVERLAPPED data structure are described
below.

Element Name Description

Overlapped Win 32 Overlapped structure to be used with this
message IO. This has to be the first element in the
structure so that the foundation code can perform
the above mentioned upcast.

lpMMB Pointer to the MMB structure that is associated
with this IO.

lpComp Pointer to the data structure of the component that
sent the message

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

70

Core Foundation Code Modules

Dm3CompProcIoCompletion() Process a message completion

Purpose

Called by the application code when the main loop retrieves an event associated
with a message path.

Function Signature

Name: LPVOID Dm3CompProcIoCompletion(
LPOVERLAPPED lpOverlapped, BOOL fOk)

Inputs: LPOVERLAPPED
lpOverlapped

• Pointer to the overlapped
structure retrieved from the
GetQueuedCompletionStatus
call.

BOOL fOk • Return value of
GetQueuedCompletionStatus

Returns: Pointer returned by the
application handler

•

Includes: •
Category:

Mode: Sync

Internal Operation

This is a foundation code host component function that is invoked by the
application code. The event notification (GetQueuedCompletionStatus) code
resides in the application code main loop. When the application sends a message
asynchronously, an IO completion packet will be queued when the message IO
completes. The application code then retrieves an IO message key from the IO
completion port. The application code should then call this foundation code
function, passing it the pointer to the overlapped structure. By using an

Appendix E

71

association technique, this foundation code function extracts the handle for the
resource that sent this message and the LPMMB used to send the message. After
extracting these two members, this function invokes the appropriate callback
handler registered for the host component.

Pseudocode

1. Upcast lpoverlapped to DM3MSGOVERLAPPED;
// For a discussion on DM3MSGOVERLAPPED refer to internal data
structure section

2. Retrieve the lpMMB and lpComp from the DM3MSGOVERLAPPED;

3. Retrieve the QMsg and QMsgType from the lpMMB reply;

4. Call the pMsgCallBack function with lpComp, CmdMsgType,
MsgType and QMsgRef as arguments.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

72

Dm3CompEnableSyncMode() Set the host component for
synchronous mode

Purpose

Called by the application code when the application code wants to send messages
synchronously to the firmware. All the messages from this host component will
be sent in synchronous mode until a Dm3CompEnableAsyncMode() call is
issued.

Function Signature
Name: DM3STATUS Dm3CompEnableSyncMode(LPDM3COMP

lpComp, USHORT usTimeoutInSecs)
Inputs: LPDM3COMP lpComp • Pointer to the component

interface attribute structure.
USHORT
usTimeOutInSecs

• Timeout to be used.

Returns: SUCCESS or FAILURE •
Includes: •
Category:

Mode: Sync

Internal Operation

Sets the bSyncMode component interface attribute to TRUE.

Appendix E

73

Dm3CompSetAsyncParams() Set the asynchronous parameters for
the host component

Purpose

This function sets various parameters needed to operate the host component in
asynchronous mode.

Function Signature
Name: DM3STATUS Dm3CompSetAsyncParams(PDM3COMP

lpComp, HANDLE hIOCP, DWORD dwIocpKey)
Inputs: LPDM3COMP lpComp • Pointer to the component

interface attribute structure
HANDLE HIOCP • IO Completion Port to be used
DWORD dwIocpKey • IO Completion Key for this

component
Returns: SUCCESS or FAILURE •

Includes: •
Category:

Mode: Sync

Internal Operation

Sets the bSyncMode component interface attribute to FALSE.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

74

Dm3CompEnableAsyncMode() Set the host component for
asynchronous mode

Purpose

This function is called by the application code when the application code wants
to send messages asynchronously to the firmware. All the messages from this
host component will be sent in asynchronous mode until a
Dm3CompEnableSyncMode() call is issued.

Function Signature

Name: DM3STATUS Dm3CompEnableAsyncMode(
LPDM3COMP lpComp, USHORT usTimeoutInSecs)

Inputs: LPDM3COMP lpComp • Pointer to the component
structure

USHORT
usTimeOutInSecs

• Timeout to be used

Returns: SUCCESS or FAILURE •
Includes: •
Category:

Mode: Sync

Internal Operation

Sets the bSyncMode component interface attribute to FALSE.

Appendix E

75

Dm3CompRecvMsg() Prepare the host component to receive an
asynchronous message

Purpose

This function is called by the application code when the application code wants
to receive asynchronous events from a firmware resource.

Function Signature

Name: DM3STATUS Dm3CompRecvMsg(LPDM3COMP
lpComp, ULONG ulMsgType)

Inputs: LPDM3COMP lpComp • Pointer to the component
structure

ULONG ulMsgType • Asynchronous message type
that the application code is
interested in receiving

Returns: SUCCESS or FAILURE •
Includes: •
Category:

Mode: Sync

Internal Operation

Constructs an MMB big enough to hold the asynchronous message and sets the
matching criteria as detailed above.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

76

Standard messages Sends various standard messages to the DM3
components

Purpose

These functions are called by the application code when the application code
wants to send a standard component interface message to a firmware component.
Most of the functions listed here are self-explanatory.

Function Signatures

Name: DM3STATUS Dm3CompSetParm(LPDM3COMP lpComp,
 Std_MsgSetParm_Num_t ParmKey,

Std_MsgSetParm_Val_t ParmValue
Inputs: •

Returns: SUCCESS or FAILURE •
Includes: •
Category:

Mode:

Name: DM3STATUS Dm3CompSetParmDef(LPDM3COMP lpComp,
 Std_MsgSetParm_Num_t ParmKey)

Inputs: •
Returns: SUCCESS or FAILURE •

Includes: •
Category:

Mode:

Name: DM3STATUS Dm3CompSetAllParmsDef(LPDM3COMP
lpComp)

Inputs: •
Returns: SUCCESS or FAILURE •

Includes: •
Category:

Mode:

Appendix E

77

Name: DM3STATUS Dm3CompGetParm(LPDM3COMP lpComp,
 Std_MsgSetParm_Num_t ParmKey)

Inputs: •
Returns: SUCCESS or FAILURE •

Includes: •
Category:

Mode:

Name: DM3STATUS Dm3CompDetectEvt(LPDM3COMP lpComp,
Std_MsgDetectEvt_Type_t EvtType,
Std_MsgDetectEvt_Label_t Label,
Std_MsgDetectEvt_RetAddr_t qcdRetAddr)

Inputs: •
Returns: SUCCESS or FAILURE •

Includes: •
Category:

Mode:

Name: DM3STATUS Dm3CancelEvt(LPDM3COMP lpComp,
Std_MsgCancelEvt_Type_t MsgType)

Inputs: •
Returns: SUCCESS or FAILURE •

Includes: •
Category:

Mode:

Name: DM3STATUS Dm3CompArmRTC(LPDM3COMP lpComp,
Std_MsgArmRTC_Action_t Action,
Std_MsgArmRTC_Label_t Label)

Inputs: •
Returns: SUCCESS or FAILURE •

Includes: •
Category:

Mode:

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

78

Name: DM3STATUS Dm3CompDisarmRTC(LPDM3COMP
lpComp,

Std_MsgDisarmRTC_Label_t Label)
Inputs: •

Returns: SUCCESS or FAILURE •
Includes: •
Category:

Mode:

Name: DM3STATUS Dm3CompTest(LPDM3COMP lpComp)
Inputs: •

Returns: SUCCESS or FAILURE •
Includes: •
Category:

Mode:

Internal Operation

Builds and sends appropriate message.

Appendix E

79

IPLink Resource Layer Functions

The foundation code resource layer for the IPLink platform has services for two
resources. They are:

• TSC (part of the TSP resource)

• NetTSC (part of the NetTSP resource)

Dm3Tsp Data Structure Definition

This data structure definition extends the base component definition for the TSC
specific component.
typedef struct {

DM3COMP theComp; // The common component structure
LPVOID lpUserInfo;// A general purpose pointer for app use
WORD unTrunkId; // Which T1 or E1 trunk in the

system
WORD unBearerChanId; // Timeslot on above trunk.
WORD unCallId; // Id number of any active call or -

1
WORD nChannelState;// Current channel state
BOOL fBusy; // Whether instance is processing a command

} DM3TSC, *LPDM3TSC

• CompInfo
The base component description common to all DM3 components. It is
statically declared making it simpler and more flexible for the user to
implement and initialize this data whether it is on the heap or stack or
statically declared.

• lpUserInfo
A general purpose pointer for use by the Application. This would be used
to link the component instance data structure to a higher level data structure
such as might be done to implement an aggregation relationship, etc…

• TrunkId
The TrunkId associated with this TSC resource.

• BearerChanId
The timeslot associated with this TSC resource.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

80

• CallId
The Call Identification number or “call handle” of any currently active call.
This data is managed by the framework. It is initialized during either an
“offerred” event or a TSC_MsgMakeCallCmplt, and reset during a release
call command. If no call is active, this will have a value of 0xFFFF.

• OriginatingId
The originating phone number associated with this line.

• ChannelState
The channel state is managed by the framework. This field is updated every
time a channel state event occurs. These events are always enabled for this
component when it is initialized.

• Fbusy
A flag maintained by the framework that denotes whether this instance is
currently waiting for a reply to a command.

Appendix E

81

Dm3TscInit() Initializes a TSC instance

Purpose

This function will initialize a TSC instance data structure. This initialization
allows the events related to the instance to be automatically detected, routed and
processed by the application framework.

Function Signature

Name: PVOID Dm3TscInit(LPDM3COMPTSC pTspInfo,
QCompDesc FwCompAddr,
DM3TSCCALLBACK pTspEventHandler,
PVOID pTspUserInfo,
HANDLE pIocp,
DWORD CompletionKey)

Inputs: IN LPDM3COMPTSC pTspInfo
IN QCompDesc FwCompAddr
IN DM3TSCCALLBACK pTspEventHandler
OPTIONAL IN PVOID pTspUserInfo
OPTIONAL IN HANDLE pIocp
OPTIONAL IN DWORD CompletionKey
OPTIONAL IN PSTRING pzMyPhoneNum

Outputs: The Component descriptor pointed to by pTspInfo has its members
initialized.

Returns: SUCCESS or an error code

Includes:
Category:

Mode: SYNC or ASYNC

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

82

Internal Operation

This function will initialize the TSC component object. A pointer to allocated
memory for the object must be provided. The function will perform some TSC
initialization, then will call the frameworks Dm3CompINIT() function to
initialize the rest of the data structure. Internally an MPATH will be created
and associated with the IO completion port handle passed in. This MPATH will
be used exclusively with this instance, and every call to this function will result
in a different MPATH device being created.

This function will also discover the bearer channel (timeslot) and line ID
associated with this TSC if any, and populate the associated fields in the
component data structure. This may be useful to telephony app developers who
are used to organizing their data structures along these lines.

PDM3COMPTSC pTspInfo A pointer to the TSC
information structure
to be initialized.

QCompDesc FwCompAddr Address of the TSC
instance object to be
initialized

PVOID pTspUserInfo A general purpose
pointer for linkage to
user app data/objects

DM3TSCCALLBACK pTspEventHandler Event handler
function for all events
on this instance.

HANDLE pIocp I/O completion port to
associate device
stream with.

DWORD CompletionKey I/O completion key to
associate with this
instance

Limitations/Assumptions

1. Not all members of the DM3COMPTSC structure are provided as arguments
to the init function.

Appendix E

83

2. See Reference 8 for additional details on framework data structure
initialization.

Error Codes

TBD.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

84

Dm3TscCleanUp () Releases the resources and handles owned
by a TSC instance.

Purpose

This function will release the resources owned by a TSC object for use back into
the system.

Function Signature

Name: BOOL Dm3TscReleaseResources(PDM3COMPTSC
pTspInfo)

Inputs: IN PDM3COMPTSC pTspInfo
Outputs: Releases the resources allocated to the component
Returns: A valid pointer or NULL if failure

Includes:
Category:

Mode: SYNC

Internal Operation

This function will release the MPATH that was associated with this instance, by
closing it’s handle. In addition if an active call is associated with this instance, a
“release call” command will be issued, and the call ID reset to its default value in
the data structure.

Limitations/Assumptions

1. While no function currently exists in Windows to detach the MPATH from
the IO completion port, closing it effectively accomplishes this. This
functionality may be explicitly available in NT 5.0

Error Codes

TBD.

Appendix E

85

TSC Command Functions

Dm3TscMakeCall() Places an outgoing call

Purpose

This function will result in an outgoing call being initiated on the specified TSC
instance and a call ID being created and returned to the application. This
function allocates, prepares, and sends the MMB for the TSC standard message
TSC_MsgMakeCall.

Function Signature

Name: BOOL Dm3TscMakeCall (LPDM3COMPTSC, pTspInfo,
LPSTR szDestAddress,
LPSTR szSourceAddress,
BOOL fCallProg,
LPINFOELEMENT pInfoArray)

Inputs: IN LPDM3COMPTSC pTscInfo
IN LPSTR szDestAddress
IN LPSTR szOrigAddress
IN BOOL fCallProg
OPTIONAL IN LPINFOELEMENT pInfoArray

Outputs: Call is initiated
Returns: SUCCESS or an error

code
Includes:
Category:

Mode: SYNC or ASYNC

Argument Descriptions

pTscInfo TSC Host component information structure

pzDestAddress Phone number to be dialed

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

86

pzOrigAddress My phone Number. Used as “Originating”
address.

FCallProg Flag controlling the enablement of call
progress.

PInfoArray Pointer to an array of information elements
that can provide additional data to the make
call command payload for protocols such as
ISDN and VOIP.

Internal Operation

This function will prepare the message and payload necessary for the
TSC_MsgMakeCall message. The payload structure consists of three essential
elements, all of which are exposed through this functions as shown below:

Destination Address Set to value of szDestAddress specified in
argument list

Originating Address Set to value of szOrigAddress from argument list

Call Progress Set to state requested by value of fCallProg in
argument list, either enabled or disabled

In addition to these required values, the array pInfoArray is a list of KV sets
which may be added to the MakeCall command. If this pointer is NULL, no KV
set processing will be performed and the standard TSC_MsgMakeCall_t payload
will be sent down.

As Call ID is not available until generation of the TSC_MsgMakeCallCmplt
event, the handler for this event must update this field in the objects data
structure.

Limitations/Assumptions

This function has the following limitations:

Appendix E

87

1. The TSC_MsgMakeCallCmplt message must be handled by the application
when ASYNC operation is specified.

2. Assumes the Mpath was opened with FILE_FLAG_OVERLAPPED
specifier if ASYNC operation specified.

Error Codes

Standard Error Messages (See Section on Error Handling).

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

88

Dm3TscAnswerCall() Seizes the line of an incoming call

Purpose

This function will answer the call of any bearer channel in response to a call
offering. The set up and receipt of incoming call events is beyond the scope of
this function and is assumed to be provided elsewhere.

Function Signature

Name: BOOL Dm3TscAnswerCall (LPDM3COMPTSC, pTspInfo,
UINT RingCount
LPINFOELEMENTpInfoArray)

Inputs: pTspInfo • A pointer to the TSC
information structure

RingCount • The number of rings to wait
before answering

pInfoArray • An option array of KV sets
that will supplement the
normal Answer call command
payload.

Outputs: None •
Returns: SUCCESS or FAIL •

Includes: •
Category:

Mode: SYNC

Internal Operation

This function will prepare the message and payload necessary for the
TSC_MsgAnswerCall message. The payload consists of 2 elements, one of
which is exposed through this function as shown below:

Appendix E

89

Call Id Handle to the call to be answered. This would have
been provided as data in the “offered” event and
stored as part of the component instance descriptor
structure (DM3COMPTSC).

Number of Rings The number of rings to wait before answering

pInfoArray An Optional pointer to an array of KV sets.

In addition to these required values, the array pInfoArray is a list of KV sets
which may be added to the AnswerCall command. If this pointer is NULL, no
KV set processing will be performed and the standard TSC_MsgAnswerCall_t
payload will be sent down.

Only SYNC operation is supported as there is no reply message associated with
this command. The only indication that this command succeeded is that a
Std_MsgEvtDetected will come back with a TSC_EvtCallState showing the
transition to the “connected” state.

Limitations

This function assumes that Std_MsgEvtDetected event has been enabled for a
call state transition to the “connected” state or it will not be possible for the user
to ascertain when the line has actually been seized.

Error Codes

Standard Error Messages (See Section on Error Handling).

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

90

Dm3TscAnswerCall() Seizes the line of an incoming call

Purpose

This function will answer the call of any bearer channel in response to a call
offering. The set up and receipt of incoming call events is beyond the scope of
this function and is assumed to be provided elsewhere.

Function Signature

Name: BOOL Dm3TscAnswerCall (LPDM3COMPTSC, pTspInfo,
UINT RingCount
LPINFOELEMENT pInfoArray)

Inputs: pTspInfo • A pointer to the TSC
information structure

RingCount • The number of rings to wait
before answering

pInfoArray • An option array of KV sets
that will supplement the
normal Answer call command
payload

Outputs: None •
Returns: SUCCESS or FAIL •

Includes: •
Category:

Mode: SYNC

Internal Operation

This function will prepare the message and payload necessary for the
TSC_MsgAnswerCall message. The payload consists of 2 elements, one of which
is exposed through this function as shown below:

Appendix E

91

Call Id Handle to the call to be answered. This would have
been provided as data in the “offered” event and
stored as part of the component instance descriptor
structure (DM3COMPTSC).

Number of Rings The number of rings to wait before answering

pInfoArray An Optional pointer to an array of KV sets.

In addition to these required values, the array pInfoArray is a list of KV sets
which may be added to the AnswerCall command. If this pointer is NULL, no
KV set processing will be performed and the standard TSC_MsgAnswerCall_t
payload will be sent down.

Only SYNC operation is supported as there is no reply message associated with
this command. The only indication that this command succeeded is that a
Std_MsgEvtDetected will come back with a TSC_EvtCallState showing the
transition to the “connected” state.

Limitations

This function assumes that Std_MsgEvtDetected event has been enabled for a
call state transition to the “connected” state or it will not be possible for the user
to ascertain when the line has actually been seized.

Error Codes

Standard Error Messages (See Section on Error Handling).

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

92

Dm3TscAcceptCall() Accepts an incoming call

Purpose

This function will accept the call of any bearer channel in response to a call
offering. This is different than outright answering a call in that the call state is
moved to the “accepted” state as opposed to the “connected” state. This may
have implications with regard to CO communication dependent upon the
protocol in use.

The set up and receipt of incoming call (“offered”) events is beyond the scope of
this function and is assumed to be enabled elsewhere.

Function Signature

Name: PVOID Dm3TscAcceptCall (LPDM3COMPTSC, pTspInfo)
Inputs: LPDM3COMPTSC

pTspInfo
• A pointer to the TSC

information structure
Returns: SUCCESS or error code

if failure
•

Includes: •
Category:

Mode: SYNC

Internal Operation

This function will use the convenience functions to prepare the message and
payload necessary for the TSC_MsgAcceptCall message. The payload consists
of 1 element as shown below:

Call Id Handle to the call to be accepted. This would have
been provided as data in the “offered” event.

Appendix E

93

Only SYNC operation is supported as there is no reply message associated with
this command. The only indication that this command succeeded is that a
Std_MsgEvtDetected will come back with a TSC_EvtCallState showing the
transition to the “Accepted” state.

Limitations

This function assumes that Std_MsgEvtDetected event has been enabled for a
call state transition to the “accepted” state or it will not be possible for the user to
ascertain when the command is actually done.

Error Codes

Standard, see Section on error codes.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

94

Dm3TscDropCall() Drops a call

Purpose

This function “hangs up” a particular call but leaves the call identifier open to
support post call queries.

Function Signature

Name: PVOID Dm3TscDropCall(LPDM3COMPTSC, pTspInfo)
Inputs: LPDM3COMPTSC

pTspInfo
• A pointer to the TSC

information structure
Returns: SUCCESS or error code

if failure
•

Includes: •
Category:

Mode: SYNC

Internal Operation

This function will use the convenience functions to prepare the message and
payload necessary for the TSC_MsgDropCall message. The payload consists of
1 element as shown below:

Call Id Handle to the call to be dropped.

Only SYNC operation is supported as there is no reply message associated with
this command. The only indication that this command succeeded is that a
Std_MsgEvtDetected will come back with a TSC_EvtCallState showing the
transition to the “idle” state.

Appendix E

95

Limitations

Error Codes

This function will return an error if the Call ID is invalid. All other errors are
returned through the STD_MsgError event as detailed in section 6.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

96

Dm3TscReleaseCall() Releases the call ID

Purpose

This function will initiate the release the call ID specified by issuing the
TSC_MsgReleaseCall command.

Function Signature

Name: PVOID Dm3TscReleaseCall(LPDM3COMPTSC, pTspInfo)
Inputs: LPDM3COMPTSC

pTspInfo
• A pointer to the TSC

information structure
Returns: SUCCESS or error code

if failure
•

Includes: •
Category:

Mode: TBD

Internal Operation

This function will use the convenience functions to prepare the message and
payload necessary for the TSC_MsgReleaseCall message. The payload consists
of 1 element as shown below:

Call Id Handle to the call to be Released.

Only SYNC operation is supported as there is no reply message associated with
this command. The only indication that this command succeeded is that a
Std_MsgEvtDetected will come back with a TSC_EvtCallState showing the
transition to the “Null” state. If the call has not already been dropped, then this
function will first cause a transition to the “idle” state, then the null state
transition.

Appendix E

97

Limitations
None.

Error Codes

See Standard Tsc Error Codes section.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

98

Dm3TscRejectCall() Rejects an incoming call

Purpose

This function allows the user to reject an incoming call. A reason for this
rejection can be provided to allow the proper setting of protocol dependent
information. The function prepares the message and payload for the
TSC_MsgRejectCall command.

Function Signature

Name: PVOID Dm3TscRejectCall (LPDM3COMPTSC, pTspInfo,
UINT Reason)

Inputs: LPDM3COMPTSC
pTspInfo

• A pointer to the Tsc
information structure

UINT Reason • The reason for the rejection,
BUSY, CONGESTION, or
UNAVAILABLE

Returns: SUCCESS or error code
if failure

•

Includes: •
Category:

Mode: TBD

Internal Operation

This function prepares the command and payload for the TSC_MsgRejectCall
command. This payload contains a reason for the rejection so that certain
protocols can transmit this information.

Limitations

See IPLink Reference Guide on TSC_MsgRejectCall

Appendix E

99

Error Codes

Standard error messages.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

100

Dm3TscGetChanState() Retrieves channel state information.

Purpose

This function will retrieve the channel state associated with the particular
component specified. This allows the user to manage call states in his
application.

Function Signature

Name: PVOID Dm3TscGetChanState(LPDM3COMPTSC,
pTspInfo, PUINT ChanState)

Inputs: LPDM3COMPTSC
pTspInfo

• A pointer to the Tsc
information structure

PUINT ChanState • The state of the channel is
returned here

Returns: SUCCESS or error code
if failure

•

Includes: •
Category:

Mode: Synchronous or Asynchronous

Internal Operation

This function is directly associated with the TSC_MsgGetChanState command.
It will internally handle the formatting of the command.

In SYNC mode, the function will block until the TSC_MsgGetChanStateCmplt
reply is received. It will parse this data structure and return the current channel
state in the variable indicated.

Note that use of this function will NOT update the data field associated with
channel state in the TSC component descriptor structure.

Appendix E

101

In Async mode, the …Cmplt event will be generated, and the event handler for
this message will take care of returning the channel state.

Limitations

None.

Error Codes

Standard.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

102

Dm3TscGetCallState() Gets the current call state

Purpose

This function will set up the message and payload for the TSC_MsgGetCallState
command.

Function Signature

Name: PVOID Dm3TscGetCallState (LPDM3COMPTSC,
pTspInfo, PUINT CallState)

Inputs: LPDM3COMPTSC
pTspInfo

• A pointer to the Tsc
information structure

PUINT CallState • The state of the call is returned
here

Returns: SUCCESS or error code
if failure

•

Includes: •
Category:

Mode: Synchronous or Asynchronous

Internal Operation

This function is directly associated with the TSC_MsgGetCallState command. It
will internally handle the formatting of the command.

In SYNC mode, the function will block until the TSC_MsgGetCallStateCmplt
reply is received. It will parse this data structure and return the current call state
in the variable indicated.

In Async mode, the …Cmplt event will be generated, and the event handler for
this message will take care of returning the call state.

Appendix E

103

Limitations

None.

Error Codes

Standard. See section on error codes.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

104

Dm3TscEvtHndlr() Main, top level handler for all Tsc events.

Purpose

To provide a single callback handler for Tsc events on an instance.

Function Signature

Name: PVOID Dm3TscEvtHndlr (PDM3COMP pTspInfo,
ULONG ulMsgType, QMsgRef pReplyMsg)

Inputs: PDM3COMP pTspInfo • A pointer to the generic
component information

ULONG ulCmdType • The last command associated
with this event. This is
important to provide a context
for StdMsgError processing

ULONG ulMsgType • The particular event being
returned

QMsgRef pReplyMsg • A pointer to any event data
Returns: SUCCESS or error code

if failure
•

Includes: •
Category:

Mode: N/A

Internal Operation

This function is the top level event and message dispatcher for all Tsc
component events. It is basically a large switch statement that passes specific
event information to individual handers.

Appendix E

105

Limitations

None.

Error Codes

Standard. See section on error codes.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

106

Event Handling

OnTscMakeCallCmplt() Event Handler for TSC_MakeCallCmplt
message

Purpose

To provide message processing for the TSC_MsgMakeCallCmplt message.

Function Signature

Name: LPVOID OnTscMakeCallCmplt (PDM3COMP pTspInfo,
ULONG ulCmdtType, ULONG ulMsgType, QMsgRef
pReplyMsg)

Inputs: PDM3COMP pTspInfo • A pointer to the generic
component information

ULONG ulCmdType • The Command that this Cmplt
is for, (should be
TSC_MsgMakeCall)

ULONG ulMsgType • The particular event being
returned

QMsgRef pReplyMsg • A pointer to any event data
Returns: A Pointer to the base

component descriptor
structure of the client for
this event

•

Includes: •
Category:

Mode: N/A

Internal Operation

This function handles the above message by processing the payload (CallID) and
saving it into the CallId field of the Tsc component data structure.

Appendix E

107

Limitations

• This function should not initiate any synchronous command calls directly or
it will create recursion through the library

Error Codes

Standard. See section on error codes.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

108

OnTscStdMsgEvtDetected() Handler for STD_MsgEvtDetected
events on a Tsc instance.

Purpose

To provide message processing for the Std_MsgEventDetected message which
for TSC, implies receipt of one of the three types of unsolicited messages.

Function Signature

Name: LPVOID OnTscStdMsgEvtDetected (PDM3COMP
pTspInfo, ULONG ulCmdType,
ULONG ulMsgType,
QMsgRef pReplyMsg)

Inputs: PDM3COMP pTspInfo • A pointer to the generic
component information

ULONG ulCmdType • The Command that this Cmplt
is for, (should be
TSC_MsgMakeCall)

ULONG ulMsgType • The particular event being
returned

QMsgRef pReplyMsg • A pointer to any event data
Returns: A void pointer the

application can use to
return any desired data

•

Includes: •
Category:

Mode: N/A

Internal Operation

This function processes the payload to determine which of the three types of TSC
messages have been returned and then calls the appropriate sub handler.

Appendix E

109

Limitations

• This function should not initiate any synchronous framework command calls
directly or it will create recursion through the library

Error Codes

Standard. See section on error codes.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

110

OnTscCallInfoEvent() Handler for Call Information events on a Tsc
instance.

Purpose

To provide message processing for call information events received by the
instance. For a complete list of these events see the documentation in the TSC
user’s guide.

Function Signature

Name: LPVOID OnTscCallInfoEvent (PDM3COMP pTspInfo,
ULONG ulCmdType,
ULONG ulMsgType ,
QMsgRef pReplyMsg)

Inputs: PDM3COMP pTspInfo • A pointer to the generic
component information

ULONG ulCmdType • The Command associated with
this event

ULONG ulMsgType • The particular event being
returned

QMsgRef pReplyMsg • A pointer to any event data
Returns: A Pointer to the base

component descriptor
structure of the client for
this event

•

Includes: •
Category:

Mode: N/A

Internal Operation

This function processes the following possible call information events as outlined
in the TSC Resource User’s Guide.

Appendix E

111

• CallAnalysis Gives Post call analysis results (PAMD, FAX, PVD, etc..)
• CallerCategory
• CallerId
• CallerIdType
• Display
• Language

The payload is processed to obtain these, and any data associated with these
elements. Code will be implemented to show the removal of this data, but actual
saving of this info to persistent storage is left to the user.

Limitations

• This function should not initiate any synchronous framework command calls
directly or it will create recursion through the library

• No constructs are provided for the storage of Call Progress and Caller ID
information outside the lifetime of this function.

Error Codes

Call ID returned as payload must match Call ID currently saved with component
or error will be flagged.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

112

OnTscChanStateEvent() Handler for Channel State transition
events on a Tsc instance.

Purpose

To provide message processing for channel state events received by the instance.

Function Signature

Name: LPVOID OnTscChanStateEvent (PDM3COMP pTspInfo,
ULONG ulMsgType,
QMsgRef pReplyMsg)

Inputs: PDM3COMP pTspInfo • A pointer to the generic
component information

ULONG ulMsgType • The particular event being
returned

QMsgRef pReplyMsg • A pointer to any event data
Returns: A Pointer to the base

component descriptor
structure of the client for
this event

•

Includes: •
Category:

Mode: N/A

Internal Operation

This function processes all the possible channel state transition events as
outlined in Appendix K of the Tsc user’s guide.

The payload is processed to obtain these, and any data associated with these
elements. Code will be implemented to show the removal of this data, but actual
saving of this info to persistent storage is left to the user.

Appendix E

113

Limitations

• This function should not initiate any synchronous framework command calls
directly or it will create recursion through the library

• No constructs are provided for the persistent storage of channel state
information, this is left to the user.

Error Codes

Call ID returned as payload must match Call ID currently saved with component
or error will be flagged.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

114

OnTscCallStateEvent() Handler for Call State transition events on a
Tsc instance.

Purpose

To provide message processing for call state events received by the instance.

Function Signature

Name: LPVOID OnTscCallStateEvent (PDM3COMP pTspInfo,
ULONG ulMsgType,
QMsgRef pReplyMsg)

Inputs: PDM3COMP pTspInfo • A pointer to the generic
component information

ULONG ulMsgType • The particular event being
returned

QMsgRef pReplyMsg • A pointer to any event data
Returns: A Pointer to the base

component descriptor
structure of the client for
this event

•

Includes: •
Category:

Mode: N/A

Internal Operation

This function processes all the possible call state transition events as outlined in
Appendix J of the TSC User’s Guide.

The payload is processed to the reason for the call state transition, and any data
associated with these elements. Code will be implemented to show the removal
of this data, but actual saving of this info to persistent storage is left to the user.

Payload processing is as follows:

Appendix E

115

Label: Ignored. Related to RTC stuff which I don’t care about
since this is host notification

Type: Ignored. Related to above.

CallId: Checked against active callID of current instance.

CallState: The new call state is stored in the Tsc data structure.

Reason: Processed locally.

Limitations

• This function should not initiate any synchronous framework command calls
directly or it will create recursion through the library

• No constructs are provided for the persistent storage of channel state reason
information, this is left to the user.

Error Codes

Call ID returned as payload must match Call ID currently saved with component
or error will be flagged.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

116

NetTSC Functions

Dm3NetTscInit

Name: Dm3NetTscInit
Inputs: None •

Outputs: DM3 Net TSC
Component initialized

•

Returns: TRUE if successful •
Includes: •
Category:

Mode:

Initializes the DM3 Net TSC Component

Appendix E

117

NetTSCResetSession

Name: NetTSCResetSession
Inputs: USHORT ch • Channel to reset

BOOL clear • Boolean to know if reset
totally

TRUE • clear totally
FALSE • clear the related fields of this

call
Outputs: None •
Returns: Void •

Includes: •
Category:

Mode:

Resets session structure to default values

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

118

Dm3NTscNonStdCmd

Name: Dm3NTscNonStdCmd
Inputs: lpTsc • A pointer to the TSC instance

data structure
unReason • The reason the call is being

dropped
Outputs: None •
Returns: DM3SUCCESS or

DM3FAIL. If
DM3FAIL, use
GetLastError()

•

Includes: •
Category:

Mode:

Command initiation function for TSC_MsgDropCall

Appendix E

119

Dm3NTscUII

Name: Dm3NTscUII
Inputs: lpTsc • A pointer to the TSC instance

data structure
unReason • The reason the call is being

dropped
Outputs: None •
Returns: DM3SUCCESS or

DM3FAIL. If
DM3FAIL, use
GetLastError().

•

Includes: •
Category:

Mode:

Command initiation function for TSC_MsgDropCall

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

120

NETTSCClusterInit

Name: NETTSCClusterInit
Inputs: lpNETTSCCluster • pointer to an allocated

NETTSCCLUSTER object
ucBoardNum • board number, this cluster

should be allocated
ucLineId • Network line# identifying the

cluster
ucChanId • Channel within the given

line# identifying the cluster
lpNETTSCClusterCallba
ck

• handler called when any of the
qvscluster events are detected.

lpCriticalSection • critical section in case of
multiThread

hIOCP • handle to the IO Completion
port for async parms

dwIOCPKey • the related I/O completion key
Outputs: None •
Returns: Success or fail •

Includes: •
Category:

Mode:

Initialize and allocate a NETTSCCLUSTER object. If successful, the method
completes with NETTSCCLUSTEREVENT_INITCMPLT.

Appendix E

121

NETTSCClusterGetAllComps

Name: NETTSCClusterGetAllComps
Inputs: lpNETTSCCluster • a pointer to an initialized

NETTSCCluster object
Outputs: None •
Returns: Success or fail •

Includes: •
Category:

Mode:

Get all the components allocated into a NETTSCCluster. If successful,the
method completes with NETTSCCLUSTEREVENT_LISTENCMPLT.

Initiate Allocation of the cluster identified by the lpNETTSCCluster object and if
allocation is succesful Get all the components in the cluster.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

122

NETTSCClusterListen

Name: NETTSCClusterListen
Inputs: lpNETTSCCluster • pointer to an allocated

DM3CLUSTER object
unTimeSlot • a CTBUS timeslot number to

listen to
Outputs: NONE •
Returns: Success or fail •

Includes: •
Category:

Mode:
Cautions: lpCluster should be an allocated cluster

Initiate the CTBus port in the given cluster to listen to the given timeslot.

If successful, the method completes with
NETTSCCLUSTEREVENT_LISTENCMPLT.

Appendix E

123

NETTSCClusterUnlisten

Name: NETTSCClusterUnlisten
Inputs: lpNETTSCCluster • pointer to an allocated

DM3CLUSTER object
Outputs: NONE •
Returns: Success or fail •

Includes: •
Category:

Mode:
Cautions: lpCluster should be an allocated cluster

Initiate the CTBus port in the given cluster to listen to the given timeslot.

If successful, the method completes with
NETTSCCLUSTEREVENT_UNLISTENCMPLT.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

124

NETTSCClusterGetXmitSlot

Name: NETTSCClusterGetXmitSlot()
Inputs: lpNETTSCCluster • pointer to an allocated

DM3CLUSTER object
Outputs: None •
Returns: Success or fail •

Includes: •
Category:

Mode:
Cautions: lpNETTSCCluster should be an initialized cluster

Initiate the CTBus port in the given cluster to get the assigned transmit timeslot.

If successful, the method completes with
NETTSCCLUSTEREVENT_GETXMITSLOTCMPLT.

Appendix E

125

NETTSCClusterRelease

Name: NETTSCClusterRelease()
Inputs: lpNETTSCCluster • pointer to an allocated

NETTSCCLUSTER object
Outputs: None •
Returns: Success or fail •

Includes: •
Category:

Mode:
Cautions: None

Initiate freeing of the allocated NETTSCCluser

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

126

NETTSCClusterCleanup

Name: NETTSCClusterCleanup()
Inputs: lpNETTSCCluster • pointer to an initialzed

NETTSCCLUSTER object
Outputs: None •
Returns: Success or fail •

Includes: •
Category:

Mode:
Cautions: None

Cleanup all the structures bound to this Cluster. Free all the memory allocated
for this structure.

Appendix E

127

NETTSCClusterGetComponent

Name: NETTSCClusterGetComponent()
Inputs: lpNETTSCCluster • pointer to an allocated

NETTSCCLUSTER object
Outputs: None •
Returns: Success or fail •

Includes: •
Category:

Mode:
Cautions: None

Initiate getting a component from the cluster depending on the number of
components found.

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

128

NETTSCClusterGotComponent

Name: NETTSCClusterGotComponent()
Inputs: lpNETTSCCluster • pointer to the NETTSCCluster

object
qcdCompAddr fw address of the component

found in the given cluster. The
ucNumCompsFound defined in
the lpNETTSCCluster indicates
the component(TSC,
Tonegen,..) that this fw address
identifies

Outputs: None •
Returns: Success or fail •

Includes: •
Category:

Mode:
Cautions: None

Method called when a component is found in the Cluster

129

Index

A

ANI features, 49

Answering a call, 21, 42

Application Foundation Code, 67

B

Billing, 49

C

Call connection, 15

Call duration time, 45

Call establishment, 12

Call information, 38, 45

Call progress tones, 12, 49

Call Status Transition event, 27

Coder, 16, 42

Configuration file, 11, 23, 25, 42

Convenience functions, 23

D

D/160LS, 15

Data structures, 46

DE_LCOFF, 35, 36

DE_LEOFF, 44

DE_RINGS, 33

DE_TONEON, 35, 36, 44

Debugging functions, 23

Destination address, 49

Directory service, 49

Disconnect detection, 28

Disconnect indication, 12

Disconnect supervision, 22

DM_LCOFF, 27

DM_RINGS, 27

DM3_IPT_KEY, 28

Dm3tsp.c, 23

DTMF, 49

Dual frequency cadence tone, 28

Duration time, 38

dx_addtone(), 28

dx_blddtcad(), 28

dx_deltones(), 27

dx_open(), 27

dx_setevtmsk(), 27

dx_sethook(), 27

dx_setrings(), 27

E

Error functions, 23

Exiting a Call, 39

F

Functions
dx_addtone(), 28
dx_blddtcad(), 28

IPTGate Demo
(IP - PSTN Gateway)
User’s Guide

130

dx_deltones(), 27
dx_open(), 27
dx_setevtmsk(), 27
dx_sethook(), 27
dx_setrings(), 27
GetQueuedCompletionStatus(), 28,

29
IPTOpenNetTSC(), 26
pstnOpenFrontEnd(), 27
sr_getevtdatap(), 28
sr_getevtdev(), 28
sr_getevttype(), 28

G

Gatedbg.c, 23

Gatedbg.h, 24

Gatedefs.h, 24

Gateipt.c, 26

Gatemain.c, 23, 29

Gatepars.c, 23

Gatepstn.c, 23

Gatestat.c, 24

Gatestrc.h, 24

Gatevars.h, 24

GetQueuedCompletionStatus(), 28, 29

H

H.323 drop indication, 12

H.323 terminal, 11, 22

I

I/O completion port, 25, 28

I/O Completion Ports, 67

IP address, 11, 16, 49

IP Inbound Call
State diagram, 31

IPLink initialization procedure, 26

IPTGate.cfg, 11, 12, 16, 23, 25

Iptgate.mak, 25

Iptgate.mdp, 25

IVR system, 49

L

Local phone number, 12, 16

Loop current drop, 12, 22

M

Making a PSTN Outbound Call, 43

MMB structure, 28

N

NetTSC component, 33, 35, 36, 41, 42,
44, 45

NetTSC_H245Data_Type_NonStdCmd,
36, 44

NetTSC_H245Data_Type_UserInputIn
dication, 37, 44

NetTSP cluster, 15

P

PABX, 16

Parsfp.h, 25

PSTN, 9

PSTN Inbound Call
State diagram, 29

PSTN initialization procedure, 27

PSTN Off-hook, 43

Index

131

Pstnfp.h, 24

pstnOpenFrontEnd(), 27

R

Remote phone number, 11, 16

Retrieving IPT events, 28

Retrieving SRL events, 28

Routing, 11, 43

RTCP info, 38, 45

S

SCbus, 9, 12, 43

SCbusClockMaster, 15

Session log, 20

Source code, 23

sr_getevtdatap(), 28

sr_getevtdev(), 28

sr_getevttype(), 28

SRAM out time, 16

SRL events, 25

SRL_KEY, 28

State diagrams, 29
IP Inbound Call, 31
PSTN Inbound Call, 29

State machine, 24, 25, 29

Statfp.h, 25

T

TSC component, 38, 45

TSC_EvtCallState_Type_Connected,
35, 43

TSC_EvtCallState_Type_Disconnect,
36, 44

TSC_EvtCallState_Type_Failed, 35, 43

TSC_EvtCallState_Type_Idle, 38, 45

TSC_EvtCallState_Type_Null, 39, 46

TSC_EvtCallState_Type_Offered, 41

TSC_MsgAnswerCall, 41, 42

TSC_MsgDropCall, 36, 37, 44, 45

TSC_MsgGetCallInfo, 41, 42, 43, 45

TSC_MsgMakeCall, 33

TSC_MsgReleaseCall, 38, 45

U

User-defined tones, 28

W

WAIT_FOR_CALL state, 29, 33, 39,
41, 46

WAIT_FOR_CONNECT state, 33, 41

WAIT_FOR_DISCONNECT state, 35,
43, 44

WAIT_FOR_IDLE state, 35, 36, 43, 44

WAIT_FOR_RELEASE state, 38, 45

WinNT, 25

NOTES

NOTES

NOTES

