
GlobalCall™ API Software
Reference

for UNIX and Windows NT

Copyright © 1998 Dialogic Corporation

PRINTED ON RECYCLED PAPER

05-0387-003

COPYRIGHT NOTICE

Copyright 1998 Dialogic Corporation. All Rights Reserved.
All contents of this document are subject to change without notice and do not represent a commitment
on the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot
guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. No
warranties of any nature are extended by the information contained in these copyrighted materials.
Use or implementation of any one of the concepts, applications, or ideas described on Web pages
maintained by Dialogic-may infringe one or more patents or other intellectual property rights owned
by third parties. Dialogic does not condone or encourage such infringement. Dialogic makes no
warranty with respect to such infringement, nor does Dialogic waive any of its own intellectual
property rights which may cover systems implementing one or more of the ideas contained herein.
Procurement of appropriate intellectual property rights and licenses is solely the responsibility of the
system implementor. The software referred to in this document is provided under a Software License
Agreement. Refer to the Software License Agreement for complete details governing the use of the
software.

Part Number: 05-0387-003

All names, products, and services mentioned herein are the trademarks or registered trademarks of
their respective organizations and are the sole property of their respective owners. DIALOGIC
(including the Dialogic logo), DTI/124, SpringBoard, and Signal Computing System Architecture
(SCSA) are registered trademarks of Dialogic Corporation. The following are also trademarks of
Dialogic Corporation: Board Locator Technology, D/41ESC, D/4xE, D/160SC-LS, D/240SC,
D/240PCI-T1, D/240SC-T1, D/300PCI-E1, D/300SC-E1, D/320SC, D/480SC-2T1, D/600SC-2E1,
DIALOG/HD, DTI/240SC, DTI/241SC, DTI/300SC, DTI/301SC, DualSpan, GammaFax, GlobalCall,
SCbus, SCSA, SCX160, SCxbus, Signal Computing System Architecture, SpringWare, V/S24T1,
V/S30E1, Voice Driver, VFX/40ESC, VFX/40ESC plus, VFX/40SC and World Card. UNIX is a
registered trademark of Novell, Inc., licensed exclusively to X/Open Company Limited. Intel is a
registered trademark of Intel Corporation. Windows NT is a registered trademark of Microsoft
Corporation.Publication Date: March, 1998

Dialogic Corporation
1515 Route 10
Parsippany NJ 07054

Technical Support
Phone: 973-993-1443
Fax: 973-993-8387
BBS: 973-993-0864
Email: CustEng@dialogic.com

For Sales Offices and other contact information, visit our website at http://www.dialogic.com

iii

Table of Contents

1. How to Use This Guide.. 1
1.1. Products Covered By This Guide ... 1
1.2. Organization of this Guide.. 1

2. Product Overview.. 3
2.1. Hardware Compatibility ... 4
2.2. GlobalCall Features .. 5

2.2.1. Line Device Identifier .. 5
2.2.2. Call Reference Number.. 6
2.2.3. Resource Sharing Across Processes... 6

2.3. GlobalCall Architecture.. 7
2.4. Call Control Libraries ... 8

2.4.1. Library Terminology for UNIX Environments 10
2.4.2. Library Terminology for Windows NT Environments......................... 10
2.4.3. Library Information Functions... 11

3. GlobalCall API .. 13
3.1. UNIX Programming Models .. 13

3.1.1. UNIX Synchronous Mode Programming... 14
3.1.2. UNIX Asynchronous Mode Programming... 14

3.2. Windows NT Programming Models... 15
3.2.1. Windows NT Synchronous Mode Programming 16
3.2.2. Windows NT Asynchronous Mode Programming 17

3.3. GlobalCall Call States .. 23
3.4. Asynchronous Mode Operation .. 24

3.4.1. Establishing and Terminating Calls - Asynchronous 24
3.4.2. Inbound Calls - Asynchronous... 26
3.4.3. Outbound Calls - Asynchronous .. 29
3.4.4. Call Termination - Asynchronous .. 31

3.5. Synchronous Mode Operation .. 34
3.5.1. Inbound Calls - Synchronous ... 36
3.5.2. Outbound Calls - Synchronous .. 38
3.5.3. Call Termination - Synchronous .. 39

3.6. Routing for UNIX Environments.. 42
3.7. Routing for Windows NT Environments .. 43
3.8. Event Handling... 43

3.8.1. Event Retrieval .. 44

GlobalCall™ API Software Reference for UNIX and Windows NT

iv

3.8.2. Alarm Handling ... 46
3.9. Event Definitions.. 48
3.10. Return Value Handling ... 57
3.11. Error Handling.. 57
3.12. Programming Tips for UNIX.. 58

3.12.1. SRL Related Programming Tips for UNIX.. 60
3.13. Programming Tips for Windows NT .. 60
3.14. Programming Tips for Drop and Insert Applications 62
3.15. Building Applications for UNIX .. 63

3.15.1. Using Only ICAPI Protocols in UNIX Applications 65
3.15.2. Using Only Analog Protocols in UNIX Applications 65

3.16. Building Applications for Windows NT... 66
3.16.1. Compiling and Linking a Windows NT Application 67

3.17. Using Analog, E-1 CAS, T-1 Robbed Bit and ISDN Protocols 67

4. Function Overview .. 69

5. Data Structure Reference ... 77
5.1. GC_CALLACK_BLK.. 77
5.2. GC_IE_BLK... 79
5.3. GC_MAKECALL_BLK... 80
5.4. METAEVENT ... 80
5.5. GC_PARM ... 82
5.6. GC_WAITCALL_BLK.. 82

6. Function Reference.. 83
6.1. Alphabetical List of Functions.. 83
6.2. Programming Conventions ... 84
gc_AcceptCall() - optional response to an inbound call 85
gc_AnswerCall() - equivalent to conventional “set hook off” function............... 88
gc_Attach() - attaches a voice resource ... 91
gc_CallAck() - provides information about the incoming call............................. 94
gc_CallProgress() - connection request is in progress ... 98
gc_CCLibIDToName() - converts call control library ID to name.................... 101
gc_CCLibNameToID() - converts call control library name to ID.................... 103
gc_CCLibStatus() - retrieves status of call control library 105
gc_CCLibStatusAll() - retrieves status of all call control libraries 107
gc_Close() - closes a previously opened device .. 110
gc_CRN2LineDev() - matches a CRN to its line device ID 113
gc_Detach() - logically detach a voice resource .. 115
gc_DropCall() - disconnects a call .. 118

Table of Contents

v

gc_ErrorValue() - gets an error value/failure reason code................................. 122
gc_GetANI() - returns ANI information.. 125
gc_GetBilling() - gets the charge information ... 128
gc_GetCallInfo() - gets information for the call .. 131
gc_GetCallState() - acquires the state of the call ... 135
gc_GetCRN() - gets the CRN.. 138
gc_GetDNIS() - gets the DNIS information .. 141
gc_GetLineDev() - gets a line device .. 144
gc_GetLinedevState() - retrieves status of the line device................................. 147
gc_GetMetaEvent() - maps the current SRL event into a metaevent................. 151
gc_GetMetaEventEx() - maps the current SRL event into a metaevent............. 157
gc_GetNetworkH() - returns the network device handle 160
gc_GetParm() - retrieves the parameter value specified 163
gc_GetUsrAttr() - retrieves the attribute.. 165
gc_GetVer() - gets version number of specified software component............... 168
gc_GetVoiceH() - returns the voice device handle .. 172
gc_LoadDxParm() - sets voice parameters associated with a line device.......... 175
gc_MakeCall() - enables the application to make an outgoing call 184
gc_Open() - opens a GlobalCall device ... 190
gc_OpenEx() - opens a GlobalCall device and sets user defined attribute 203
gc_ReleaseCall() - releases all internal resources.. 206
gc_ReqANI() - returns the caller’s ID.. 208
gc_ResetLineDev() - disconnects any active calls... 211
gc_ResultMsg() - retrieves an ASCII string describing result code................... 214
gc_ResultValue() - retrieves the cause .. 216
gc_SetBilling() - sets billing information for the call .. 219
gc_SetCallingNum() - sets default calling party number................................... 222
gc_SetChanState() - changes the maintenance state .. 224
gc_SetEvtMsk() - sets the event mask... 227
gc_SetInfoElem() - set an additional information element 231
gc_SetParm() - sets the default parameters.. 234
gc_SetUsrAttr() - sets an attribute defined by the user 238
gc_SndMsg() - sends non-call state related ISDN message............................... 240
gc_Start() - starts all configured call control libraries 243
gc_StartTrace() - trace and place results in shared RAM 246
gc_Stop() - stops all configured call control libraries .. 249
gc_StopTrace() - stops the trace .. 251
gc_WaitCall() - sets up conditions for processing inbound calls 253

7. GlobalCall Demo Programs.. 257

GlobalCall™ API Software Reference for UNIX and Windows NT

vi

7.1. Demo Programs for UNIX ... 257
7.1.1. Physical Connections for the UNIX Demo .. 260
7.1.2. Before Running the UNIX Demo Programs 260
7.1.3. Demo Configuration Files.. 261
7.1.4. Running the UNIX Demo Program.. 266

7.2. Demo Programs for Windows NT .. 267
7.2.1. Multithreaded Asynchronous Demo Overview for Windows NT...... 268
7.2.2. Multithreaded Synchronous Demo Overview for Windows NT........ 271
7.2.3. Physical Connections for the Windows NT Demo............................. 276
7.2.4. Before Running the Windows NT Demo Programs........................... 276
7.2.5. Running the Asynchronous Windows NT Demo Program 277
7.2.6. Running the Synchronous Windows NT Demo Program................... 279

Appendix A - Summary of GlobalCall Functions and Events 281

Appendix B - GlobalCall Error Code & Result Value Summary................. 293

Appendix C - GlobalCall Header Files ... 299
gclib.h Header File ... 299
gcerr.h Header File ... 311

Appendix D - Related Publications ... 315
Dialogic Hardware References ... 315
Dialogic Software References .. 315
Communications Technology References... 316
R2 MF Signaling References.. 316
ISDN Signaling References.. 316
T-1 Robbed Bit Signaling References .. 316

Glossary... 317

Appendix D Related Publications... 317

Index .. 329

vii

List of Tables

Table 1. Hardware Compatibility Chart .. 4
Table 2. Call State Definitions .. 26
Table 3. Inbound Call Set-Up (Asynchronous) ... 28
Table 4. Outbound Call Set-up (Asynchronous) Example................................... 31
Table 5. Call Termination (Asynchronous) ... 33
Table 6. Inbound Call Set-Up (Synchronous).. 37
Table 7. Call Termination (Synchronous) ... 42
Table 8. Alarm Conditions .. 47
Table 9. Inbound Call Events .. 49
Table 10. Outbound Call Events.. 49
Table 11. Disconnected/Failed Call Events ... 50
Table 12. ISDN Call Events .. 50
Table 13. Other GlobalCall Events.. 56
Table 14. UNIX Files to be Linked ... 65
Table 15. Basic Functions ... 70
Table 16. Library Information Functions... 70
Table 17. Optional Call Handling and Features Functions 71
Table 18. System Controls and Tools Functions ... 72
Table 19. Analog Loop Start Interface Specific Functions.................................. 74
Table 20. CAS Interface Specific Functions.. 74
Table 21. ISDN Interface Specific Functions .. 75
Table 22. GC_CALLACK_BLK Field Descriptions... 78
Table 23. GC_IE_BLK Field Descriptions ... 79
Table 24. GC_MAKECALL_BLK Field Descriptions 80
Table 25. METAEVENT Field Descriptions .. 81
Table 26. Call Progress Indicators... 99
Table 27. GC_CCLIB_STATUS Field Descriptions .. 107
Table 28. gc_DropCall() Causes .. 119
Table 29. GetCallInfo() info_id Parameter ID Definitions............................... 132
Table 30. gc_GetVer() Return Values .. 170
Table 31. Voice Channel-level Parameters [dx_setparm()] List....................... 179
Table 32. Voice Call Analysis Parameters (DX_CAP) List 180
Table 33. ANI Request Types ... 209
Table 34. Service States .. 225
Table 35. bitmask Parameter Values ... 228
Table 36. Parameter Descriptions, gc_GetParm() and gc_SetParm().............. 235

GlobalCall™ API Software Reference for UNIX and Windows NT

viii

Table 37. Summary of GlobalCall Functions .. 281
Table 38. GlobalCall Event Summary... 285
Table 39. GlobalCall Error Code Summary .. 293
Table 40. GlobalCall Result Value Summary.. 296

ix

List of Figures

Figure 1. GlobalCall Architecture ... 9
Figure 2. Asynchronous Call Establishment State Diagram................................ 25
Figure 3. Asynchronous Call Tear-Down State Diagram 32
Figure 4. Synchronous Call Establishment Process... 35
Figure 5. Synchronous Call Tear-Down .. 40
Figure 6. Component Version Number Format ... 169
Figure 7. UNIX Demo Program States .. 259
Figure 8. Inbound (gcin_r2is.cfg) Configuration Sample File........................... 265
Figure 9. Outbound (gcout_anis.cfg) Configuration Sample File...................... 265
Figure 10. Analog (gcanalog.cfg) Technology Configuration Sample File 265
Figure 11. Multithreaded Asynchronous Demo, Call Processing 270
Figure 12. Synchronous Demo, Call Establishment Process 274
Figure 13. Synchronous Demo, Application State Call Processing 275
Figure 14. Demo Call Information Example ... 279

GlobalCall™ API Software Reference for UNIX and Windows NT

x

1

1. How to Use This Guide

The GlobalCall API (Application Programming Interface) provides a uniform call
control interface for developing applications for multiple network interface
technologies, for a variety of protocols and for various operating systems. This
guide provides developers with an overview of GlobalCall; summarizes
GlobalCall features and files; provides application development information and
other information as it applies to all technologies and protocols for a host
computer operating in a UNIX or a Windows NT environment. Information
relating to a particular technology or protocol is found in companion volumes,
(see Appendix D for a list of Related Publications). Products covered, product
terminology conventions and the organization of this guide are described in this
chapter.

Where differences exist between the implementation of a GlobalCall application
in a UNIX or a Windows NT environment, these differences are indicated by
qualifying specific items parenthetically or by presenting separate
paragraphs/sections devoted to the implementation within a specific operating
system environment. Notable differences for Windows NT include the use of
executable threads in contrast to the UNIX parent and child processes, an
extended asynchronous programming model and functions to support this model
and the capability to dynamically link to specific library or libraries as needed.

1.1. Products Covered By This Guide

The GlobalCall software provides a consistent interface for call control using the
following Dialogic products. See Table 1. Hardware Compatibility Chart for
technology and bus compatibility. See the Release Catalog for your operating
system or our web site for the Dialogic products that support GlobalCall
applications.

1.2. Organization of this Guide

This guide provides:

GlobalCall™ API Software Reference for UNIX and Windows NT

2

• an overview of the Dialogic GlobalCall Network Interface Control API for all
technologies for UNIX or Windows NT operating systems

• an overview of the functions used to develop network interface control
applications and a detailed description of each of these functions

• a synopsis of the GlobalCall library functions

• a listing of the GlobalCall header files

• a definitive glossary for the terms used to describe GlobalCall.

Chapter 2 presents a product overview describing the compatibility, features and
structure of GlobalCall.

Chapter 3 presents an overview of programming models, call states, event
handling, event definitions and error handling of the GlobalCall API

Chapter 4 provides an overview of the GlobalCall function library and a
tabulated summary of the GlobalCall functions.

Chapter 5 describes the data structures used by selected functions.

Chapter 6 contains a detailed description of each GlobalCall function.

Chapter 7 describes the GlobalCall demonstration programs for inbound and
outbound protocols.

Appendix A provides a tabulated summary of the GlobalCall functions and
events.

Appendix B provides a tabulated summary of the GlobalCall error codes and
result values.

Appendix C provides a listing of the GlobalCall header files.

Appendix D lists related publications for further information on GlobalCall API
and other Dialogic products.

A Glossary and an Index follow the appendices.

3

2. Product Overview

The GlobalCall software provides a uniform application programming interface
for multiple network interface technologies. The GlobalCall API:

• is designed to support a variety of protocols for E-1 CAS, T-1 robbed bit,
ISDN, analog loop start and other interfaces

• provides a consistent application interface for the various protocols and
technologies

• uses the same input and output parameters at the application level to
configure and control the different interfaces.

The core GlobalCall functionality provides a uniform interface for developing
applications for multiple network interface technologies, for a variety of protocols
and for various operating systems. For example, GlobalCall provides a single
gc_MakeCall() function for an E-1 CAS interface, a T-1 robbed bit interface, an
ISDN interface, and an analog loop start interface that is capable of handling the
different requirements of these signaling systems.

Specific functions and parameters are included within the GlobalCall library to
address interface-specific applications such as R2 MFC signaling and ISDN. For
example, the gc_CallAck() function will request interface specific services in a
manner compatible with the particular network interface handling the call.

This chapter addresses:

• hardware compatibility

• GlobalCall features

• GlobalCall architecture

• Call Control libraries

The compatibility of the GlobalCall API with specific Dialogic system software
releases is defined in the Release Notes.

GlobalCall™ API Software Reference for UNIX and Windows NT

4

2.1. Hardware Compatibility

The Dialogic network interface boards, bus configurations, and signaling systems
currently supported are listed in Table 1. Hardware Compatibility Chart.
Contact your nearest Dialogic Sales Office or visit our web site for the most up-to-
date list of supported products.

Table 1. Hardware Compatibility Chart

Product Bus Analog
E-1
CAS

T-1
R.B.

E-1
ISDN

T-1
ISDN

D/41ESC ISA Yes

D/160SC-LS ISA Yes

D/240SC ISA Yes

D/300PCI-E1 PCI Yes♦

D/300SC-E1 ISA Yes Yes

D/600SC-2E1 ISA Yes Yes

D/320SC ISA Yes

DTI/300SC ISA Yes♣ Yes

DTI/301SC ISA Yes♣ Yes♦

D/240PCI-T1 PCI Yes♦

D/240SC-T1 ISA Yes Yes

D/480SC-2T1 ISA Yes Yes

DTI/240SC ISA Yes♣ Yes

DTI/241SC ISA Yes Yes♦

2. Product Overview

5

Product Bus Analog
E-1
CAS

T-1
R.B.

E-1
ISDN

T-1
ISDN

VFX/40ESC,
VFX/40ESC
plus,
VFX/40SC

ISA Yes

♣ = A voice resource is required for this interface.
♦ = Windows NT only
R.B. = Robbed Bit

2.2. GlobalCall Features

GlobalCall presents a consistent interface across multiple types of signaling
systems. The GlobalCall API is call oriented; that is, each call initiated by the
application or the network is assigned a Call Reference Number (CRN) for control
and tracking purposes. Call handling is independent of the line device over which
the call is routed.

Among its many advantages, the call-oriented approach:

• provides a common API for multiple signaling systems

• supports a standard interface for network transactions, including call
establishment, call maintenance, call clearing, call signaling and control,
and application development

• narrows the differences among the APIs used in different operating
system environments

The flexible and convenient development environment provided by GlobalCall is
achieved by using the Line Device Identifier (LDID) and the Call Reference
Number (CRN), which together enable applications to handle call establishment
and teardown consistently across hardware platforms or signaling systems.

2.2.1. Line Device Identifier

The LDID is a unique logical number assigned to a specific resource (e.g., a time
slot) or a group of resources within a process by the GlobalCall library.

GlobalCall™ API Software Reference for UNIX and Windows NT

6

Minimally, the LDID number will represent a network resource. For example,
both a network resource and a voice resource are needed to process a R2 MFC
dialing function. Using GlobalCall, a single LDID number is used by the
application or thread (Windows NT only) to represent this combination of
resources for call control.

A LDID number is assigned to represent physical device(s) that will handle a call,
such as a network interface resource, when the gc_Open() or gc_OpenEx()
function is called. This identification number assignment remains valid until the
gc_Close() function is called to close the line device.

When an event arrives, the application or thread (Windows NT only) can retrieve
the LDID number associated with the event by using the linedev field of the
METAEVENT structure (retrieved using the gc_GetMetaEvent() or the
gc_GetMetaEventEx() (Windows NT only) function). The terms line device
and LDID are used interchangeably.

2.2.2. Call Reference Number

A CRN is a means of identifying a call on a specific line device. A CRN is
created by the GlobalCall library when a call is requested by the application or
thread (Windows NT only) or by the network.

With the CRN approach, the application or thread (Windows NT only) can access
and control the call without any reference to a specific physical port or line
device. The CRN is assigned immediately after the gc_MakeCall() function is
called or when an incoming call is received. This CRN has a single LDID
associated with it (e.g., the line device on which the call was made). However, a
single line device may have multiple CRNs associated with it (i.e., more than one
call may exist on a given line). At any given instant, each CRN is a unique
number within a process. After a call is terminated and the gc_ReleaseCall()
function is called to release the resources used for the call, the CRN is no longer
valid.

2.2.3. Resource Sharing Across Processes

The CRNs and LDIDs assigned by the GlobalCall API library can not be shared
among multiple processes. These assigned CRNs and LDIDs remain valid only

2. Product Overview

7

within the process invoked. That is, you should not open the same physical device
from more than one process (nor from multiple threads in a Windows NT
environment) for call control purposes. If either of these conditions occur,
unpredictable results may occur.

When using multiple threads in a Windows NT environment, a GlobalCall line
device can be opened by calling the gc_Open() or gc_OpenEx() function from
one thread and then closed by calling the gc_Close() function from a different
thread. However, when starting or stopping a configured call control library, the
gc_Start() and gc_Stop() functions must be called from the same thread,
preferably the primary thread.

2.3. GlobalCall Architecture

GlobalCall provides a common interface to multiple network interface specific
libraries (i.e., call control libraries). The GlobalCall software consists of a
GlobalCall library that uses a set of call control libraries that support a variety of
signaling interfaces and protocols. The GlobalCall library provides the following
support for all technologies (analog loop start, E-1 CAS, T-1 robbed bit and
ISDN, for example):

• provides a common API for handling different network interfaces

• implements basic functions that are common to all interface-specific
libraries in a consistent manner

• translates and routes the application or thread (Windows NT only)
requests to the appropriate interface-specific library

• screens the call control libraries from the application or thread (Windows
NT only)

Thus, GlobalCall allows application programmers to develop their applications
without a detailed knowledge of the underlying technology (how compelled
signaling works, how to handle ISDN messages, what signaling bits are used to set
up a call, etc.). GlobalCall also facilitates easy porting of an application to meet
the requirements of other countries, communication systems and different
operating systems. See the GlobalCall Technology User’s Guides for details
about technology specific features.

GlobalCall™ API Software Reference for UNIX and Windows NT

8

2.4. Call Control Libraries

Each network technology requires a call control library to provide the interface
between the network and the GlobalCall library.

The call control libraries currently supported by the GlobalCall API are:

• ANAPI the call control library controlling access to analog network
interfaces using loop start signaling

• ICAPI the call control library controlling access to network interfaces
using T-1 robbed bit signaling or E-1 CAS

• ISDN the call control library controlling network interfaces connected
to an ISDN network

The application only needs to use the GlobalCall library and does not need to use
these lower-level libraries directly. The following diagram, Figure 1. GlobalCall
Architecture, illustrates how the GlobalCall library uses the call control libraries
to access the network.

2. Product Overview

9

Call Control Libraries

ANAPI ICAPI ISDN

USER APPLICATION

GlobalCall API

Other
Dialogic
Libraries

Device Drivers
Operating Systems

PSTN

Network Interface Network Interface

Firmware Firmware

Figure 1. GlobalCall Architecture

GlobalCall™ API Software Reference for UNIX and Windows NT

10

2.4.1. Library Terminology for UNIX Environments

Call control libraries must be specifically configured to be used with the
GlobalCall library. Such a library is termed a configured library. For example,
the ANAPI, ICAPI and the ISDN libraries are configured libraries.

For a UNIX application to use the network interface devices supported by the
configured libraries, all configured libraries must be linked to the application. For
applications in which a particular call control library is not required, a library with
a minimal set of internal functions is provided. This library is called a stub
library. Thus, when an application will only handle a specific technology, a stub
library may be linked as a substitute for the unused call control library. Using a
stub library saves memory, ensures proper startup of the GlobalCall API and
enables the application to avoid unresolved external errors while linking. For
example, if your application only handles ISDN calls, the ANAPI and ICAPI stub
libraries may be linked to your application instead of the ANAPI and ICAPI call
control libraries.

All configured call-control libraries, other than stub libraries, start when the
gc_Start() function is issued. Once successfully started, these libraries are
termed available libraries. If a configured non-stub library does not start, the
library is termed a failed library. A stub library is configured, never starts and is
never available.

2.4.2. Library Terminology for Windows NT Environments

Call control libraries must be specifically configured to be used with the
GlobalCall library. Such a library is termed a configured library. For example,
the ICAPI and the ISDN libraries are configured libraries. For a Windows NT
application or thread to use the network interface devices supported by a
configured library or libraries, the application or thread must call the gc_Start()
function which will dynamically link to all configured libraries.

All configured call-control libraries start when the gc_Start() function is called.
Once successfully started, these libraries are termed available libraries. If a
configured library does not start, the library is termed a failed library.

2. Product Overview

11

2.4.3. Library Information Functions

Each configured call control library is assigned an ID number by GlobalCall.
Each library also has a name in ASCII string format. Library functions perform
tasks such as converting a call control library ID to an ASCII name and vice-
versa, determining the configured libraries, determining the available libraries, the
libraries started, the libraries that failed to start and other library functions.

The following functions are the call control library information functions. All the
library functions are synchronous, thus they return without a termination event.

• gc_CCLibIDToName()

• gc_CCLibNameToID()

• gc_CCLibStatus()

• gc_CCLibStatusAll()

• gc_GetVer()

GlobalCall™ API Software Reference for UNIX and Windows NT

12

13

3. GlobalCall API

This chapter describes the GlobalCall Application Programming Interface,
including:

• UNIX programming models

• Windows NT programming models

• call states

• event handling including event retrieval and alarm handling

• event definitions

• error handling

The GlobalCall API is designed to support the E-1 and T-1 ISDN interfaces, T-1
robbed-bit signaling, E-1 R1 and R2 compelled signaling, analog loop start
signaling and other signaling systems. Refer to the GlobalCall API Software
Package Release Notes for the interfaces and signaling currently supported and to
the appropriate GlobalCall Technology User’s Guide for application development
information for a specific interface; see also publications listed in Appendix D

The GlobalCall API is call oriented; that is, each call initiated by the application
or thread (Windows NT only) or the network is assigned a Call Reference
Number (CRN) for control and tracking purposes. Call handling is also
independent of the line device over which the call is routed. Each line device or
device group is assigned a Line Device Identifier (LDID) that enables the
application or thread (Windows NT only) to address any resource or group of
resources using a single device identifier. The flexible and convenient
development environment provided by the GlobalCall CRN and LDID enable
applications or threads (Windows NT only) to handle call establishment and
teardown consistently across hardware platforms or signaling systems.

3.1. UNIX Programming Models

The GlobalCall API provides UNIX synchronous and asynchronous programming
models for use in developing your applications . Your call processing will differ

GlobalCall™ API Software Reference for UNIX and Windows NT

14

depending on the model used and is discussed later in this chapter in paragraph
3.3. GlobalCall Call States.

For UNIX environments, function calls can be handled using:

• a synchronous model or

• an asynchronous model

Applications can use a combination of the UNIX synchronous and asynchronous
models.

By usage, the asynchronous and synchronous models are often referred to as the
asynchronous and synchronous operating modes. This convention is followed in
this manual. For detailed information on these models, see the Standard Runtime
Library Programmer’s Guide located in the Voice Software Reference for UNIX.

3.1.1. UNIX Synchronous Mode Programming

Synchronous mode programming is characterized by functions that run
uninterrupted to completion. Synchronous functions block an application or
process until the required task is successfully completed or a failed/error message
is returned. Thus, a synchronous function blocks the application and waits for a
completion indication from the firmware or driver before returning control to the
application. Since further execution is blocked by a synchronous mode function, a
separate process is needed for each channel or task managed by the application. A
termination event is not generated for a synchronous function.

The synchronous mode can handle multiple calls in a multiline application by
structuring the application as a single-line application and then spawning a process
for each line required.

3.1.2. UNIX Asynchronous Mode Programming

Asynchronous mode programming is characterized by allowing other processing
to take place while a function executes. In asynchronous mode programming,
multiple channels are handled in a single process rather than in separate processes
as required in synchronous mode programming. An asynchronous mode function
typically receives an event from the SRL indicating completion (termination) of

3. GlobalCall API

15

the function in order for the application to continue processing a call on a
particular channel. A function called in the asynchronous mode:

• returns control to the application after the request is passed to the device
driver; and

• a termination event is returned when the requested operation completes.

For UNIX environments, the asynchronous models provided for application
development include:

• polled

• callback

When using the UNIX asynchronous polled model, the application polls for or
waits for events using the sr_waitevt() function. When an event is available,
event information may be retrieved using the gc_GetMetaEvent() function.
Event information retrieved is valid until the sr_waitevt() function is called
again. Typically, the polled model is used for applications that do not need to use
event handlers to process events.

The UNIX asynchronous callback model may be run in signal or non-signal mode.
With the callback model, event handlers can be enabled or disabled for specific
events on specific devices, see paragraph 3.8. Event Handling for details.

3.2. Windows NT Programming Models

The GlobalCall API provides Windows NT synchronous and asynchronous
programming models and an extended asynchronous programming model for use
in developing your applications . Your call processing will differ depending on
the model used and is discussed later in this chapter in paragraph 3.3. GlobalCall
Call States.

For Windows NT environments, applications can use:

• a synchronous model or a synchronous with SRL callback model

• asynchronous or extended asynchronous models

GlobalCall™ API Software Reference for UNIX and Windows NT

16

or a combination of the Windows NT synchronous and asynchronous models; or
the Windows NT synchronous and extended asynchronous models.

By usage, the asynchronous and synchronous models are often referred to as the
asynchronous and synchronous operating modes. This convention is followed in
this manual. For detailed information on these programming models, see the
Standard Runtime Library Programmer’s Guide located in the Voice Software
Reference for Windows NT.

3.2.1. Windows NT Synchronous Mode Programming

Synchronous mode programming is characterized by functions that block thread
execution until the function completes or a failed/error message is returned. The
operating system can put individual device threads to sleep while allowing other
device threads to continue their actions unabated. Thus, a synchronous function
waits for a completion indication from the firmware or driver before returning
control to the thread. Since further execution is blocked by a synchronous
function, a separate thread is needed for each channel or task. When a Dialogic
function completes, the operating system wakes up the function’s thread so that
processing continues. A termination event is not generated for a synchronous
function.

The Windows NT synchronous programming model is recommended for less
complex applications wherein only a limited number of channels and calls will be
handled and processor loading remains light. The synchronous model should be
used only for simple and straight flow control applications with only one action
per device occuring at any time.

A synchronous model application can handle multiple channels by structuring the
application as a single-channel application and then creating a separate
synchronous thread for each channel (e.g., for a 60 channel application, the
application creates 60 synchronous threads, one thread to handle each of the 60
channels). You would not need event-driven state machine processing because
each Dialogic function runs uninterrupted to completion. Since this model calls
functions synchronously, it would be less complex than a corresponding
asynchronous model application. However, since synchronous applications imply
creating a thread or a process for each channel used, these applications tend to
slow down the response of the system and to require a high level of system
resources (i.e., increases processor loading) to handle each channel. This can

3. GlobalCall API

17

limit maximum device density; thus the synchronous model provides limited
scalability for growing systems.

When using the synchronous model, unsolicited events are not processed until the
thread calls a Dialogic function such as gc_GetMetaEvent(), dx_getevt() or
dt_getevt(). Unsolicited events can be retrieved by creating a separate
asynchronous with SRL callback thread, see the Asynchronous with SRL Callback
paragraph below, (called the combined synchronous and asynchronous model) or
by enabling event handler(s) within the application before creating the
synchronous threads that handle each channel. For example:

• to use the unsolicited events asynchronous with SRL callback thread
approach, the synchronous application would first create an asynchronous
thread to handle all unsolicited events and then the application could create
synchronous threads, one for each channel, to process the calls on each
channel. The asynchronous thread will use the sr_waitevt() function to do a
blocking call. When an unsolicited event occurs, the asynchronous
unsolicited event-processing thread identifies the event to a device, services
the event and notifies the synchronous thread controlling the device of the
action taken. When the application runs an unsolicited events asynchronous
thread, then the event processing thread internal to the SRL should be
disabled by setting the SR_MODELTYPE value of the sr_setparm()
function’s parmno parameter to SR_STASYNC.

• to use the unsolicited event handler(s) approach, the synchronous application
would first enable the unsolicited event handler(s) for the device(s) and
event(s) and/or for any device, any event. Then the application would create
synchronous threads, one for each channel, to process the calls on each
channel. When an unsolicited event specified by a enabled event handler
occurs, the SRL passes the unsolicited event information to the application.
When the application uses the unsolicited event handler(s) approach, then the
event processing thread internal to the SRL must be enabled (default). The
SRL event processing thread can also be enabled by setting the
SR_MODELTYPE value of the sr_setparm() function’s parmno parameter
to SR_MTASYNC.

3.2.2. Windows NT Asynchronous Mode Programming

Asynchronous mode programming is characterized by the calling thread
performing other processing while a function executes. At completion, the

GlobalCall™ API Software Reference for UNIX and Windows NT

18

application receives event notification from the SRL and then the thread
continues processing the call on a particular channel. A function called in the
asynchronous mode:

• returns control immediately after the request is passed to the device driver
and allows thread processing to continue; and

• a termination event is returned when the requested operation completes, thus
allowing the Dialogic operation (state machine processing) to continue.

In the asynchronous mode, functions may be initiated asynchronously from a
single thread and/or the completion (termination) event can be picked up by the
same or a different thread that calls the sr_waitevt() and gc_GetMetaEvent()
functions. When these functions return with an event, the event information is
stored in the METAEVENT data structure. The event information retrieved
determines the exact event that occurred and is valid until the sr_waitevt() and
gc_GetMetaEvent() functions are called again.

For Windows NT environments, the asynchronous models provided for
application development further includes:

• combined synchronous and asynchronous programming, see paragraph 3.2.1.
Windows NT Synchronous Mode Programming

• asynchronous with SRL callback programming (this model can be used with
event handlers)

• asynchronous with Windows callback

• asynchronous with Win32 synchronization

• extended asynchronous programming

The asynchronous programming models are recommended for more complex
applications that require coordinating multiple tasks. Asynchronous model
applications typically run faster than a synchronous model and require a lower
level of system resources. Asynchronous models reduce processor loading
because of the reduced number of threads inherent in asynchronous models and
the elimination of scheduling overhead. Asynchronous models use processor
resources more efficiency because multiple channels are handled in a single thread
or in a few threads. See paragraph 3.13. Programming Tips for Windows NT for
details. Of the asynchronous models, the asynchronous with SRL callback model

3. GlobalCall API

19

and the asynchronous with Windows callback model provide the tightest
integration with the Windows NT message/eventing mechanism. Asynchronous
model applications are typically more complex than a corresponding synchronous
model application due to a higher level of resource management (i.e., the number
of channels managed by a thread and the tracking of completion events) and the
development of a state machine.

After the application issues an asynchronous function, the application uses the
sr_waitevt() function to wait for events on Dialogic devices. All event coding
can be accomplished using switch statements in the main thread. When an event
is available, event information may be retrieved using the gc_GetMetaEvent()
function. Event information retrieved is valid until the sr_waitevt() function is
called again. The asynchronous model does not use event handlers to process
events.

In this model, the SRL handler thread must be initiated by the application by
setting the SR_MODELTYPE value to SR_STASYNC.

Using Event Handlers in a Windows NT Environment

Typically, in a Windows NT environment, event processing within a thread or
using a separate thread to process events tends to be more efficient than using
event handlers. However, if event handlers are to be used, such as when an
application is being ported from UNIX, then you must use the asynchronous with
SRL callback model.

The following guidelines apply to using event handlers:

• more than one handler can be enabled for an event. The SRL calls ALL
specified handlers when the event is detected.

• handlers can be enabled or disabled from any thread.

• general handlers can be enabled to handle ALL events on a specific device.

• a handler can be enabled to handle ANY event on ANY device.

• synchronous functions cannot be called from a handler.

By default, when the sr_enbhdlr() function is first called, a thread internal to the
SRL is created to service the application enabled event handlers. This SRL

GlobalCall™ API Software Reference for UNIX and Windows NT

20

handler thread exists as long as one handler is still enabled. The creation of this
internal SRL event handler thread is controlled by the SR_MODELTYPE value of
the SRL sr_setparm() function. The SRL handler thread should be:

• enabled when using the asynchronous with SRL callback model. Enable the
SRL event handler thread by NOT specifying the SR_MODELTYPE value
(default is to enable) or by setting this value to SR_MTASYNC (do NOT
specify SR_STASYNC).

• disabled when using an application-handler thread wherein a separate event
handler thread is created within the application that calls the sr_waitevt()
and gc_GetMetaEvent() functions. For an application-handler model, use
the asynchronous with SRL callback model BUT set the SR_MODELTYPE
value to SR_STASYNC to disable the creation of the internal SRL event
handler thread.

NOTE: An application-handler thread must NOT call any synchronous
functions.

See the Standard Runtime Library Programmer’s Guide located in the Voice
Software Reference for Windows NT for the hierarchy (priority) order in which
event handlers are called.

Asynchronous with SRL Callback

The asynchronous with SRL callback model uses the sr_enbhdlr() function to
automatically create the SRL handler thread. The application does not need to
call the sr_waitevt() function since the sr_enbhdlr() created thread already calls
the sr_waitevt() function to get events. Each call to the sr_enbhdlr() function
allows the Dialogic events to be serviced when the operating system schedules the
SRL handler thread for execution.

NOTE: The SR_MODELTYPE value must NOT be set to SR_STASYNC
because the SRL handler thread must be created by the sr_enbhdlr()
call.
Your event handler must NOT call the sr_waitevt() function or any
synchronous Dialogic function.

Individual handlers can be written to handle events for each channel. The SRL
handler thread can be used when porting some UNIX applications.

3. GlobalCall API

21

Asynchronous with Windows Callback

The asynchronous with windows callback model allows an asynchronous
application to receive SRL event notification through the standard Windows NT
message handling scheme. This model is used to achieve the tightest possible
integration with the Windows NT messaging scheme. Using this model, you
could run the entire Dialogic portion of the application on a single thread. This
model calls the sr_NotifyEvt() function once to define a user-specified
application window handle and a user-specified message type. When an event is
detected, a message is sent to the application window. The application responds
by calling the sr_waitevt() function with a 0 timeout value. For GlobalCall
events and optionally for non-GlobalCall events, the application must then call the
gc_GetMetaEvent() function before servicing the event.

In this model, the SRL event handler thread must be initiated by the application by
setting the SR_MODELTYPE value to SR_STASYNC. For detailed information
on this programming model, see the Standard Runtime Library Programmer’s
Guide located in the Voice Software Reference for Windows NT.

Asynchronous with Win32 Synchronization

The asynchronous with Win32 synchronization model allows an asynchronous
application to receive SRL event notification through standard Windows NT
synchronization mechanisms. This model uses one thread to run all Dialogic
devices and thus requires a lower level of system resources then the synchronous
model. This model allows for greater scalability in growing systems. For detailed
information on this programming model, see the Standard Runtime Library
Programmer’s Guide located in the Voice Software Reference for Windows NT.

Extended Asynchronous Programming

The extended asynchronous programming model is basically the same as the
asynchronous model except that the application uses multiple asynchronous
threads each of which controls multiple devices. In this model, each thread has its
own specific state machine for the devices that it controls. Thus, a single thread
can look for separate events for more than one group of channels. This model
may be useful, for example, when you have one group of devices that provide fax
services and another group that provides interactive voice response (IVR)
services, while both groups share the same process space and database resources.

GlobalCall™ API Software Reference for UNIX and Windows NT

22

The extended asynchronous model can be used when an application needs to wait
for events from more than one group of devices and requires a state machine.

Because the extended asynchronous model uses only a few threads for all Dialogic
devices, it requires a lower level of system resources than the synchronous model.
This model also enables using only a few threads to run the entire Dialogic portion
of the application.

Whereas, default asynchronous programming uses the sr_waitevt() function to
wait for events specific to one device, extended asynchronous programming uses
the sr_waitevtEx() function to wait for events specific to a number of devices
(channels).

NOTE: Do not use the sr_waitevtEx() function in combination with either the
sr_waitevt() function or event handlers.

This model can run an entire application using only a few threads. When an
event is available, the gc_GetMetaEventEx() function is used to retrieve event
specific information. The values returned are valid until the sr_waitevtEx()
function is called again. Event commands can be executed from the main thread
through switch statements and the events are processed immediately.

The extended asynchronous model calls the sr_waitevtEx() function for a group
of devices (e.g., channels) and polls for (waits for) events specific to that group of
devices. In this model, the SRL event handler thread is NOT created (the
SR_MODELTYPE value is set to SR_STASYNC) and the sr_enbhdlr() function
in NOT used.

In the extended asynchronous model, functions are initiated asynchronously from
different threads. A thread waits for events using the sr_waitevtEx() function,
The event information can be retrieved using the gc_GetMetaEventEx()
function. When this function returns, the event information is stored in the
METAEVENT data structure.

3. GlobalCall API

23

CAUTION

When calling the gc_GetMetaEventEx() function from multiple
threads, ensure that your application uses unique thread-related

METAEVENT data structures (i.e., use thread local variables or local
variables) or ensure that the METAEVENT data structure is not over

written until all processing of the current event has completed.

The event information retrieved determines the exact event that occurred and is
valid until the sr_waitevtEx() function returns with another event.

3.3. GlobalCall Call States

Each call received or generated by GlobalCall is processed through a series of
states wherein each state represents the completion of certain tasks and/or the
current status of the call. The call states change in accordance with the sequence
of functions called by the application and the events that originate in the network
and system hardware. The current state of a call can be changed by:

• function call returns

• termination events (indications of function completion) or

• unsolicited events.

For UNIX environments, calls can be handled using the asynchronous model or
the synchronous model. For Windows NT environments, calls can be handled
using the asynchronous model, extended asynchronous model or the synchronous
model. By usage, the asynchronous and synchronous models are often referred to
as the asynchronous and synchronous operating modes. This convention is
followed in this manual. For detailed information on these models, see also the
Standard Runtime Library Programmer’s Guide located in the Voice Software
Reference for your operating system.

GlobalCall™ API Software Reference for UNIX and Windows NT

24

3.4. Asynchronous Mode Operation

In general, when GlobalCall API functions are issued in asynchronous mode,
events trigger the transitions between call states. For example, the termination
event, GCEV_ANSWERED, causes the call state to change to the Connected
state. Likewise, the unsolicited event, GCEV_DISCONNECTED, causes the call
state to change to the Disconnected state. The following functions:

• gc_MakeCall() and

• gc_ReleaseCall()

cause the call state to change upon their successful return. For more detail about
how a call transitions from state-to-state, see the following paragraphs.

3.4.1. Establishing and Terminating Calls - Asynchronous

Figure 2 illustrates the call states associated with establishing or setting up a call
in the asynchronous mode. The call establishment process for outbound calls is
shown on the right side of the diagram; the inbound call set up process is shown
on the left. All calls start from a Null state. See Table 2. Call State Definitions
for a summary of the call states.

3. GlobalCall API

25

.

INBOUND CALL OUTBOUND CALL

Connected

AlertingAccepted

Offered Dialing

Null

GCEV_OFFERED

gc_AcceptCall()

GCEV_ACCEPT

GCEV_ANSWERED

gc_AnswerCall()

gc_MakeCall()

GCEV_ALERTING
(Maskable)

gc_AnswerCall()

GCEV_ANSWERED

GCEV_CONNECTED

GCEV_CONNECTED

gc_WaitCall()
(issued only once)

Figure 2. Asynchronous Call Establishment State Diagram

GlobalCall™ API Software Reference for UNIX and Windows NT

26

Table 2. Call State Definitions

State Description

Null No call is assigned to the device (time slot or line); call
released.

Offered An inbound call from the network is offered to the application
or thread (Windows NT only); call received.

Accepted Indicates an acknowledgment, such as ringing, ringback, etc.,
to the calling party, that an inbound call is received but not
yet connected to the called party; call accepted.

Connected A connection is established for an inbound or outbound call.
Call charge begins.

Dialing Call establishment is in progress; outbound call request.
Dialing information was sent to, and acknowledged, by the
network.

Disconnected Network disconnects the call. Subsequently, the application or
thread (Windows NT only) drops the call and releases the
CRN and other resources used for the call.

Alerting The destination was reached and the application or thread
(Windows NT only) is waiting for the destination party to
answer the call; call alerted sent or received. This state event
may be reported to the application or may be masked.

Idle The call was dropped; call is not active. Subsequently the
application or thread (Windows NT only) releases the CRN
and other resources used for the call, see Figure 3.
Asynchronous Call Tear-Down State Diagram.

3.4.2. Inbound Calls - Asynchronous

The application or thread (Windows NT only) issues a gc_WaitCall() function
in the Null state to indicate readiness to accept an inbound call request on the
specified line device. In the asynchronous mode, the gc_WaitCall() function
need only be called once after the line device is opened using the gc_Open() or
gc_OpenEx() function (unless the gc_ResetLineDev() function was issued).
Afterward, the line device will receive calls until closed.

3. GlobalCall API

27

An inbound call is processed as follows, see Figure 2. The inbound call from the
network is received on the line device specified in the gc_WaitCall() function,
thus causing the generation of an unsolicited GCEV_OFFERED event (equivalent
to a “ring detected” notification). This GCEV_OFFERED event causes the call to
change to the Offered state.

In the Offered state, a CRN is assigned as a means of identifying the call on a
specific line device. From the Offered state, the call state changes to either:

• the Connected state or

• the Accepted state.

When the call is to be directly connected, such as to a voice messaging system or
the like, a gc_AnswerCall() function is issued to make the final connection.
Upon answering the call, a GCEV_ANSWERED event is generated and the call
changes to the Connected state. At this point, the call is connected to the called
party and call charges begin.

If the application or thread (Windows NT only) is not ready to answer the call, a
gc_AcceptCall() function is issued to indicate to the remote end that the call was
received but not yet answered. This provides an interval during which the system
can verify parameters, determine routing, and perform other tasks before
connecting the call. A GCEV_ACCEPT event is generated when the
gc_AcceptCall() function is successfully completed and the call changes to the
Accepted state.

To complete the connection, a gc_AnswerCall() function is issued as described
above.

When the call is in the Offered state (after generation of the unsolicited
GCEV_OFFERED event) or the Accepted state (before the gc_AnswerCall()
function is issued), the application or thread (Windows NT only) may selectively
retrieve call information, such as DDI digits (DNIS) and caller ID (ANI). The
application or thread (Windows NT only) may also request more dialing
information using the gc_CallAck() function.

From the Offered state, the application or thread (Windows NT only) may reject
the call by issuing a gc_DropCall() function followed by a gc_ReleaseCall()
function, see Figure 3. Asynchronous Call Tear-Down State Diagram.

GlobalCall™ API Software Reference for UNIX and Windows NT

28

From the Accepted state, not all E-1 CAS protocols support a forced release of the
line; that is, issuing a gc_DropCall() function after a gc_AcceptCall() function.
If a forced release is attempted, the function will fail and an error is returned. To
recover, the application should issue a gc_AnswerCall() function followed by
gc_DropCall() and gc_ReleaseCall() functions. See the GlobalCall Country
Dependent Parameters (CDP) Reference for protocol specific limitations.
However, anytime a GCEV_DISCONNECTED event is received in the Accepted
state, the gc_DropCall() function can be issued.

Table 3 is an example of a simple inbound call using the asynchronous
programming model. The items denoted by a dagger (†) are optional
functions/events or maskable events that may be reported to the application for
specific signaling protocols. For call scenarios used for a specific signaling
protocol, see the GlobalCall Technology User’s Guide for that protocol.

Table 3. Inbound Call Set-Up (Asynchronous)

Function/Event Action/Description

gc_WaitCall() Issued once after line device opened with
gc_Open() or gc_OpenEx().

GCEV_OFFERED Indicates arrival of inbound call and initiates
transition to Offered state.

†gc_GetANI() Request caller ID information.

†gc_GetDNIS() Retrieves DDI digits received from the network.

†gc_CallAck() Request additional call setup information

†GCEV_ACKCALL Termination event - indicates completion of
gc_CallAck() function

†gc_AcceptCall() Issued to acknowledge that call was received but
called party has not answered

†GCEV_ACCEPT Termination event - indicates call received, but not
yet answered; causes transition to Accepted state.

gc_AnswerCall() Issued to connect call to called party (answer
inbound call).

3. GlobalCall API

29

Function/Event Action/Description

GCEV_ANSWERED Termination event - inbound call connected; causes
transition to Connected state.

† = Optional functions and events or maskable events

3.4.3. Outbound Calls - Asynchronous

To initiate an outbound call (see Figure 2) using the asynchronous mode, the
application issues a gc_MakeCall() function that requests an outgoing call to be
made on a specific line device. The gc_MakeCall() function returns
immediately. This gc_MakeCall() function causes the call state to change to the
Dialing state. A CRN is assigned to the call being established on that line device.
If the gc_MakeCall() function fails, the line device remains in the Null state.

In the Dialing state, dialing information is sent to and acknowledged by the
network. From the Dialing state, the call state changes to either:

• the Connected state or

• the Alerting state.

When the called party immediately accepts the call, such as a call directed to a
FAX or voice messaging system or the like, a GCEV_CONNECTED event is
generated to indicate that the connection was established. This event changes the
call to the Connected state. In the Connected state the call is connected to the
called party and call charges begin.

If the remote end is not ready to answer the call, a GCEV_ALERTING
(maskable) event is generated. This event indicates that the called party has not
answered the call and that the network is waiting for the called party to complete
the connection. This GCEV_ALERTING event changes the call state to the
Alerting state. For example:

• for a CAS system, a GCEV_ALERTING event indicates that the remote end
is generating ringback and has not answered the call.

• for an ISDN system, a GCEV_ALERTING event indicates that the remote
end has sent back an Alerting message.

GlobalCall™ API Software Reference for UNIX and Windows NT

30

When the call is answered (the remote end makes the connection), a
GCEV_CONNECTED event changes the call to the Connected state. In the
Connected state the call is connected to the called party and call charges begin.
The GCEV_CONNECTED event indicates successful completion of the
gc_MakeCall() function; otherwise, a GCEV_TASKFAIL event or a
GCEV_DISCONNECTED event is sent to the application. The result value
associated with the event indicates the reason for the event. For example, if the
GCEV_TASKFAIL event is sent, then a problem occurred when placing the call
from the local end; whereas, a GCEV_DISCONNECTED event may indicate that
the remote end did not answer the call.

When an inbound call arrives while the application is setting up an outbound call,
a “glare” condition occurs. Unless the protocol specifies otherwise, the incoming
call takes precedence over the outbound call. When an asynchronous
gc_MakeCall() function conflicts with the arrival of an inbound call, the CRN
and any resources assigned to the outbound call are released. Subsequently, the
GCEV_DISCONNECTED event is generated with a result value indicating that
an inbound call took precedence. If a gc_MakeCall() function is issued while
the inbound call is being set-up, the gc_MakeCall() function fails.

The inbound call event is held in the driver until the CRN of the outbound call is
released using the gc_ReleaseCall() function. After release of the outbound
CRN, the pending inbound call event is sent to the application.

Table 4 illustrates a simple scenario for making an outbound call using the
asynchronous programming model. The items denoted by a dagger (†) are
optional functions/events or maskable events that may be reported to the
application for specific signaling protocols. For call scenarios used for a specific
signaling protocol, see the GlobalCall Technology User’s Guide for that protocol.

3. GlobalCall API

31

Table 4. Outbound Call Set-up (Asynchronous) Example

Function/Event Action/Description

†gc_SetEvtMsk() Specifies the events enabled or disabled for a
specified line device.

gc_MakeCall() Requests a connection using a specified line device;
a CRN is assigned and returned immediately.
GCEV_CONNECTED event sent if call connected;
otherwise a GCEV_TASKFAIL event is sent.

†GCEV_ALERTING Remote end was reached but a connection has not
been established. When the call is answered, a
GCEV_CONNECTED event is sent.

GCEV_CONNECTED Indicates successful completion of gc_MakeCall().

† = Optional functions and events or maskable events

3.4.4. Call Termination - Asynchronous

Figure 3 illustrates the call states associated with call termination or call teardown
in the asynchronous mode initiated by either call disconnection or failure. See
Table 2. Call State Definitions for a summary of the call states. A call can be
terminated by the application or by the detection of call disconnect from the
network. Either of these terminations can occur at any point in the process of
setting up a call and during any call state.

GlobalCall™ API Software Reference for UNIX and Windows NT

32

.

Connected

Alerting

Accepted

Offered

Dialing

Null

Idle

TERMINATED
BY NETWORK

Disconnected

GCEV_DISCONNECTED

gc_DropCall()

gc_DropCall()

gc_ReleaseCall()

GCEV_DROPCALL

No event
returned

GCEV_DROPCALL

TERMINATED
BY APPLICATION

FROM ANY
STATE SHOWN

BELOW

FROM ANY
STATE SHOWN

BELOW

Connected

Alerting

Offered

Dialing

Accepted*

Legend:
* = See the GlobalCall
 CDP Reference for
 protocols that support
 a forced release
 of the line.

Figure 3. Asynchronous Call Tear-Down State Diagram

3. GlobalCall API

33

The application terminates a call by issuing a gc_DropCall() function that
initiates disconnection of the call specified by the CRN. This gc_DropCall()
function causes a transition from the current call state to the Idle state. Once in
the Idle state, the call has been disconnected and the application must issue a
gc_ReleaseCall() function to free the line device for another call. The
gc_ReleaseCall() function releases all internal system resources committed to
servicing the call and causes a transition to the Null state.

A network call termination is initiated when an unsolicited
GCEV_DISCONNECTED event is generated. This event indicates that the call
was disconnected at the remote end or that an error was detected that prevented
further call processing. The GCEV_DISCONNECTED event causes the call state
to change from the current call state to the Disconnected state. This event may be
received during call setup or after a connection is requested. In the Disconnected
state, the call is disconnected and then waits for a gc_DropCall() function from
the application. The gc_DropCall() function is equivalent to “set hook ON.”
This gc_DropCall() function causes the call state to change to the Idle state. In
the Idle state, the gc_ReleaseCall() function releases all internal resources
committed to servicing the call and causes a transition to the Null state.

Table 5 presents an asynchronous call termination scenario. For call scenarios
used for a specific signaling protocol, check the GlobalCall Technology User’s
Guide for that technology.

Table 5. Call Termination (Asynchronous)

Function/Event Action/Description

GCEV_DISCONNECTED Unsolicited event generated when call is
terminated by network; initiates transition to
Disconnected state.

gc_DropCall() Disconnects call specified by CRN.
GCEV_DROPCALL event indicates
completion of function

GCEV_DROPCALL Termination event - call disconnected and
changes to Idle state.

†gc_GetBilling() Retrieve billing information

GlobalCall™ API Software Reference for UNIX and Windows NT

34

Function/Event Action/Description

gc_ReleaseCall() Issued to release all resources used for call;
network port is ready to receive next call.
Causes transition to Null state.

† = Optional functions and events or maskable events

3.5. Synchronous Mode Operation

Functions called in the synchronous mode can be either multitasking or atomic
(non-multitasking). A multitasking synchronous function blocks the application
until the operation is completed. The function waits for a completion message
from the firmware before it terminates.

Atomic synchronous functions typically terminate immediately, return control to
the application, and do not cause a call state transition. Most atomic functions
receive an (immediate) associated reply message from the firmware at which time
the function terminates. Some atomic synchronous functions return information to
the application; for example: in response to the gc_GetDNIS() function, the
DNIS string is returned and stored in a buffer. Some atomic functions are internal
to the driver or firmware and have no need to return any information to the
application; for example: the gc_ReleaseCall() function. Note that atomic
synchronous functions return information, not events.

Figure 4 illustrates the call states associated with establishing or setting up a call
in the synchronous mode. The call establishment process for inbound calls and
outbound calls is shown. All calls start from a Null state. See Table 2. Call State
Definitions for a summary of the call states.

3. GlobalCall API

35

.

INBOUND CALL OUTBOUND CALL

Connected

AlertingAccepted

Offered Dialing

Null

gc_AcceptCall()

gc_AnswerCall()

gc_MakeCall()

GCEV_ALERTING
(Maskable)

gc_AnswerCall()

gc_WaitCall()

Completion of
gc_MakeCall()

Legend:
Dotted line indicates
activity, not state.

Figure 4. Synchronous Call Establishment Process

GlobalCall™ API Software Reference for UNIX and Windows NT

36

3.5.1. Inbound Calls - Synchronous

The application issues a gc_WaitCall() function in the Null state to indicate
readiness to accept an inbound call request on the specified line device. In the
synchronous mode, the gc_WaitCall() function waits for an inbound call for the
length of time specified by the timeout parameter When the time-out expires, the
function fails with an error code, EGC_TIMEOUT, and must be reissued. If the
time specified is 0, the function fails unless a call is already pending on the
specified line device.

A gc_WaitCall() function waiting for a call to arrive can be stopped (terminated)
by issuing a gc_ResetLineDev() function. When the gc_WaitCall() function
fails or is stopped, all system resources including the CRN assigned to the call are
released. To accept inbound calls, another gc_WaitCall() function must be
issued. The application must repeat the poll for incoming calls by issuing a
gc_WaitCall() function each time it polls for a call.

An inbound call is processed as follows, see Figure 4. The inbound call from the
network is received on the specified line device thus causing the call state to
change to the Offered state.

In the Offered state, the call may be accepted by the application. From the
Offered state, the call state changes to either:

• the Connected state or

• the Accepted state.

When the call is to be directly connected, such as to a voice messaging system or
the like, a gc_AnswerCall() function is issued to make the final connection.
When the gc_AnswerCall() function is successfully completed, the call changes
to the Connected state. At this time, the call is connected to the called party and
call charges begin.

If the application is not ready to answer the call, a gc_AcceptCall() function is
issued to indicate to the remote end that the call was received but not yet
answered. This provides an interval during which the system can verify
parameters, determine routing, and perform other tasks before connecting the call.
When the gc_AcceptCall() function is successfully completed, the call changes
to the Accepted state.

3. GlobalCall API

37

To complete the connection, a gc_AnswerCall() function is issued as described
above.

When the call is in the Offered state or the Accepted state, the application may
selectively retrieve call information, such as DDI digits (DNIS) and caller ID
(ANI). The application may also request more dialing information using the
gc_CallAck() function.

From the Offered state, the application may reject the call by issuing a
gc_DropCall() function followed by a gc_ReleaseCall() function, see Figure 5.
Synchronous Call Tear-Down.

From the Accepted state, not all E-1 CAS protocols support a forced release of the
line; that is, issuing a gc_DropCall() function after a gc_AcceptCall() function.
If a forced release is attempted, the function will fail and an error is returned. To
recover, the application should issue a gc_AnswerCall() function followed by
gc_DropCall() and gc_ReleaseCall() functions. See the GlobalCall Country
Dependent Parameters (CDP) Reference for protocol specific limitations.
However, anytime a GCEV_DISCONNECTED event is received in the Accepted
state, the gc_DropCall() function can be issued.

Table 6 is an example of a simple inbound call using the synchronous
programming model. The items denoted by a dagger (†) are optional
functions/events or maskable events that may be reported to the application for
specific signaling protocols. For call scenarios used for a specific signaling
protocol, see the GlobalCall Technology User’s Guide for that protocol.

Table 6. Inbound Call Set-Up (Synchronous)

Function Action/Description

gc_WaitCall() Enables notification of an incoming call after line
device opened with gc_Open() or gc_OpenEx().

†gc_GetANI() Request ANI information

†gc_GetDNIS() Retrieves DDI digits received from the network.

†gc_CallAck() Request additional call setup information

GlobalCall™ API Software Reference for UNIX and Windows NT

38

Function Action/Description

†gc_AcceptCall() Issued to acknowledge that call was received but
called party has not answered

gc_AnswerCall() Issued to connect call to called party (answer
inbound call).

† = Optional functions

3.5.2. Outbound Calls - Synchronous

To initiate an outbound call (see Figure 4) using the synchronous mode, the
application issues a gc_MakeCall() function that requests an outgoing call to be
made on a specific line device. A CRN is assigned to the call being made on the
specific line device. Dialing information is then sent to and acknowledged by the
network. When the gc_MakeCall() function is issued in the synchronous mode,
the function returns successfully when the call reaches the Connected state. See
the GlobalCall Technology User’s Guide for your technology for valid
completion points for the gc_MakeCall() function.

The gc_SetEvtMsk() function specifies the events enabled or disabled for a
specified line device. This function sets the event mask associated with the
specified line device. If an event bit in the mask is cleared, the event is disabled
and is not sent to the application. When an event (referred to as a maskable event)
is enabled, this event may be received from the network while the
gc_MakeCall() function is in progress. Receiving the GCEV_ALERTING event
indicates that the called party has not answered the call and that the network is
waiting for the called party to complete the connection. For example;

• for a E-1 CAS, T-1 robbed bit or an analog loop start system, a
GCEV_ALERTING event indicates that the remote end is generating
ringback and has not answered the call.

• for an ISDN system, a GCEV_ALERTING event indicates that the remote
end has sent back an Alerting message.

When the call is answered (the remote end makes the connection), the
gc_MakeCall() function completes successfully and the call changes to the
Connected state.

3. GlobalCall API

39

The application must handle unsolicited events in the synchronous mode, unless
these events are masked or disabled. The following unsolicited events, if enabled,
require a signal handler:

• GCEV_ALERTING - default is to disable; can be masked.

• GCEV_BLOCKED - default is to enable; can be masked.

• GCEV_UNBLOCKED - default is to enable; can be masked.

• GCEV_DISCONNECTED - default is to enable. Event is not maskable
and requires a signal handler.

• GCEV_TASKFAIL - default is to enable. Event is not maskable and
requires a signal handler.

• All technology specific unsolicited events (see the GlobalCall
Technology User’s Guide for your technology for details).

If these events are not masked by the application and signal handlers are not
defined, they are queued without being retrievable and memory problems are
likely to occur.

If a synchronous gc_MakeCall() function is issued to make an outbound call
while an inbound call is in progress, the function fails, and the error value will
indicate that an inbound call is in process.

3.5.3. Call Termination - Synchronous

Figure 5 illustrates the call states associated with call termination or call tear-
down in the synchronous mode initialized by either call disconnection or failure.
See Table 2. Call State Definitions for a summary of the call states. A call can be
terminated by the application or by the detection of call disconnect from the
network. Either of these terminations can occur at any point in the process of
setting up a call and during any call state.

GlobalCall™ API Software Reference for UNIX and Windows NT

40

.

Connected

Alerting

Accepted

Offered

Dialing

Null

Idle

TERMINATED
BY NETWORK

Disconnected

GCEV_DISCONNECTED

gc_DropCall()

gc_DropCall()

gc_ReleaseCall()

TERMINATED
BY APPLICATION

FROM ANY
STATE SHOWN

BELOW

FROM ANY
STATE SHOWN

BELOW

Connected

Alerting

Offered

Dialing

Accepted*

Legend:
* = See the GlobalCall
 CDP Reference for
 protocols that support
 a forced release
 of the line.

Figure 5. Synchronous Call Tear-Down

3. GlobalCall API

41

The application terminates a call by issuing a gc_DropCall() function that
initiates disconnection of the call specified by the CRN. This gc_DropCall()
function causes the call to change from the current call state to the Idle state. In
the Idle state, the call has been disconnected and the application must issue a
gc_ReleaseCall() function to free the line device for another call. This
gc_ReleaseCall() function instructs the driver and firmware to release all system
resources committed to servicing the call and causes the call state to change to the
Null state.

A network call termination is initiated when an unsolicited
GCEV_DISCONNECTED event is generated. This event indicates that the call
was disconnected at the remote end or that an error was detected that prevented
further call processing. The GCEV_DISCONNECTED event causes the call state
to change from the current call state to the Disconnected state. In the
Disconnected state, the call is disconnected and then waits for a gc_DropCall()
function from the application. The gc_DropCall() function is equivalent to “set
hook ON.” This gc_DropCall() function causes the call state to change to the
Idle state. In the Idle state, the gc_ReleaseCall() function instructs the driver and
firmware to release all resources committed to servicing the call and causes the
call state to change to the Null state.

Table 7 presents a synchronous call termination scenario. For call scenarios used
for a specific signaling protocol, check the GlobalCall Technology User’s Guide
for that technology.

GlobalCall™ API Software Reference for UNIX and Windows NT

42

Table 7. Call Termination (Synchronous)

Function/Event Action/Description

GCEV_DISCONNECTED Unsolicited event generated when call is
terminated by network; initiates transition to
Disconnected state.

gc_DropCall() Disconnects call specified by CRN.

†gc_GetBilling() Retrieve billing information

gc_ReleaseCall() Issued to release all resources used for call;
network port is ready to receive next call.
Causes transition to Null state.

† = Optional function

3.6. Routing for UNIX Environments

When using GlobalCall, the standard Dialogic routing functions for routing voice,
fax, and other non-network interface resources are used. These routing functions
use the device handles of resources such as a voice channel or a network time slot.
Two GlobalCall functions, gc_GetNetworkH() and gc_GetVoiceH(), extract
the network and voice device handles, respectively, associated with the specified
line device. The gc_GetNetworkH() function returns the network device handle
for the specified line device. The gc_GetVoiceH() function returns the voice
device handle only if the specified line device has a voice or tone resource
associated with it (e.g., if a voice channel was specified in the gc_Open() or
gc_OpenEx() function device name argument and if this channel has remained
attached to that line device).

Refer to the appropriate GlobalCall Technology User’s Guide for technology
specific information on routing resources when using the gc_Open() or
gc_OpenEx() function to specify a voice or tone resource or when using the
gc_Attach() function to associate a voice resource with a GlobalCall line device.

3. GlobalCall API

43

3.7. Routing for Windows NT Environments

When using GlobalCall, the standard Dialogic routing functions for routing voice,
fax, and other non-network interface resources are used. The
gc_GetNetworkH() function returns the network device handle for a specified
line device which is then used by the routing functions to route the device. The
gc_GetVoiceH() function extracts the voice device handle associated with a
specified line device. The gc_GetVoiceH() function returns the voice device
handle only if the specified line device has a voice or tone resource associated
with it (e.g., if a voice channel was specified in the gc_Open() or gc_OpenEx()
function device name argument and if this channel has remained attached to that
line device).

Refer to the appropriate GlobalCall Technology User’s Guide for technology
specific information on routing resources when using the gc_Open() or
gc_OpenEx() function to specify a voice or tone resource or when using the
gc_Attach() function to associate a voice resource with a GlobalCall line device.

3.8. Event Handling

The GlobalCall protocol handler continuously monitors the line device for events
from the network. As each call is processed through its various states,
corresponding events are generated and passed to the application. An overview
of GlobalCall events that apply to all technologies are described in this section
and specific event definitions are described in the next section, 3.9. Event
Definitions. Refer to the appropriate GlobalCall Technology User’s Guide for
technology specific event information.

Each GlobalCall event is classified as an:

• unsolicited event: generated when an alarm is detected or when certain
signals are received from the network; or a

• termination event: generated when a function completes (asynchronous
mode only).

To enable or disable events on a line device basis, you can use the
gc_SetEvtMsk() function.

GlobalCall™ API Software Reference for UNIX and Windows NT

44

3.8.1. Event Retrieval

All events are retrieved using the current SRL event retrieval mechanisms (see the
Voice Software Reference for UNIX, Volume 1 or the Voice Software Reference
for Windows NT, Volume 1, for details), including event handlers. The
gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT extended
asynchronous mode) function maps the current SRL event into a metaevent. This
metaevent is a data structure that explicitly contains the information describing the
event. This data structure provides uniform information retrieval among all call
control libraries.

For GlobalCall events, the structure contains GlobalCall related information
(CRN and line device) used by the application. For non-GlobalCall events, the
Dialogic device descriptor, the event type, the event data pointer to the variable
length data and the length of the variable data are available through the
METAEVENT structure. Since event data is present in the metaevent and thus
will be stored in the METAEVENT structure, corresponding SRL calls to obtain
event information need not be made.

The LDID associated with an event is available from the linedev field of the
metaevent. The CRN associated with each event is available from the crn field of
the metaevent (only if the event is CRN related). If the CRN is 0, then the event is
not a call related event.

Late events are events that arrive for a released CRN. Late events can occur if the
gc_ReleaseCall() function is issued before the application has retrieved all of the
termination events. To avoid late events, the application should issue a
gc_DropCall() function before issuing the gc_ReleaseCall() function. Failure
to issue this function could result in one or more of the following problems:

• memory problems due to memory being allocated and not being released

• blocking condition

• events sent to the previous user of a CRN could be processed by a later user
of the CRN with unexpected results.

The reason or result code for an event is retrieved using the gc_ResultValue()
function. The code returned uniquely identifies the cause of the event. Having

3. GlobalCall API

45

retrieved the result value of the event, use the gc_ResultMsg() function to
retrieve the ASCII string that describes this result value.

Event Handler for UNIX

An event handler is a user-defined or a GlobalCall API defined function called by
the SRL to handle a specific event that occurs on a specified device. The
following guidelines apply to UNIX event handlers (For detailed information, see
the Standard Runtime Library Programmer’s Guide located in the Voice
Software Reference for UNIX):

• More than one handler can be enabled for an event.

• General handlers can be enabled that handle any event on a specified device.

• Handlers can be enabled to handle any event on any device.

• Synchronous functions cannot be called in a handler.

• Handlers must return a 1 to advise the SRL to keep the event in the SRL
queue and a 0 to advise the SRL to remove the event from the SRL queue.

After initiation of an asynchronous function when using the asynchronous signal
callback model, the process can receive termination (solicited) or unsolicited
events. When an event occurs, the process is interrupted and control is assigned
to a central signal handler within the SRL. From this central signal handler, the
SRL calls all event handlers that are enabled for that event on that device. After
all event handlers are called, control returns to the process at the place where the
interrupt occurred and the process continues until notified of the next event.

When using the asynchronous non-signal callback model, after initiation of the
asynchronous function, the process cannot receive termination (solicited) or
unsolicited events until the sr_waitevt() function is called. When using the non-
signal callback model, the main process typically issues a single call for the
sr_waitevt() function. If a handler returns a non-zero value, the sr_waitevt()
function returns to the main process.

Event Handler for Windows NT

An event handler is a user-defined or a GlobalCall API defined function called by
the SRL to handle a specific event that occurs on a specified device. The

GlobalCall™ API Software Reference for UNIX and Windows NT

46

guidelines listed in paragraph 3.2.2. Windows NT Asynchronous Mode
Programming apply to Windows NT event handlers (For detailed information, see
the Standard Runtime Library Programmer’s Guide located in the Voice
Software Reference for Windows NT).

3.8.2. Alarm Handling

GlobalCall alarm events are generated on a line device basis even though alarms
occur on a trunk basis. A line device can be associated with an E-1 or T-1 trunk
or an individual time slot specified when the gc_Open() or gc_OpenEx()
function is issued. Alarm events are unsolicited events sent in addition to other
GlobalCall events and do not require any application initiated action. All
GlobalCall devices associated with a given E-1 or T-1 trunk on which an alarm
occurs will receive a GCEV_BLOCKED event. The blocked event is generated
only for the first alarm condition detected. Subsequent alarms on the same trunk
will not generate additional blocked events. Until all alarm conditions are cleared,
the line device(s) affected by the alarm (i.e., received the GCEV_BLOCKED
event) cannot generate or accept calls. Complete alarm recovery is indicated by a
GCEV_UNBLOCKED event.

When an alarm occurs while a call is in progress or connected, any calls on the
.trunk in the alarm condition are treated in the same manner as if a remote
disconnection occurred; an unsolicited GCEV_DISCONNECTED event is sent to
the application and the call changes to the Disconnected state. The result value
retrieved for the event by issuing a gc_ResultValue() function will indicate that
an alarm condition occurred. The GCEV_BLOCKED event (Alarm On
condition) is also sent to the application to indicate that an alarm occurred. The
alarm conditions listed in Table 8. Alarm Conditions will generate a
GCEV_BLOCKED event. The gc_ResultValue() function may be used to
identify the condition that caused the GCEV_BLOCKED event to be generated.

The GCEV_BLOCKED and GCEV_DISCONNECTED events may arrive in any
order. When the alarm condition(s) clears, an unsolicited GCEV_UNBLOCKED
event (Alarm Off condition) indicating complete alarm recovery is sent to the
application.

When an alarm occurs while a line device is in the Null, Disconnected, or Idle
state, only the GCEV_BLOCKED event is sent since there is no call to

3. GlobalCall API

47

disconnect. The call state does not change when a GCEV_BLOCKED or
GCEV_UNBLOCKED event is sent to the application.

In the asynchronous mode, if a gc_WaitCall() function is pending when a
GCEV_UNBLOCKED event is generated, the gc_WaitCall() function need not
be reissued.

Table 8. Alarm Conditions

Analog Loop Start Alarms:

• None

E-1 Alarms:

• Bipolar violation count saturation

• CRC4 error count saturation

• Driver performance monitor failure

• Error count saturation

• Initial loss of signal detection

• Received distant multi-frame alarm

• Received frame sync error

• Received loss of sync

• Received multi frame sync error

• Received remote alarm

• Received signaling all 1’s

• Received unframed all 1’s

T-1 Alarms:

• Bipolar eight zero substitution detected

• Bipolar violation count saturation

GlobalCall™ API Software Reference for UNIX and Windows NT

48

• Driver performance monitor failure

• Error count saturation

• Frame bit error

• Got a read alarm condition

• Initial loss of signal detection

• Out of frame error, count saturation

• Received blue alarm

• Received carrier loss

• Received loss of sync

• Received yellow alarm

3.9. Event Definitions

The following GlobalCall scenarios briefly describe events common to all
protocol interfaces (see the appropriate GlobalCall Technology User’s Guide for
a specific protocol for additional events supported by that protocol):

• inbound call events (Table 9),

• outbound call events (Table 10),

• disconnect/failure events (Table 11) and

• other GlobalCall events (Table 12 and Table 13).

For termination events, the terminated function is listed in the “Terminates”
column; termination events only apply when using the asynchronous
programming model.

For unsolicited events, ‘Unsolicited’ appears in the “Terminates” column;
unsolicited events apply to both the synchronous and the asynchronous
programming models. The referenced parameter, CRN or LDID, is identified for
each event in the “Ref” column. If the event is maskable, its default setting is

3. GlobalCall API

49

indicated in the “Terminates” column. Refer to the gc_SetEvtMsk() function
description in Chapter 6. Function Reference for specific information regarding
enabling and disabling events.

Table 9. Inbound Call Events

Event Terminates Ref Description

GCEV_ACCEPT gc_AcceptCall() CRN Call received at remote
end, but not yet
answered

GCEV_ANSWERED gc_AnswerCall() CRN Call established and
enters Connected state

GCEV_ACKCALL gc_CallAck() CRN Indicates termination of
gc_CallAck() and that
the DDI string may be
retrieved by using
gc_GetDNIS()

GCEV_OFFERED Unsolicited CRN Inbound call arrived;
call enters Offered state.

Table 10. Outbound Call Events

Event Terminates Ref Description

GCEV_ALERTING Unsolicited
(enabled by
default)

CRN Destination party has
answered call.

GCEV_CALLSTATUS Unsolicited CRN Indicates that a
timeout or a no
answer (call control
library dependent)
condition was
returned while the
gc_MakeCall()
function is active

GCEV_CONNECTED gc_MakeCall() CRN Call is connected

GlobalCall™ API Software Reference for UNIX and Windows NT

50

Table 11. Disconnected/Failed Call Events

Event Terminates Ref Description

GCEV_DROPCALL gc_DropCall() CRN Call is
disconnected
and call
enters Idle
state

GCEV_DISCONNECTED Unsolicited CRN Call
disconnected
by remote
end.

GCEV_DISCONNECTED Any request or
message rejected by
network or that has
timed-out

Either
CRN
or
LDID

The error
detected
prevents
further call
processing on
this call.

GCEV_RESETLINEDEV gc_ResetLineDev() LDID Disconnects
any active
calls on the
line device.

Table 12. ISDN Call Events

Event Terminates Ref Description

GCEV_CALLINFO Unsolicited CRN Generated when
an incoming
information
message is
received.

GCEV_CONGESTION Unsolicited CRN Generated when
an incoming
congestion
message is

3. GlobalCall API

51

Event Terminates Ref Description
received.

GCEV_D_CHAN_STATU
S

Unsolicited LDID Generated when
the status of the
D channel
changes.

GCEV_DIVERTED Unsolicited CRN Received request
to call forward
using DPNSS
protocol.

GCEV_FACILITY Unsolicited LDID Generated when
an incoming
facility message
is received.

GCEV_FACILITY_ACK Unsolicited LDID Generated when
an incoming
facility ACK
message is
received.

GCEV_FACILITY_REJ Unsolicited LDID Generated when
an incoming
facility reject
message is
received.

GCEV_HOLDACK gc_HoldCall() CRN Generated when
an
acknowledgemen
t is sent in
response to a
hold call
message.

GCEV_HOLDCALL Unsolicited CRN Generated when
a hold current
call message is

GlobalCall™ API Software Reference for UNIX and Windows NT

52

Event Terminates Ref Description
received.

GCEV_HOLDREJ gc_HoldCall() CRN Generated when
a hold call
request is
rejected and the
hold call reject
message is sent to
remote end.

GCEV_ISDNMSG Unsolicited CRN Generated when
an incoming
unrecognized
ISDN message is
received.

GCEV_L2BFFRFULL Unsolicited CRN Generated when
the incoming
layer 2 access
message buffer is
full. (reserved for
future use)

GCEV_L2FRAME Unsolicited CRN Generated when
an incoming layer
2 access message
is received.

GCEV_L2NOBFFR Unsolicited CRN Generated when
no free space is
available for an
incoming layer 2
access message.

GCEV_NOTIFY Unsolicited CRN Generated when
an incoming
notify message is
received.

GCEV_NSI Unsolicited CRN Generated when

3. GlobalCall API

53

Event Terminates Ref Description
a Network
Specific
Information
(NSI) message is
received using
DPNSS protocol.

GCEV_PROCEEDING Unsolicited
(enabled by
default)

CRN Generated when
an incoming
proceeding
message is
received.

GCEV_PROGRESSING Unsolicited
(enabled by
default)

CRN Generated when
an incoming
progress message
is received.

GCEV_REQANI gc_ReqANI() CRN Generated when
ANI information
is received from
network.

GCEV_RETRIEVEACK gc_RetrieveCall() CRN Generated when
an
acknowledgemen
t is sent in
response to a
retrieve hold call
message.

GCEV_RETRIEVECALL Unsolicited CRN Generated when
a retrieve hold
call message is
received.

GCEV_RETRIEVEREJ gc_RetrieveCall() CRN Generated when
a rejection
message is sent in
response to a

GlobalCall™ API Software Reference for UNIX and Windows NT

54

Event Terminates Ref Description
request to
retrieve held call.

GCEV_SETBILLING gc_SetBilling() CRN Generated when
billing
information for
the call is
acknowledged by
the network.

GCEV_SETCHANSTATE gc_SetChanState(
)
or unsolicited

CRN Sets operating
state of channel.
Or if an
unsolicited event,
generated when
the status of the
B channel
changes or a
maintenance
message is
received from the
network.

GCEV_SETUP_ACK Unsolicited
(disabled by
default)

CRN Generated when
an incoming
setup ACK
message is
received.

GCEV_TRANSFERACK Unsolicited CRN Generated when
an
acknowledgemen
t is sent in
response to a
transfer call to
another
destination
message using
DPNSS protocol.

3. GlobalCall API

55

Event Terminates Ref Description

GCEV_TRANSFERCALL Unsolicited CRN Generated when
a transfer call to
another
destination
message is
received.

GCEV_TRANSFERREJ Unsolicited CRN Generated when
a rejection
message is sent in
response to a
request to
transfer call to
another
destination using
DPNSS protocol.

GCEV_TRANSIT Unsolicited CRN Generated when
a message is sent
via a call
transferring party
to the destination
party after a
transfer call
connection is
completed using
DPNSS protocol.

GCEV_USRINFO Unsolicited CRN Generated when
an incoming
User-to-User
Information
(UUI) message is
received.

GlobalCall™ API Software Reference for UNIX and Windows NT

56

Table 13. Other GlobalCall Events

Event Terminates Ref Description

GCEV_BLOCKED Unsolicited (enabled
by default)

LDID Line is
blocked and
application
cannot issue
call-related
function calls.
Retrieve
reason for line
blockage
using
gc_ResultVal
ue().

GCEV_UNBLOCKED Unsolicited (enabled
by default)

LDID Line is
unblocked.
Application
may issue call-
related
commands to
this line
device.

GCEV_SETCHANSTATE gc_SetChanState() LDID Line device is
placed in
requested
state.

GCEV_TASKFAIL Unsolicited Either
CRN
or
LDID

An unsolicited
error event
occurred
during the
execution of a
function.

3. GlobalCall API

57

3.10. Return Value Handling

When a function call returns, the GlobalCall library assigns a return value to
indicate to the calling application the success, failure or condition of the results of
the call:

• 0 (zero) - returned indicates successful initiation of the function.

• < 0 (zero) - returned indicates the function failed to complete
 successfully.

When a function fails, a value less than zero is returned. The error code for this
failure is retrieved by issuing a gc_ErrorValue() call. This function must be
called immediately after the function failed value is returned. Having retrieved
the error code for the failure, an ASCII string that describes the reason for the
failure may be retrieved by issuing a gc_ResultMsg() function.

NOTE: When a function fails, the value returned is less than zero. Do not test
explicitly for a value of −1; future versions of the GlobalCall API may
not use −1 as the returned value.

The gcerr.h header file contains a comprehensive list of error codes; see listing in
Appendix C.

3.11. Error Handling

When an error occurs during execution of a function, one of the following occurs:

• the function returns with a value < 0 or

• the unsolicited error event, GCEV_TASKFAIL, is sent to the application.

When a function returns with a value < 0, the error code defining the reason for
the failure may be retrieved by calling the gc_ErrorValue() function
immediately after the function returns. The gc_ResultMsg() function converts
any GlobalCall error code into an ASCII string containing a description of the
error.

GlobalCall™ API Software Reference for UNIX and Windows NT

58

Call control libraries supported by the GlobalCall API may have a larger set of
error codes than those defined in the gcerr.h header file. The call control library
error values are also available using the gc_ErrorValue() function.

If an error occurs during execution of an asynchronous function, the
GCEV_TASKFAIL event is sent to the application. No change of state is
triggered by this event. If events on the line require a state change, this state
change occurs as described in paragraph 3.4.1. Establishing and Terminating
Calls - Asynchronous.

When an error occurs during a protocol operation, the error event is placed in the
event queue with the error value that identifies the error. Upon receiving a
GCEV_TASKFAIL event, the application can retrieve the reason for the failure
using the gc_ResultValue() function.

A call is terminated as shown in Figure 3. Asynchronous Call Tear-Down State
Diagram and in Figure 5. Synchronous Call Tear-Down. For example, if an
alarm occurs while making an outbound call, a GCEV_DISCONNECTED event
is sent to the application with a result value indicating an alarm on the line. The
GCEV_BLOCKED event is also generated with a result value that also indicates
an alarm on the line. See also the appropriate GlobalCall Technology User’s
Guide for information on specific protocol errors.

3.12. Programming Tips for UNIX

1. When using GlobalCall functions, the application must use the GlobalCall
handles (i.e., line device ID and CRN) to access GlobalCall functions. Do
not substitute a network or voice device handle for the GlobalCall line device
ID or CRN. If the application needs to use a network or voice device handle
for a specific network or voice library call, (e.g., nr_scroute(), dx_play(),
etc.), you must use the gc_GetNetworkH() or the gc_GetVoiceH() function
to retrieve the network or voice handle, respectively, associated with the
specified GlobalCall line device. The gc_GetVoiceH() function is only
needed if the voice or tone resource is associated with a GlobalCall line
device. If a voice or tone resource is not part of the GlobalCall line device,
the device handle returned from the dx_open() call should be used.

3. GlobalCall API

59

2. Do not access the underlying call control libraries directly (i.e., do not issue
calls directly to the ANAPI, ISDN or the ICAPI libraries); ALL accesses
must be via the GlobalCall library.

3. Do not call any network library function directly from your application that
may affect the state of the line or the reporting of events (e.g., dt_settssig(),
dt_setevtmsk(), or the like).

4. The GCEV_BLOCKED and the GCEV_UNBLOCKED events are line
related events, not call related events. These events do not cause the state of
a call to change.

5. Before exiting an application, perform the following:

- drop (using the gc_DropCall() function) and release (using the
gc_ReleaseCall() function) ALL active calls;

NOTE: From the Accepted state, not all E-1 CAS protocols support a forced
release of the line; that is, issuing a gc_DropCall() function after a
gc_AcceptCall() function. If a forced release is attempted, the function will
fail and an error is returned. To recover, the application should issue a
gc_AnswerCall() function followed by gc_DropCall() and
gc_ReleaseCall() functions. See the GlobalCall Country Dependent
Parameters (CDP) Reference for protocol specific limitations. However,
anytime a GCEV_DISCONNECTED event is received in the Accepted state,
the gc_DropCall() function can be issued.

- close all open line devices (using the gc_Close() function).

6. Before issuing a gc_DropCall() function, you must first terminate any voice
related function currently in progress. For example, if a play or a record is in
progress, then before you can drop the call, issue a stop channel function on
that voice channel and then call the gc_DropCall() function to drop the call.

7. When using the libdti.a library file, the application must also link with the
libgncf.a library file.

8. When programming in synchronous mode, performance may deteriorate as
the number of synchronous processes increase due the increased UNIX
overhead needed to handle these processes. When programming
multichannel applications, asynchronous mode programming is likely to
provide better performance.

GlobalCall™ API Software Reference for UNIX and Windows NT

60

3.12.1. SRL Related Programming Tips for UNIX

1. When a SRL is in signaling mode (SIGMODE), do not call any synchronous
mode (i.e., mode=EV_SYNC) GlobalCall function from within a handler
registered to the SRL.

2. When a SRL is in signaling mode (SIGMODE) and a GlobalCall function is
issued synchronously (i.e., mode=EV_SYNC), then ensure that the
application only enables handlers with the SRL to catch the exceptions (i.e.,
unsolicited events like GCEV_BLOCKED, GCEV_UNBLOCKED or
GCEV_DISCONNECTED) instead of enabling wildcard handlers to catch all
events. If you enable wildcard handlers, the application may receive
unexpected events which should not be consumed.

3.13. Programming Tips for Windows NT

1. Although Asynchronous models are more complex than the Synchronous
model, asynchronous programming is recommended for more complex
applications that require coordinating multiple tasks. Asynchronous
programming can handle multiple channels in a single thread. In contrast,
synchronous programming requires separate threads. Asynchronous
programming uses system resources more efficiently because it handles
multiple channels in a single thread.

Asynchronous models let you program complex applications easily, and
achieve a high level of resource management in your application by
combining multiple voice channels in a single thread. This streamlined code
reduces the system overhead required for interprocess communication and
simplifies the coordination of events from many devices.

2. When using GlobalCall functions, the application or thread must use the
GlobalCall handles (i.e., line device ID and CRN) to access GlobalCall
functions. Do not substitute a network or voice device handle for the
GlobalCall line device ID or CRN. If the application or thread needs to use a
network or voice device handle for a specific network or voice library call,
(e.g., nr_scroute(), dx_play(), etc.), you must use the gc_GetNetworkH()
or the gc_GetVoiceH() function to retrieve the network or voice handle,
respectively, associated with the specified GlobalCall line device. The
gc_GetVoiceH() function is only needed if the voice or tone resource is
associated with a GlobalCall line device. If a voice or tone resource is not

3. GlobalCall API

61

part of the GlobalCall line device, the device handle returned from the
dx_open() call should be used.

3. Do not access the underlying call control libraries directly (i.e., do not issue
calls directly to the ANAPI, ISDN or the ICAPI libraries); ALL accesses
must be via the GlobalCall library.

4. Do not call any network library function directly from your application or
thread that may affect the state of the line or the reporting of events (e.g.,
dt_settssig(), dt_setevtmsk(), or the like).

5. The GCEV_BLOCKED and the GCEV_UNBLOCKED events are line
related events, not call related events. These events do not cause the state of
a call to change.

6. Before exiting an application, perform the following:

- drop (using the gc_DropCall() function) and release (using the
gc_ReleaseCall() function) ALL active calls;

NOTE: From the Accepted state, not all E-1 CAS protocols support a forced
release of the line; that is, issuing a gc_DropCall() function after a
gc_AcceptCall() function. If a forced release is attempted, the function will
fail and an error is returned. To recover, the application should issue a
gc_AnswerCall() function followed by gc_DropCall() and
gc_ReleaseCall() functions. See the GlobalCall Country Dependent
Parameters (CDP) Reference for protocol specific limitations. However,
anytime a GCEV_DISCONNECTED event is received in the Accepted state,
the gc_DropCall() function can be issued.

- close all open line devices (using the gc_Close() function).

7. Before issuing a gc_DropCall() function, you must first terminate any voice
related function currently in progress. For example, if a play or a record is in
progress, then before you can drop the call, issue a stop channel function on
that voice channel and then call the gc_DropCall() function to drop the call.

8. When calling the gc_GetMetaEventEx() function from multiple threads,
ensure that your application uses unique thread-related METAEVENT data
structures or ensure that the METAEVENT data structure is not written to
simultaneously.

GlobalCall™ API Software Reference for UNIX and Windows NT

62

3.14. Programming Tips for Drop and Insert Applications

When dealing with E-1 CAS or T-1 robbed bit protocols:

• signaling such as line answered is passed to the application as the
GCEV_ANSWERED event.

• signaling such as line busy is available to the application as an error code
EGC_BUSY or a result value GCRV_BUSY; line no answer as an error code
EGC_NOANSWER or a result value GCRV_NOANSWER.

• signaling such as a protocol error, an alerting event, a fast busy, an undefined
telephone number or network congestion are all returned to the application as
an error code EGC_BUSY or a result value GCRV_BUSY.

• non-backward signaling protocols generate a GCEV_DISCONNECTED
event with an error code EGC_BUSY or a result value GCRV_BUSY when
time outs or protocol errors occur during dialing.

For a drop and insert application wherein the calling party needs to be notified of
the exact status of the called party’s line, the following approach may be used:

• Upon receipt of an incoming call from a calling party, issue a
gc_MakeCall() function on the outbound line to the called party.

• After dialing completes on the outbound line, the application should drop the
dialing resource, turn off call progress and connect the inbound line to the
outbound line so that the calling party can hear the tones returned on the
outbound line. These tones provide positive feedback to the calling party as
to the status of the called party’s line. If the status of the called party’s line is
such that the call cannot be completed, the calling party will hang up and the
application can then drop the call and release the resources used. Otherwise,
when the call is answered, a GCEV_CONNECTED event will be received.

When call progress is being used, after dialing completes, the call progress
software looks for ringback or voice on the outbound line. When ringback is
detected, a GCEV_ALERTING event is generated. When voice is detected, a
GCEV_ANSWERED event is generated. A unacceptable amount of time may
lapse before either of these events is generated while the calling party is waiting
for a response that indicates the status of the call. Thus, for drop and insert
applications, call progress should be disabled as soon as dialing completes and the

3. GlobalCall API

63

inbound and outbound lines connected so as to provide the calling party with
immediate outbound line status and voice cut-through.

For a drop and insert application wherein a call cannot be completed, the
application can simulate and return a busy tone or a fast busy (redial) tone to the
calling party. Typically, this condition occurs when a GCEV_DISCONNECTED
event is generated due to a time out or a protocol error during dialing or due to R2
backward signaling indicating a busy called party’s line, equipment failure,
network congestion or an invalid telephone number. When a call cannot be
completed because the called party’s line is busy:

• use a tone or voice resource to generate a busy tone [60 ipm (impulses per
minute)] or to record a busy tone.

• connect this busy tone to the calling party’s line or playback the recorded
busy tone file.

• then drop and release the calling party’s line when a
GCEV_DISCONNECTED event is received.

When a call cannot be completed because of equipment failure, network
congestion or an invalid telephone number:

• use a tone or voice resource to generate a fast busy tone (120 ipm) or to
record a fast busy tone.

• connect this fast busy tone to the calling party’s line or playback the recorded
fast busy tone file.

• then drop and release the calling party’s line when a
GCEV_DISCONNECTED event is received.

For voice function information, see the Voice Software Reference for your
operating system.

3.15. Building Applications for UNIX

The following header files contain equates that are required for each UNIX
application that uses the GlobalCall library:

GlobalCall™ API Software Reference for UNIX and Windows NT

64

gcerr.h
gclib.h
gcisdn.h (for applications that use ISDN symbols)

When using the ANAPI library or the ICAPI library, the following source file
must be compiled by the user and linked to the application:

• for ANAPI library, link ancountry.c

• for ICAPI library, link country.c

The library files listed in Table 14. UNIX Files to be Linked, must be linked to
the application IN THE FOLLOWING ORDER:

• libgc.a file

• then the library files (or their stub library file) in the order listed

• then the libdxxx.a, libdti.a and libsrl.a files

For each library, either the library files or their corresponding stub library file
must be linked. For information on stub libraries, see paragraph 2.4. Call
Control Libraries.

3. GlobalCall API

65

Table 14. UNIX Files to be Linked

The following library files MUST ALWAYS be linked:

• libgc.a
• libdxxx.a
• libdti.a
• libsrl.a

Select the libraries (protocols) to be used with your application and link the
files listed below. For libraries not used, link the corresponding stub library
file.

NOTE: For each GlobalCall library listed below, either the library files OR
the corresponding stub library file MUST be linked to your
application.

ICAPI library: ANAPI library: ISDN library:

• libr2lib.a
• libr2mf.a

• libatlib.a
• libanalog.a

• libgcis.a
• libgncf.a

Stub library:

• libicapi.a • libanapi.a • libisdn.a

3.15.1. Using Only ICAPI Protocols in UNIX Applications

The following object files (located in the /usr/dialogic/ictools directory) must be
linked to the application (i.e., for all installed protocol modules):

• all protocol modules with the format:

cc_tt_ffff_d.o or cc_tt_d.o

See the GlobalCall E-1/T-1 Technology User’s Guide for information on the
naming convention used for ICAPI protocols.

3.15.2. Using Only Analog Protocols in UNIX Applications

The following object files (located in the /usr/dialogic/ictools directory) must be
linked to the application (i.e., for all installed protocol modules):

GlobalCall™ API Software Reference for UNIX and Windows NT

66

• all protocol modules with the format:

cc_an_ffff_d.o or cc_an_d.o

See the GlobalCall Analog Technology User’s Guide for information on the
naming convention used for analog protocols.

3.16. Building Applications for Windows NT

When building a Windows NT application, the application with its GlobalCall
header file includes, is compiled and linked with the libgc.lib library file.
Thereafter, when you issue a gc_Start() call, the configured library or libraries
(e.g., libgcan.dll for ANAPI protocols, libgcr2.dll for ICAPI protocols, libgcis.dll
for ISDN protocols, etc.) that you are using are dynamically loaded. If a
configured library cannot be found, the GlobalCall API enters an error message in
the event logger. When a particular country dependent/specific protocol file(s)
(e.g., br_r2.dll for Brazil R2 protocol, us_mf.dll for U.S. T-1 robbed bit protocol,
etc.) is needed, this protocol file(s) is dynamically loaded.

The following header files contain equates that are required for each application
that uses the GlobalCall library:

gcerr.h
gclib.h

The following library files must be linked to the application:

• libgc.lib

• libdxxmt.lib

• libdtimt.lib

• libsrlmt.lib

The libgcr2.dll and libgcis.dll files are dynamically loaded. The E-1 CAS or T-1
robbed bit protocol modules are also dynamically loaded when needed by the
application. These protocol modules use the following naming format:

• cc_tt_ffff_d.dll or cc_tt_d.dll

3. GlobalCall API

67

The analog protocol module(s) is also dynamically loaded when needed by the
application. These protocol modules use the following naming format:

• cc_an_ffff_io.dll or cc_an_d.dll

See the GlobalCall E-1/T-1 Technology User’s Guide or the GlobalCall Analog
Technology User’s Guide for more information on the naming convention used for
these protocols.

3.16.1. Compiling and Linking a Windows NT Application

Dialogic Windows NT libraries may be linked and run using Microsoft Visual C+
(2.0 or higher).

3.17. Using Analog, E-1 CAS, T-1 Robbed Bit and ISDN
Protocols

To use analog, E-1 CAS and ISDN protocols or analog, T-1 robbed bit and ISDN
protocols in the same system, the configuration file settings for each board must
reflect the protocol running on that board. In UNIX and Windows NT systems,
this configuration file can be updated at installation. Subsequently, the
configuration file:

• for UNIX can be updated using a text editor.

• for Windows NT can be updated using the Dialogic Configuration Manager
utility.

For example, the configuration file, /usr/dialogic/cfg/dialogic.cfg for UNIX, for
an application using a D/300SC-E1 board (ID = 0) running the Brazil R2 protocol
and using a D/300SC-E1 board (ID = 1) running the ISDN CTR4 protocol would
be as follows:

[Genload - All Boards]
BLTAddress = D0000
Dialog/HD = YES
BusType = SCBUS

GlobalCall™ API Software Reference for UNIX and Windows NT

68

[Genload - ID 0] /* E-1 board running Brazil protocol */
ParameterFile = br_300.prm
ClockSource = loop

[Genload - ID 1] /* E-1 board running ISDN CTR4 protocol */
ISDNProtocol = ctr4
ParameterFile = isctr4.prm
ClockSource = none

The E-1 CAS board provides master clock to the SCbus and is loop timed (i.e.,
taking its clock from the network). The ISDN board receives clock from the
SCbus.

For Windows NT, the Dialogic Configuration Manager utility is used to select or
update the configuration file for each board.

69

4. Function Overview

The Dialogic GlobalCall library functions provide the building blocks for creating
network interface control applications. An overview of these functions, grouped
into the following categories, is presented in this chapter:

• GlobalCall Basic Functions

• Library Information Functions

• Optional Call Handling and Features Functions

• System Controls and Tools Functions

• Interface Specific Functions

Detailed function descriptions are provided in Chapter 6. Function Reference.

GlobalCall basic functions may be used to interface with all signaling systems.

The library information functions retrieve the status, names and number of call
control libraries.

The GlobalCall optional call handling functions may be used to interface with all
signaling systems. These functions provide additional call handling capabilities
related to billing and number identification that are not provided by the basic
GlobalCall functions. See also the appropriate GlobalCall Technology User’s
Guide for technology specific information.

The GlobalCall system controls and tools functions provide call state, parameter
and call control library management capabilities. These functions may be used to
interface with all signaling systems.

The GlobalCall interface specific functions are signaling system specific.

All function prototypes are in the gclib.h header file.

GlobalCall™ API Software Reference for UNIX and Windows NT

70

Table 15. Basic Functions

Function Description

gc_AnswerCall() response to an incoming call (like a “pick up the
phone” command)

gc_DropCall() disconnects a call; equivalent to a “hang-up”

gc_MakeCall() makes an outgoing call

gc_ReleaseCall() releases all internal resources for the specified call

gc_WaitCall() sets up conditions for processing incoming calls

Table 16. Library Information Functions

Function Description

gc_CCLibIDToName(
)

converts call control library identification code to
library name.

gc_CCLibNameToID(
)

converts call control library name to library
identification code

gc_CCLibStatus() retrieves status of the call control library
specified

gc_CCLibStatusAll() retrieves status information for all call control
libraries

4. Function Overview

71

Table 17. Optional Call Handling and Features Functions

Function Description

gc_AcceptCall() optional response to an incoming call request;
used to indicate “ringing” to the remote end

gc_CallAck() enables user to control the response to an
incoming call request by retrieving call
information from the network.
For ISDN PRI applications, gc_CallAck()
function is used in overlap receiving operation.

gc_GetANI() returns caller identification information

gc_GetBilling() gets the charge information for the call, after
GCEV_DISCONNECTED event is received or
gc_DropCall() function is terminated

gc_GetDNIS() gets the DNIS (DDI digits) associated with a
specific CRN

gc_GetLinedevState() retrieves the status of the specified line device

gc_GetVer() returns the version number of the specified
software component

gc_SetBilling() for protocols that support this feature, sets billing
information for the call

gc_SetCallingNum() sets the default calling party number on a specific
line device; the calling party number thus defined
will be used on all subsequent outbound calls

gc_SetChanState() sets a channel to the “in-service,” “out-of-
service,” or “in-maintenance” state

GlobalCall™ API Software Reference for UNIX and Windows NT

72

Table 18. System Controls and Tools Functions

Function Description

gc_Close() closes a previously opened device and removes
the channel from service

gc_CRN2LineDev() acquires the line device ID associated with a
given CRN

gc_ErrorValue() returns the error value/failure reason related to
the last GlobalCall function call. To process an
error, this function must be called immediately
after a GlobalCall function failed.

gc_GetCallState() acquires the state of the call associated with the
CRN

gc_GetCRN() gets the CRN associated with a recently arrived
event (such as GCEV_OFFERED)

gc_GetLineDev() gets the line device ID associated with a recently
arrived event

gc_GetMetaEvent() transforms a call control library event (or any
SRL event) into a GlobalCall metaevent

gc_GetMetaEventEx() (Windows NT extended asynchronous mode
only) transforms a call control library event (or
any SRL event) into a GlobalCall metaevent.
Passes the SRL event handle to the application so
that multithreaded applications can be
implemented.

gc_GetNetworkH() returns network device handle associated with the
specified line device

gc_GetParm() retrieves the parameter value specified for a line
device

gc_GetUsrAttr() retrieves the attribute established using

4. Function Overview

73

Function Description
gc_SetUsrAttr() function

gc_Open() opens a GlobalCall device and returns a unique
line device handle to identify the physical
device(s) that carry the call

gc_OpenEx() opens a GlobalCall device, sets a user defined
attribute and returns a unique line device handle
to identify the physical device(s) that carry the
call This function can be used in place of the
gc_Open() function followed by a
gc_SetUsrAttr() function.

gc_ResetLineDev() disconnects any active calls on the line device;
aborts all calls being setup

gc_ResultMsg() retrieves an ASCII string describing the result
code

gc_ResultValue() returns the cause of an event

gc_SetEvtMsk() sets the event mask associated with the specified
line device

gc_SetParm() sets the default value of parameters used in call
setup process

gc_SetUsrAttr() sets an attribute defined by the user

gc_Start() starts all configured, call control libraries
For UNIX applications, non-stub libraries are
started.

gc_Stop() stops all configured call control libraries started

GlobalCall™ API Software Reference for UNIX and Windows NT

74

Table 19. Analog Loop Start Interface Specific Functions

Function Description

gc_LoadDxParm() Sets voice parameters associated
with a line device

Table 20. CAS Interface Specific Functions

Function Description

gc_Attach() logically connects a voice resource to a line device

gc_Detach() logically detaches a voice resource from the
associated line device

gc_GetVoiceH() returns the voice device handle associated with the
specified call control line device

4. Function Overview

75

Table 21. ISDN Interface Specific Functions

Function Description

gc_CallProgress() notifies the network that the connection request is
in progress.

gc_GetCallInfo() gets information for the call

gc_ReqANI() returns the caller’s identification, normally
included in the ISDN setup message and ANI-on-
Demand requests

gc_SetInfoElem() enables setting an additional information element
in the next outbound ISDN call

gc_SndMsg() sends non-call state-related ISDN message to
network over the D channel while a call exists

gc_StartTrace() start trace and place result in shared RAM

gc_StopTrace() stops the trace and closes the file

GlobalCall™ API Software Reference for UNIX and Windows NT

76

77

5. Data Structure Reference

The data structures used by selected GlobalCall functions are described in this
chapter. These structures are used to control the operation of functions and to
return information. The data structures defined include:

• GC_CALLACK_BLK

• GC_IE_BLK

• GC_MAKECALL_BLK

• METAEVENT

• GC_PARM

• GC_WAITCALL_BLK

The data structure definition is followed by a table providing a detailed
description of the fields in the data structure. These fields are listed in the
sequence in which they are defined in the data structure.

Refer to the appropriate GlobalCall Technology User’s Guide for additional
technology specific data structures.

5.1. GC_CALLACK_BLK

The GC_CALLACK_BLK structure contains information provided to the
gc_CallAck() function regarding the operation to be performed by this function.
When using the gc_CallAck() function in E-1 CAS environments, the dnis
service structure specifies the number of additional DDI digits to be acquired.
The structure is defined in the gclib.h header file and is also listed below.

typedef struct {
 unsigned long type; /* type of a structure inside following union */
 long rfu; /* will be used for common functionality */

 union {
 struct {
 int accept;
 } dnis;
 struct {
 int acceptance;

GlobalCall™ API Software Reference for UNIX and Windows NT

78

 LINEDEV linedev;
 } isdn;
 struct {
 long gc_private[4];
 } gc_private;
 } service; /* what kind of service is requested */
 /* related to type field */
} GC_CALLACK_BLK, *GC_CALLACK_BLK_PTR;

Table 22. GC_CALLACK_BLK Field Descriptions

Field Description

type type of structure inside following union; ‘type’
specifies the type of service requested by the
gc_CallAck() function. For example, to request the
retrieval of additional DNIS digits, set ‘type’ to
GCACK_SERVICE_DNIS.

rfu reserved for future use; must be set to 0.

service kind of service requested; related to type field

dnis structure containing the information needed for
collecting DDI digits

dnis.accept indicates type and number of digits to be requested.
Set to the number of DDI digits to be collected.
Refer to the appropriate GlobalCall Technology
User’s Guide for technology specific information.

isdn structure containing information for ISDN
procedures supported by this function. Refer to the
appropriate GlobalCall Technology User’s Guide
for more details.

5. Data Structure Reference

79

Field Description

isdn.acceptance indicates type of message to be sent to network.
Valid values are:

• CALL_PROCEEDING to send Proceeding
message

• CALL_SETUP_ACK to send Setup
Acknowledge

message

isdn.linedev the new GlobalCall line device to be used for the
call. If set to 0, the channel requested by the
network will be used.

gc_private[4] for internal use by GlobalCall

5.2. GC_IE_BLK

The GC_IE_BLK structure is used to send an Information Element (IE) block to
an ISDN interface using the gc_SetInfoElem() or gc_SndMsg() function. Refer
to the appropriate GlobalCall Technology User’s Guide for technology specific
information; e.g., for using the cclib field.

The structure is defined as follows:

typedef struct {
 GCLIB_IE_BLK *gclib;
 void *cclib;
} GC_IE_BLK, *GC_IE_BLKP;

Table 23. GC_IE_BLK Field Descriptions

Field Description

gclib pointer to IE information that is common across
GlobalCall technologies. Pointer must be set to
NULL in this release.

cclib pointer to IE information that is specific to the call

GlobalCall™ API Software Reference for UNIX and Windows NT

80

Field Description
control library (technology) being used; refer to the
appropriate GlobalCall Technology User’s Guide for
technology specific information.

5.3. GC_MAKECALL_BLK

The pointer to the GC_MAKECALL_BLK structure in the argument list for the
gc_MakeCall() function must be set to NULL to use the default value for the
call.

The GC_MAKECALL_BLK structure contains information used by the
gc_MakeCall() function when setting up a call. The structure is defined as
follows:

typedef struct {
 GCLIB_MAKECALL_BLK *gclib;
 void *cclib;
} GC_MAKECALL_BLK, *GC_MAKECALL_BLKP;

Table 24. GC_MAKECALL_BLK Field Descriptions

Field Description

gclib pointer to information used by the gc_MakeCall() function
that is common across technologies. Pointer must be set to
NULL in this release.

cclib pointer to information used by the gc_MakeCall() function
that is specific to the call control library (technology) being
used; refer to the appropriate GlobalCall Technology User’s
Guide for technology specific information.

5.4. METAEVENT

This structure contains the event descriptor for a metaevent and is defined as
follows:

5. Data Structure Reference

81

typedef struct {
 long magicno; /* for internal validity check */
 /* NOTE: Application calls gc_GetMetaEvent()
 * or gc_GetMetaEventEx() (Windows NT) to
 * fill in these fields */
 /* only valid if an event was returned */
 unsigned long flags; /* flags field */
 void *evtdatap; /* pointer to the event data block -
 sr_getevtdatap */
 /* will be f(event, cclib) */
 long evtlen; /* event length - UNIX or Windows NT sr_getevtlen */
 /* May change as libraries are added */
 long evtdev; /* event device - sr_getevtdev */
 long evttype; /* event type - sr_getevttype */
 LINEDEV linedev; /* line device */
 CRN crn; /* crn - if 0, no crn for this event */
 long rfu2; /* reserved for future use */
 void *usrattr; /* user attribute associated with linedev */
 int cclibid; /* ID of cclib of associated event */
 int rfu1; /* reserved for future use */
} METAEVENT, *METAEVENTP;

Table 25. METAEVENT Field Descriptions describes each element used in the
metaevent data structure and lists the function that the GlobalCall API used to
retrieve the information stored in the associated field. This data structure
eliminates the need for the application to issue the listed functions.

Table 25. METAEVENT Field Descriptions

Field Description Function Equivalent

magicno used for internal validity check None

flags flags field; GlobalCall flag is set
for all GlobalCall events.

None

evtdatap pointer to the event data block sr_getevtdatap()

evtlen event length sr_getevtlen()

evtdev event device sr_getevtdev()

evttype event type sr_getevttype()

linedev line device for GlobalCall events gc_GetLineDev()

crn call reference number for
GlobalCall events- if 0, no crn

gc_GetCRN()

GlobalCall™ API Software Reference for UNIX and Windows NT

82

Field Description Function Equivalent
for this event

rfu2 reserved for future use None

usrattr user assigned attribute
associated with the line device.

gc_GetUsrAttr()

cclibid identification of call control
library associated with the event:
n = cclib ID number
-1 = unknown

rfu1 reserved for future use

5.5. GC_PARM

The GC_PARM structure contains information about the call parameter(s) set by
the gc_SetParm() function or read by the gc_GetParm() function. The
information stored and retrieved is technology dependent; refer to the appropriate
GlobalCall Technology User’s Guide for technology specific information. The
structure is defined as follows:

typedef union {
 short shortvalue;
 long longvalue;
 int intvalue;
 char charvalue;
 char *paddress;
 void *pstruct;
} GC_PARM;

The field of the GC_PARM structure used varies in accordance with the
parameter used. The field used for each parameter is listed in Table 36.
Parameter Descriptions, gc_GetParm() and gc_SetParm().

5.6. GC_WAITCALL_BLK

The pointer to the GC_WAITCALL_BLK structure in the argument list for the
gc_WaitCall() function must be set to NULL in this release.

83

6. Function Reference

A detailed description of each GlobalCall function included in the gclib.h file,
presented in alphabetical order, is contained in this chapter. Unless otherwise
indicated, the functions described in this chapter are available for application
development in all supported technologies, see the Technology line in the function
header table for specific technology applicability. See Appendix C for a listing of
the gclib.h file.

6.1. Alphabetical List of Functions

The Dialogic GlobalCall library functions are listed alphabetically in the
following paragraphs. The format for each function description is:

Function header Lists the function name and briefly states the
purpose of the function.

Name: Defines the function name and function syntax
using standard C language syntax.

Inputs: Lists all input parameters using standard C
language syntax.

Returns: Lists all returns of the function.

Includes: Lists all include files required by the function.

Category: Lists the category classification of the function.

Mode: Asynchronous or synchronous

Technology: Lists the technologies supported by the function: a
filled box designates a supported technology. See
Release Notes for latest list of supported
technologies.

Description paragraph Provides a description of function operation,
including parameter descriptions.
A “Termination Event” paragraph describes the
event(s) returned to indicate function termination.

Cautions paragraph Provides warnings and reminders.

GlobalCall™ API Software Reference for UNIX and Windows NT

84

Example paragraph Provides C language coding example(s) showing
how the function can be used in application code.

Errors paragraph Lists specific error codes for each function.

See Also paragraph Provides a list of related functions.

6.2. Programming Conventions

The GlobalCall functions use the following format:

gc_function(reference, parameter1, parameter2, ..., parameterN, mode)

where:

gc_function: Function name.

reference: An input field that directs the function to a specific line device
or call when the reference is a CRN or a line device.

parameters: Input or output fields.

mode: Input field indicating how the function is executed. Set value
to:

• EV_ASYNC for asynchronous mode execution

• EV_SYNC for synchronous mode execution.

NOTE: In the C language coding example listed in the Example paragraph, the
example code uses the mnemonic GC_SUCCESS as the function return
value. GC_SUCCESS is defined in the gcerr.h header file to equate to 0.

optional response to an inbound call gc_AcceptCall()

85

Name: int gc_AcceptCall(crn, rings, mode)
Inputs: CRN crn • call reference number

int rings • number of rings before return
unsigned long mode • async or sync

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: optional feature
Mode: asynchronous or synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_AcceptCall() function is an optional response to an inbound call request
[GCEV_OFFERED event or termination of the gc_WaitCall() function] that
acknowledges that the call has been received but is not yet answered (e.g., the
phone is ringing). Normally, a gc_AcceptCall() function is not required in most
voice termination applications. This function may be used when the application
needs more time to process an inbound call request, such as in a drop/insert
application in which the outbound dialing process may be time consuming.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

crn: Call Reference Number

rings: specifies how long (the number of rings) the protocol handler
will wait before notifying the calling entity. (Maximum
supported number of rings is 14. Values greater than 14 will
be set to 14.) For protocols not using rings, the rings
parameter is ignored.

mode: set to EV_ASYNC for asynchronous execution or to
EV_SYNC for synchronous execution

gc_AcceptCall() optional response to an inbound call

86

Termination Event: In the asynchronous mode, GCEV_ACCEPT event sent to
application if successful; GCEV_TASKFAIL event if not successful.

A GCEV_DISCONNECTED event may be reported to the application as an
unsolicited event after a gc_AcceptCall() function is issued. When a
GCEV_DISCONNECTED event is received, issue gc_DropCall() and
gc_ReleaseCall() functions to change the call state to Null.

n Cautions

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has been done:
 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Wait for a call using gc_WaitCall()
 * 3. An event has arrived and has been converted to a metaevent
 * using gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT)
 * 4. The event is determined to be a GCEV_OFFERED event
 */
int accept_call(void)
{
 CRN crn; /* Call Reference Number */
 int gc_error; /* GlobalCall error code */
 int cclibid; /* Call Control Library ID */
 long cc_error; /* Call Control Library error code */
 char *msg; /* pointer to error message string */

 /*
 * Accept the incoming call.
 */
 crn = metaevent.crn;
 if (gc_AcceptCall(crn, 0, EV_ASYNC) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 metaevent.evtdev, gc_error, msg);
 return(gc_error);
 }

 /*
 * gc_AcceptCall() terminates with GCEV_ACCEPT event.

optional response to an inbound call gc_AcceptCall()

87

 * When GCEV_ACCEPT is received, the state changes to
 * Accepted and gc_AnswerCall() can be issued to complete
 * the connection.
 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure or if the GCEV_TASKFAIL event
is received, use gc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultMsg() function as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_WaitCall()
• gc_AnswerCall()

gc_AnswerCall() equivalent to conventional “set hook off” function

88

Name: int gc_AnswerCall(crn, rings, mode)
Inputs: CRN crn • call reference number

int rings • number of rings before return
unsigned long mode • async or sync

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category basic call control
Mode: asynchronous or synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_AnswerCall() function is equivalent to conventional “set hook off”
function in answering an inbound call and must be used to complete the call
establishment process. It can be used any time after a GCEV_OFFERED or
GCEV_ACCEPT event is received.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

crn: Call Reference Number

rings: specifies the number of rings the protocol handler waits
before notifying the calling entity. (Maximum supported
number of rings is 14. Values greater than 14 will be set to
14.) For protocols not using rings, the rings parameter is
ignored.

mode: Set to EV_ASYNC for asynchronous execution or to
EV_SYNC for synchronous execution

Termination Event: In the asynchronous mode, GCEV_ANSWERED event sent
to application if successful; GCEV_TASKFAIL event if not successful.

equivalent to conventional “set hook off” function gc_AnswerCall()

89

A GCEV_DISCONNECTED event may be an unsolicited event reported to the
application after gc_AnswerCall() function is issued.

n Cautions

The gc_AnswerCall() function can only be called after an inbound call is
detected. Otherwise it fails.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has been done:
 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Wait for a call using gc_WaitCall()
 * 3. An event has arrived and has been converted to a metaevent
 * using gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT)
 * 4. The event is determined to be a GCEV_OFFERED event
 */
int answer_call(void)
{

 CRN crn; /* call reference number */
 int gc_error; /* GlobalCall Error */
 int cclibid; /* CC Library ID */
 long cc_error; /* Call Control Library error code */
 char *msg; /* pointer to error message string */

 /*
 * Do the following:
 * 1. Get the CRN from the metaevent
 * 2. Proceed to answer the call as shown below
 */

 crn = metaevent.crn;
 /*
 * Answer the incoming call
 */

 if (gc_AnswerCall(crn, 0, EV_ASYNC) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 metaevent.evtdev, gc_error, msg);
 return(gc_error);
 }

 /*
 * gc_AnswerCall() terminates with GCEV_ANSWERED event

gc_AnswerCall() equivalent to conventional “set hook off” function

90

 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure or if the GCEV_TASKFAIL event
is received, use gc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultMsg() function as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See also

• gc_AcceptCall()
• gc_DropCall()
• gc_WaitCall()

attaches a voice resource gc_Attach()

91

Name: int gc_Attach(linedev, voiceh, mode)
Inputs: LINEDEV linedev • GlobalCall line device handle

int voiceh • voice device handle
unsigned long mode • sync

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: interface specific
Mode: synchronous

Technology: ❑ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_Attach() function attaches a voice resource to the specified line device.
By attaching the voice resource, an association is made between the line device
and the voice channel. The voice channel specified by the device handle, voiceh,
will be used to handle related GlobalCall functions requiring a voice resource for
that line device.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

voiceh: SRL device handle for a voice resource to be attached
to the line device. The voiceh parameter specifies the
voice resource that handles the protocol sections
requiring tones (e.g., DTMF dialing or compelled
signaling).

mode: Set to EV_SYNC for synchronous execution

Termination
Event:

None

gc_Attach() attaches a voice resource

92

n Cautions

The gc_Attach() function does not perform time slot routing functions. The
routing must be done during system configuration or performed by the application
using the voice and network routing functions. Alternatively, the gc_Open() or
gc_OpenEx() function may be used to open, attach and route both the voice and
the network resources.

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <gclib.h>
#include <gcerr.h>

int attach(void)
{
 LINEDEV ldev; /* GlobalCall line device handle */
 int voiceh; /* Voice channel number */
 int lineno, brds, tslots; /* Number of lines, boards and */
 /* time slots */
 int gc_error; /* GlobalCall Error */
 int cclibid; /* CC Library ID */
 long cc_error; /* Call Control Library error code */
 char *msg; /* pointer to error message string */

 /*
 * Open line device for 1st network time slot on dtiB1 using inbound
 * Brazilian R2 protocol [E-1 CAS].
 */

 if (gc_Open(&ldev, ":N_dtiB1T1:P_br_r2_i", 0) == GC_SUCCESS) {
 voiceh = dx_open("dxxxB1C1", NULL);
 if (voiceh != -1) {
 if (gc_Attach(ldev, voiceh, EV_SYNC) == GC_SUCCESS) {
 /*
 * Proceed to route the voice and network resources together,
 * and then generate or wait for a call on the line device, ’ldev’.
 */
 } else {
 /* process gc_Attach() error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);
 }
 } else {
 /* Process dx_open() error */
 }

attaches a voice resource gc_Attach()

93

 } else {
 /* process error from gc_Open() using gc_ErrorValue() */
 /* and gc_ResultMsg() */
 }
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_Close()
• gc_Detach()
• gc_GetNetworkH()
• gc_LoadDxParm()
• gc_Open() or gc_OpenEx()

gc_CallAck() provides information about the incoming call

94

Name: int gc_CallAck(crn, gc_callackp, mode)
Inputs: CRN crn • call reference number

GC_CALLACK_BLK
 *gc_callackp

• pointer to additional information
for processing call

unsigned long mode • async or sync
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
gcisdn.h (for applications that use ISDN symbols)

Category: optional feature
Mode: asynchronous or synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
❑ Analog

n Description

The gc_CallAck() function provides information about the incoming call to the
network or retrieves information from the network about the incoming call. This
function is used after receiving a GCEV_OFFERED event (or after the successful
completion of the gc_WaitCall() function) and before answering the call. Some
services offered by this function are available to all technologies, such as
retrieving additional DNIS digits.

When this function is used to request additional DDI digits, use the
gc_GetDNIS() function to retrieve the DDI digits.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

crn: Call Reference Number

gc_callackp: pointer to the GC_CALLACK_BLK structure where ‘type’
specifies the type of service requested by the gc_CallAck()
function. The GC_CALLACK_BLK data structure and the
value for each field are defined and described in Paragraph
5.1. GC_CALLACK_BLK.

mode: Set to EV_ASYNC for asynchronous execution or to

provides information about the incoming call gc_CallAck()

95

Parameter Description
EV_SYNC for synchronous execution.

When using ISDN protocols and the type field in the
GC_CALLACK_BLK data structure is set to
GCACK_SERVICE_ISDN, then this mode parameter must
be set to EV_SYNC.

For example, to use the gc_CallAck() function to collect 4 DDI digits, set:

• gc_callackp.type = GCACK_SERVICE_DNIS

• gc_callackp.service.dnis.accept = 4

Termination Event: In the asynchronous mode, GCEV_ACKCALL event sent
to application if successful; GCEV_TASKFAIL event if not successful.

Depending on the call control library used (e.g., ISDN), the gc_CallAck()
function may return either a GCEV_MOREDIGITS or a GCEV_ACKCALL
termination event when the type field in the GC_CALLACK_BLK data structure
is set to GCACK_SERVICE_DNIS.

GCEV_DISCONNECTED event may be an unsolicited event reported to the
application after gc_CallAck() function is issued.

n Cautions

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <memory.h>
#include <gclib.h>
#include <gcerr.h>
#include <gcisdn.h>

/*
 * Assume the following has been done:

gc_CallAck() provides information about the incoming call

96

 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Wait for a call using gc_WaitCall()
 * 3. An event has arrived and has been converted to a metaevent
 * using gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT)
 * 4. The event is determined to be a GCEV_OFFERED event
 *
 */
int call_ack(void)
{
 CRN crn; /* call reference number */
 GC_CALLACK_BLK callack; /* type & number of digits to collect */
 char dnis_buf[GC_ADDRSIZE]; /* Buffer for holding DNIS digits */
 int gc_error; /* GlobalCall error code */
 int cclibid; /* Call Control Library ID */
 long cc_error; /* Call Control Library error code */
 char *msg; /* pointer to error message string */

 /*
 * Do the following:
 * 1. Get called party number using gc_GetDNIS() and evaluate it.
 * 2. If three more digits are required by application to properly
 * process or route the call, request that they be sent.
 */

 memset(&callack, 0, sizeof(callack));

 /*
 * Fill in GC_CALLACK_BLK structure according to protocol
 * or technology used for application, and call gc_CallAck()
 */
 callack.type = GCACK_SERVICE_DNIS;
 callack.service.dnis.accept = GCDG_NDIGIT;
 if (gc_CallAck(crn, &callack, EV_ASYNC) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 metaevent.evtdev, gc_error, msg);
 return(gc_error);
 }

 /*
 * Now collect the remaining digits.
 */
 if (gc_GetDNIS(crn, dnis_buf) != GC_SUCCESS) {
 /* process error from gc_GetDNIS using gc_ErrorValue() and gc_ResultMsg */
 }

 /*
 * Application can answer, accept, or terminate the call at this
 * point, based on the DNIS information.
 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure or if the GCEV_TASKFAIL event
is received, use gc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultMsg() function as described in Section 3.11. Error Handling to

provides information about the incoming call gc_CallAck()

97

retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See also

• gc_AcceptCall()
• gc_AnswerCall()
• gc_GetDNIS()
• gc_WaitCall()

gc_CallProgress() connection request is in progress

98

Name: int gc_CallProgress(crn, indicator)
Inputs: CRN crn • call reference number

int indicator • progress indicator
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
gcisdn.h

Category: interface specific
Mode: synchronous

Technology: ■ ISDN PRI ❑ E-1 CAS ❑ T-1 robbed bit
❑ Analog

n Description

The gc_CallProgress() function notifies the network that the connection request
is in progress. The gc_CallProgress() function is an optional ISDN function that
is called after a GCEV_OFFERED event occurs (or after the successful
completion of the gc_WaitCall() function) and before a gc_AcceptCall()
function is called. Applications may use the gc_CallProgress() function and the
message on the D channel to indicate either that the downstream connection is not
an ISDN terminal or that inband information is available from the called party.

In the voice terminating mode, this function is not needed. It may be used in a
drop and insert configuration where inband Special Information Tone (SIT) or call
progress tone is sent in the network direction.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

crn: Call Reference Number

indicator: progress indicators listed in Table 26.

connection request is in progress gc_CallProgress()

99

Table 26. Call Progress Indicators

Code Description

CALL_NOT_END-TO-
END_ISDN

Call is not end-to-end ISDN. In drop and insert
configurations, the application may optionally
provide this information to the network.

IN_BAND_INFO In band information or appropriate pattern now
available. In drop and insert configurations, the
application may optionally notify the network that
in-band tones are available.

Termination Event: None.

n Cautions

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

/*
 * Assume the following has been done:
 * 1. device has been opened (e.g. :N_dtiB1T1:P_isdn,
 * :N_dtiB1T2:P_isdn, etc...)
 * 2. gc_WaitCall() has been issued to wait for a call.
 * 3. gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT) has been
 * called to convert the event into metaevent.
 * 4. a GCEV_OFFERED has been detected.
 */

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#include <gcisdn.h>

/*
 * the variable indicator can be assigned one of the two following
 * values CALL_NOT _END_TO_END_ISDN or IN_BAND_INFO.
 */

int call_progress(CRN crn, int indicator)
{
 LINEDEV ddd; /* Line device */

gc_CallProgress() connection request is in progress

100

 int gc_err; /* GlobalCall Error Code */
 int cclibid; /* Call Control library ID */
 long cclib_err; /* Call Control Error Code */
 char *msg; /* Error Message */

 if(gc_CRN2LineDev(crn, &ddd) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error: gc_CRN2LineDev ErrorValue: %d - %s\n",
 cclib_err, msg);
 return(cclib_err);
 }

 if(gc_CallProgress(crn, indicator) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ddd, cclib_err, msg);
 return(cclib_err);
 }

 return(0);
}

n Errors

If this function returns a <0 to indicate failure or if the GCEV_TASKFAIL event
is received, use gc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultMsg() function as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_DropCall()
• gc_WaitCall()

converts call control library ID to name gc_CCLibIDToName()

101

Name: int gc_CCLibIDToName(cclibid, lib_name)
Inputs: int cclibid • ID code of library

char **lib_name • pointer to location of library name
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: library information

Mode: synchronous
Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit

■ Analog

n Description

The gc_CCLibIDToName() function converts call control library ID to name of
call control library. The library name associated with the cclibid library
identification parameter is stored in a string designated by the lib_name
parameter.

Parameter Description

cclibid: identification number of call control library. If a library
name is not associated with this parameter, then NULL is
returned.

lib_name: name of the call control library associated with the cclibid
parameter.
Possible call control library names include ICAPI and ISDN.

Termination Event: None.

n Cautions

Do not overwrite the *lib_name pointer as it points to private internal GlobalCall
data space.

gc_CCLibIDToName() converts call control library ID to name

102

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

int cclibid_to_name(int cclibid, char **lib_name)
{
 int gc_error; /* GlobalCall error code */
 int sub_cclibid; /* Call Control Library ID */
 long cc_error; /* Call Control Library error code */
 char *msg; /* pointer to error message string */

 if (gc_CCLibIDToName(cclibid, lib_name) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &sub_cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error converting library id %d to library name\n", cclibid);
 printf ("Error = %s\n", msg);
 return(gc_error);
 }
 return(0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_CCLibNameToID()

converts call control library name to ID gc_CCLibNameToID()

103

Name: int gc_CCLibNameToID(lib_name, cclibidp)
Inputs: char *lib_name • name of library

int *cclibidp • pointer to location of library
identification code

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: library information
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_CCLibNameToID() function converts call control library name to ID
code. The library identification code associated with the call control library,
lib_name, is written into *cclibidp.

Parameter Description

lib_name: name of the call control library whose library ID is to be
retrieved. If a library identification code is not associated
with this parameter, then a value <0 is returned.
Possible library names include ICAPI and ISDN.

cclibidp: pointer to identification code of call control library.

Termination Event: None.

n Cautions

None

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>

gc_CCLibNameToID() converts call control library name to ID

104

#include <gclib.h>
#include <gcerr.h>

int cclibname_to_id(char *lib_name, int *cclibidp)
{
 int gc_error; /* GlobalCall error code */
 int cclibid; /* Call Control Library ID */
 long cc_error; /* Call Control Library error code */
 char *msg; /* pointer to error message string */

 if (gc_CCLibNameToID(lib_name, cclibidp) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error converting library name %d to library ID\n", cclibid);
 printf ("Error = %s\n", msg);
 return(gc_error);
 }
 return(0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_CCLibIDToName()

retrieves status of call control library gc_CCLibStatus()

105

Name: int gc_CCLibStatus(cclib_name, cclib_info)
Inputs: char *cclib_name • name of call control library

int *cclib_info • status of call control library
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: library information

Mode: synchronous
Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit

■ Analog

n Description

The gc_CCLibStatus() function retrieves status of call control library specified
by the cclib_name parameter. Status of a library can be available, configured,
failed or stub. This status information is stored in *cclib_info.

Parameter Description

cclib_name: name of the call control library; valid names include ICAPI
and ISDN. The string must be set to one of these names and
terminated by a NULL.

cclib_info: pointer to location of status information. The status
information is a bitmask with either an available, configured
or stub mask set (these masks are mutually exclusive) and/or
a failed mask:

• GC_CCLIB_AVL available library (started
successfully)

• GC_CCLIB_CONFIGURED configured library

• GC_CCLIB_FAILED library failed to start

• GC_CCLIB_STUB stub library (cannot be
started)

Termination Event: None.

gc_CCLibStatus() retrieves status of call control library

106

n Cautions

None

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

int print_cclib_status(char *lib_name)
{
 int lib_status; /* state of call control library */
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 if (gc_CCLibStatus(lib_name, &lib_status) == GC_SUCCESS) {
 printf("cclib %s status:\n", lib_name);
 printf(" configured: %s\n",
 (lib_status & GC_CCLIB_CONFIGURED) ? "yes" : "no");
 printf(" available: %s\n",
 (lib_status & GC_CCLIB_AVL) ? "yes" : "no");
 printf(" failed: %s\n",
 (lib_status & GC_CCLIB_FAILED) ? "yes" : "no");
 printf(" stub: %s\n",
 (lib_status & GC_CCLIB_STUB) ? "yes" : "no");
 } else {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error getting gc_CCLibStatus: ErrorValue: %d - %s\n",
 gc_error, msg);
 return(gc_error);
 }
 return(0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_CCLibStatusAll()
• gc_Start()

retrieves status of all call control libraries gc_CCLibStatusAll()

107

Name: int gc_CCLibStatusAll(cclib_status)
Inputs: GC_CCLIB_STATUS

 *cclib_status
• pointer to location of library

status information
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: library information

Mode: synchronous
Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit

■ Analog

n Description

The gc_CCLibStatusAll() function retrieves status of all call control libraries.
Information returned includes the number and names of the available, configured,
failed and stub call control libraries. The GlobalCall library is not a call control
library and is therefore not counted.

Parameter Description

cclib_status: pointer to the GC_CCLIB_STATUS structure, see below
for details. Possible library names include ICAPI and ISDN.

The GC_CCLIB_STATUS structure is defined as follows:

typedef struct {
 int num_avllibraries;
 int num_configuredlibraries;
 int num_failedlibraries;
 int num_stublibraries;
 char **avllibraries;
 char **configuredlibraries;
 char **failedlibraries;
 char **stublibraries;
} GC_CCLIB_STATUS, *GC_CCLIB_STATUSP;

Table 27. GC_CCLIB_STATUS Field Descriptions

Field Description

num_avllibraries returns the number of available call control libraries

gc_CCLibStatusAll() retrieves status of all call control libraries

108

Field Description

num_configuredlibraries returns the number of configured call control libraries

num_failedlibraries returns the number of failed (did not start) call control
libraries

num_stublibraries returns the number of stub libraries

avllibraries returns the name(s) of the available libraries in a
string terminated with a NULL; for example if both
the ICAPI and ISDN call control libraries are
available, then:

avllibraries[0] = “ICAPI”
avllibraries[1] = “ISDN”

configuredlibraries returns the name(s) of the configured libraries in a
string terminated with a NULL

failedlibraries returns the name(s) of the failed libraries in a string
terminated with a NULL

stublibraries returns the name(s) of the stub libraries in a string
terminated with a NULL

Termination Event: None.

n Cautions

If any of the num_* fields is 0, then the corresponding *libraries field is NULL;
e.g., if the num_avllibraries field is 0, then the avllibraries is NULL.

Do not overwrite the fields that are pointers to strings as these point to private
internal GlobalCall data space.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

retrieves status of all call control libraries gc_CCLibStatusAll()

109

int print_all_avl_libraries(void)
{
 int n;
 int ret; /* function return code */
 GC_CCLIB_STATUS cclib_status; /* cclib information */
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 if (gc_CCLibStatusAll(&cclib_status) == GC_SUCCESS) {
 for (n = 0; n < cclib_status.num_avllibraries; n++) {
 printf("Next available library is: %s\n",
 cclib_status.avllibraries[n]);
 }
 } else {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error getting gc_CCLibStatusAll: ErrorValue: %d - %s\n",
 gc_error, msg);
 return(gc_error);
 }
 return(0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_CCLibStatus()
• gc_Start()

gc_Close() closes a previously opened device

110

Name: int gc_Close(linedev)
Inputs: LINEDEV linedev • GlobalCall line device handle

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_Close() function closes a previously opened device. The application can
no longer access the device via the linedev parameter and inbound call
notification is disabled. Other devices will be unaffected.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device to close

Termination Event: None.

n Cautions

The gc_Close() function only affects the link between the calling process and the
device. Other processes and devices are unaffected.

If a voice resource is attached to the linedev device, the voice resource will be
closed by the GlobalCall API. To keep the voice resource open for other
operations, use the gc_Detach() function to detach the voice resource from the
GlobalCall device before issuing the gc_Close() function.

closes a previously opened device gc_Close()

111

The gc_Close() function should be issued while the line device is in the Null
state.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

#define MAXCHAN 30 /* max. number of channels in system */
/*
 * Data structure which stores all information for each line
 */
struct linebag {
 LINEDEV ldev; /* GlobalCall line device handle */
 CRN crn; /* GlobalCall API call handle */
 int state; /* state of first layer state machine */
} port[MAXCHAN+1];

struct linebag *pline; /* pointer to access line device */

int close_line_device(int port_num)
{
 LINEDEV ldev; /* GlobalCall line device handle
 int gc_error; /* GlobalCall error code */
 int cclibid; /* Call Control Library ID */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /* Find info for this time slot, specified by ’port_num’ */
 /* (Assumes port_num is valid) */
 pline = port + port_num;
 ldev = pline -> ldev;
 /*
 * close the line device to remove the channel from service
 */
 if (gc_Close(ldev) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error closing linedev 0x%lx, \"%s\"\n", ldev, msg);
 return(gc_error);
 }
 return(0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

gc_Close() closes a previously opened device

112

n See Also

• gc_Attach()
• gc_Detach()
• gc_Open() or gc_OpenEx()

matches a CRN to its line device ID gc_CRN2LineDev()

113

Name: int gc_CRN2LineDev (crn, linedevp)
Inputs: CRN crn • call reference number

LINEDEV *linedevp • pointer to a location to store
linedev

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_CRN2LineDev() function is a utility function that matches a CRN to its
line device ID. This function returns the line device identification associated with
the specified CRN.

Parameter Description

crn: Call Reference Number

linedevp: pointer to the location where the output LINEDEV
identification code will be stored. The line device is created
when the function gc_Open() or gc_OpenEx() is called.

Termination Event: None.

n Cautions

A CRN is valid only during the call until the gc_ReleaseCall() function has been
issued.

gc_CRN2LineDev() matches a CRN to its line device ID

114

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

int crn_to_linedev(CRN crn, LINEDEV *ldevp)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 if (gc_CRN2LineDev(crn, ldevp) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on converting CRN to linedev \"%s\"\n", msg);
 return(gc_error);
 }
 return(0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• None

logically detach a voice resource gc_Detach()

115

Name: int gc_Detach(linedev, voiceh, mode)
Inputs: LINEDEV linedev • GlobalCall line device handle

int voiceh • voice device handle
unsigned long mode • sync

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: interface specific
Mode: synchronous

Technology: ❑ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_Detach() function is used to logically detach a voice resource from the
line device. This breaks any association between the line device and the resource,
which would have been attached previously to the line device using the
gc_Attach() function.

When a gc_Close() function closes a line device, any attached voice resource is
closed automatically. To keep the voice device open, first, issue a gc_Detach()
function and then issue the gc_Close() function. This will disassociate the voice
device from the line device.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

voiceh: SRL device handle of the voice resource to be detached from
the call control line device

mode: set to EV_SYNC for synchronous execution

Termination Event: None.

gc_Detach() logically detach a voice resource

116

n Cautions

The gc_Detach() function does not perform any routing or unrouting function.
Routing must be performed using the voice and network routing functions.

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has been done:
 * 1. The line device (ldev) has been opened, specifying a
 * network time slot and a protocol. For example, ’devicename
 * could be ":N_dtiB1T1:P_br_r2_i:V_dxxxB1C1" [E-1 CAS]
 * 2. The voice and network resources have been routed together
 * 3. Voice resource is no longer needed for this line device
 */

/* detaches the ldev’s voice handle from ldev */
int detach(LINEDEV ldev)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */
 int voiceh; /* Voice handle attached to ldev */

 if (gc_GetVoiceH(ldev, &voiceh) == GC_SUCCESS) {
 if (gc_Detach(ldev, voiceh, EV_SYNC) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);
 }

 /*
 * Application should now unroute the voice and network resources from
 * each other (using functions like nr_scunroute() or sb_unroute() to
 * complete the disassociation of them from each other.
 */
 } else {
 /* Process gc_GetVoiceH() error */
 }
 return (0);
}

logically detach a voice resource gc_Detach()

117

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_Attach()
• gc_Close()
• gc_Open() or gc_OpenEx()

gc_DropCall() disconnects a call

118

Name: int gc_DropCall(crn, cause, mode)

Inputs: CRN crn • call reference number
int cause • reason to drop call
unsigned long mode • async or sync

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: basic call control
Mode: asynchronous or synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_DropCall() function disconnects a call specified by the CRN and
enables inbound calls to be detected internally to GlobalCall on the line device.
The application will not be notified of the call until after the gc_ReleaseCall()
function is issued .

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

crn: Call Reference Number

cause: indicates reason for disconnecting or rejecting a call. See
Table 28 for a list of possible causes and refer to the
appropriate GlobalCall Technology User’s Guide for valid
and/or additional causes for your specific technology.

mode: set to EV_ASYNC for asynchronous execution or to
EV_SYNC for synchronous execution

disconnects a call gc_DropCall()

119

Table 28. gc_DropCall() Causes

Cause
‡ Description

GC_CALL_REJECTED Call was rejected

GC_CHANNEL_UNACCEPTABLE Channel is not acceptable

GC_DEST_OUT_OF_ORDER Destination is out of order

GC_NETWORK_CONGESTION Call dropped due to traffic volume on
network

GC_NORMAL_CLEARING Call dropped under normal conditions

GC_REQ_CHANNEL_NOT_AVAIL Requested channel is not available

GC_SEND_SIT Special Information Tone

GC_UNASSIGNED_NUMBER Requested number is unknown

GC_USER_BUSY End user is busy

‡
Refer to the appropriate GlobalCall Technology User’s Guide for valid and/or

additional causes for your specific technology.

Termination Event: In the asynchronous mode, GCEV_DROPCALL event is
sent to the application; otherwise, a GCEV_TASKFAIL event is sent.

A GCEV_DISCONNECTED event may be reported to the application as an
unsolicited event after the gc_DropCall() function issues.

n Cautions

The gc_DropCall() function does not release a CRN. Therefore, the
gc_ReleaseCall() function must always be used after a gc_DropCall() function.
Failure to do so will cause a blocking condition and may cause memory problems
due to memory being allocated and not being released.

Before issuing a gc_DropCall() function, you must first terminate any voice
related function currently in progress. For example, if a play or a record is in

gc_DropCall() disconnects a call

120

progress, then before you can drop the call, issue a stop channel function on that
voice channel and then call the gc_DropCall() function to drop the call.

From the Accepted state, not all E-1 CAS protocols support a forced release of the
line; that is, issuing a gc_DropCall() function after a gc_AcceptCall() function.
If a forced release is attempted, the function will fail and an error is returned. To
recover, the application should issue a gc_AnswerCall() function followed by
gc_DropCall() and gc_ReleaseCall() functions. See the GlobalCall Country
Dependent Parameters (CDP) Reference for protocol specific limitations.
However, anytime a GCEV_DISCONNECTED event is received in the Accepted
state, the gc_DropCall() function can be issued.

Different technologies and protocols support some or all of the cause values
defined above; refer to the appropriate GlobalCall Technology User’s Guide for
valid causes for your specific technology.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has been done:
 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Wait for a call using gc_WaitCall()
 * 3. The application has chosen to terminate the call
 * OR
 * the unsolicited event GCEV_DISCONNECTED has arrived
 * Note: A call may be dropped from any state other than IDLE or NULL
 */
int drop_call(CRN crn)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 if (gc_DropCall(crn, GC_NORMAL_CLEARING, EV_ASYNC) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 metaevent.evtdev, gc_error, msg);
 return(gc_error);
 }
 /*
 * gc_DropCall() is terminated by the GCEV_DROPCALL event.
 * Application must then release the call using gc_ReleaseCall().
 */
 return (0);
}

disconnects a call gc_DropCall()

121

n Errors

If this function returns a <0 to indicate failure or if the GCEV_TASKFAIL event
is received, use gc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultMsg() function as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_MakeCall()
• gc_ReleaseCall()
• gc_WaitCall()

gc_ErrorValue() gets an error value/failure reason code

122

Name: int gc_ErrorValue(gc_errorp, cclibidp, cclib_errorp)
Inputs: int *gc_errorp • location to store GlobalCall error

int *cclibidp • location to store call control library
ID

long *cclib_errorp • location to store call control library
error description

Returns: 0 if error value successfully retrieved
<0 if fails to retrieve error value

Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_ErrorValue() function gets an error value/failure reason code associated
with the last GlobalCall function call. To retrieve an error, this function must be
called immediately after a GlobalCall function failed. This function returns the
GlobalCall error code, *gc_errorp, as well as the lower level error code
associated directly with the call control library, *cclib_errorp. The GlobalCall
error code is a generic error that has a consistent meaning across all call control
libraries.

A call control library error may be more specific to the supported technology.
These error values provide optimal debugging and troubleshooting for the
application developer. For example, a time-out error may occur for multiple
reasons when establishing a call. The specific reasons may vary for different
network interfaces (ISDN time-out errors differ from those in an R2 MFC
protocol). Each of these call control library time-out errors are mapped to
EGC_TIMEOUT. However, the specific time-out error detected by the call
control library will be available through cclib_errorp.

Parameter Description

gc_errorp: pointer to the location where the GlobalCall error code will
be stored

cclibidp: pointer to the location to store the identification number of

gets an error value/failure reason code gc_ErrorValue()

123

Parameter Description
the call control library where the error occurred

cclib_errorp: pointer to the location to store the call control library error
description that is uniquely associated to its own library

Termination Event: None.

n Cautions

To aid in debugging, both the gc_errorp and the cclib_errorp values should be
retrieved.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

void print_error_values(void)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */
 char *lib_name; /* library name for cclibid */

 /* This could be called when any function fails;
 * to print the error values */

 if (gc_ErrorValue(&gc_error, &cclibid, &cc_error) == GC_SUCCESS) {
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf("GlobalCall error 0x%lx - %s\n", gc_error, msg);
 gc_ResultMsg(cclibid, cc_error, &msg);
 gc_CCLibIDToName(cclibid, &lib_name);
 printf("% library had error 0x%lx - %s\n", lib_name, cc_error, msg);
 } else {
 printf("Could not get error value\n");
 }
}

n Errors

If this function returns a <0 to indicate failure, then at least one of its input
parameters is NULL.

gc_ErrorValue() gets an error value/failure reason code

124

n See Also

• gc_ResultMsg()

returns ANI information gc_GetANI()

125

Name: int gc_GetANI(crn, ani_buf)
Inputs: CRN crn • call reference number

char *ani_buf • buffer for storing ANI digits
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: optional feature

Mode: synchronous
Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit

■ Analog

n Description

The gc_GetANI() function returns ANI information received during call
establishment/setup. If the ANI information is not available, an error will be sent
and the gc_GetANI() function fails.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

crn: Call Reference Number

ani_buf: address of the buffer where ANI is to be loaded. The returned
digits will be terminated with ‘\0’.

Termination Event: None.

n Cautions

The ani_buf buffer MUST BE large enough to store the largest expected ANI
string length (including the zero terminator), which is defined by
GC_ADDRSIZE.

gc_GetANI() returns ANI information

126

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has been done:
 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Wait for a call using gc_WaitCall()
 * 3. An event has arrived and has been converted to a metaevent
 * using gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT)
 * 4. The event is determined to be a GCEV_OFFERED event
 */
int get_ani(void)
{
 CRN crn; /* call reference number */
 char ani_buf[GC_ADDRSIZE]; /* Buffer for ANI digits */
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /*
 * Get the calling party number
 */
 crn = metaevent.crn;
 if (gc_GetANI(crn, ani_buf) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 metaevent.evtdev, gc_error, msg);
 return(gc_error);
 }
 /* Application can answer, accept, or terminate the call at this
 * point, based on the ANI information. */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

returns ANI information gc_GetANI()

127

n See Also

• gc_ReqANI()
• gc_WaitCall()

gc_GetBilling() gets the charge information

128

Name: int gc_GetBilling(crn, billing_buf)
Inputs: CRN crn • call reference number

char *billing_buf • buffer for billing information
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: optional feature

Mode: synchronous
Technology: ■ ISDN PRI ❑ E-1 CAS ❑ T-1 robbed bit

❑ Analog

n Description

The gc_GetBilling() function gets the charge information associated with the
specified call. The charge information is in ASCII string format. The information
is retrieved from the GlobalCall software.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

crn: Call Reference Number

billing_buf: address of the buffer where the requested information is
stored. Refer to the appropriate GlobalCall Technology
User’s Guide for the format and usage of this field.

Termination Event: None.

n Cautions

Ensure that the billing_buf buffer is large enough to store the greatest expected
amount of billing information, which is defined by GC_BILLSIZE.

gets the charge information gc_GetBilling()

129

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

/*
 * Assume the following has been done:
 * 1. device was opened (e.g. :N_dtiB1T1:P_isdn, :N_dtiB1T2:P_isdn, etc...)
 * 2. gc_WaitCall() has been issued to wait for a call.
 * 3. gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT) has been
 * called to convert the event into metaevent.
 * 4. a GCEV_OFFERED has been detected.
 * 5. a call has been connected.
 * 6. the call has been disconnected after conversation.
 */

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#include <gcisdn.h>

/* This is only available for AT&T 4ESS switch. */

int get_billing_info(CRN crn, char *billing_buffer)
{
 LINEDEV ddd; /* Line device */
 int gc_err; /* GlobalCall Error Code */
 int cclibid; /* Call Control library ID */
 long cclib_err; /* Call Control Error Code */
 char *msg; /* Error Message */

 if(gc_CRN2LineDev(crn, &ddd) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error: gc_CRN2LineDev ErrorValue: %d - %s\n",
 cclib_err, msg);
 return(cclib_err);
 }

 if(gc_GetBilling(crn, billing_buffer) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ddd, gc_err, msg);
 return(cclib_err);
 }

 return(0);
}

gc_GetBilling() gets the charge information

130

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• None

gets information for the call gc_GetCallInfo()

131

Name: int gc_GetCallInfo(crn, info_id, valuep)
Inputs: CRN crn • call reference number

int info_id • call info ID
char *valuep • pointer to info buffer

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h
gcisdn.h (for applications that use ISDN symbols)

Category: interface specific
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ❑ T-1 robbed bit
■ Analog

n Description

The gc_GetCallInfo() function gets information for the call. You can use this
function at any time. The application can retrieve only one type of information at
a time.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

crn: Call Reference Number

info_id: identifies parameter requested, see Table 29 for definitions

valuep: buffer address where the requested information is stored

gc_GetCallInfo() gets information for the call

132

Table 29. GetCallInfo() info_id Parameter ID Definitions

info_id Parameter Definition Technology *valuepForma
t

CALLED_SUBS Called party
subaddress

ISDN string

CALLNAME Calling party’s name Analog string

CALLTIME Time and date call
was made

Analog string

CATEGORY_DIGIT Category digit E-1
CAS

character

CONNECT_TYPE Defines the type of
connection returned
by call progress
analysis

Analog character

U_IES Unformatted user-
to-user Information
Elements

ISDN string

UUI User-to-User
Information

ISDN string

Termination Event: None.

n Cautions

• An incoming Information Element (IE) is not accepted until the existing IE is
read by the application. A GCEV_NOUSRINFOBUF event is sent to the
application.

• Multiple IEs in the same message: Only happens to Network Specific
Facility IE. When it happens, the library stores all IEs. If the combination of
IEs is longer than the storage capacity, the Library discards the overflow IEs
and issues a GCEV_NOFACILITYBUF event to the application.

gets information for the call gc_GetCallInfo()

133

• Ensure that the application verifies that the buffer pointed to by the valuep
parameter is large enough to hold the information requested by the info_id
parameter.

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

/*
 * Assume the following has been done:
 * 1. device has been opened (e.g. :N_dtiB1T1:P_isdn,
 * :N_dtiB1T2:P_isdn, etc...)
 * 2. gc_WaitCall() has been issued to wait for a call.
 * 3. gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT) has been
 * called to convert the event into metaevent.
 * 4. a GCEV_OFFERED has been detected.
 */

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#include <gcisdn.h>

/*
 * the variable info_id parameter(s) defines the information
 * requested from the network.
 * The variable valuep stores the returned information.
 */

int get_call_info(CRN crn, int info_id, char *valuep)
{
 LINEDEV ddd; /* Line device */
 int gc_err; /* GlobalCall Error Value */
 int cclibid; /* Call Control library ID */
 long cclib_err; /* Call Control Error Value */
 char *msg; /* Error Message */

 if(gc_CRN2LineDev(crn, &ddd) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error: gc_CRN2LineDev ErrorValue: %d - %s\n",
 cclib_err, msg);
 return(cclib_err);
 }

 if(gc_GetCallInfo(crn, info_id, valuep) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ddd, gc_err, msg);
 return(cclib_err);
 }

gc_GetCallInfo() gets information for the call

134

 return(0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• None

acquires the state of the call gc_GetCallState()

135

Name: int gc_GetCallState(crn, state_buf)
Inputs: CRN crn • call reference number

int *state_buf • pointer to variable for returning call
state

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_GetCallState() function acquires the state of the call associated with the
CRN. The acquired state will be associated with the last message received by the
application. This function is especially useful when an error occurs and the
application requires an update as to whether the call state has changed.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

gc_GetCallState() acquires the state of the call

136

Parameter Description

crn: Call Reference Number

state_buf: pointer to the location where the call state value will be returned.
Possible state values are:

GCST_NULL call released
GCST_OFFERED inbound call received
GCST_ACCEPTED call accepted
GCST_CONNECTED call connected
GCST_DIALING outbound call request
GCST_ALERTING call alerted sent or received
GCST_DISCONNECTED call disconnected from

network
GCST_IDLE call is not active

State transition diagrams and call state definitions are presented in
paragraph 3.3. GlobalCall Call States.

Termination Event: None.

n Cautions

Due to the process latency time, the state value acquired through the
gc_GetCallState() function may lag behind the current call state in the protocol
state machine. If the two state values differ, the acquired state value is always
behind the actual state. This is especially evident in the process of establishing an
outbound call. The state acquired by the application will be associated with the
latest event received by the application.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

#define MAXCHAN 30 /* max. number of channels in system */
/*
 * Data structure which stores all information for each line
 */
struct linebag {
 LINEDEV ldev; /* GlobalCall line device handle */
 CRN crn; /* GlobalCall API call handle */
 int state; /* state of first layer state machine */
} port[MAXCHAN+1];

acquires the state of the call gc_GetCallState()

137

struct linebag *pline; /* pointer to access line device */

int get_call_state(int port_num)
{
 LINEDEV ldev; /* line device ID */
 CRN crn; /* call reference number */
 int call_state; /* current state of call */
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /* Find info for this time slot, specified by ’port_num’ */
 /* (Assumes port_num is valid) */
 pline = port + port_num;
 crn = pline -> crn;
 /*
 * Retrieve the call state and save it.
 */
 if (crn) {
 if (gc_GetCallState(crn, &call_state) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 if (gc_CRN2LineDev(crn, &ldev) != GC_SUCCESS) {
 /* get and process error */
 }
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);
 }
 }

 pline->state = call_state;
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• None

gc_GetCRN() gets the CRN

138

Name: int gc_GetCRN(crnp, metaeventp)
Inputs: CRN *crnp • pointer to returned CRN

METAEVENT
 *metaeventp

• pointer to a metaevent block

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_GetCRN() function gets the CRN for the event to which the pointer
metaeventp is pointing. This metaeventp pointer is filled in by the
gc_GetMetaEvent() function or the gc_GetMetaEventEx() function (Windows
NT extended asynchronous mode only).

The application can access the CRN directly from the metaevent using the crn
field of metaeventp rather than using this gc_GetCRN() function. The
gc_GetCRN() function is supported for backward compatibility but is not
otherwise needed since the CRN is available when the metaevent is returned from
the gc_GetMetaEvent() function or the gc_GetMetaEventEx() function
(Windows NT extended asynchronous mode only).

If the event is call related, the metaeventp crn field contains the CRN. After a
call to the gc_GetCRN() function, the *crnp also contains the CRN. If the
event is not call related but rather associated with the line device, the metaeventp
crn field is set to 0. In this case, after a call to the gc_GetCRN() function, the
*crnp is also 0. The line device may also be obtained directly from the
metaevent via the metaeventp linedev field.

Parameter Description

crnp: pointer to the memory address where the call reference
number is stored.

metaeventp: pointer to the METAEVENT structure filled in by

gets the CRN gc_GetCRN()

139

Parameter Description
gc_GetMetaEvent() or the gc_GetMetaEventEx()
function (Windows NT extended asynchronous mode only).

Termination Event: None.

n Cautions

None

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has already been done:
 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Wait for a call using gc_WaitCall()
 * 3. An event has arrived and has been converted to a metaevent
 * using gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT)
 */
CRN get_crn(METAEVENT *metaeventp)
{
 CRN crn; /* call reference number */
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 if (gc_GetCRN(&crn, metaeventp) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 metaevent.evtdev, gc_error, msg);
 return(0);
 }
 else {
 /*
 * Else return the CRN and next issue the GlobalCall function call
 * using the CRN.
 */
 return(crn);
 }
}

gc_GetCRN() gets the CRN

140

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_GetLineDev()
• gc_GetMetaEvent()
• gc_GetMetaEventEx() (Windows NT extended asynchronous mode only)
• gc_MakeCall()
• gc_WaitCall()

gets the DNIS information gc_GetDNIS()

141

Name: int gc_GetDNIS(crn, dnis_buf)
Inputs: CRN crn • call reference number

char *dnis_buf • buffer to store DNIS info
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: optional feature

Mode: synchronous
Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit

❑ Analog

n Description

The gc_GetDNIS() function gets the DNIS information (DDI digits) associated
with a specific CRN. The DDI digits are in ASCII string format and ends with ’\0’.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

crn: Call Reference Number

dnis_buf: address of the buffer where the DNIS is stored.

Termination Event: None.

n Cautions

The dnis_buf buffer MUST BE large enough to store the largest expected DNIS
string length, which is defined by GC_ADDRSIZE.

If the application needs more DDI digits, the application can use the
gc_CallAck() function to request more digits, if the protocol supports this
feature. The gc_GetDNIS() function may be called again to retrieve these digits.

gc_GetDNIS() gets the DNIS information

142

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <string.h>
#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has been done:
 * 1. ’maxddi’ has been setup depending on needs
 * of application/protocol.
 * 2. Line devices have been opened for each time slot on dtiB1.
 * 3. Wait for a call using gc_WaitCall()
 * 4. An event has arrived and has been converted to a metaevent
 * using gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT)
 * 5. The event is determined to be a GCEV_OFFERED event
 */
int get_dnis(void)
{
 CRN crn; /* call reference number */
 int maxddi = 10; /* maximum allowable DDI digits */
 char dnis_buf[GC_ADDRSIZE]; /* DNIS digit Buffer */
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /* 1st get the crn */
 if (gc_GetCRN(&crn, &metaevent) != GC_SUCCESS) {
 /* handle the gc_GetCRN error */
 }

 /*
 * Get called party number and check that there were not too
 * many digits collected.
 */
 if (gc_GetDNIS(crn, dnis_buf) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 metaevent.evtdev, gc_error, msg);
 return(gc_error);
 }

 if (strlen(dnis_buf) <= maxddi) {
 /*
 * Process called party number as needed by the application.
 */
 } else {
 /*
 * Drop the call if number of DDI digits exceeds maximum limit
 */
 if (gc_DropCall(crn, GC_NORMAL_CLEARING, EV_ASYNC) != GC_SUCCESS) {
 /* process error return from gc_DropCall() */

gets the DNIS information gc_GetDNIS()

143

 }
 }
 /*
 * Application can answer, accept, or terminate the call at this
 * point, based on the DNIS information.
 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_CallAck()
• gc_GetANI()
• gc_WaitCall()

gc_GetLineDev() gets a line device

144

Name: int gc_GetLineDev(linedevp, metaeventp)
Inputs: LINEDEV *linedevp • pointer to returned line device

METAEVENT
 *metaeventp

• pointer to metaevent block

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_GetLineDev() function gets a line device associated with the event
received from the event queue. If this function is called for an event that is not a
GlobalCall event, then the *linedevp parameter is set to 0. The line device may
also be retrieved using the linedev field in the METAEVENT structure instead of
using this function.

The gc_GetLineDev() function is supported for backward compatibility but is
not otherwise needed since the line device ID is available when the metaevent is
returned from the gc_GetMetaEvent() function or the gc_GetMetaEventEx()
function (Windows NT extended asynchronous mode only).

Parameter Description

linedevp: pointer to the location where the output LINEDEV is stored

metaeventp: pointer to the METAEVENT structure filled in by
gc_GetMetaEvent() or the gc_GetMetaEventEx()
function (Windows NT extended asynchronous mode only)

Termination Event: None.

gets a line device gc_GetLineDev()

145

n Cautions

None

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has been done:
 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Wait for a call using gc_WaitCall()
 * 3. An event has arrived and has been converted to a metaevent
 * using gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT)
 * 4. The event is determined to be a GCEV_OFFERED event
 */
int get_linedev(LINEDEV *ldevp)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /*
 * Get Line Device corresponding to this event
 */
 if (gc_GetLineDev(ldevp, &metaevent) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 metaevent.evtdev, gc_error, msg);
 return(gc_error);
 }

 /*
 * The line device ID may then be used for functions like
 * gc_SetParm(), gc_SetUsrAttr(), and gc_GetVoiceH().
 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

gc_GetLineDev() gets a line device

146

n See Also

• gc_GetCRN()
• gc_GetMetaEvent()
• gc_GetMetaEventEx() (Windows NT extended asynchronous mode only)

retrieves status of the line device gc_GetLinedevState()

147

Name: int gc_GetLinedevState(linedev, type, statebuf)
Inputs: LINEDEV linedev • line device

int type • specifies type of line device
int *statebuf • pointer to location of line device

state status
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
gcisdn.h

Category: optional feature
Mode: synchronous

Technology: ■ ISDN PRI ❑ E-1 CAS ❑ T-1 robbed bit
❑ Analog

n Description

The gc_GetLinedevState() function retrieves status of the line device specified
by the linedev parameter.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device

type: specifies B channel or D channel device type associated with
linedev, valid values are:

• GCGLS_BCHANNEL get state of B channel

• GCGLS_DCHANNEL get state of D channel

gc_GetLinedevState() retrieves status of the line device

148

Parameter Description

statebuf: location to which state information is written, valid state
values are:

• for B channel:
• GCLS_INSERVICE B channel is

in service
• GCLS_MAINTENANCE B channel is

in maintenance
• GCLS_OUT_OF_SERVICE B channel is

out of service

• for D channel:
• DATA_LINK_UP layer 2 operable
• DATA_LINK_DOWN layer 2 inoperable

Termination Event: None.

n Cautions

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#include <gcisdn.h>

int get_line_dev_state(void)
{
 LINEDEV bdd; /* Board level device */
 LINEDEV ddd; /* Line device */
 char bdevname[40]; /* Board device name */
 char ldevname[40]; /* Line device name */
 int type; /* Type of line device */
 int statebuf; /* Buffer to store line device state */
 int gc_err; /* GlobalCall Error Code */

retrieves status of the line device gc_GetLinedevState()

149

 int cclibid; /* Call Control library ID */
 long cclib_err; /* Call Control Error Code */
 char *msg; /* Error Message */

 sprintf(bdevname, "dtiB1");
 sprintf(ldevname, "dtiB1T1");

 /*
 * Open two devices, dtiB1 and dtiB1T1.
 */
 if(gc_Open(&bdd, bdevname, 0) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error:gc_Open, ErrorValue: %d - %s\n", gc_err, msg);
 return(cclib_err);
 }

 if(gc_Open(&ddd, ldevname, 0) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error:gc_Open, ErrorValue: %d - %s\n", gc_err, msg);
 return(cclib_err);
 }

 /*
 * Find the status of the board.
 * the D Channel can be in one of two states DATA_LINK_UP or
 * DATA_LINK_DOWN.
 */
 type = GCGLS_DCHANNEL;

 if(gc_GetLinedevState(bdd, type, &statebuf) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 bdd, gc_err, msg);
 return(cclib_err);
 }
 else {
 printf("D Channel Status: %s\n", statebuf);
 }

 /*
 * Find the status of the line.
 * the B Channel can be in one of three states GCLS_INSERVICE,
 * GCLS_MAINTENANCE, or GCLS_OUT_OF_SERVICE.
 */
 type = GCGLS_BCHANNEL;

 if(gc_GetLinedevState(ddd, type, &statebuf) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ddd, gc_err, msg);
 return(cclib_err);
 }
 else {
 printf("B Channel Status: %s\n", statebuf);
 }

 gc_Close(bdd);
 gc_Close(ddd);

 return (0);
}

gc_GetLinedevState() retrieves status of the line device

150

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_SetChanState()

maps the current SRL event into a metaevent gc_GetMetaEvent()

151

Name: int gc_GetMetaEvent(metaeventp)
Inputs: METAEVENT

 *metaeventp
• pointer to METAEVENT block

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_GetMetaEvent() function maps the current SRL event into a metaevent
that stores the GlobalCall and non-GlobalCall event information. This function
returns an event to the UNIX or Windows NT application in the form of a
metaevent. This metaevent is a data structure that explicitly contains the
information describing the event. This data structure provides uniform
information retrieval among call control libraries and across operating systems;
see paragraph 5.4. METAEVENT for data structure details.

The current SRL event information is not changed or altered by calling the
gc_GetMetaEvent() function to retrieve event information. This function may
be used as a convenience function to retrieve the event information for all SRL
events. Whether the event is a GlobalCall event or any other SRL event, the SRL
event information (e.g., evtdatap, evttype, etc.) may be retrieved from the
METAEVENT data structure instead of using SRL functions to retrieve this
information, see paragraph 5.4. METAEVENT for data structure details. If the
metaevent is a GlobalCall event, the GCME_GC_EVENT bit in the metaevent
flag field will be set. When this bit is set, the GlobalCall related fields in the
METAEVENT data structure will be filled with GlobalCall event information.

Parameter Description

metaeventp: pointer to the structure of metaevent data filled in by this
function; see paragraph 5.4. METAEVENT for data structure
details.

gc_GetMetaEvent() maps the current SRL event into a metaevent

152

Termination Event: None.

n Cautions

The gc_GetMetaEvent() [or gc_GetMetaEventEx() (Windows NT only)]
function MUST BE the first function called before processing any GlobalCall
event.

For Windows NT applications, when using the extended asynchronous mode, the
gc_GetMetaEventEx() function must be the first function called before
processing any GlobalCall event. For all other Windows NT modes, use the
gc_GetMetaEvent() function.

The gc_GetMetaEvent() and gc_GetMetaEventEx() functions should not be
used in the same application.

n Example

The following code illustrates calling the gc_GetMetaEvent() function in
response to receiving an event via the SRL.

 if(sr_waitevt(timeout) != -1) { /* i.e. an event occurred */
 retcode = gc_GetMetaEvent(&metaevent);
 if (retcode <0) {
 /* get and process the error */
 } else {
 /* Continue with normal processing */
 }
 }

OR

 handler(...)
 {
 retcode = gc_GetMetaEvent(&metaevent);
 if (retcode <0) {
 /* get and process the error */
 } else {
 /* Continue with normal processing */
 }
 }

To retrieve and process information associated with an event, the following
example code can be used. This code returns the event type, event data pointer,
event length and event device associated with the event from either the handler or
after a sr_waitevt() function call.

maps the current SRL event into a metaevent gc_GetMetaEvent()

153

 retcode = gc_GetMetaEvent(&metaevent);
 if (retcode <0) {
 /* get and process error */
 } else {
 /* Can now access SRL information for any GlobalCall or
 non-GlobalCall event using: */
 /* metaevent.evtdatap */
 /* metaevent.evtlen */
 /* metaevent.evtdev */
 /* metaevent.evttype */
 if (metaevent.flags & GCME_GC_EVENT) {
 /* process GlobalCall event here */
 } else {
 /* process non-GlobalCall event here */
 }
 }

An alternative for determining whether an event is a GlobalCall API event or a
non-GlobalCall event is as follows:

 evttype = sr_getevttype();
 if ((evttype & DT_GC) == DT_GC) {
 /* process GlobalCall event */
 } else {
 /* process non-GlobalCall event */
 }

The following code illustrates retrieving event information from the
METAEVENT structure while making a call:

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#define MAXCHAN 30 /* max. number of channels in system */
#define NULL_STATE 0
#define DIALING_STATE 1
#define ALERTING_STATE 2
#define CONNECTED_STATE 3
/*
 * Data structure which stores all information for each line
 */
struct linebag {
 LINEDEV ldev; /* network line device handle */
 CRN crn; /* GlobalCall API call handle */
 int state; /* state of first layer state machine */
} port[MAXCHAN+1];

struct linebag *pline; /* pointer to access line device */

/*
 * Assume the following has been done:
 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Application is in the NULL state
 * Examples are given in ASYNC mode
 * Error handling is not shown
 */
int makecall(int port_num, char *numberstr)
{

gc_GetMetaEvent() maps the current SRL event into a metaevent

154

 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */
 long evttype; /* type of event */

 /* Find info for this time slot, specified by ’port_num’ */
 /* (Assumes port_num is valid) */
 pline = port + port_num;

 if (gc_MakeCall(pline -> ldev, &pline -> crn, numberstr, NULL, 0, EV_ASYNC) !=
 GC_SUCCESS) {
 /* process error and return */
 }

 pline -> state = DIALING_STATE;

 for (;;) {
 sr_waitevt(-1L); /* wait forever */

 /* Get the next event */
 if (gc_GetMetaEvent(&metaevent) != GC_SUCCESS) {
 /* process error */
 }

 evttype = metaevent.evttype;
 if (metaevent.flags & GCME_GC_EVENT) {
 /* process GlobalCall event */
 switch (pline -> state) {
 case DIALING_STATE:
 switch (evttype) {
 case GCEV_ALERTING:
 pline -> state = ALERTING_STATE;
 break;
 case GCEV_CONNECTED:
 pline -> state = CONNECTED_STATE;
 /*
 * Can now do voice functions, etc.
 */
 return(0); /* SUCCESS RETURN POINT */
 default:
 /* handle other events here */
 break;
 }
 break;

 case ALERTING_STATE:
 switch (evttype) {
 case GCEV_CONNECTED:
 pline -> state = CONNECTED_STATE;
 /*
 * Can now do voice functions, etc.
 */
 return(0); /* SUCCESS RETURN POINT */
 default:
 /* handle other events here */
 break;
 }
 break;
 }
 } else {
 /* Process non-GlobalCall event */
 }
 }
}

maps the current SRL event into a metaevent gc_GetMetaEvent()

155

The following code illustrates retrieving event information from the
METAEVENT structure while waiting for a call:

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

#define MAXCHAN 30 /* max. number of channels in system */
#define NULL_STATE 0
#define CONNECTED_STATE 3
#define OFFERED_STATE 4
#define ACCEPTED_STATE 5

/*
 * Data structure which stores all information for each line
 */
struct linebag {
 LINEDEV ldev; /* network line device handle */
 CRN crn; /* GlobalCall API call handle */
 int state; /* state of first layer state machine */
} port[MAXCHAN+1];

struct linebag *pline; /* pointer to access line device */

/*
 * Assume the following has been done:
 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Application is in the NULL state
 * 3. A gc_WaitCall() has been successfully issued
 *
 * Examples are given in ASYNC mode
 * Error handling is not shown
 *
 */
int waitcall(int port_num)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 long evttype; /* type of event */

 /* Find info for this time slot, specified by ’port_num’ */
 /* (Assumes port_num is valid) */
 pline = port + port_num;

 for (;;) {
 sr_waitevt(-1L); /* wait forever */

 /* Get the next event */
 if (gc_GetMetaEvent(&metaevent) != GC_SUCCESS) {
 /* process error return */
 }

 evttype = metaevent.evttype;
 if (metaevent.flags & GCME_GC_EVENT) {
 /* process GlobalCall event */
 switch (pline -> state) {
 case NULL_STATE:
 switch (evttype) {
 case GCEV_OFFERED:

gc_GetMetaEvent() maps the current SRL event into a metaevent

156

 pline -> state = OFFERED_STATE;
 accept_call();
 break;
 default:
 /* handle other events here */
 break;
 }
 break;

 case OFFERED_STATE:
 switch (evttype) {
 case GCEV_ACCEPT:
 pline -> state = ACCEPTED_STATE;
 answer_call();
 break;
 default:
 /* handle other events here */
 break;
 }
 break;
 case ACCEPTED_STATE:
 switch (evttype) {
 case GCEV_ANSWERED:
 pline -> state = CONNECTED_STATE;
 /*
 * Can now do voice functions, etc.
 */
 return(0); /* SUCCESS RETURN POINT */
 default:
 /* handle other events here */
 break;
 }
 break;
 }
 } else {
 /* Process non-GlobalCall event */
 }
 }
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_GetCRN()
• gc_GetLineDev()
• gc_GetMetaEventEx() (Windows NT extended asynchronous mode only)
• gc_ResultValue()

maps the current SRL event into a metaevent gc_GetMetaEventEx()

157

Name: int gc_GetMetaEventEx(metaeventp, evt_handle) [Windows
NT extended asynchronous mode only]

Inputs: unsigned long
evt_handle

• SRL event handle

METAEVENT
 *metaeventp

• pointer to METAEVENT block

Returns: 0 if successful
<0 if failure

Includes: windows.h
gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_GetMetaEventEx() function maps the current SRL event into a
metaevent that passes the SRL event handle to the application or thread and stores
the GlobalCall and non-GlobalCall event information in the METAEVENT data
structure. This function returns an event to the Windows NT application running
multithreads in the extended asynchronous mode in the form of a metaevent and
an SRL event handle. This metaevent is a data structure that explicitly contains
the information describing the event. This data structure provides uniform
information retrieval among call control libraries and across operating systems;
see paragraph 5.4. METAEVENT for data structure details. The event handle is
passed to the application by the SRL:

• when the sr_waitevtEx() function is called, typically for multithreaded
applications or

• when the SRL handlers are called; the event handle is the first parameter in
the function call.

The current SRL event information is not changed or altered by calling the
gc_GetMetaEventEx() function to retrieve event information. This function
may be used as a convenience function to retrieve the event information for all

gc_GetMetaEventEx() maps the current SRL event into a metaevent

158

SRL events. Whether the event is a GlobalCall event or any other SRL event, the
SRL event information (e.g., evtdatap, evttype, etc.) may be retrieved from the
METAEVENT data structure instead of using SRL functions to retrieve this
information, see paragraph 5.4. METAEVENT for data structure details. If the
metaevent is a GlobalCall event, the GCME_GC_EVENT bit in the metaevent
flag field will be set. When this bit is set, the GlobalCall related fields in the
METAEVENT data structure will be filled with GlobalCall event information.

Parameter Description

evt_handle: SRL event handle used to identify event with a particular
thread.

metaeventp: pointer to the structure of metaevent data filled in by this
function; see paragraph 5.4. METAEVENT for data structure
details.

Termination Event: None.

n Cautions

The gc_GetMetaEvent() or gc_GetMetaEventEx() function MUST BE the
first function called before processing any GlobalCall event

When using the extended asynchronous mode, the gc_GetMetaEventEx()
function must be the first function called before processing any GlobalCall event.
For all other Windows NT modes, use the gc_GetMetaEvent() function.

The gc_GetMetaEvent() and gc_GetMetaEventEx() functions should not be
used in the same application.

When calling the gc_GetMetaEventEx() function from multiple threads, ensure
that your application uses unique thread-related METAEVENT data structures or
ensure that the METAEVENT data structure is not written to simultaneously.

maps the current SRL event into a metaevent gc_GetMetaEventEx()

159

n Example

The following code illustrates event retrieval wherein the SRL gets the event and
then the extended gc_GetMetaEventEx() function fills in the METAEVENT
data structure.

 /*
 * Do SRL event processing
 */
 hdlcnt = 0;
 hdls[hdlcnt++] = GetGlobalCallHandle();
 hdls[hdlcnt++] = GetVoiceHandle();

 /* Wait selectively for devices that belong to this thread */

 rc = sr_waitevtEx(hdls,
 hdlcnt,
 PollTimeout_ms,
 &evtHdl
);

 if (rc != SR_TMOUT) {
 /*
 * Update
 */
 rc = gc_GetMetaEventEx(&g_Metaevent, evtHdl);
 if (rc != GC_SUCCESS) {
 CheckError(rc,"gc_GetMetaEventEx");
 return -1;
 }

 rc = vProcessCallEvents();
 }

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_GetCRN()
• gc_GetLineDev()
• gc_GetMetaEvent()
• gc_ResultValue()

gc_GetNetworkH() returns the network device handle

160

Name: int gc_GetNetworkH(linedev, networkhp)
Inputs: LINEDEV linedev • GlobalCall line device handle

int *networkhp • pointer to returned network device
handle

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_GetNetworkH() function returns the network device handle associated
with the specified line device linedev. The *networkhp parameter is actually the
SRL device handle of the network resource associated with the line device. The
*networkhp parameter can be used as an input to functions requiring a network
handle, such as the SCbus routing function nr_scroute().

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

networkhp: address at which the network device handle is to be stored.

Termination Event: None.

n Cautions

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

returns the network device handle gc_GetNetworkH()

161

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has been done:
 * 1. A line device (ldev) has been opened, specifying a
 * network time slot and a protocol
 * For example, ’devicename’ could be ":N_dtiB1T1:P_br_r2_i".
 */
int route_fax_to_gc(LINEDEV ldev, int faxh)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */
 int networkh; /* network device handle */

 if (gc_GetNetworkH(ldev, &networkh) == GC_SUCCESS) {
 /*
 * Route the fax resource to the network device in
 * a full duplex manner.
 */
 if (nr_scroute(networkh,SC_DTI,faxh,SC_FAX,SC_FULLDUP) == -1) {
 /* process error */
 }
 else {
 /* proceed with the fax call */
 }

 } else {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);
 }
 /*
 * Application may now generate or wait for a call on this line
 * device.
 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

gc_GetNetworkH() returns the network device handle

162

n See Also

• gc_GetVoiceH()

retrieves the parameter value specified gc_GetParm()

163

Name: int gc_GetParm(linedev, parm_id, valuep)
Inputs: LINEDEV linedev • GlobalCall line device handle

int parm_id • parameter ID
GC_PARM *valuep • pointer to buffer where value will

be stored
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
gcisdn.h (for applications that use ISDN symbols)

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
❑ Analog

n Description

The gc_GetParm() function retrieves the parameter value specified by the
parm_id parameter for a line device. The application can retrieve only one
parameter value at a time.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

parm_id: The parameter ID definitions are listed in Table 36.
Parameter Descriptions, gc_GetParm() and gc_SetParm()
in the gc_SetParm() function description section. The
“Level” column lists whether the parameter is a channel level
parameter or a trunk level parameter. To get a trunk level
parameter, the linedev parameter must be the device ID
associated with a network interface trunk.

valuep: The address of the buffer where the requested information
will be stored, see paragraph 5.5. GC_PARM for data
structure details.

gc_GetParm() retrieves the parameter value specified

164

Termination Event: None.

n Cautions

None

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

int get_calling_party(LINEDEV ldev, char *callerp)
{
 GC_PARM parm_val; /* value of parameter returned */
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /*
 * Retrieve calling party number for E-1 CAS line device and print it.
 */
 if (gc_GetParm(ldev, GCPR_CALLINGPARTY, &parm_val) == GC_SUCCESS) {
 strcpy(callerp, parm_val.paddress);
 printf ("Calling party No. is %s\n", parm_val.paddress);
 }
 else {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 metaevent.ldev, gc_error, msg);
 return(gc_error);
 }
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_SetParm()

retrieves the attribute gc_GetUsrAttr()

165

Name: int gc_GetUsrAttr(linedev, usr_attrp)
Inputs: LINEDEV linedev • GlobalCall line device handle

void **usr_attrp • pointer to location where user
attribute info will be stored

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_GetUsrAttr() function retrieves the attribute established previously for
the line device by the gc_SetUsrAttr() or gc_OpenEx() function.

Parameter Description

linedev: GlobalCall line device handle

usr_attrp: address of the location where the returned attribute
information will be stored. This parameter will be set to
NULL if the user attribute was not previously set using the
gc_SetUsrAttr() or gc_OpenEx() function.

Termination Event: None.

n Cautions

None

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>

gc_GetUsrAttr() retrieves the attribute

166

#include <gclib.h>
#include <gcerr.h>

#define MAXCHAN 30 /* max. number of channels in system */
/*
 * Data structure which stores all information for each line
 */
struct linebag {
 LINEDEV ldev; /* GlobalCall line device handle */
 CRN crn; /* GlobalCall API call handle */
 int state; /* state of first layer state machine */
} port[MAXCHAN+1];

/*
 * Retrieves port_num that was set for this device
 * in set_usrattr (gc_SetUsrAttr())
 */

int get_usrattr(LINEDEV ldev, int *port_num)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */
 void *vattrp; /* to retrieve the attribute */

 /*
 * Assuming that a line device is opened already and
 * that its ID is ldev, let us retrieve the attribute set
 * for this ldev, previously set by the user using gc_SetUsrAttr()
 */

 if (gc_GetUsrAttr(ldev, &vattrp) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);
 }

 *port_num = (int) vattrp;
 /*
 * Processing may continue using this retrieved attribute
 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

retrieves the attribute gc_GetUsrAttr()

167

n See Also

• gc_SetUsrAttr()
• gc_OpenEx()

gc_GetVer() gets version number of specified software component

168

Name: int gc_GetVer(linedev, releasenump, intnump, component)
Inputs: LINEDEV linedev • GlobalCall line device handle

unsigned int
 *releasenump

• pointer to location where production
release number will be stored

unsigned int
*intnump

• pointer to location where internal
release number will be stored

long component • system component
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: optional feature

Mode: synchronous
Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit

■ Analog

n Description

The gc_GetVer() function gets version number of specified software component.
A Dialogic version number consists of two parts that provide:

• The release type; i.e. production or beta

• The release number, which consists of different elements, depending on
the type of release.

e.g., 1.00 Production
1.00 Beta 5

The gc_GetVer() function returns the software version number as a long integer
(32 bits) in BCD (binary coded decimal) format. Figure 6 shows the format of the
version number that is returned. Each section in the diagram represents a nibble (4
bits).

gets version number of specified software component gc_GetVer()

169

1 2 3 4 5 6 7 8

long int (8 nibbles = 32 bits)

Type Production
Number

Internal
Number

MSB

Figure 6. Component Version Number Format

Nibble 1 returns the type of release. The values convert to:

0 - Production
1 - Beta
4 - Special

Nibbles 2, 3, and 4 return the Production Number.

NOTE: Nibbles 2 through 4 are used in all version numbers. Nibbles 5 through 8
only contain values if the release is not a production release.

Nibbles 5, 6, 7, and 8 return the Internal Number, which is used for pre-
production product releases. The Internal Number is assigned to beta product
releases. Nibbles 5 and 6 hold the product’s Beta number. Nibbles 7 and 8 hold
additional information that is used for internal releases.

Table 30 provides the values returned by each nibble in the long int. For example,
if a production version number is 1.02, then:

*releasenump = 0x0102
*intnump = 0x0000

For a version number of 1.02 beta 2, then:

*releasenump = 0x1102
*intnump = 0x0200

gc_GetVer() gets version number of specified software component

170

Table 30. gc_GetVer() Return Values

*releasenump *intnump

1† 2† 3 & 4† 5 & 6† 7 & 8†

Type Production Number Internal Number

Production Major Prod.
Number

Minor Prod.
Number

N/A N/A

Beta Major Prod.
Number

Minor Prod.
Number

Beta No. N/A

† = Nibble(s) [4 bits each]

Parameter Description

linedev: GlobalCall line device handle. If this parameter is set to 0,
the version number of the GlobalCall API is returned.

releasenump: pointer to the location where the production release number
and type indicator will be stored.

intnump: pointer to the location where the internal release number will
be stored.

component: specifies the software component to which the version
number applies. Selections are:

GCGV_LIB GlobalCall library

ICGV_LIB ICAPI library

ANGV_LIB ANAPI library

ISGV_LIB ISDN library

Termination Event: None

n Cautions

None

gets version number of specified software component gc_GetVer()

171

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

int print_version(LINEDEV ldev, long component)
{
 unsigned int releasenum; /* Production release number */
 unsigned int intnum; /* Internal release number */
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /*
 * Get the version number of the library associate with the line
 * device.
 */
 if (gc_GetVer(ldev, &releasenum, &intnum, component) == GC_SUCCESS) {
 printf("Production release number = 0x%lx\n", releasenum);
 printf("Internal release number = 0x%lx\n", intnum);
 } else {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);
 }
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• None

gc_GetVoiceH() returns the voice device handle

172

Name: int gc_GetVoiceH(linedev, voicehp)
Inputs: LINEDEV linedev • GlobalCall line device handle

int *voicehp • pointer to returned voice device
handle

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: interface specific
Mode: synchronous

Technology: ❑ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_GetVoiceH() function returns the voice device handle associated with
the specified line device, linedev. The *voicehp parameter is actually the SRL
handle of the voice resource associated with the line device. The *voicehp
parameter can be used as an input to functions requiring a voice handle, such as
the voice library’s dx_play() function.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

voicehp address at which the voice device handle of the voice
resource associated with the GlobalCall line device, linedev,
will be stored

Termination Event: None.

returns the voice device handle gc_GetVoiceH()

173

n Cautions

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has been done:
 * 1. A line device has been opened specifying voice resource
 * 2. A call associated with ldev is in the connected state
 */
int get_voice_handle(LINEDEV ldev, int *voicehp)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 if (gc_GetVoiceH(ldev, voicehp) == GC_SUCCESS) {
 /*
 * Application may now perform voice processing (e.g., play a prompt)
 * using the voice handle.
 */
 return(0);
 } else {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);
 }
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

gc_GetVoiceH() returns the voice device handle

174

n See Also

• gc_GetNetworkH()

sets voice parameters associated with a line device gc_LoadDxParm()

175

Name: int gc_LoadDxParm(ldev, filepathp, msbufferp, msglength)
Inputs: LINEDEV ldev • line device

char *filepathp • pointer to parameter file
char *msbufferp • pointer to error message
int msglength • maximum error message length

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: interface specific
Mode: synchronous

Technology: ❑ ISDN PRI ❑ E-1 CAS ❑ T-1 robbed bit
■ Analog

n Description

The gc_LoadDxParm() function sets voice parameters associated with a line
device that operates as a dedicated or shared resource in conjunction with an
analog loop start network interface resource to handle call processing activities.
The parameters set by this function affect basic and enhanced call progress and
interact with the gc_MakeCall() function.

GlobalCall assigns a LDID number to represent the physical devices that will
handle a call, such as a voice resource and an analog loop start (or a digital)
network interface resource, when the gc_Open() or gc_OpenEx() function is
called. This identification number assignment remains valid until the gc_Close()
function is called to close the line devices.

When the gc_LoadDxParm() function is called, the function looks for a voice
parameter file listing only the voice parameters to be changed from their default
value in the location defined by the filepathp parameter, typically in the current
directory or in the /usr/dialogic/cfg directory. The voice parameter file is read
and the voice device is configured based on the parameters and parameter values
defined in this file. Any parameter not defined will use the default parameter
value.

The following is an example of a voice channel parameter (.vcp) file called
dxchan.vcp (file names are defined by the user):

gc_LoadDxParm() sets voice parameters associated with a line device

176

#
D/xxx parameter file for downloading channel level
parameters supported by dx_setparm() and DX_CAP structure.
#
Values are in decimal unless a leading 0x is included in which
case the value is hexadecimal.
#
Refer to the Dialogic Voice Software Reference for the DX_CAP
structure ca_* parameters. The upper case parameters can also
be found in the Dialogic Voice Software Reference under the
dx_setparm() function.
#
To set a parameter, uncomment (delete the ’#’ or ’;’ and set a
value to the right of the parameter name.
#

ca_stdely
ca_cnosig
ca_lcdly
ca_lcdly1
ca_hedge
ca_cnosil
ca_logltch

#
Values of bitmask flags for setting ca_intflg
add desired flags to set ca_intflg
#

DX_OPTEN = 1
DX_OPTDIS = 2
DX_OPTNOCON = 3
DX_PVDENABLE = 4
DX_PVDOPTEN = 5
DX_PVDOPTNOCON = 6
DX_PAMDENABLE = 7
DX_PAMDOPTEN = 8

ca_intflg 5

#
#
#

ca_lowerfrq
ca_upperfrq
ca_timefrq
ca_maxansr
ca_ansrdgl
ca_mxtimefrq
ca_lower2frq
ca_upper2frq
ca_time2frq
ca_mxtime2frq
ca_lower3frq
ca_upper3frq
ca_time3frq
ca_mxtime3frq
ca_dtn_pres
ca_dtn_npres
ca_dtn_deboff
ca_pamd_failtime
ca_pamd_minring
ca_pamd_spdval
ca_pamd_qtemp

sets voice parameters associated with a line device gc_LoadDxParm()

177

ca_noanswer
ca_maxintering

#
Channel level parameters set by dx_setparm()
#

DXCH_DFLAGS
DXCH_DTINITSET
DXCH_DTMFTLK
DXCH_DTMFDEB
DXCH_MFMODE
DXCH_MAXRWINK
DXCH_MINRWINK
DXCH_WINKDLY
DXCH_RINGCNT
DXCH_WINKLEN
DXCH_PLAYDRATE
DXCH_RECRDRAT

A voice parameter file contains parameter definition lines and may contain
comment lines. Each parameter definition line comprises:

• a case-sensitive voice parameter as defined in Table 31. Voice Channel-level
Parameters or Table 32. Voice Call Analysis Parameters as the first field of
the line, a space and

• a second field defining the parameter value:

• for voice channel parameter values; see the Voice Board Parameter
Defines for dx_getparm() and dx_setparm() paragraph in the Voice
Software Reference, Data Structures and Device Parameters chapter .

• for DX_CAP data structure field parameter values; see the DX_CAP -
change default call analysis parameters paragraph in the Voice
Software Reference, Data Structures and Device Parameters chapter .

The parameter value may be entered as a decimal value or as a
hexadecimal value when prefixed with a “0x”.

A comment line begins with a:

• # character or a

• ; character.

The gc_LoadDxParm() function will return upon the first detected error. The
reason for the error, typically:

• a parsing error (in the .vcp file)

• a low-level function call error

gc_LoadDxParm() sets voice parameters associated with a line device

178

• an open file failure error

will be stored in the msgbufferp location.

NOTE: Not all errors can be detected by the gc_LoadDxParm() function.
Errors in the value of the voice call analysis parameters in the DX_CAP
structure cannot be detected until a call is setup by the gc_MakeCall()
function.

All channel-level parameters set by the voice function, dx_setparm(), can be set
using the gc_LoadDxParm() function. GlobalCall uses the dx_setparm()
parameter names to identify all voice channel-level parameters; see Table 31.
Voice Channel-level Parameters for a summary list of these parameters. Also see
the Voice Board Parameter Defines for dx_getparm() and dx_setparm()
paragraph in the Voice Software Reference, Data Structures and Device
Parameters chapter for a description of these parameters.

The gc_LoadDxParm() function supports all basic and enhanced call progress
fields defined in the DX_CAP data structure. The call analysis parameters
defined in the DX_CAP data structure affect the gc_MakeCall() function.
GlobalCall uses the DX_CAP data structure names to identify all call progress
parameters; see Table 32. Voice Call Analysis Parameters for a summary list of
these parameters. Also see the DX_CAP - change default call analysis
parameters paragraph in the Voice Software Reference, Data Structures and
Device Parameters chapter for a description of these parameters.

Observe the following criteria when using the gc_LoadDxParm() function:

• Before calling the gc_LoadDxParm() function, use the gc_Open() or
gc_OpenEx() function to open the voice line device.

• Pass the maximum length of the error message string, msglength, to the
gc_LoadDxParm() function to avoid overwriting memory locations outside
the message string array.

For analog applications, the gc_LoadDxParm() function is used to set board and
channel-level parameters previously set by the voice function, dx_setparm().
While the gc_LoadDxParm() function is used for analog applications; the
gc_SetParm() and gc_GetParm() functions continue to be used to set and
display parameter values for other technologies such as E-1, T-1, ISDN, etc.

sets voice parameters associated with a line device gc_LoadDxParm()

179

Refer also to the GlobalCall Analog Technology User’s Guide for technology
specific information.

Parameter Description

ldev: GlobalCall line device handle

filepathp: specifies a pointer to the voice parameter file to load

msgbufferp: specifies a pointer to the storage address of any error message

msglength: defines the maximum length in bytes of the error message
stored at address defined by the msgbufferp parameter

Table 31. Voice Channel-level Parameters [dx_setparm()] List

• DXCH_DFLAGS

• DXCH_DTINITSET

• DXCH_DTMFDEB

• DXCH_DTMFTLK

• DXCH_MAXRWINK

• DXCH_MFMODE

• DXCH_MINRWINK

• DXCH_PLAYDRATE

• DXCH_RECRDRATE

• DXCH_RINGCNT Not used. The default number of rings parameter
in the .cdp file sets this parameter value.

• DXCH_WINKDLY

• DXCH_WINKLEN

gc_LoadDxParm() sets voice parameters associated with a line device

180

Table 32. Voice Call Analysis Parameters (DX_CAP) List

• ca_alowmax

• ca_ansrdgl

• ca_blowmax

• ca_cnosig

• ca_cnosil

• ca_dtn_deboff

• ca_dtn_npres

• ca_dtn_pres

• ca_hedge

• ca_hi1bmax

• ca_hi1ceil

• ca_hi1tola

• ca_hi1tolb

• ca_higltch

• ca_hisiz

• ca_intflg

• ca_lcdly

• ca_lcdly1

• ca_lo1bmax

• ca_lo1ceil

• ca_lo1rmax

• ca_lo2bmax

• ca_lo2rmin

sets voice parameters associated with a line device gc_LoadDxParm()

181

• ca_lo1tola

• ca_lo1tolb

• ca_lo2tola

• ca_lo2tolb

• ca_logltch

• ca_lower2frq

• ca_lower3frq

• ca_lowerfrq

• ca_maxansr

• ca_maxintering

• ca_mxtime2frq

• ca_mxtime3frq

• ca_mxtimefrq

• ca_nbrbeg

• ca_nbrdna

• ca_noanswer

• ca_nsbusy

• ca_pamd_failtime

• ca_pamd_minring

• ca_pamd_qtemp

• ca_pamd_spdval

• ca_stdely

• ca_time2frq

• ca_time3frq

• ca_timefrq

gc_LoadDxParm() sets voice parameters associated with a line device

182

• ca_upper2frq

• ca_upper3frq

• ca_upperfrq

Termination Event: None

n Cautions

The maximum length of the error message string, msglength, should be passed to
the function to avoid overwriting memory locations outside the array pointed to by
the msgbufferp parameter.

The call analysis parameters, see Table 32. Voice Call Analysis Parameters, are
only used for analog loop start protocols. If this function is invoked for an
unsupported technology, the function fails. The error value
EGC_UNSUPPORTED will be the GlobalCall value returned when the
gc_ErrorValue() function is used to retrieve the error code. See also the Errors
paragraph at the end of this function description.

n Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <gclib.h>
#include <gcerr.h>

#define MSGLENGTH 80

main()
{
 LINEDEV ldev;
 char errmsg[MSGLENGTH];
 .
 .
 /*
 * Assume the following has been done:
 *
 * Open line device (ldev) specifying voice and network resource using
 * gc_Open()
 *
 */

 /* call gc_LoadDxParm() to download the channel parameters */
 if ((gc_LoadDxParm(ldev, “dxchan.vcp”, errmsg, MSGLENGTH)) != 0) {
 if (gc_error() != EGC_UNSUPPORTED) {
 printf(“Error gc_LoadDxParm() loading channel parameters\n”);
 printf(“%s\n”, errmsg);
 exit(1);

sets voice parameters associated with a line device gc_LoadDxParm()

183

 }
 printf(“gc_LoadDxParm() unsupported\n”);
 exit(2);
 }
 .
 .
 .
}

n Errors

If this function returns a <0 to indicate failure or if the GCEV_TASKFAIL event
is received, use gc_ErrorValue() and the gc_ResultMsg() function as described
in section 3.11. Error Handling to retrieve the reason for the error. All
GlobalCall error codes are defined in the gcerr.h file, see listing in Appendix C.

If the error is not EGC_UNSUPPORTED, then a more detailed description of the
error is copied to the address specified by the msgbufferp parameter. When a
parsing error is detected, an “Invalid line” followed by the line number and the
line containing the error are stored in the msgbuffer buffer.

n See Also

• gc_MakeCall()
• gc_Open() or gc_OpenEx()

gc_MakeCall() enables the application to make an outgoing call

184

Name: int gc_MakeCall(linedev, crnp, numberstr, makecallp,
 timeout, mode)

Inputs: LINEDEV linedev • line device
CRN *crnp • pointer to returned call

reference number
char *numberstr • destination phone number
GC_MAKECALL_BLK
 *makecallp

• pointer to outbound call info

int timeout • time-out value
unsigned long mode • async or sync

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h
gcisdn.h (for applications that use ISDN symbols)

Category: basic call control
Mode: asynchronous or synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_MakeCall() function enables the application to make an outgoing call on
the specified line device. When this function is issued asynchronously, a CRN will
be assigned and returned immediately if the function is successful. All subsequent
communications between the application and the GlobalCall library regarding that
call will use the CRN as a reference. If this function is issued synchronously, the
CRN will be available at the successful completion of the function.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

crnp: pointer to the memory location where the CRN is to be
stored.

numberstr: called party’s telephone number (must be terminated with
‘\0’). Maximum length: 32 digits

enables the application to make an outgoing call gc_MakeCall()

185

Parameter Description

makecallp: specifies a pointer to the GC_MAKECALL_BLK structure,
see paragraph 5.3. GC_MAKECALL_BLK for details.
Assigning a NULL to this parameter indicates that the default
value should be used for the call.

timeout: time interval (in seconds) during which the call must be
established, or function will return with a time-out error.
This parameter is ignored when set to 0. Not all call control
libraries support this argument in asynchronous mode.
Refer to the appropriate GlobalCall Technology User’s
Guide for technology specific information.

mode: set to EV_ASYNC for asynchronous execution or to
EV_SYNC for synchronous execution

If the gc_MakeCall() function fails, the call state may differ depending upon the
point in the calling process where the failure occurred and the call control library
used.

In the asynchronous mode, if the function is successfully initiated but connection
is not achieved (no GCEV_CONNECTED event returned), then the application
must issue gc_DropCall() and gc_ReleaseCall() functions to terminate the call
completely.

In the synchronous mode, if the *crnp is zero, the call state is Null. A Null state
indicates that the call was fully terminated and that another gc_MakeCall()
function can be issued. For non-zero *crnp values, the application or thread
(Windows NT only) must issue gc_DropCall() and gc_ReleaseCall() functions
to terminate the call completely before issuing another gc_MakeCall() function.

The GC_MAKECALL_BLK structure is a list of parameters used to specify the
outbound call.

The GCEV_ALERTING event (enabled by default) notifies the application that
the call has reached its destination but is not yet connected to the called party.
When this event is received, the call state changes to Alerting. In the Alerting
state, the reception of a GCEV_CONNECTED event (or, if in synchronous mode,

gc_MakeCall() enables the application to make an outgoing call

186

the successful completion of the function) causes a transition to the Connected
state thus indicating a complete call connection.

The GCEV_CALLSTATUS event informs the application that a timeout or a no
answer (call control library dependent) condition occurred. This event does not
cause any state change. Not all call control libraries generate this event (e.g.,
ISDN library).

If glare handling is not specified in the protocol, the inbound call prevails when
glare occurs.

The following table lists error conditions, associated event/return values and the
result/error value returned. For all errors, the following apply:

• Asynchronous: When an error condition is encountered, an event value such
as GCEV_TASKFAIL, GCEV_CALLSTATUS or
GCEV_DISCONNECTED is returned. Issue a gc_ResultValue() function
to retrieve the reason or result code for the event and then issue a
gc_ResultMsg() function to retrieve the ASCII message describing the error
condition. When an error condition occurs in asynchronous mode, you must
issue the gc_DropCall() and gc_ReleaseCall() functions before you can
initiate your next call.

• Synchronous: When an error condition is encountered, a <0 value is
returned. Issue a gc_ErrorValue() function to retrieve the error code and
then issue a gc_ResultMsg() function to retrieve the ASCII message
describing the error condition.

When an error condition occurs in synchronous mode, if the crn returned is:

• 0, then the call state is Null; you may initiate your next call or call related
operation.

• non-0, then you must issue the gc_DropCall() and gc_ReleaseCall()
functions before you can initiate your next call or call related operation.

In asynchronous mode, when the function fails to start, <0 is returned. In this
case, no CRN was assigned to the call and you should not do a drop and release
call.

enables the application to make an outgoing call gc_MakeCall()

187

Condition Event/Return Value Result/Error Value

Call answered
at remote end

Async:
GCEV_CONNECTED
Sync: 0

None - normal completion of
function; line is connected
and called party answered

Error occurs
prior to dialing

Async: GCEV_TASKFAIL
Sync: <0

Varies depending on the
reason for the failure

Error occurs
during dialing

Async: a call control library
related error or
GCEV_DISCONNECTED
Sync: <0

Async: GCRV_TIMEOUT or
GCRV_PROTOCOL result
value
Sync: EGC_TIMEOUT or
EGC_PROTOCOL error
depending on the call control
library used

Busy line Async:
GCEV_DISCONNECTED
Sync: <0

Async: GCRV_BUSY result
value
Sync: EGC_BUSY error

Ring, no
answer

Async:
GCEV_CALLSTATUS
Sync: <0

Not all call control libraries
generate this event (e.g.,
ISDN library).

Async: GCRV_NOANSWER
or GCRV_TIMEOUT result
value
Sync: EGC_NOANSWER or
EGC_TIMEOUT error
depending on the call control
library used

Other errors Async: reflects the error
encountered and the call
control library used
Sync: <0

Varies depending on the
reason for the failure and the
call control library used

Termination Event: In the asynchronous mode, if the call results in a successful
connection, a GCEV_CONNECTED event is sent to the application; otherwise, a
GCEV_TASKFAIL or GCEV_DISCONNECTED event is sent.

gc_MakeCall() enables the application to make an outgoing call

188

n Cautions

In both asynchronous and synchronous mode, after a timeout or a no answer
condition is reported and before the gc_DropCall() function has successfully
completed, a GCEV_CONNECTED event may arrive. Ignore this event since the
call cannot be salvaged.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#include <gcisdn.h>

#define MAXCHAN 30 /* max. number of channels in system */

/*
 * Data structure which stores all information for each line
 */
struct linebag {
 LINEDEV ldev; /* GlobalCall line device handle */
 CRN crn; /* GlobalCall API call handle */
 int state; /* state of first layer state machine */
} port[MAXCHAN+1];
struct linebag *pline; /* pointer to access line device */

/*
 * Assume the following has been done:
 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Each line device is stored in linebag structure "port"
 */
int make_call(int port_num)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /* Find info for this time slot, specified by ’port_num’ */
 /* (assumes port_num is valid) */
 pline = port + port_num;

 /*
 * Make a call to the number 993-3000.
 */
 if (gc_MakeCall(pline->ldev, &pline->crn, "9933000", NULL, 0, EV_SYNC)
 == GC_SUCCESS) {
 /* Call successfully connected; continue processing */
 }
 else {

 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 pline -> ldev, gc_error, msg);

enables the application to make an outgoing call gc_MakeCall()

189

 return(gc_error);
 }
 /*
 * Application may now wait for an event to indicate call
 * completion.
 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure or if the GCEV_TASKFAIL,
GCEV_CALLSTATUS or GCEV_DISCONNECTED event is received, use
gc_ErrorValue() or gc_ResultValue(), respectively, and the gc_ResultMsg()
function as described in section 3.11. Error Handling to retrieve the reason for
the error. See the above description for more details on handling errors associated
with making a call. All GlobalCall error codes are defined in the gcerr.h file, see
listing in Appendix C.

n See Also

• gc_DropCall()
• gc_LoadDxParm()
• gc_ReleaseCall()

gc_Open() opens a GlobalCall device

190

Name: int gc_Open(linedevp, devicename, rfu)
Inputs: LINEDEV *linedevp • pointer to returned line device

char *devicename • pointer to ASCII string
int rfu • reserved for future use

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: system controls and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_Open() function opens a GlobalCall device and returns a unique line
device ID (or handle) to identify the physical device or devices that carry the call
(e.g., a line device may represent a single network, time slot or the grouping
together of a time slot and a voice channel). All subsequent references to the
opened device must be made using the line device ID. After the successful return
of the gc_Open() function, the application must wait for a
GCEV_UNBLOCKED event before proceeding with a call (make or wait call) on
the opened line device. When the GCEV_UNBLOCKED event is received, then
the line is ready to accept calls.

NOTE: When you issue a gc_Open() call, you may immediately get a
GCEV_UNBLOCKED event before the function returns. This event
may be lost unless:

- typically, in a Windows NT environment, event processing within a
thread or using a separate thread to process events tends to be more
efficient than using event handlers. However, if event handlers are to be
used, such as when an application is being ported from UNIX, then you
must use the asynchronous internal-thread callback model or the
asynchronous worker-thread callback model. See paragraph 3.2.
Windows NT Programming Models for details and the following
summaries.

- for Windows NT synchronous mode applications, when using an event
handler for GCEV_BLOCKED and GCEV_UNBLOCKED events,

opens a GlobalCall device gc_Open()

191

enable the event handler BEFORE creating the threads to handle each
channel. (Ensure that the linedevp parameter passed to the gc_Open()
function is a global variable that can be accessed by your handler.)

- for Windows NT asynchronous mode applications, when the
application will handle the events, the automatic creation of an SRL
event handling thread can be disabled by setting the sr_setparm()
function parmno parameter SR_MODELTYPE value to SR_STASYNC
so that the event is held in the event queue OR the application can enable
an event handler for GCEV_BLOCKED and GCEV_UNBLOCKED
events BEFORE opening each channel.

- when using UNIX in signal mode, enable an event handler for any
device, any event OR for any device and GCEV_BLOCKED and
GCEV_UNBLOCKED events before calling the gc_Open() function
OR you can wrap the gc_Open() function with sr_hold() and
sr_release() functions (this approach enables setting the user attributes
with the gc_SetUsrAttr() function before opening a device).

Both network board and channel (i.e., time slot) devices can be opened using the
gc_Open() function. A device may only be opened once and cannot be re-opened
by the current process or by any other process until the device is closed.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedevp: pointer to unique number to be filled in by this function to
identify a specific device

devicename: pointer to an ASCII string that defines the device(s) associated
with the returned linedevp number. The devicename
parameter specifies the device to be opened and the protocol
to be used. The format used to define devicename is:

<field1><field2>...<fieldn>

These fields may be listed in any order. The format for a field
is:

:<key>_<field name>

Valid keys and their appropriate field names are:

gc_Open() opens a GlobalCall device

192

Parameter Description

key field name

P protocol_name

N network_device_name

V voice_device_name

The protocol_name field specifies the protocol to be used.
Refer to the appropriate GlobalCall Technology User’s Guide
for technology specific protocol information.

The network_device_name and voice_device_name follow the
standard Dialogic naming convention:

• The network_device_name field specifies the board name
and the time slot name (if needed). If the board is to be
opened, the network_device_name is the board name in the
format:

dtiB<number of board>

If a time slot is to be opened, both the board and time slot
are specified in the format:

dtiB<number of board>T<time slot number>

• The voice_device_name specifies the voice board and
channel:

dxxxB<virtual board number>C<channel number>

The voice_device_name field is not valid when opening an
ISDN device.

See the GlobalCall Technology User’s Guide for your
technology for information about which fields to use when
opening a device.

rfu: reserved for future use. Set rfu to 0.

opens a GlobalCall device gc_Open()

193

Termination Event: None.

n Cautions

If a handler is enabled for the GCEV_UNBLOCKED event, then the linedevp
parameter passed to the gc_Open() function must be global.

When you issue a gc_Open() call, you immediately get a GCEV_UNBLOCKED
event. This event may be lost unless your application is structured to capture this
event when you open each channel, see Note above for details.

To handle error returns from the gc_Open() function, use the GlobalCall error
handling functions, gc_ErrorValue() and gc_ResultMsg(). Do not use the
UNIX errno variable to get GlobalCall error information.

See the GlobalCall Technology User’s Guide for your network interface to
determine required devicename components and features unique to your network
interface such as voice resource usage.

n Example

UNIX example: the following example code illustrates opening multiple line
devices using the UNIX signal mode.

/*
 * Standard Dialogic header(s)
 */
#include <srllib.h>
#include <dxxxlib.h>
#include <dtilib.h>

/*
 * GlobalCall header(s)
 */
#include <gclib.h>
#include <gcerr.h>

#define MAXCHAN 30 /* max. number of channels in system */

/*
 * Global variable
 */
METAEVENT metaevent;
char *program_name; /* program name */

/*
 * Function prototype(s)
 */
int print_error(char *function);

gc_Open() opens a GlobalCall device

194

int evt_hdlr(void);
int open_line_devices(void);
int close_line_devices(void);

/*
 * Data structure which stores all information for each line
 */
static struct channel {
 LINEDEV ldev; /* GlobalCall API line device handle */
 CRN crn; /* GlobalCall API call handle */
 int blocked; /* channel blocked/unblocked */
 int networkh; /* network handle */
 int voiceh; /* voice handle */
} port[MAXCHAN+1];

/*
 * Main Program
 */
void main(int argc, char *argv[])
{
 int mode;

 /* Compiler warning */
 program_name = argv[0];
 argc = argc;

 /* Set SRL mode */
 mode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, &mode) == -1) {
 printf("Unable to set to Polled Mode");
 exit(1);
 }

 /* Enable the event handler */
 if (sr_enbhdlr(EV_ANYDEV, EV_ANYEVT,
 (long (*) (void *))evt_hdlr) == -1) {
 printf("sr_enbhdlr failed\n");
 exit(1);
 }

 /* Start the library */
 if (gc_Start(NULL) != GC_SUCCESS) {
 /* process error return as shown */
 print_error("gc_Start");
 }

 /* open the line devices */
 open_line_devices();

 sr_waitevt(50);

 /* close the line devices */
 close_line_devices();

 /* Stop the library */
 if (gc_Stop() != GC_SUCCESS) {
 /* process error return as shown */
 print_error("gc_Stop");
 }
}

/*
 * int print_error (char *function)
 *
 * INPUT: char *function - function name

opens a GlobalCall device gc_Open()

195

 * RETURN: gc_error - globalcall error number
 *
 */
int print_error(char *function)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cclib_error; /* Call Control Library error code */
 char *gcmsg; /* points to the gc error message string */
 char *ccmsg; /* points to the cclib error message string */

 gc_ErrorValue(&gc_error, &cclibid, &cclib_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &gcmsg);
 gc_ResultMsg(cclibid, cclib_error , &ccmsg);
 printf ("gc_Open failed, gc(0x%lx) - %s, cc(0x%lx) - %s\n",
 gc_error, gcmsg, cclib_error, ccmsg);

 return (gc_error);
}

/*
 * int evt_hdlr (void)
 *
 * RETURN: 0 - function successful
 * error - GlobalCall error number
 *
 */
int evt_hdlr(void)
{
 struct channel *pline;
 int error; /* reason for failure of function */

 if (gc_GetMetaEvent(&metaevent) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_GetMetaEvent");
 return(error);
 }

 if (metaevent.flags & GCME_GC_EVENT) {
 /* process GlobalCall events */

 if (gc_GetUsrAttr(metaevent.linedev, (void **)&pline) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_GetUsrAttr");
 return(error);
 }

 switch (metaevent.evttype) {
 case GCEV_UNBLOCKED:
 printf("received GCEV_UNBLOCKED event on %s\n",
 ATDV_NAMEP(pline->networkh));
 pline->blocked = 0;
 break;

 default:
 printf ("Unexpected GlobalCall event received\n");
 break;
 }
 }
 else {

 /* process other events */
 }

 return 0;

gc_Open() opens a GlobalCall device

196

}

/*
 * int open_line_devices (void)
 *
 * RETURN: 0 - function successful
 * error - GlobalCall error number
 *
 */
int open_line_devices(void)
{
 char devname[64]; /* argument to gc_Open() function */
 int vbnum = 0; /* virtual board number (1-based) */
 int vch = 0; /* voice channel number (1-based) */
 int ts; /* time slot number (1-based) */
 int port_index; /* index for ’port’ */
 int lines, brds, tslots; /* variables used for voice/net lib calls */
 int error; /* reason for failure of function */

 /*
 * Construct device name parameter for Open function and
 * Opened line devices for each time slot on DTIB1 using inbound
 * Argentina R2 protocol.
 */
 for (ts = 1,port_index = 1; ts <= MAXCHAN; ts++,port_index++) {

 vbnum = (ts - 1) / 4 + 1;
 vch = ((ts - 1) % 4) + 1;
 sprintf (devname, ":N_dtiB1T%d:P_ar_r2_o:V_dxxxB%dC%d", ts, vbnum, vch);
 sr_hold();
 if (gc_Open(&port[port_index].ldev, devname, 0) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_Open");
 sr_release();
 return(error);
 }

 if (gc_SetUsrAttr(port[port_index].ldev,
 (void *)&port[port_index]) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_SetUsrAttr");
 sr_release();
 return(error);
 }

 if (gc_GetNetworkH(port[port_index].ldev,
 &(port[port_index].networkh)) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_GetNetworkH");
 sr_release();
 return(error);
 }

 if (gc_GetVoiceH(port[port_index].ldev,
 &(port[port_index].voiceh)) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_GetVoiceH");
 sr_release();
 return(error);
 }

 port[port_index].blocked = 1; /* channel is blocked until unblocked */
 /* event is received. */

 sr_release();

opens a GlobalCall device gc_Open()

197

 }

 /*
 * Application is now ready to make a call or wait for a call.
 */
 return (0);
}

/*
 * int close_line_devices (void)
 *
 * RETURN: 0 - function successful
 * error - GlobalCall error number
 *
 */
int close_line_devices(void)
{
 int port_index; /* port index */
 int error; /* reason for failure of function */

 for (port_index = 1; port_index <= MAXCHAN; port_index++) {
 if (gc_Close(port[port_index].ldev) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_Close");

 return (error);
 }
 }

 if (sr_dishdlr(EV_ANYDEV, EV_ANYEVT,
 (long (*) (void *))evt_hdlr) == -1) {
 printf("sr_dishdlr failed\n");
 exit(1);
 }

 return;
}

Windows NT example: the following example illustrates enabling an event
handler before issuing the gc_Open() function to capture the
GCEV_UNBLOCKED event when using Windows NT multithreaded
applications.

/*
 * Windows header(s)
 */
#include <windows.h>

/*
 * Standard Dialogic header(s)
 */
#include <srllib.h>
#include <dxxxlib.h>
#include <dtilib.h>

/*
 * GlobalCall header(s)
 */
#include <gclib.h>
#include <gcerr.h>

gc_Open() opens a GlobalCall device

198

#define MAXCHAN 30 /* max. number of channels in system */

/*
 * Data structure which stores all information for each line
 */
static struct channel {
 LINEDEV ldev; /* GlobalCall API line device handle */
 CRN crn; /* GlobalCall API call handle */
 int blocked; /* channel blocked/unblocked */
 int networkh; /* network handle */
 int voiceh; /* voice handle */
} port[MAXCHAN+1];

/*
 * Global variable(s)
 */
METAEVENT metaevent; /* metaevent structure */
char *program_name; /* program name */

/*
 * Function prototype(s)
 */
int print_error(char *function);
int evt_hdlr(void);
int open_line_devices(void);
int close_line_devices(void);

/*
 * Main Program
 */
void main(int argc, char *argv[])
{
 /* Set srl mode */
 int mode = SR_STASYNC;

 /* Compiler warnings */
 program_name = argv[0];
 argc = argc;

 /* Set SRL mode */
 sr_setparm(SRL_DEVICE, SR_MODELTYPE, &mode);

 /* Enable the event handler */
 if (sr_enbhdlr(EV_ANYDEV, EV_ANYEVT,
 (long (*) (unsigned long))evt_hdlr) == -1) {
 printf("sr_enbhdlr failed\n");
 exit(1);
 }

 /* Start the library */
 if (gc_Start(NULL) != GC_SUCCESS) {
 /* process error return as shown */
 print_error("gc_Start");
 }

 /* open the line devices */
 open_line_devices();

 /* wait for an event */
 sr_waitevt(50);

 /* close the line devices */
 close_line_devices();

 /* Stop the library */

opens a GlobalCall device gc_Open()

199

 if (gc_Stop() != GC_SUCCESS) {
 /* process error return as shown */
 print_error("gc_Stop");
 }
}

/*
 * int print_error (char *function)
 *
 * INPUT: char *function - function name
 * RETURN: gc_error - GlobalCall error number
 *
 */
int print_error(char *function)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cclib_error; /* Call Control Library error code */
 char *gcmsg; /* points to the gc error message string */
 char *ccmsg; /* points to the cclib error message string */

 gc_ErrorValue(&gc_error, &cclibid, &cclib_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &gcmsg);
 gc_ResultMsg(cclibid, cclib_error , &ccmsg);
 printf ("%s failed\n gc(0x%lx) - %s\n cc(0x%lx) - %s\n",
 function, gc_error, gcmsg, cclib_error, ccmsg);

 return (gc_error);
}

/*
 * int evt_hdlr (void)
 *
 * RETURN: 0 - function successful
 * error - globalcall error number
 *
 */
int evt_hdlr(void)
{
 struct channel *pline;
 int error; /* reason for failure of function */

 if (gc_GetMetaEvent(&metaevent) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_GetMetaEvent");
 return(error);
 }

 if (metaevent.flags & GCME_GC_EVENT) {
 /* process GlobalCall events */

 if (gc_GetUsrAttr(metaevent.linedev, (void **)&pline) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_GetUsrAttr");
 return(error);
 }

 switch (metaevent.evttype) {
 case GCEV_UNBLOCKED:
 printf("received GCEV_UNBLOCKED event on %s\n",
 ATDV_NAMEP(pline->networkh));
 pline->blocked = 0;
 break;

 default:

gc_Open() opens a GlobalCall device

200

 printf ("Unexpected GlobalCall event received\n");
 break;
 }
 }
 else {

 /* process other events */
 }

 return 0;
}

/*
 * int open_line_devices (void)
 *
 * RETURN: 0 - function successful
 * error - GlobalCall error number
 *
 */
int open_line_devices(void)
{
 char devname[64]; /* argument to gc_Open() function */
 int vbnum = 0; /* virtual board number (1-based) */
 int vch = 0; /* voice channel number (1-based) */
 int ts; /* time slot number (1-based) */
 int port_index; /* index for ’port’ */
 int error; /* reason for failure of function */

 /*
 * Construct device name parameter for Open function and
 * Opened line devices for each time slot on DTIB1 using inbound
 * Brazil R2 protocol.
 */
 for (ts = 1,port_index = 1; ts <= MAXCHAN; ts++,port_index++) {

 vbnum = (ts - 1) / 4 + 1;
 vch = ((ts - 1) % 4) + 1;
 sprintf (devname, ":N_dtiB1T%d:P_br_r2_o:V_dxxxB%dC%d", ts, vbnum, vch);

 /* open line device */
 if (gc_Open(&port[port_index].ldev, devname, 0) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_Open");

 return(error);
 }

 /* assign port[port_index].ldev to *dev_handle */
 printf("%ld\n", port[port_index].ldev);

 /* set user attribute */
 if (gc_SetUsrAttr(port[port_index].ldev,
 (void *)&port[port_index]) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_SetUsrAttr");

 return(error);
 }

 /* get network handle */
 if (gc_GetNetworkH(port[port_index].ldev,
 &(port[port_index].networkh)) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_GetNetworkH");

opens a GlobalCall device gc_Open()

201

 return(error);
 }

 /* get voice handle */
 if (gc_GetVoiceH(port[port_index].ldev,
 &(port[port_index].voiceh)) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_GetVoiceH");

 return(error);
 }

 port[port_index].blocked = 1; /* channel is blocked until unblocked */
 /* event is received. */
 }

 /*
 * Application is now ready to make a call or wait for a call.
 */
 return (0);
}

/*
 * int close_line_devices (void)
 *
 * RETURN: 0 - function successful
 * error - GlobalCall error number
 *
 */
int close_line_devices(void)
{
 int port_index; /* port index */
 int error; /* reason for failure of function */

 for (port_index = 1; port_index <= MAXCHAN; port_index++) {
 /* close line device */
 if (gc_Close(port[port_index].ldev) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_Close");

 return (error);
 }
 }

 /* disable the handler */
 if (sr_dishdlr(EV_ANYDEV, EV_ANYEVT,
 (long (*)(unsigned long))evt_hdlr) == -1) {
 printf("sr_dishdlr failed\n");
 exit(1);
 }

 return 0;
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

gc_Open() opens a GlobalCall device

202

n See Also

• gc_Attach()
• gc_Close()
• gc_Detach()
• gc_GetNetworkH()
• gc_GetVoiceH()
• gc_LoadDxParm()
• gc_OpenEx()

opens a GlobalCall device and sets user defined attribute gc_OpenEx()

203

Name: int gc_OpenEx(linedevp, devicename, rfu, usrattr)
Inputs: LINEDEV *linedevp • pointer to returned line device

char *devicename • pointer to ASCII string
int rfu • reserved for future use
void *usrattr • pointer to user attribute

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: system controls and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_OpenEx() function opens a GlobalCall device and sets user defined
attribute and returns a unique line device ID (or handle) to identify the physical
device or devices that carry the call (e.g., a line device may represent a single
network, time slot or the grouping together of a time slot and a voice channel).

The gc_OpenEx() function can be used in place of a gc_Open() function
followed by a gc_SetUsrAttr() function. The gc_OpenEx() function includes
all the functionality of the gc_Open() function (see the gc_Open() function
description for details) plus the added feature of the usrattr parameter. The
usrattr parameter points to a buffer where a user defined attribute is stored thus
eliminating the need to call the gc_SetUsrAttr() function after calling a
gc_Open() function.

Examples of using usrattr include using it as a pointer to a data structure
associated with a line device or an index to an array. The data structure may
contain user information such as the current call state, line device identification,
etc.

Parameter Description

linedevp: see the gc_Open() function description for details

devicename: see the gc_Open() function description for details

gc_OpenEx() opens a GlobalCall device and sets user defined attribute

204

Parameter Description

rfu: see the gc_Open() function description for details

usrattr: pointer to buffer where a user defined attribute is stored.

Termination Event: None.

n Cautions

See the gc_Open() function description for details.

n Example

This gc_OpenEx() function example uses the same example code as the
gc_Open() function example except that the open line devices subroutine is
replaced with the following subroutine:

.

.

.
 */
int open_line_devices(void)
{
 char devname[64]; /* argument to gc_OpenEx() function */
 int vbnum = 0; /* virtual board number (1-based) */
 int vch = 0; /* voice channel number (1-based) */
 int ts; /* time slot number (1-based) */
 int port_index; /* index for ’port’ */
 int lines, brds, tslots; /* variables used for voice/net lib calls */
 int error; /* reason for failure of function */

 /*
 * Construct device name parameter for Open function and
 * Opened line devices for each time slot on DTIB1 using inbound
 * Argentina R2 protocol.
 */
 for (ts = 1,port_index = 1; ts <= MAXCHAN; ts++,port_index++) {

 vbnum = (ts - 1) / 4 + 1;
 vch = ((ts - 1) % 4) + 1;
 sprintf (devname, ":N_dtiB1T%d:P_ar_r2_o:V_dxxxB%dC%d", ts, vbnum, vch);
 sr_hold();
 if (gc_OpenEx(&port[port_index].ldev, devname, 0, (void *)&port[port_index])
 != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_Open");
 sr_release();
 return(error);
 }

opens a GlobalCall device and sets user defined attribute gc_OpenEx()

205

 /* NOTE: The gc_SetUsrAttr() function is not required because
 * the user attribute was set as a parameter in the
 * gc_OpenEx() function.
 */

 if (gc_GetNetworkH(port[port_index].ldev,
 &(port[port_index].networkh)) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_GetNetworkH");
 sr_release();
 return(error);
 }

 if (gc_GetVoiceH(port[port_index].ldev,
 &(port[port_index].voiceh)) != GC_SUCCESS) {
 /* process error return as shown */
 error = print_error("gc_GetVoiceH");
 sr_release();
 return(error);
 }

 port[port_index].blocked = 1; /* channel is blocked until unblocked */
 /* event is received. */

 sr_release();
 }

 /*
 * Application is now ready to make a call or wait for a call.
 */
 return (0);
}
.
.
.

n Errors

See the gc_Open() function description for details.

n See Also

• See the gc_Open() function description for details.
• gc_GetUsrAttr()
• gc_SetUsrAttr()

gc_ReleaseCall() releases all internal resources

206

Name: int gc_ReleaseCall(crn)
Inputs: CRN crn • call reference number

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: basic call control
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_ReleaseCall() function releases all internal resources for the specified
call. This function must be called after a gc_DropCall() function completes.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

crn: Call Reference Number

Termination Event: None.

n Cautions

Applications should call the gc_ReleaseCall() function to release the CRN after a
connection is terminated. Failure to do so may cause memory problems due to
memory being allocated and not being released.

After issuing this function, the CRN is no longer valid.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>

releases all internal resources gc_ReleaseCall()

207

#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has been done:
 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Wait for a call using gc_WaitCall()
 * 3. An event has arrived and has been converted to a metaevent
 * using gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT)
 * 4. The call has been dropped with gc_DropCall()
 */
int release_call(CRN crn)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /*
 * Release the system resources using gc_ReleaseCall().
 */
 if (gc_ReleaseCall(crn) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 metaevent.evtdev, gc_error, msg);
 return(gc_error);
 }
 /*
 * Once gc_ReleaseCall() returns, system is now ready to generate
 * or accept another call on this line device.
 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_AnswerCall()
• gc_DropCall()
• gc_MakeCall()
• gc_WaitCall()

gc_ReqANI() returns the caller’s ID

208

Name: int gc_ReqANI(crn, ani_buf, reqtype, mode)
Inputs: CRN crn • call reference number

char *ani_buf • buffer to store ANI digits
int reqtype • request type
unsigned long mode • async or sync

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h
gcisdn.h

Category: interface specific
Mode: asynchronous or synchronous

Technology: ■ ISDN PRI ❑ E-1 CAS ❑ T-1 robbed bit
❑ Analog

n Description

The gc_ReqANI() function returns the caller’s ID, which is normally included in
the ISDN setup message. If the caller ID does not exist, and the (AT&T) ANI-on-
Demand feature is available, the driver will automatically request caller ID from
the network. The returned caller ID is stored in the buffer indicated by the
ani_buf parameter.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

crn: Call Reference Number

ani_buf: address of the buffer where ANI digits will be loaded. This
buffer will be terminated by ‘\0’.

reqtype: request type; see Table 33 for possible values

mode: set to EV_ASYNC for asynchronous execution or to
EV_SYNC for synchronous execution

returns the caller’s ID gc_ReqANI()

209

Table 33. ANI Request Types

Request Type Description

ISDN_CPN_PREF Calling party number preferred.

ISDN_BN_PREF Billing number preferred.

ISDN_CPN Calling party number only.

ISDN_BN Billing number only.

ISDN_CA_TSC Special use.

Termination Event: In the asynchronous mode, if the calling party number is
acquired successfully, a GCEV_REQANI event is sent to the application;
otherwise, a GCEV_TASKFAIL event is sent.

A GCEV_DISCONNECTED event may be an unsolicited event reported to the
application after a gc_ReqANI() function is issued.

n Cautions

Ensure that ani_buf buffer is at least as large as GC_ADDRSIZE bytes.
Currently, ANI-on-Demand is only available on the AT&T ISDN network. If this
function is invoked for an unsupported technology, the function fails. The error
value EGC_UNSUPPORTED will be the GlobalCall value returned when the
gc_ErrorValue() function is used to retrieve the error code.

n Example

/*
 * Assume the following has been done:
 * 1. device has been opened (e.g. :N_dtiB1T1:P_isdn,
 * :N_dtiB1T2:P_isdn, etc...)
 * 2. gc_WaitCall() has been issued to wait for a call.
 * 3. gc_MetaEvent() has been called to convert the event into metaevent.
 * 4. a GCEV_OFFERED has been detected.
 */

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

gc_ReqANI() returns the caller’s ID

210

#include <gcisdn.h>

/*
 * For this example, let’s assume that the mode = EV_SYNC and
 * req_type = ISDN_CPN_PREF (Calling Party Number Preferred).
 * req_type can be one of following:
 * ISDN_BN_PREF (Billing Number preferred)
 * ISDN_CPN (Calling Party Number only)
 * ISDN_BN (Billing Number only)
 * ISDN_CA_TSC (Special Use)
 */
int req_cpn(CRN crn, char *ani_buf, int req_type, unsigned long mode)
{
 LINEDEV ddd; /* Line device */
 int gc_err; /* GlobalCall Error Code */
 int cclibid; /* Call Control library ID */
 long cclib_err; /* Call Control Error Code */
 char *msg; /* Error Message */

 if(gc_CRN2LineDev(crn, &ddd) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error: gc_CRN2LineDev ErrorValue: %d - %s\n",
 cclib_err, msg);
 return(cclib_err);
 }

 if(gc_ReqANI(crn, ani_buf, req_type, mode) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ddd, gc_err, msg);
 return(cclib_err);
 }

 return(0);
}

n Errors

If this function returns a <0 to indicate failure or if the GCEV_TASKFAIL event
is received, use gc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultMsg() function as described in section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_GetANI()
• gc_WaitCall()

disconnects any active calls gc_ResetLineDev()

211

Name: int gc_ResetLineDev(linedev, mode)
Inputs: LINEDEV linedev • GlobalCall line device handle

unsigned long mode • async or sync
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: system control and tools

Mode: asynchronous or synchronous
Technology: ■ ISDN PRI ❑ E-1 CAS ❑ T-1 robbed bit

■ Analog

n Description

The gc_ResetLineDev() function disconnects any active calls on the line device.
All calls being setup are aborted. This function is typically used after a recovery
from a trunk error, a recovery from an alarm condition or when resetting the
channel to the Null state.

When used in asynchronous mode, the GCEV_RESETLINEDEV event indicates
successful termination of the gc_ResetLineDev() function. After receiving this
event, the application must issue a new gc_WaitCall() function to receive the
next incoming call on the channel.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device

mode: set to EV_ASYNC for asynchronous execution or to
EV_SYNC for synchronous execution

Termination Event: In the asynchronous mode, GCEV_RESETLINEDEV event
is sent to application if successful; GCEV_TASKFAIL event if not successful.

gc_ResetLineDev() disconnects any active calls

212

n Cautions

After successful completion of this function, the application must issue a new
gc_WaitCall() function to receive the next call on the channel.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#define MAXCHAN 30 /* max. number of channels in system */
/*
 * Data structure which stores all information for each line
 */
struct linebag {
 LINEDEV ldev; /* GlobalCall line device handle */
 CRN crn; /* GlobalCall API call handle */
 int state; /* state of first layer state machine */
} port[MAXCHAN+1];

/*
 * Assume the following has been done:
 * 1. Opened line devices for each time slot on DTIB1.
 * 2. Application has received GCEV_BLOCKED due to an alarm
 * condition on the line
 * 3. Application has received GCEV_UNBLOCKED due to alarm
 * recovered
 *
 * At this point, the application can ’reset’
 * all of it’s line devices back to normal.
 * (Alternatively, this could be called at any time)
 */

int restart(void)
{
 int i; /* index for ’port’ */
 int ts; /* network time slot number */

 /*
 * Clean up and get ready to generate/accept calls again.
 */
 for (ts = 1,i=1; ts <= MAXCHAN; ts++,i++) {
 if (gc_ResetLineDev(port[i].ldev, EV_SYNC) != GC_SUCCESS) {
 /* get cause value and process error */
 }

 /*
 * Application will need to re-issue gc_WaitCall() to wait
 * for incoming calls
 */
 }
 return (0);
}

disconnects any active calls gc_ResetLineDev()

213

n Errors

If this function returns a <0 to indicate failure or if the GCEV_TASKFAIL event
is received, use gc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultMsg() function as described in section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_WaitCall()

gc_ResultMsg() retrieves an ASCII string describing result code

214

Name: int gc_ResultMsg(cclibid, result_code, msg)
Inputs: int cclibid • call control library ID

long result_code • used to get associated message
char **msg • pointer to address of returned

message string
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: system control and tools

Mode: synchronous
Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit

■ Analog

n Description

The gc_ResultMsg() function retrieves an ASCII string describing result code.
The result_code parameter may represent an error code returned by the
gc_ErrorValue() function or a result value returned by a gc_ResultValue()
function.

Parameter Description

cclibid: call control library identification from which the result_code
was generated. If the result_code value is a GlobalCall error
code or result value, then set cclibid to LIBID_GC.

result_code: result value of the event or error code from the library,
cclibid

msg: pointer to address where the description of the result_code
message will be stored

Termination Event: None.

n Cautions

Do not overwrite the *msg pointer as it points to private internal GlobalCall data
space.

retrieves an ASCII string describing result code gc_ResultMsg()

215

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/* cclidid = LIBID_GC will print GC Lib’s error code */
void print_result_msg(int cclibid, long result_code)
{
 char *msg; /* points to the error message string */
 char *lib_name; /* library name for cclibid */

 if (gc_ResultMsg(cclibid, result_code, &msg) == GC_SUCCESS) {
 gc_CCLibIDToName(cclibid, &lib_name);
 printf("%A library had error 0x%lx - %s\n", lib_name, cc_error, msg);
 } else {
 printf("gc_ResultMsg failed\n");
 }
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_ResultValue()

gc_ResultValue() retrieves the cause

216

Name: int gc_ResultValue(metaeventp, gc_resultp, cclibidp,
cclib_resultp)

Inputs: METAEVENT
 *metaeventp

• pointer to a metaevent block

int *gc_resultp • pointer to returned GlobalCall
result

int *cclibidp • pointer to returned call control
library ID

long *cclib_resultp • pointer to returned call control
library result

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h
icapi.h (optional, if using ICAPI errors)
gcisdn.h (optional, if using ISDN errors)

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_ResultValue() function retrieves the cause of an event. The “result”
uniquely identifies the cause of the event to which the metaeventp parameter
points. The GlobalCall result value, the call control library ID, and the actual call
control library result value are available upon successful return of the function.

Parameter Description

metaeventp: pointer to the event data block. This pointer is
acquired via gc_GetMetaEvent() or the
gc_GetMetaEventEx() function (Windows NT
extended asynchronous mode only)..

gc_resultp: address where the GlobalCall result value is to be
stored

cclibidp: address where the identification of the call control
library associated with this metaevent is to be stored

retrieves the cause gc_ResultValue()

217

Parameter Description

cclib_resultp: address where the result value associated with the call
control library metaevent is to be stored

Termination Event: None.

n Cautions

None

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

int get_result_value(void)
{
 int gc_result; /* GlobalCall error code */
 int cclibid; /* Call Control Library ID */
 long cc_result; /* Call Control Library error code */
 char *msg; /* pointer to error message string */

 /* Obtain the event data */
 sr_waitevt(-1); /* Wait indefinitely for an event */
 gc_GetMetaEvent(&metaevent); /* Get event parameters into metaevent */

 /* find the reason for the event */
 if (gc_ResultValue(&metaevent, &gc_result, &cclibid, &cc_result)
 != GC_SUCCESS) {
 gc_ResultMsg(LIBID_GC, (long) gc_result, &msg);
 printf ("Event 0x%lx received on LDEV: %ld - %s\n", metaevent.evttype,
 metaevent.evtdev, msg);
 return(0);
 } else {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf("Error retrieving ResultValue on line device handle: 0x%lx,\
 ErrorValue: 0x%lx - %s\n",
 metaevent.evtdev, gc_error, msg);
 return(gc_error);
 }
}

gc_ResultValue() retrieves the cause

218

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_ResultMsg()

sets billing information for the call gc_SetBilling()

219

Name: int gc_SetBilling(crn, rate_type, ratep, mode)
Inputs: CRN crn • call reference number

int rate_type • type of billing data
GC_RATE_U *ratep • pointer to call charge rate
unsigned long mode • async or sync

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h
gcisdn.h (for applications that use ISDN symbols)

Category: optional feature
Mode: asynchronous or synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ❑ T-1 robbed bit
❑ Analog

n Description

The gc_SetBilling() function sets billing information for the call associated with
the specified CRN. For protocols that support this feature, this function tells the
Central Office whether or not to charge for the call. For AT&T ISDN
applications, the billing rate is available to applications that use AT&T’s Vari-Bill
service. For some E-1 CAS protocols, different billing rates can be chosen on a
per call basis.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information about the rate_type, ratep and mode parameters.

Parameter Description

crn: Call Reference Number

rate_type: type of billing data.

ratep: pointer to a data structure which contains the charge
information for the current call.

mode: set to EV_SYNC for synchronous execution or to
EV_ASYNC for asynchronous execution (refer to the
appropriate GlobalCall Technology User’s Guide to
determine if the asynchronous mode is supported for your
technology)

gc_SetBilling() sets billing information for the call

220

Termination Event: In the asynchronous mode, a GCEV_SETBILLING event is
sent to the application if successful; a GCEV_TASKFAIL event if not successful..

n Cautions

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

/*
 * Assume the following has been done:
 * 1. device has been opened (e.g. :N_dtiB1T1:P_isdn,
 * :N_dtiB1T2:P_isdn, etc...)
 * 2. gc_WaitCall() has been issued to wait for a call.
 * 3. gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT) has been
 * called to convert the event into metaevent.
 * 4. a GCEV_OFFERED has been detected.
 * 5. a call has been established.
 */

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#include <gcisdn.h>

/*
 * For this example, let’s assume that mode = SYNC and
 * the rate_type = ISDN_FLAT_RATE. The ratep stores the billing information.
 * rate_type can be one of the following:
 * ISDN_NEW_RATE
 * ISDN_PREM_CHARGE
 * ISDN_PREM_CREDIT
 * ISDN_FREE_CALL
 *
 * Note: This is only available for some protocols.
 * This function call is used anytime after the connection
 * is established.
 */
int set_billing(CRN crn, int rate_type, GC_RATE_U *ratep, unsigned long mode)
{
 LINEDEV ddd; /* Line device */
 int gc_err; /* GlobalCall Error Code */
 int cclibid; /* Call Control library ID */
 long cclib_err; /* Call Control Error Code */
 char *msg; /* Error Message */

 if(gc_CRN2LineDev(crn, &ddd) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error: gc_CRN2LineDev ErrorValue: %d - %s\n",
 cclib_err, msg);

sets billing information for the call gc_SetBilling()

221

 return(cclib_err);
 }

 if(gc_SetBilling(crn, rate_type, ratep, mode) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ddd, gc_err, msg);
 return(cclib_err);
 }

 return(0);

}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_SetParm()

gc_SetCallingNum() sets default calling party number

222

Name: int gc_SetCallingNum(linedev, calling_num)
Inputs: LINEDEV linedev • GlobalCall line device handle

char *calling_num • calling phone number string
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: optional feature

Mode: synchronous
Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit

■ Analog

n Description

The gc_SetCallingNum() function sets default calling party number associated
with the specific line device. The calling party number ends with ‘\0’. The calling
party number may also be set using the gc_SetParm() function.

Parameter Description

linedev: GlobalCall line device handle

calling_num: phone number of the calling party (ASCII string format)

Termination Event: None.

n Cautions

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

sets default calling party number gc_SetCallingNum()

223

int set_calling_num(LINEDEV ldev)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /* Set up the calling party number on the line device */
 if (gc_SetCallingNum(ldev, "2019933000") != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);
 }
 /*
 * Application can proceed to make a call, and the calling party
 * number will be as set above. It may be changed later, if
 * necessary.
 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_MakeCall()

gc_SetChanState() changes the maintenance state

224

Name: int gc_SetChanState(linedev, chanstate, mode)
Inputs: LINEDEV linedev • GlobalCall line device handle

int chanstate • channel service state
unsigned long mode • async or sync

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: optional feature
Mode: asynchronous or synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
❑ Analog

n Description

The gc_SetChanState() function changes the maintenance state of the indicated
channel. When power is initially applied, all channels are placed in the In Service
state.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

chanstate: service state of line. Possible values are: In Service,
Maintenance, and Out of Service, see Table 34.

mode: set to EV_ASYNC for asynchronous execution or to EV_SYNC
for synchronous execution

changes the maintenance state gc_SetChanState()

225

Table 34. Service States

Type Description

GCLS_INSERVICE Inform driver that host is ready to receive
and send a message.

GCLS_MAINTENANCE Inform host that normal outbound traffic is
not allowed, and that only inbound test calls
can be made.

GCLS_OUT_OF_SERVICE Inform driver that host is not ready to
receive or send messages. See the
GlobalCall Technology User’s Guide for
your network interface for inbound and
outbound requests that will be rejected.

Termination Event: In the asynchronous mode, if the request for a change of
channel state is accepted, a GCEV_SETCHANSTATE event is sent to the
application; otherwise, a GCEV_TASKFAIL event is sent.

n Cautions

This function should only be invoked while in the Null state.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/* Assume following was done:
 * IF not in the Null state, THEN
 * issue gc_DropCall() function (if needed) and then the
 * gc_ReleaseCall() function.
 */
int set_channel_InService(LINEDEV ldev)
{
 int state; /* State to which channel has to be set */

 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /*

gc_SetChanState() changes the maintenance state

226

 * Set channel to "INSERVICE" state
 */
 state = GCLS_INSERVICE; /* constant describing channel state */
 if (gc_SetChanState(ldev, state, EV_SYNC) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);
 }

 /*
 * Application can change state again when necessary.
 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure or if the GCEV_TASKFAIL event
is received, use gc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultMsg() function as described in section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_WaitCall()

sets the event mask gc_SetEvtMsk()

227

Name: int gc_SetEvtMsk(linedev, bitmask, action)
Inputs: LINEDEV linedev • GlobalCall line device handle

unsigned long bitmask • bitmask or events
int action • action to be taken on the mask

bit
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: system control and tools

Mode: synchronous
Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit

■ Analog

n Description

The gc_SetEvtMsk() function sets the event mask associated with the specified
line device. If an event bitmask parameter is cleared, the event will be disabled
and will not be sent to the application. The default is to enable all events.

The linedev parameter may represent a network interface trunk or an individual
channel, e.g., a time slot. See the GlobalCall Technology User’s Guide for your
network interface to determine the level of the event masks needed.

Parameter Description

linedev: GlobalCall line device handle

bitmask: specifies the events to be enabled or disabled by setting the
bitmask. Multiple transition events may be enabled or
disabled with one function call if the bitmask values are
bitwise ORed. Possible bitmask values are listed in Table 35.

action: application may either set or reset the mask bit(s) as specified
in bitmask. Possible actions are:

• GCACT_SETMSK: Enables notification of events
specified in bitmask parameter and disables notification
of any event not specified.

• GCACT_ADDMSK: Adds notification of events
specified in bitmask parameter to previously enabled

gc_SetEvtMsk() sets the event mask

228

Parameter Description
events.

• GCACT_SUBMSK: Disables notification of events
specified in bitmask parameter.

Table 35. bitmask Parameter Values

Type Description

GCMSK_ALERTING Set mask for alerting event
GCEV_ALERTING (default: enabled).

GCMSK_BLOCKED Set mask for GCEV_UNBLOCKED event
(default: enabled).

GCMSK_UNBLOCKED Set mask for GCEV_UNBLOCKED event
(default: enabled).

GCMSK_PROCEEDING (ISDN only) Set mask for proceeding event
GCEV_PROCEEDING (default: enabled).

GCMSK_PROC_SEND (ISDN only) Set mask (enable) to allow
application to send the Proceeding message
or clear mask (disable) to have this handled
automatically (default: disabled - message
automatically sent by firmware).

GCMSK_PROGRESS (ISDN only) Set mask for call progress event
GCEV_PROGRESS (default: enabled).

GCMSK_SETUP_ACK (ISDN only) Set mask to report (enabled) or
to not report (disabled) the incoming
“SETUP_ACK” message (default: disabled)

The GCEV_BLOCKED and GCEV_UNBLOCKED events are maskable on a line
device representing a trunk or a time slot level. The application may disable
(mask) the event on any line device so that the event is not sent to that line device.
For example, when a trunk alarm occurs, this alarm is reported via the
GCEV_BLOCKED event. If the application has not masked (disabled) this
GCEV_BLOCKED event on some or all of the opened time-slot level line devices
on the trunk, the GCEV_BLOCKED event will be sent to each of the line devices

sets the event mask gc_SetEvtMsk()

229

on the trunk. Also, if this GCEV_BLOCKED event is not disabled on the board-
level line device, the alarm is sent to the board.

The GCEV_ALERTING event is maskable as described above except that this
event is always call related and always associated with a time-slot level line
device. The time-slot level line device should be passed to the gc_SetEvtMsk()
function.

See the GlobalCall Technology User’s Guide for your network interface for
additional details.

Termination Event: None.

n Cautions

When using the ISDN call control library, if the line device represents an ISDN
time slot, setting the mask for an event on any time slot results in setting the mask
to the same value for all time slots on the same trunk. The ISDN call control
library treats the line device as if it were at board level, thus setting the mask for
all time slot level line devices on a trunk when any line device mask is set.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

/*
 * Assume the following has been done:
 * 1. The line device has been opened.
 */
int set_event_mask(LINEDEV ldev)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /*
 * Set the event blocked and unblocked event masks to enable
 * for this application.
 */
 /*
 * Enable the Blocked and Unblocked events.
 */
 if (gc_SetEvtMsk(ldev, (GCMSK_BLOCKED | GCMSK_UNBLOCKED), GCACT_ADDMSK)
 != GC_SUCCESS) {
 /* process error return as shown */

gc_SetEvtMsk() sets the event mask

230

 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);
 }

 /*
 * Proceed to generate or accept calls on this line device.
 */

 /*
 * Now disable notification of Blocked and Unblocked events,
 * and enable notification of Alerting event, without
 * affecting any other event masks which may have been set.
 */
 if (gc_SetEvtMsk(ldev, (GCMSK_BLOCKED | GCMSK_UNBLOCKED), GCACT_SUBMSK)
 != GC_SUCCESS) {
 /* Process error */
 }
 if (gc_SetEvtMsk(ldev, GCMSK_ALERTING, GCACT_ADDMSK) != GC_SUCCESS) {
 /* Process error */
 }
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_SetParm()

set an additional information element gc_SetInfoElem()

231

Name: int gc_SetInfoElem(linedev, iep)
Inputs: LINEDEV linedev • D channel GlobalCall line

device handle
GC_IE_BLK *iep • pointer to information

element (IE) block
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
gcisdn.h

Category: interface specific
Mode: synchronous

Technology: ■ ISDN PRI ❑ E-1 CAS ❑ T-1 robbed bit
❑ Analog

n Description

The gc_SetInfoElem() function allows applications to set an additional
information element in the next outbound ISDN message on a specific D channel.
This and the facility functions are useful tools for users who wish to use ISDN
flexibility and capabilities. A typical application for the gc_SetInfoElem()
function is inserting user-to-user information elements in outbound messages.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

iep: pointer to the starting address of the information element data
structure, see paragraph 5.2. GC_IE_BLK for data structure
details

Termination Event: None.

gc_SetInfoElem() set an additional information element

232

n Cautions

The gc_SetInfoElem() function must be used just prior to calling a function that
sends an ISDN message. The information elements specified by the
gc_SetInfoElem() function are applicable only to the next outbound ISDN
message.

The line device number in the parameter must match the line device number in the
function call that sends the ISDN message.

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

/*
 * Assume the following has been done:
 * 1. device has been opened (e.g. :N_dtiB1T1:P_isdn,
 * :N_dtiB1T2:P_isdn, etc...)
 */

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#include <gcisdn.h>

/*
 * the following info elem block structure can be passed to the function.
 * IE_BLK ie;
 * ie.length = 0x08; ===> Length of the info elem block.
 * ie.data[0] = 0x7e; ===> User-User info elem id.
 * ie.data[1] = 0x06; ===> Length of the info elem.
 * ie.data[2] = 0x08; ===> Protocol Discriminator.
 * ie.data[3] = 0x41; ===> the following is the message.
 * ie.data[4] = 0x42;
 * ie.data[5] = 0x43;
 * ie.data[6] = 0x44;
 * ie.data[7] = 0x45;
 */

int set_info_element(LINEDEV ddd, GC_IE_BLK *ie_blkp)
{
 int gc_err; /* GlobalCall Error Code */
 int cclibid; /* Call Control library ID */
 long cclib_err; /* Call Control Error Code */
 char *msg; /* Error Message */

 if(gc_SetInfoElem(ddd, ie_blkp) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);

set an additional information element gc_SetInfoElem()

233

 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ddd, gc_err, msg);
 return(cclib_err);
 }

 return(0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_SetParm()

gc_SetParm() sets the default parameters

234

Name: int gc_SetParm(linedev, parm_id, value)
Inputs: LINEDEV linedev • GlobalCall line device handle

int parm_id • parameter ID
GC_PARM value • parameter value

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h
gcisdn.h (for applications that use ISDN symbols)

Category: system control and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
❑ Analog

n Description

The gc_SetParm() function sets the default parameters and all channel
information associated with the specific line device.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

parm_id: The parameter ID definitions are listed in Table 36.
Parameter Descriptions, gc_GetParm() and
gc_SetParm(). The “Level” column lists whether the
parameter is a channel level parameter or a trunk level
parameter. To set a trunk level parameter, the linedev
parameter must be the device ID associated with a network
interface trunk; see paragraph 5.5. GC_PARM for data
structure details.

value: value selected for parameter being set

sets the default parameters gc_SetParm()

235

Table 36. Parameter Descriptions, gc_GetParm() and gc_SetParm()

Parameter† Level Description

GCPR_CALLINGPARTY chan Calling party number (pointer to null-
terminated ASCII string) (possible
values are the existing GTD
identification numbers).

Use paddress field of GC_PARM.

E-1 CAS Parameters:

GCPR_LOADTONES chan Load tones flag enables or disables
downloading of tones when a voice
resource is attached (possible values:
GCPV_ENABLE, GCPV_DISABLE;
default: enabled).

Use shortvalue field of GC_PARM.

ISDN Parameters‡:

BC_INFO_MODE chan Bearer channel information transfer
mode

BC_XFER_CAP chan Bearer channel information transfer
capacity

BC_XFER_MODE chan Bearer channel information transfer
mode

BC_XFER_RATE chan Bearer channel information transfer
rate

USRINFO_LAYER1_
PROTOCOL

chan Layer 1 protocol to use on bearer
channel

USR_RATE chan User rate to use on bearer channel
(layer 1 rate)

CALLED_NUM_TYPE chan Called party number type

CALLED_NUM_PLAN chan Called party number plan

CALLING_NUM_TYPE chan Calling party number type

CALLING_NUM_PLAN chan Calling party number plan

gc_SetParm() sets the default parameters

236

Parameter† Level Description

CALLING_
PRESENTATION

chan Calling presentation indicator

CALLING_SCREENING chan Calling screening indicator field

GCPR_MINDIGITS trunk Sets minimum number of DDI digits
to collect prior to terminating
gc_WaitCall().

GCPR_MINDIGITS may be set using
the gc_SetParm() function. This
parameter value cannot be retrieved
using the gc_GetParm() function.

† = See the GlobalCall Technology User’s Guide for your network interface to
determine applicable parameters.
‡ = All ISDN parameters use the intvalue field of GC_PARM.

Termination Event: None.

n Cautions

None.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#include <gcisdn.h>

int set_parm(ldev)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */
 GC_PARM gc_parm; /* parm values */
 /*
 * Disable downloading tones to firmware. This is to prevent GlobalCall
 * from overwriting tones which the application has set up
 */
 gc_parm.shortvalue = GCPV_DISABLE;
 if (gc_SetParm(ldev, GCPR_LOADTONES, gc_parm) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);

sets the default parameters gc_SetParm()

237

 }
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_GetParm()

gc_SetUsrAttr() sets an attribute defined by the user

238

Name: int gc_SetUsrAttr(linedev, usrattr)
Inputs: LINEDEV linedev • GlobalCall line device handle

void *usrattr • user attribute
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: system control and tools

Mode: synchronous
Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit

■ Analog

n Description

The gc_SetUsrAttr() function sets an attribute defined by the user. Examples of
using usrattr include using it as a pointer to a data structure associated with a line
device or an index to an array. The data structure may contain user information
such as the current call state, line device identification, etc. The attribute number
is retrieved using the gc_GetUsrAttr() function.

Parameter Description

linedev: GlobalCall line device handle

usrattr: user defined attribute. Applications can recall this number by
calling gc_GetUsrAttr().

Termination Event: None

n Cautions

None

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>

sets an attribute defined by the user gc_SetUsrAttr()

239

#include <gcerr.h>

#define MAXCHAN 30 /* max. number of channels in system */
/*
 * Data structure which stores all information for each line
 */
struct linebag {
 LINEDEV ldev; /* GlobalCall line device handle */
 CRN crn; /* GlobalCall API call handle */
 int state; /* state of first layer state machine */
} port[MAXCHAN+1];

/*
 * Associates port_num with ldev for later use
 * by other procedures - will save table searches
 * for the port_num corresponding to ldev
 */
int set_usrattr(LINEDEV ldev, int port_num)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /*
 * Assuming that a line device is opened already and
 * that its ID is ldev, let us store a meaningful number
 * for this ldev as an attribute for this ldev set by user
 */
 if (gc_SetUsrAttr(ldev, (void *) port_num) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ldev, gc_error, msg);
 return(gc_error);
 }
 return (0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_GetUsrAttr()
• gc_OpenEx()

gc_SndMsg() sends non-call state related ISDN message

240

Name: int gc_SndMsg(linedev, crn, msg_type, sndmsgptr)
Inputs: LINEDEV linedev • line device number for the

B channel
CRN crn • call reference number
int msg_type • ISDN message type
GC_IE_BLK
 *sndmsgptr

• pointer to the Information Element
(IE) block

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h
gcisdn.h

Category: interface specific
Mode: synchronous

Technology: ■ ISDN PRI ❑ E-1 CAS ❑ T-1 robbed bit
❑ Analog

n Description

The gc_SndMsg() function sends non-call state related ISDN message to the
network over the D channel while a call exists. The data is sent transparently over
the D channel data link with LAPD protocol.

NOTE: The message must be sent over a channel that has a CRN assigned to it.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: line device number for the time slot level line device (the
B channel)

crn: Call Reference Number. Each call needs a CRN.

msg_type: specifies the type of message to be sent, see the appropriate
GlobalCall Technology User’s Guide for details.

sndmsgptr: pointer to the buffer that contains the IEs to be sent in the
message; see paragraph 5.2. GC_IE_BLK for data structure
details.

sends non-call state related ISDN message gc_SndMsg()

241

Termination Event: None.

n Cautions

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

For some call control libraries (e.g., ISDN library), if an invalid parameter is used
for a gc_SndMsg() call, then the invalid parameter is ignored, processing
continues and the function terminates normally.

n Example

/*
 * Assume the following has been done:
 * 1. device has been opened (e.g. :N_dtiB1T1:P_isdn,
 * :N_dtiB1T2:P_isdn, etc...)
 * 2. gc_WaitCall() has been issued to wait for a call.
 * 3. gc_MetaEvent() or gc_GetMetaEventEx() (Windows NT) has been
 * called to convert the event into metaevent.
 * 4. a GCEV_OFFERED has been detected.
 * 5. a call has been established.
 */

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>
#include <gcisdn.h>

/*
 * the following info elem block structure can be passed to the function.
 * IE_BLK ie;
 * ie.length = 0x08; ===> Length of the info elem block.
 * ie.data[0] = 0x7e; ===> User-User Info elem id.
 * ie.data[1] = 0x06; ===> Length of the info elem.
 * ie.data[2] = 0x08; ===> Protocol Discriminator.
 * ie.data[3] = 0x41; ===> the following is the message.
 * ie.data[4] = 0x42;
 * ie.data[5] = 0x43;
 * ie.data[6] = 0x44;
 * ie.data[7] = 0x45;
 */

int send_message(CRN crn, int msg_type, GC_IE_BLK *sndmsgp)
{
 LINEDEV ddd; /* Line device */
 int gc_err; /* GlobalCall Error Code */
 int cclibid; /* Call Control library ID */
 long cclib_err; /* Call Control Error Code */
 char *msg; /* Error Message */

gc_SndMsg() sends non-call state related ISDN message

242

 if(gc_CRN2LineDev(crn, &ddd) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ddd, gc_err, msg);
 return(cclib_err);
 }

 if(gc_SndMsg(ddd, crn, msg_type, sndmsgp) != GC_SUCCESS) {
 gc_ErrorValue(&gc_err, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_err, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 ddd, gc_err, msg);
 return(cclib_err);
 }

 return(0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_Close()

starts all configured call control libraries gc_Start()

243

Name: int gc_Start(startp)
Inputs: GC_START_STRUCT

 *startp
• reserved for future use

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: System controls and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_Start() function starts all configured call control libraries. This function
MUST be called before any other GlobalCall function is called. The function
opens the call control libraries that interface directly to the network interface so
that these libraries can be used by the GlobalCall library.

This function returns 0 if all call control libraries have successfully started.
Successfully started libraries are available to be used by the GlobalCall functions
and are called “available libraries.” Libraries which fail to start are called “failed”
libraries.

To avoid link errors in UNIX applications wherein a particular call control library
is not required, a library with a minimal set of internal functions is provided. This
library is called a “stub” library and it is entered into the list of configured call
control libraries recognized by the GlobalCall API. A stub library is not capable
of being started and thus does not become available. Th. Non-stub libraries
which fail to start are called “failed” libraries.

For UNIX applications, the gc_Start() function must be called from the parent
process when creating child processes.

For Windows NT applications, the gc_Start() function must be called from the
primary thread when creating multiple threads. The gc_Stop() function must be
called from the same thread that issued the gc_Start() call.

gc_Start() starts all configured call control libraries

244

Parameter Description

startp: reserved for future use: set startp to NULL.

Termination Event: None

Use the gc_CCLibStatusAll() function to determine the number and status
(started, configured, failed, stub) of all call control libraries.

n Cautions

This function must be called BEFORE calling other GlobalCall functions and
should not be called again until gc_Stop() is called. An error is returned if the
gc_Start() function is called more than once without calling the gc_Stop()
function.

For UNIX applications, this function must be called from the parent process when
creating child processes.

For Windows NT applications, this function must be called from the primary
thread when creating multiple threads.

This function automatically calls the gc_Stop() function to stop any library that
may be running before starting all libraries.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

int sysinit()
{
 GC_START_STRUCT startp; /* Structure for gc_Start() */
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /* Open all necessary vox/log files */

 /* Next issue a gc_Start() Call */

starts all configured call control libraries gc_Start()

245

 memset(&startp, ’\0’, sizeof(GC_START_STRUCT));
 if (gc_Start(&startp) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error in gc_Start ErrorValue: %d - %s\n",
 gc_error, msg);
 return(gc_error);
 }

 /* Next open the GlobalCall Line Devices */

 return(0);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

A gc_Start() function can fail for multiple, simultaneous causes. For example,
both of the following failure conditions might be present and therefore must be
rectified:

• EGC_CCLIBSTART indicates that at least one call control library failed
to start.

• EGC_ALARMDBINIT indicates that the alarm database failed to
initialize, probably due to insufficient dynamic memory.

If this function returns a -1, then all configured libraries did not start successfully.

n See Also

• gc_CCLibStatusAll()
• gc_Stop()

gc_StartTrace() trace and place results in shared RAM

246

Name: int gc_StartTrace(linedev, filename)
Inputs: LINEDEV linedev • GlobalCall line device handle

char *filename • file name for trace
Returns: 0 if successful

<0 if failure
Includes: gclib.h

gcerr.h
Category: interface specific

Mode: asynchronous
Technology: ■ ISDN PRI ❑ E-1 CAS ❑ T-1 robbed bit

❑ Analog

n Description

The gc_StartTrace() function instructs the firmware to trace and place results in
shared RAM. This function opens a file under the filename parameter and saves
the results to this file. This function allows the application to trace ISDN messages
on the specified D channel. The saved trace file is interpreted off line by the
PRITRACE utility program supplied with the software package. The trace
continues until a gc_StopTrace() function is issued.

NOTE: The linedev parameter must use the line device number for the D channel
board.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device handle of D channel board.

filename: specifies file name for the trace.

Termination Event: None. The trace initiated by this function continues until a
gc_StopTrace() function is issued for the line device.

trace and place results in shared RAM gc_StartTrace()

247

n Cautions

If the gc_StartTrace() function was issued, the application should call the
gc_StopTrace() function before calling the gc_Close() function for that line
device.

When using the gc_StartTrace() function, only one board can be traced at a
time. When using UNIX or Windows NT single process programming, an error is
returned if the gc_StartTrace() function is issued when a trace is currently
running on another board.

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

LINEDEV bdev; /* board level device number */
int parm_id; /* parameter id */
int rc; /* Return code */
int value; /* value to be for specified parameter */
char *filename; /* file name for the trace */
int cclibid; /* cclib id for gc_ErrorValue() */
int gc_error; /* GlobalCall error code */
long cc_error; /* Call Control Library error code */
char *msg; /* points to the error message string */

main()
{
 if(gc_Open(&bdev, "dtiB1", 0) != GC_SUCCESS) {
 gc_ErrorValue(&gc_error, &cclibid, &cclib_err);
 gc_ResultMsg(cclibid, cclib_error, &msg);
 printf ("Error: gc_Open, ErrorValue: %d - %s\n",
 cclib_err, msg);
 return(gclib_err);
 }

 /* Only one D channel can be traced at any given time */
 .
 .
 .

 filename="/tmp/trace.log";
 rc = gc_StartTrace(bdev, filename);
 if (rc != GC_SUCCESS) {
 printf("Error in gc_StartTrace, rc = %x\n", rc);
 } else {
 /* continue */

gc_StartTrace() trace and place results in shared RAM

248

 }
 .
 .
 .
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_StopTrace()

stops all configured call control libraries gc_Stop()

249

Name: int gc_Stop(void)
Inputs: none

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: System controls and tools
Mode: synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_Stop() function stops all configured call control libraries started and
cleans-up the GlobalCall database. This function MUST be the last GlobalCall
function called before exiting the application or issuing another gc_Start()
function.

For UNIX applications, this function must be called from the parent process when
child processes are used.

For Windows NT applications, the gc_Stop() function must be called from the
same thread that issued the gc_Start() call.

Termination Event: None

n Cautions

This function must be called before exiting the application. If this function fails,
exit your application before issuing another gc_Start() function. This function
must be called from the parent process when child processes are used.

All open devices should be closed before issuing a gc_Stop() function.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>

gc_Stop() stops all configured call control libraries

250

#include <stdlib.h>
#include <gclib.h>
#include <gcerr.h>

#define MAXCHAN 30 /* Total Number of channels opened */

LINEDEV port[MAXCHAN + 1]; /* Array of line devices previously opened */

void sysexit(int exit_code)
{
 int port_num; /* Index used for port[] */
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /* First close all the handles for the opened boards */

 /* Now close all the open GlobalCall devices */
 for (port_num = 1; port_num <= MAXCHAN; port_num++) {
 if (gc_Close(port[port_num].ldev) != GC_SUCCESS) {
 /* Process error return from gc_Close() */
 }
 }

 /* Issue gc_Stop() Next */
 if (gc_Stop() != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("gc_Stop returns error ErrorValue: %d - %s\n",
 gc_error, msg);
 }

 /* Close all open file handles corresponding to recorded files and exit */
 exit(exit_code);
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_Start()

stops the trace gc_StopTrace()

251

Name: int gc_StopTrace(linedev)
Inputs: LINEDEV linedev • GlobalCall line device handle

Returns: 0 if successful
<0 if failure

Includes: gclib.h
gcerr.h

Category: interface specific
Mode: synchronous

Technology: ■ ISDN PRI ❑ E-1 CAS ❑ T-1 robbed bit
❑ Analog

n Description

The gc_StopTrace() function stops the trace that was started using the
gc_StartTrace() function.

Parameter Description

linedev: GlobalCall line device handle of D channel board.

Termination Event: None

n Cautions

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
the gc_ErrorValue() function is used to retrieve the error code.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

LINEDEV bdev; /* board level device number */
int parm_id; /* parameter id */
int rc; /* Return code */
int value; /* value to be for the specified parameter */
int D_CH_hdl; /* identify D channel to be traced */
char *filename; /* file name for the trace */

gc_StopTrace() stops the trace

252

main()
{
/* Only one D channel can be traced at any given time. */
 .
 .
 .
 rc = gc_StopTrace(bdev);
 if (rc != GC_SUCCESS) {
 printf("Error in gc_StopTrace, rc = %x\n", rc);
 } else {
 /* Process event */
 }
 .
 .
 .
}

n Errors

If this function returns a <0 to indicate failure, use the gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_StartTrace()

sets up conditions for processing inbound calls gc_WaitCall()

253

Name: int gc_WaitCall(linedev, crnp, waitcallp, timeout, mode)
Inputs: LINEDEV linedev • GlobalCall line device handle

CRN *crnp • pointer to CRN
GC_WAITCALL_BLK
 *waitcallp

• reserved for future use

int timeout • time-out
unsigned long mode • async or sync

Returns: 0 if successful
>0, if failure

Includes: gclib.h
gcerr.h

Category: basic call control
Mode: asynchronous or synchronous

Technology: ■ ISDN PRI ■ E-1 CAS ■ T-1 robbed bit
■ Analog

n Description

The gc_WaitCall() function sets up conditions for processing inbound calls.
The gc_WaitCall() function unblocks the time slot (if the technology and the line
conditions permit unblocking the line) and enables notification of inbound calls:

• For E-1 CAS and T-1 robbed bit applications, the line will be set to IDLE
after the first call to a gc_WaitCall() function.

• Analog technology does not provide a means to physically block or unblock
an analog line.

• For ISDN applications, the state will be set to NULL after the call to a
gc_WaitCall() function.

In the asynchronous mode, after the gc_WaitCall() function was successfully
called, the gc_ReleaseCall() function will not block the incoming notification.
Therefore, it is only necessary to call a gc_WaitCall() function once. A
subsequent usage of the gc_WaitCall() function in the asynchronous mode has
no additional effect. Also, the call reference parameter is not used in this function
call. The application must retrieve the CRN from the metaevent structure returned
when the call notification event (GCEV_OFFERED) arrives.

gc_WaitCall() sets up conditions for processing inbound calls

254

In the synchronous mode, notification of the next inbound call is blocked until the
next gc_WaitCall() function is issued. If an inbound call arrives between the
gc_ReleaseCall() and gc_WaitCall() functions, the call will be pending until
gc_WaitCall() function is reissued, at which point the application will be
notified.

When called in the synchronous mode, the crnp parameter is assigned when the
gc_WaitCall() function terminates. If the gc_WaitCall() function fails, the call
(and thus the CRN) will be released automatically.

Refer also to the appropriate GlobalCall Technology User’s Guide for technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

crnp: pointer to the CRN. The crnp parameter must be of a global
and non-temporary type. The crnp parameter is used only in
the synchronous mode.
For the asynchronous mode, this parameter must be set to
null. When the GCEV_OFFERED event is received, the
CRN can be retrieved.

waitcallp: not used in this release. Set to NULL.

timeout: used only in synchronous mode, ignored in asynchronous
mode - specifies the interval (in seconds) to wait for the call.
When the timeout expires, the function will return -1 and the
call will remain in the Null state. The error value is set to
EGC_TIMEOUT.

If the timeout is 0 and no inbound call is pending, the
function returns -1 with an EGC_TIMEOUT error value. In
synchronous mode, another gc_WaitCall() function may be
issued immediately without issuing a gc_DropCall() or
gc_ReleaseCall() function.

mode: set to EV_ASYNC for asynchronous execution or to
EV_SYNC for synchronous execution

Termination Event: None

sets up conditions for processing inbound calls gc_WaitCall()

255

In the asynchronous mode, the gc_WaitCall() function does not return an event
and is assumed to have successfully completed when issued. The unsolicited event
GCEV_OFFERED may be received later.

n Cautions

The application should always call a gc_ReleaseCall() function to release the
CRN after the termination of a connection. Failure to do so may cause memory
problems due to memory being allocated and not being released.

In the asynchronous mode, the CRN will not be available until an inbound call has
arrived (i.e., GCEV_OFFERED received).

For both the asynchronous and the synchronous modes, any active gc_WaitCall()
function can be stopped by using the gc_ResetLineDev() function. When the
gc_ResetLineDev() function completes, the application must reissue the
gc_WaitCall() function to be able to receive incoming calls.

n Example

#include <windows.h> /* For Windows NT applications only */
#include <stdio.h>
#include <srllib.h>
#include <gclib.h>
#include <gcerr.h>

#define MAXCHAN 30 /* max. number of channels in system */
/*
 * Data structure which stores all information for each line
 */
struct linebag {
 LINEDEV ldev; /* line device handle */
 CRN crn; /* GlobalCall API call handle */
 int state; /* state of first layer state machine */
} port[MAXCHAN+1];
struct linebag *pline; /* pointer to access line device */

/*
 * Assume the following has been done:
 * 1. Open line devices for each time slot on dtiB1.
 * 2. Each Line Device ID is stored in linebag structure, ’port’.
 */
int wait_call(int port_num)
{
 int cclibid; /* cclib id for gc_ErrorValue() */
 int gc_error; /* GlobalCall error code */
 long cc_error; /* Call Control Library error code */
 char *msg; /* points to the error message string */

 /* Find info for this time slot, specified by ’port_num’ */
 pline = port + port_num;

gc_WaitCall() sets up conditions for processing inbound calls

256

 /*
 * Wait for a call, with 0 timeout.
 */
 if (pline->state == GCST_NULL) {
 if (gc_WaitCall(pline->ldev, NULL, NULL, 0, EV_ASYNC) != GC_SUCCESS) {
 /* process error return as shown */
 gc_ErrorValue(&gc_error, &cclibid, &cc_error);
 gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
 printf ("Error on Device handle: 0x%lx, ErrorValue: %d - %s\n",
 pline -> ldev, gc_error, msg);
 return(gc_error);
 }
 }
 /*
 * GCEV_OFFERED event will indicate incoming call has arrived.
 */
 return (0);
}

n Errors

If this function returns a <0 to indicate failure or if the GCEV_TASKFAIL event
is received, use gc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultMsg() function as described in section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.h file, see listing in Appendix C.

n See Also

• gc_DropCall()
• gc_MakeCall()
• gc_ReleaseCall()
• gc_ResetLineDev()

257

7. GlobalCall Demo Programs

GlobalCall UNIX and Windows NT inbound and outbound demonstration
programs illustrating the application of GlobalCall functions are described in this
chapter in terms of:

• an overview of the GlobalCall demo programs

• the physical connection required to run these demo programs

• preparing to run the GlobalCall demo programs and

• running the GlobalCall demo programs

7.1. Demo Programs for UNIX

The following paragraphs describe analog technology and E-1/T-1 technology
demonstrations that run on a UNIX platform.

The demo programs use user-modifiable configuration files that define the
protocol to be run on each channel and the voice and/or network (E-1/T-1)
resources to be used. Separate configuration files can be defined for inbound
(gcin.cfg) calls, outbound (gcout.cfg) calls and for analog (gcanalog.cfg)
technology only calls. In addition to compilable files, executable demo files using
sample configuration files similar to those described in this chapter are stored in
the Dialogic /usr/dialogic/gc_demos directory.

The GlobalCall demonstration programs are:

• inbound: demonstrates operation of the GlobalCall API for
handling inbound calls

• outbound: demonstrates operation of the GlobalCall API for
handling outbound calls

The demonstration programs operate independent of each other. Each program
implements a double layer state machine based on the GlobalCall API. The first
layer deals with the GlobalCall call establishment and termination processes. This
layer includes the following states:

GlobalCall™ API Software Reference for UNIX and Windows NT

258

• ST_BLOCKED,

• ST_NULL,

• ST_OFFERED,

• ST_TALK,

• ST_CLOSING,

• ST_DISCONNECTED and

• ST_IDLE.

The second layer deals with events that can occur during a conversation (the
ST_TALK state) and includes the following states for the inbound program:

• WELCOME,

• RECORD,

• GOODBYE,

• GETDIGIT,

• INVALID,

• PLAYBACK and

• STOPPING

The outbound program uses only the WELCOME and the STOPPING states in
the second layer.

Figure 7. UNIX Demo Program States illustrates the structure of the GlobalCall
demo programs.

7. GlobalCall Demo Programs

259

WELCOME

GOODBYE

GET DIGIT

RECORD

PLAYBACK

WELCOME

WELCOME

GOODBYE

INVALID

.

ST_DISCONNECTED

ST_OFFERED

ST_BLOCKING

ST_TALK

ST_IDLE

Figure 7. UNIX Demo Program States

GlobalCall™ API Software Reference for UNIX and Windows NT

260

Start the GlobalCall demo programs from the command line. Select the
parameters and options you wish to use by typing the parameter value or option
details after the appropriate option switch (see Section 7.1.4. Running the UNIX
Demo Program.

A LINEBAG data structure contained in the demo software holds the state of each
line device. The demo programs assume that voice channel n is routed to DTI time
slot n. Unless you use the -n switch to specify a different number, the programs
will open as many devices as there are voice channels.

The GlobalCall distribution diskettes contain all the demonstration program files.
These files are installed on your system in the /usr/dialogic/gc_demos installation
directory when you install the GlobalCall software. The source code for the
demonstration programs is written in the C programming language.

7.1.1. Physical Connections for the UNIX Demo

To run the GlobalCall Demo programs, you need one or more of the following:

• a connection to the network (analog loop start, E-1 CAS/T-1 robbed bit
or ISDN)

• an E-1, T-1 and/or ISDN simulator

• analog loop start simulator or Dialogic PromptMaster development tool

You may make this connection either before or after installing the GlobalCall
software.

7.1.2. Before Running the UNIX Demo Programs

GlobalCall software must be installed to run the GlobalCall Demo programs. To
run the included executable demo programs or your compiled demos, see
Paragraph 7.1.4. Running the UNIX Demo Program

To recompile the demonstration programs using configuration files you created,
perform the following:

7. GlobalCall Demo Programs

261

NOTE: The ANAPI, ICAPI and ISDN call control libraries (or the equivalent
stub library) must be installed. Change the makefile to include the
appropriate stub libraries to match the system configuration.

• while logged on to the system with root privileges, change to the
/usr/dialogic/gc_demos installation directory.

• to compile the inbound program, type:

make inbound <Enter>

• to compile the outbound program, type:

make outbound <Enter>

NOTE: A protocol package must be installed on the system, and the makefile
must use an installed protocol. Initially, the protocols specified in the
makefile are the ar_r2_i and the ar_r2_o. Be sure to modify the makefile
to use the protocol(s) installed on the system.

7.1.3. Demo Configuration Files

The executable demo programs stored in the /usr/dialogic/gc_demos directory
were compiled using sample ASCII configuration files such as shown in:

• Figure 8. Inbound (gcin_r2is.cfg) Configuration Sample File ,

• Figure 9. Outbound (gcout_anis.cfg) Configuration Sample File and

• Figure 10. Analog (gcanalog.cfg) Technology Configuration Sample File .

You can use these sample configuration files unchanged when you compile your
demo program or you can edit them (using a text editor such as the vi editor) to
include the protocols and products used by your application.

Each channel can run a different protocol IF the .prm file parameters associated
with these protocols are compatible. To ensure compatibility, check that the
parameters specified in the .prm file for a board will work for all protocols that
will be run on that board. The parameters in the .prm file are downloaded at
system initialization, become part of the firmware and cannot be changed by the
application.

GlobalCall™ API Software Reference for UNIX and Windows NT

262

The protocol and resource information for each channel and the telephone number
dialed (up to 24 digits) are defined in these configuration files on a channel by
channel basis. The configuration is specified in the following order:

 voice channel protocol analog (1=yes,0=no) network (optional) phone
number

A digital network interface is not used for an analog call; if specified, the digital
interface entry is ignored.

For example, using the following lines taken from Figure 9. Outbound
(gcout_anis.cfg) Configuration Sample File :

 dxxxB8C2 ar_r2_o 0 dtiB1T30 4812
 dxxxB9C1 na_an_io 1 11

wherein the first line specifies that:

• voice channel 2 on board 8 (dxxxB8C2) will provide the voice resources and
will be connected to the digital network interface resource dtiB1T30,

• the Argentina R2 (ar_r2_o) outbound protocol will be used,

• a digital network interface is selected; 0 entry equates to a digital network
interface,

• time slot 30 on E-1 digital network interface board 1 (dtiB1T30) will be
connected to dxxxB8C2 (board 8, voice channel 2) and

• the telephone number to dial is 4812.

wherein the second line specifies that:

• voice channel 1 on board 9 (dxxxB9C1) will provide the voice resources and
the analog network interface resource

• the North America analog (na_an_io) bi-directional protocol will be used,

• an analog network interface is selected; 1 entry selects analog interface,

• no digital network interface resource is used and

• the telephone number to dial is 11.

7. GlobalCall Demo Programs

263

The sample inbound configuration file (gcin_r2is.cfg) shown in Figure 8.
Inbound (gcin_r2is.cfg) Configuration Sample File , configures two E-1 spans to
handle inbound calls on 60 digital interface channels using the Argentina R2
inbound protocol (ar_r2_i) on one span and ISDN protocol on the second span.
A voice resource is dedicated to each digital interface.

The outbound configuration file (gcout_anis.cfg) shown in Figure 9. Outbound
(gcout_anis.cfg) Configuration Sample File, configures a single E-1 span to
handle outbound calls on 30 digital interface channels using the ISDN protocol
with a voice resource dedicated to each digital interface. This file also configures
a single channel of a four channel voice board with analog network interfaces to
handle outbound calls using the North America analog bidirectional protocol
(na_an_io).

The analog technology configuration file (gcanalog.cfg) shown in Figure 10.
Analog (gcanalog.cfg) Technology Configuration Sample File , configures a single
four channel voice board with analog network interfaces to handle either inbound
or outbound calls using the North America analog bidirectional protocol
(na_an_io).

GlobalCall™ API Software Reference for UNIX and Windows NT

264

Demo configuration file for configuring voice channels, network
channels, protocol, analog flag, and phone number
This configuration file is for 2 E1 spans (Inbound Config)
#
voice protocol analog network phone
channel (1=yes,0=no) (optional) number
 dxxxB1C1 ar_r2_i 0 dtiB1T1 1234567
 dxxxB1C2 ar_r2_i 0 dtiB1T2 2345567
 dxxxB1C3 ar_r2_i 0 dtiB1T3 3456567
 dxxxB1C4 ar_r2_i 0 dtiB1T4 4567567
 dxxxB2C1 ar_r2_i 0 dtiB1T5 5678567
 dxxxB2C2 ar_r2_i 0 dtiB1T6 6789567
 dxxxB2C3 ar_r2_i 0 dtiB1T7 7890567
 dxxxB2C4 ar_r2_i 0 dtiB1T8 8901567
 dxxxB3C1 ar_r2_i 0 dtiB1T9 9012567
 dxxxB3C2 ar_r2_i 0 dtiB1T10 1357567
 dxxxB3C3 ar_r2_i 0 dtiB1T11 3579567
 dxxxB3C4 ar_r2_i 0 dtiB1T12 5791567
 dxxxB4C1 ar_r2_i 0 dtiB1T13 7913567
 dxxxB4C2 ar_r2_i 0 dtiB1T14 9135567
 dxxxB4C3 ar_r2_i 0 dtiB1T15 2468567
 dxxxB4C4 ar_r2_i 0 dtiB1T16 4680567
 dxxxB5C1 ar_r2_i 0 dtiB1T17 6802567
 dxxxB5C2 ar_r2_i 0 dtiB1T18 8024567
 dxxxB5C3 ar_r2_i 0 dtiB1T19 2581567
 dxxxB5C4 ar_r2_i 0 dtiB1T20 1234567
 dxxxB6C1 ar_r2_i 0 dtiB1T21 2345567
 dxxxB6C2 ar_r2_i 0 dtiB1T22 3456567
 dxxxB6C3 ar_r2_i 0 dtiB1T23 4567567
 dxxxB6C4 ar_r2_i 0 dtiB1T24 5678567
 dxxxB7C1 ar_r2_i 0 dtiB1T25 6789567
 dxxxB7C2 ar_r2_i 0 dtiB1T26 7890567
 dxxxB7C3 ar_r2_i 0 dtiB1T27 8901567
 dxxxB7C4 ar_r2_i 0 dtiB1T28 9012567
 dxxxB8C1 ar_r2_i 0 dtiB1T29 3691567
 dxxxB8C2 ar_r2_i 0 dtiB1T30 4812567
 dxxxB9C1 isdn 0 dtiB2T1
 dxxxB9C2 isdn 0 dtiB2T2
 dxxxB9C3 isdn 0 dtiB2T3
 dxxxB9C4 isdn 0 dtiB2T4
 dxxxB10C1 isdn 0 dtiB2T5
 dxxxB10C2 isdn 0 dtiB2T6
 dxxxB10C3 isdn 0 dtiB2T7
 dxxxB10C4 isdn 0 dtiB2T8
 dxxxB11C1 isdn 0 dtiB2T9
 dxxxB11C2 isdn 0 dtiB2T10
 dxxxB11C3 isdn 0 dtiB2T11
 dxxxB11C4 isdn 0 dtiB2T12
 dxxxB12C1 isdn 0 dtiB2T13
 dxxxB12C2 isdn 0 dtiB2T14
 dxxxB12C3 isdn 0 dtiB2T15
 dxxxB12C4 isdn 0 dtiB2T16
 dxxxB13C1 isdn 0 dtiB2T17
 dxxxB13C2 isdn 0 dtiB2T18
 dxxxB13C3 isdn 0 dtiB2T19
 dxxxB13C4 isdn 0 dtiB2T20
 dxxxB14C1 isdn 0 dtiB2T21
 dxxxB14C2 isdn 0 dtiB2T22
 dxxxB14C3 isdn 0 dtiB2T23
 dxxxB14C4 isdn 0 dtiB2T24
 dxxxB15C1 isdn 0 dtiB2T25
 dxxxB15C2 isdn 0 dtiB2T26

7. GlobalCall Demo Programs

265

 dxxxB15C3 isdn 0 dtiB2T27
 dxxxB15C4 isdn 0 dtiB2T28
 dxxxB16C1 isdn 0 dtiB2T29
 dxxxB16C2 isdn 0 dtiB2T30

Figure 8. Inbound (gcin_r2is.cfg) Configuration Sample File

Demo configuration file for configuring voice channels, network
channels, protocol, analog flag, and phone number
This configuration file is for 1 E1 span and analog (Outbound Config)
#
voice protocol analog network phone
channel (1=yes,0=no) (optional) number
 dxxxB1C1 isdn 0 dtiB1T1 1234567
 dxxxB1C2 isdn 0 dtiB1T2 2345567
 dxxxB1C3 isdn 0 dtiB1T3 3456567
 dxxxB1C4 isdn 0 dtiB1T4 4567567
 dxxxB2C1 isdn 0 dtiB1T5 5678567
 dxxxB2C2 isdn 0 dtiB1T6 6789567
 dxxxB2C3 isdn 0 dtiB1T7 7890567
 dxxxB2C4 isdn 0 dtiB1T8 8901567
 dxxxB3C1 isdn 0 dtiB1T9 9012567
 dxxxB3C2 isdn 0 dtiB1T10 1357567
 dxxxB3C3 isdn 0 dtiB1T11 3579567
 dxxxB3C4 isdn 0 dtiB1T12 5791567
 dxxxB4C1 isdn 0 dtiB1T13 7913567
 dxxxB4C2 isdn 0 dtiB1T14 9135567
 dxxxB4C3 isdn 0 dtiB1T15 2468567
 dxxxB4C4 isdn 0 dtiB1T16 4680567
 dxxxB5C1 isdn 0 dtiB1T17 6802567
 dxxxB5C2 isdn 0 dtiB1T18 8024567
 dxxxB5C3 isdn 0 dtiB1T19 2581567
 dxxxB5C4 isdn 0 dtiB1T20 1234567
 dxxxB6C1 isdn 0 dtiB1T21 2345567
 dxxxB6C2 isdn 0 dtiB1T22 3456567
 dxxxB6C3 isdn 0 dtiB1T23 4567567
 dxxxB6C4 isdn 0 dtiB1T24 5678567
 dxxxB7C1 isdn 0 dtiB1T25 6789567
 dxxxB7C2 isdn 0 dtiB1T26 7890567
 dxxxB7C3 isdn 0 dtiB1T27 8901567
 dxxxB7C4 isdn 0 dtiB1T28 9012567
 dxxxB8C1 isdn 0 dtiB1T29 3691567
 dxxxB8C2 isdn 0 dtiB1T30 4812567
 dxxxB17C2 na_an_io 1 101

Figure 9. Outbound (gcout_anis.cfg) Configuration Sample File

This configuration file is for analog calls only
#
voice protocol analog network phone
channel (1=yes,0=no) (optional) number
 dxxxB1C1 na_an_io 1 11
 dxxxB1C2 na_an_io 1 12
 dxxxB1C3 na_an_io 1 13
 dxxxB1C4 na_an_io 1 14

Figure 10. Analog (gcanalog.cfg) Technology Configuration Sample
File

GlobalCall™ API Software Reference for UNIX and Windows NT

266

7.1.4. Running the UNIX Demo Program

Start either of the demo programs by typing the program name at the command
line, followed by the appropriate switch(es). The structure of the demo command
is:

inbound -n<numlines> -f<filename.cfg> -d<numddi>

outbound -n<numlines> -f<filename.cfg>

where:

-n<numlines> Number of connected lines to use for demo
calling (default = 60)

-f<filename> name of configuration file used (e.g., gcin.cfg,
gcout.cfg, gcanalog.cfg, etc.) to setup
demo calls.

-d<numddi> DDI (Direct Dialing In) number threshold for call
rejection. Incoming calls with a number of DDI
digits greater than the number specified will be
rejected.

Note that switch “d” is invalid for outbound calls.

NOTE: A protocol package must be installed on the system prior to running the
demo programs. The configuration file must specify an installed
protocol. Refer to the GlobalCall Technology User’s Guide for your
technology for information on installing protocols.

NOTE: A protocol must be installed on the system. Before running a demo
program that uses a T-1 robbed bit protocol, disable the DTI Wait Call
function in the icapi.cfg file. See the icapi.cfg File paragraph in the
GlobalCall E-1/T-1 Technology User's Guide for details.

7. GlobalCall Demo Programs

267

For example: inbound -n42 -d6 -fgcin_r2is.cfg <Enter>

is the command you would type on the command line to
handle 42 inbound digital network calls with a maximum of 6
DDI digits on the first 42 E-1 channels defined in the
configuration file shown in Figure 8. Inbound
(gcin_r2is.cfg) Configuration Sample File.

For example: outbound -n31 -fgcout_anis.cfg <Enter>

is the command you would type on the command line to
handle 30 outbound digital network calls on the first 30 E-1
channels defined in the configuration file shown in Figure 9.
Outbound (gcout_anis.cfg) Configuration Sample File and 1
outbound analog network call on the 4 analog channels of
virtual board 17.

For example: inbound -n4 -fgcanalog.cfg <Enter>

is the command you would type on the command line to
handle 4 inbound analog network calls on the four analog
channels defined in the configuration file shown in Figure 10.
Analog (gcanalog.cfg) Technology Configuration Sample
File.

For example: outbound -n4 -fgcanalog.cfg <Enter>

is the command you would type on the command line to
handle 4 outbound analog network calls on the four analog
channels defined in the configuration file shown in Figure 10.
Analog (gcanalog.cfg) Technology Configuration Sample
File.

7.2. Demo Programs for Windows NT

The following paragraphs describe multithreaded asynchronous (gcmulti) and
synchronous (gcmtsync_cui) demonstration programs for handling inbound and
outbound calls on a Windows NT platform.

The demonstration programs include complete source code in the installation
directories. You may modify and rebuild a demo program using the Microsoft
nmake utility or the Visual C++ version 4.x project workspace files. All the
application files are included in the following directories:

GlobalCall™ API Software Reference for UNIX and Windows NT

268

• for the gcmulti asynchronous demo:

• \Program Files\Dialogic\Samples\gc_demos\gcmulti

• for the gcmtsync_cui synchronous demo:

• \Program Files\Dialogic\Samples\gc_demos\gcmtsync_cui

(NOTE: The \Program Files\Dialogic\ directory is the default directory. When
installing Dialogic system software, a different directory can be specified.)

7.2.1. Multithreaded Asynchronous Demo Overview for Windows NT

The GlobalCall multithreaded asynchronous demonstration program (gcmulti)
demonstrates handling inbound calls and outbound calls in asynchronous mode in
a Windows NT environment. This demonstration program sets up all channels to
either accept inbound calls or to make outbound calls.

When the accept-inbound calls mode is selected, the demo program looks at the
last digit of the incoming DDI digits. When this last digit is an even number, the
demo program simulates a “the time is” applet by playing a “the time is 9:30 a.m.”
voice file and then disconnecting (hangs up). When this last digit is an odd
number, the demo program runs a menu driven voice/facsimile application that,
see Figure 11. Multithreaded Asynchronous Demo, Call Processing :

• plays an introductory voice file listing the menu selections and then

• gets the DDI digit entered in response to the voice menu.

The demo application responds to the DDI digit entered as described below and
then disconnects:

7. GlobalCall Demo Programs

269

Digit Description

1 records the caller’s message

2 plays the last message recorded

3 sends a fax if the demo platform includes a GammaLink fax product
(currently unsupported)

4 receives and stores a fax if the demo platform includes a GammaLink
fax product (currently unsupported)

5 plays a “good-bye” voice file

GlobalCall™ API Software Reference for UNIX and Windows NT

270

.

INBOUND CALL

DDI
EVEN?

Play Menu
(intro,vox)

Play Time
(time.vox)

Get DDI
Digit

YES NO

Hang Up

1. Record
Message

2. Play
Message

3. Send
Fax

4. Receive
Fax

5. Play
Goodbye

Figure 11. Multithreaded Asynchronous Demo, Call Processing

7. GlobalCall Demo Programs

271

When the make-outbound calls mode is selected, all lines are used to place
outbound calls. When the remote end answers, the demo program uses “the time
is” applet to play a “the time is 9:30 a.m.” voice file and then disconnects (hangs
up) An outbound call is placed each time a channel changes to the IDLE state.

To run the demo program, see paragraphs 7.2.3. Physical Connections for the
Windows NT Demo, 7.2.4. Before Running the Windows NT Demo Programs ,
and 7.2.5. Running the Asynchronous Windows NT Demo Program .

7.2.2. Multithreaded Synchronous Demo Overview for Windows NT

The GlobalCall multithreaded synchronous demonstration program (GCMtSync)
demonstrates handling inbound calls and outbound calls in synchronous mode in a
Windows NT environment. The demonstration program implements a double
layer state machine based on the GlobalCall API. The first layer deals with the
GlobalCall call establishment and termination processes, see Figure 12.
Synchronous Demo, Call Establishment Process . This layer includes the
following call states:

Inbound Call States Outbound Call States

GCST_NULL GCST_NULL

GCST_IDLE GCST_IDLE

GCST_OFFERED GCST_DIALING

GCST_ACCEPTED GCST_ALERTING

GCST_CONNECTED GCST_CONNECTED

GCST_DISCONNECTED GCST_DISCONNECTED

The second layer deals with the application states that can occur while the demo
program handles the conversation portion of the call, see Figure 13. Synchronous
Demo, Application State Call Processing, and includes the following call states:

Inbound Call States Outbound Call States

APP_BLOCKED APP_BLOCKED

APP_UNBLOCKED APP_UNBLOCKED

APP_NULL APP_NULL

APP_CONNECTED APP_CONNECTED

GlobalCall™ API Software Reference for UNIX and Windows NT

272

Inbound Call States Outbound Call States

APP_WELCOME APP_DIALING

APP_RECORD APP_PLAYBACK

APP_GETDIGIT APP_DISCONNECTED

APP_PLAYBACK APP_IDLE

APP_INVALID

APP_GOODBYE

APP_DISCONNECTED

APP_IDLE

Start the GlobalCall demo programs from the command line. Select the
parameters and options you wish to use by typing the parameter value or option
details after the appropriate option switch (see Section 7.2.5. Running the
Asynchronous Windows NT Demo Program or Section 7.2.6. Running the
Synchronous Windows NT Demo Program).

Figure 12. Synchronous Demo, Call Establishment Process illustrates the call
states associated with handling inbound calls or setting up outbound calls in
synchronous mode. All calls start from a GCST_NULL state.

For inbound calls and after receiving the GCEV_UNBOCKED event, the demo
program issues a gc_WaitCall() function in the GCST_NULL state to indicate
readiness to accept an inbound call request. When the inbound call is received,
the call state changes to GCST_OFFERED. In the GCST_OFFERED state, the
call may be accepted by the demo program. From the GCST_OFFERED state,
the call state changes to either the GCST_CONNECTED state or the
GCST_ACCEPTED state. When the call is to be directly connected to a voice
resource, a gc_AnswerCall() function is issued to make the final connection.
When the gc_AnswerCall() function completes, the call changes to the
GCST_CONNECTED state. If the demo program is not ready to answer the call,
a gc_AcceptCall() function is issued to indicate to the remote end that the call
was received but not yet answered. When the gc_AcceptCall() function
completes, the call changes to the GCST_ACCEPTED state. To complete the
connection, a gc_AnswerCall() function is issued to make the final connection.

7. GlobalCall Demo Programs

273

When the call completes, the demo program issues a gc_DropCall() function that
changes the call state to GCST_IDLE. A gc_ReleaseCall() function is then
issued to change the call state to GCST_NULL which establishes initial conditions
for accepting the next inbound call or for making an outbound call. If a
GCEV_DISCONNECTED event is received while the call is in the
GCST_OFFERED, GCST_ACCEPTED or GCST_CONNECTED state, the demo
program then issues a gc_ReleaseCall() function, hangs up the ongoing call and
then waits for the next call.

To make an outbound call and after receiving a GCEV_UNBLOCKED event, the
demo program issues a gc_MakeCall() function that requests that a call be made
on a specific channel. The call enters the GCST_DIALING state and dialing
information is sent to and acknowledged by the network. When the call is
answered at the remote end, the gc_MakeCall() function completes and the call
changes to the GCST_CONNECTED state. If a GCEV_ALERTING event is
received from the network indicating that the remote end has received the call but
not yet answered the call, the call state changes to GCST_ALERTING. When the
call is answered at the remote end, the gc_MakeCall() function completes and
the call changes to the GCST_CONNECTED state.

When the call disconnects, the demo program issues a gc_DropCall() function
that changes the call state to GCST_IDLE. A gc_ReleaseCall() function is then
issued to change the call state to GCST_NULL which establishes initial conditions
for making the next outbound call or for accepting inbound calls. If a
GCEV_DISCONNECTED event is received while the call is in the
GCST_DIALING, GCST_ALERTING or GCST_CONNECTED state, the state
changes to GCST_IDLE and the demo program then issues a gc_ReleaseCall()
function to return to the GCST_NULL state.

Figure 13. Synchronous Demo, Application State Call Processing illustrates
demo application call states for processing inbound or outbound calls in the
synchronous mode. If a GCEV_BLOCKED event is received during any
application state, the application will halt its call processing activities and wait for
a GCEV_UNBLOCKED event before continuing. When the demo application
receives a GCEV_DISCONNECTED event while processing an inbound or an
outbound call, the demo application issues a gc_DropCall() function to change
the call state to GCST_IDLE. The demo program then issues a gc_ReleaseCall()
function to return to the GCST_NULL state.

GlobalCall™ API Software Reference for UNIX and Windows NT

274

.

INBOUND CALL OUTBOUND CALL

gc_AnswerCall()

gc_MakeCall()gc_WaitCall() NULL

ACCEPTED

CONNECTED

ALERTING

DIALING

IDLE

OFFERED

CONNECTED

gc_DropCall() gc_DropCall()

GCEV_ALERTING

Completion of
gc_MakeCall()

gc_ReleaseCall()

initiated

*

*

*

*

*

*

Legend:

* = GCEV_DISCONNECTED

gc_AcceptCall()

Figure 12. Synchronous Demo, Call Establishment Process

7. GlobalCall Demo Programs

275

.

INBOUND CALL OUTBOUND CALL

NULLCONNECTED

IDLE

CONNECTED

gc_DropCall()

UNBLOCKED

GETDIGIT

BLOCKED

WELCOME

RECORD

PLAYBACK INVALID

GOODBYE

WELCOME

GCEV_UNBLOCKED

gc_MakeCall()

gc_WaitCall()
gc_AcceptCall()
gc_AnswerCall()

gc_DropCall()

gc_ReleaseCall()

Figure 13. Synchronous Demo, Application State Call Processing

GlobalCall™ API Software Reference for UNIX and Windows NT

276

7.2.3. Physical Connections for the Windows NT Demo

To run the GlobalCall Demo programs, you need one of the following:

• a connection to the network (E-1 CAS/T-1 robbed bit or ISDN)

• an E-1, T-1 and/or ISDN simulator

You may make this connection either before or after installing the GlobalCall
software.

7.2.4. Before Running the Windows NT Demo Programs

The demonstration programs include complete source code in the installation
directories. You may modify and rebuild a demo program using the Microsoft
nmake utility or the Visual C++ version 4.x project workspace files. All the
application files are included in the following directories:

• for the gcmulti asynchronous demo:

• \Program Files\Dialogic\Samples\gc_demos\gcmulti

• for the gcmtsync_cui synchronous demo:

• \Program Files\Dialogic\Samples\gc_demos\gcmtsync_cui

(NOTE: The \Program Files\Dialogic\ directory is the default directory. When
installing Dialogic system software, a different directory can be specified.)

The demo program can be compiled using either of the following methods:

• To use the Microsoft nmake utility, type:

 nmake -f <filename.mak>

• To use Visual C++ version 4.x, open a project workspace file
<filename.mdp> from inside Visual C++ Integrated Development
Environment and select:

build/rebuild all

NOTE: Both ICAPI and ISDN call control libraries must be installed.

7. GlobalCall Demo Programs

277

NOTE: A protocol must be installed on the system. Before running a demo
program that uses a T-1 robbed bit protocol, disable the DTI Wait Call
function in the icapi.cfg file. See the icapi.cfg File paragraph in the
GlobalCall E-1/T-1 Technology User’s Guide for details.

7.2.5. Running the Asynchronous Windows NT Demo Program

Start the asynchronous (gcmulti) demo program by typing the program name at the
command line prompt, followed by the appropriate switch(es). The structure of
the demo command is:

gcmulti -p<boardno><protocol> -n<#> -m<thread> -c<direction>
[-f<disablefun>] -v<verbosity>

where:

-p<boardno><protocol> boardno = board number (optional;
default = 1)
protocol = name of selected protocol
(default = isdn)

-n<#> # = number of connected lines/channels
(default = 60, range is 1 to 60)

-m<thread> m = multithreaded; s = single threaded (optional)
(default = s)

-c<direction> i = inbound call; o = outbound call (default = i)

-f<disablefun> (optional) disable function, where disablefun
values are:
ANI to disable gc_GetANI()
CALLACK to disable gc_CallAck()
SETCALLNUM to disable gc_SetCallingNum()

 -v<verbosity> 1 = display error messages plus call setup and call
tear down messages such as generated during a
make call, drop call, answer call and accept call
activity. (default = 1)

2 = 1 + display all initialization messages
generated during application start up and all
closing messages generated when the
application exits.

GlobalCall™ API Software Reference for UNIX and Windows NT

278

3 = 2 + display all messages generated in
conjunction with function calls and all events
received including termination events and
unexpected events.

-f<disablefun>, disables function calls that are coded into the demo program but
are not supported by the protocol being run. See the Limitations paragraph in the
GlobalCall Country Dependent Parameters (CDP) Reference for the protocol
installed. Separate -f<disablefun> switches must be entered for each function to
be disabled.All information displayed on the screen can be rerouted to a log file
by appending a >filename parameter to the end of the gcmulti command line;
(e.g., gcmulti -p1isdn -n30 -ci -v2 >demo.log) and then pressing the Enter key.
Note that ALL information will be sent to the file specified and the display will
remain blank until you press the Esc key to close the demo program.

For example: gcmulti -p1isdn -n30 -ci -v2 <Enter>

is the command you would type on the command line to run
the single-threaded asynchronous demonstration program on
board 1 using ISDN inbound protocol and 30 channels with a
verbosity level of 2.

Pressing the Esc key closes the demo program. When the demo program closes,
call information for each channel, see Figure 14. Demo Call Information
Example, total errors and the total calls handled are calculated and displayed. The
calls per channel are displayed in the format:

• #)Calls[#]

where: #) = the channel number (e.g., 1, 2, etc.) and [#] = the total number of calls
completed by that channel during the time the demo program ran.

The [SYS] Total errors = value is the total number of errors that occurred during
the time the demo program ran.

The [SYS] Total calls = value is the total number of calls completed by all
channels during the time the demo program ran. That is, the summation: # Calls
on Channel 1 + # Calls on Channel 2 + … + # Calls on Channel n.

7. GlobalCall Demo Programs

279

Call Information
1)Calls[10] 2)Calls[10] 3)Calls[10] 4)Calls[10]
5)Calls[10] 6)Calls[10] 7)Calls[10] 8)Calls[10]
9)Calls[10] 10)Calls[10] 11)Calls[10] 12)Calls[10]
13)Calls[10] 14)Calls[10] 15)Calls[10] 16)Calls[10]
17)Calls[10] 18)Calls[10] 19)Calls[10] 20)Calls[10]
21)Calls[10] 22)Calls[10] 23)Calls[10] 24)Calls[10]
25)Calls[10] 26)Calls[10] 27)Calls[10] 28)Calls[10]
29)Calls[10] 30)Calls[10]
[SYS] Total errors = 0
[SYS] Total calls = 300

Figure 14. Demo Call Information Example

7.2.6. Running the Synchronous Windows NT Demo Program

Start the synchronous (gcmtsync_cui) demo program by typing the program name
at the command line prompt, followed by the appropriate switch(es). The structure
of the demo command is:

gcmtsync_cui -n<numlines> -p<brdnum><protocol> -l<loglevel> -[i|o]

where:

-n<numlines> Number of connected lines/channels (default = 60,
range is 1 to 60)

-p<brdnum><protocol> Selected protocol on selected board
number “brdnum”, where “brdnum” must be
set to 1 or 2 (for a single board, set to 1).
Each board to be used by the demo program
must be opened by including a separate
-p<brdnum><protocol> switch to open that
board.

-l<loglevel> specifies the logging level where “loglevel” is
set to: 1 = logs high priority error messages,
2 = logs medium & high priority error messages or
3 = logs all error messages.
If this parameter is not specified, the default is
no logging

GlobalCall™ API Software Reference for UNIX and Windows NT

280

-[i/o] i = inbound call; o = outbound call; a value
must be specified.

For example: gcmtsync_cui -n30 -p1br_r2_i -i -l3 <Enter>

is the command you would type on the command line to run
the synchronous demonstration program on 30 channels using
the inbound Brazil protocol for inbound calls with logging set
to the highest logging level.

The following command would be entered on the command
line to run the synchronous demonstration program on 60
channels using the inbound Brazil protocol with logging set
to the highest logging level:

gcmtsync_cui -n60 -p1br_r2_i -p2br_r2_i -l3 -i

281

Appendix A
Summary of GlobalCall Functions and Events

Table 37. Summary of GlobalCall Functions

Function Description

gc_AcceptCall() optional response to an incoming call request;
used to indicate “ringing” to the remote end

gc_AnswerCall() response to an incoming call (equivalent to
conventional “set hook off” function)

gc_Attach() logically connects a voice resource to a line device

gc_CallAck() enables user to control the response to an incoming
call request by retrieving call information from the
network.
For ISDN PRI applications, gc_CallAck()
function is used in overlap receiving operation.

gc_CallProgress() notifies the network that the connection request is
in progress.

gc_CCLibIDToName() converts call control library identification code to
library name.

gc_CCLibNameToID() converts call control library name to library
identification code

gc_CCLibStatus() retrieves status of the call control library specified

gc_CCLibStatusAll() retrieves status information for all call control
libraries

gc_Close() closes a previously opened device and removes the
channel from service

GlobalCall™ API Software Reference for UNIX and Windows NT

282

Function Description

gc_CRN2LineDev() acquires the line device ID associated with a given
CRN

gc_Detach() logically detaches a voice resource from the
associated line device

gc_DropCall() disconnects a call; equivalent to a “hang-up”

gc_ErrorValue() returns the error value/failure reason related to the
last GlobalCall function call. To process an error,
this function must be called immediately after a
GlobalCall function failed.

gc_GetANI() returns caller identification information

gc_GetBilling() gets the charge information for the call, after
GCEV_DISCONNECTED event is received or
gc_DropCall() function is terminated

gc_GetCallInfo() gets information for the call

gc_GetCallState() acquires the state of the call associated with the
CRN

gc_GetCRN() gets the CRN associated with a recently arrived
event (such as GCEV_OFFERED)

gc_GetDNIS() gets the DNIS (DDI digits) associated with a
specific CRN

gc_GetLineDev() gets the line device ID associated with a recently
arrived event

gc_GetLinedevState() retrieves the status of the specified line device

gc_GetMetaEvent() transforms a call control library event (or any SRL
event) into a GlobalCall metaevent

Appendix A - Summary of GlobalCall Functions and Events

283

Function Description

gc_GetMetaEventEx() (Windows NT extended asynchronous mode only)
transforms a call control library event (or any SRL
event) into a GlobalCall metaevent. Passes the
SRL event handle to the application so that
multithreaded applications can be implemented.

gc_GetNetworkH() returns network device handle associated with the
specified line device

gc_GetParm() retrieves the parameter value specified for a line
device

gc_GetUsrAttr() retrieves the attribute established using
gc_SetUsrAttr() function

gc_GetVer() returns the version number of the specified
software component

gc_GetVoiceH() returns the voice device handle associated with the
specified call control line device

gc_LoadDxParm() Sets voice parameters associated with a line device

gc_MakeCall() makes an outgoing call

gc_Open() opens a GlobalCall device and returns a unique
line device handle to identify the physical
device(s) that carry the call

gc_OpenEx() opens a GlobalCall device, sets a user defined
attribute and returns a unique line device handle to
identify the physical device(s) that carry the call.
This function can be used in place of the
gc_Open() function followed by a
gc_SetUsrAttr() function.

gc_ReleaseCall() releases all internal resources for the specified call

GlobalCall™ API Software Reference for UNIX and Windows NT

284

Function Description

gc_ReqANI() returns the caller’s identification, normally
included in the ISDN setup message and ANI-on-
Demand requests

gc_ResetLineDev() disconnects any active calls on the line device;
aborts all calls being setup

gc_ResultMsg() retrieves an ASCII string describing the result code

gc_ResultValue() returns the cause of an event

gc_SetBilling() for protocols that support this feature, sets billing
information for the call

gc_SetCallingNum() sets the default calling party number on a specific
line device; the calling party number thus defined
will be used on all subsequent outbound calls

gc_SetChanState() sets a channel to the “in-service,” “out-of-service,”
or “in-maintenance” state

gc_SetEvtMsk() sets the event mask associated with the specified
line device

gc_SetInfoElem() enables setting an additional information element
in the next outbound ISDN call

gc_SetParm() sets the default value of parameters used in call
setup process

gc_SetUsrAttr() sets an attribute defined by the user

gc_SndMsg() sends non-call state-related ISDN message to
network over the D channel while a call exists

gc_Start() starts all configured, call control libraries
For UNIX applications, non-stub libraries are
started.

gc_StartTrace() starts trace and places results in shared RAM

gc_Stop() stops all configured call control libraries started

Appendix A - Summary of GlobalCall Functions and Events

285

Function Description

gc_StopTrace() stops the trace and closes the file

gc_WaitCall() sets up conditions for processing incoming calls

Table 38. GlobalCall Event Summary

Event Terminates Ref Description

GCEV_ACCEPT gc_AcceptCall() CRN Call received at
remote end, but not
yet answered

GCEV_ACKCALL gc_CallAck() CRN Indicates
termination of
gc_CallAck() and
that the DDI string
may be retrieved by
using
gc_GetDNIS()

GCEV_ALERTING Unsolicited (enabled
by default)

CRN Destination party
has answered call.

GCEV_ANSWERED gc_AnswerCall() CRN Call established and
enters Connected
state

GCEV_BLOCKED Unsolicited (enabled
by default)

LDID Line is blocked and
application cannot
issue call-related
function calls.
Retrieve reason for
line blockage using
gc_ResultValue().

GCEV_CALLINFO Unsolicited CRN Generated when
an incoming
information
message is
received.

GlobalCall™ API Software Reference for UNIX and Windows NT

286

Event Terminates Ref Description

GCEV_CALLSTATUS Unsolicited CRN Indicates that a
timeout or a no
answer (call control
library dependent)
condition was
returned while the
gc_MakeCall()
function is active

GCEV_CONGESTION Unsolicited CRN Generated when
an incoming
congestion
message is
received.

GCEV_CONNECTED gc_MakeCall() CRN Call is connected

GCEV_D_CHAN_
STATUS

Unsolicited LDID Generated when
the status of the
D channel
changes.

GCEV_DISCONNECTED Unsolicited CRN Call disconnected by
remote end.

Any request or message
rejected by network or
that has timed-out

Either
CRN
or
LDID

The error detected
prevents further call
processing on this
call.

GCEV_DIVERTED Unsolicited CRN Received request to
call forward using
DPNSS protocol.

GCEV_DROPCALL gc_DropCall() CRN Call is disconnected
and call enters Idle
state

GCEV_FACILITY Unsolicited LDID Generated when
an incoming
facility message is
received.

Appendix A - Summary of GlobalCall Functions and Events

287

Event Terminates Ref Description

GCEV_FACILITY_AC
K

Unsolicited LDID Generated when
an incoming
facility ACK
message is
received.

GCEV_FACILITY_REJ Unsolicited LDID Generated when
an incoming
facility reject
message is
received.

GCEV_HOLDACK gc_HoldCall() CRN Generated when
an
acknowledgement
is sent in response
to a hold call
message.

GCEV_HOLDCALL Unsolicited CRN Generated when a
hold current call
message is
received.

GCEV_HOLDREJ gc_HoldCall() CRN Generated when a
hold call request is
rejected and the
hold call reject
message is sent to
remote end.

GCEV_ISDNMSG Unsolicited CRN Generated when
an incoming
unrecognized
ISDN message is
received.

GCEV_L2BFFRFULL Unsolicited CRN Generated when
the incoming layer

GlobalCall™ API Software Reference for UNIX and Windows NT

288

Event Terminates Ref Description
2 access message
buffer is full.
(reserved for
future use)

GCEV_L2FRAME Unsolicited CRN Generated when
an incoming layer
2 access message
is received.

GCEV_L2NOBFFR Unsolicited CRN Generated when
no free space is
available for an
incoming layer 2
access message.

GCEV_NOTIFY Unsolicited CRN Generated when
an incoming notify
message is
received.

GCEV_NSI Unsolicited CRN Generated when a
Network Specific
Information (NSI)
message is
received using
DPNSS protocol.

GCEV_OFFERED Unsolicited CRN Inbound call arrived;
call enters Offered
state.

GCEV_PROCEEDING Unsolicited (enabled
by default)

CRN Generated when
an incoming
proceeding
message is
received.

GCEV_PROGRESSING Unsolicited (enabled
by default)

CRN Generated when
an incoming
progress message

Appendix A - Summary of GlobalCall Functions and Events

289

Event Terminates Ref Description
is received.

GCEV_REQANI gc_ReqANI() CRN Generated when
ANI information is
received from
network.

GCEV_RESETLINEDEV gc_ResetLineDev() LDID Disconnects any
active calls on the
line device.

GCEV_RETRIEVEACK gc_RetrieveCall() CRN Generated when
an
acknowledgement
is sent in response
to a retrieve hold
call message.

GCEV_RETRIEVECAL
L

Unsolicited CRN Generated when a
retrieve hold call
message is
received.

GCEV_RETRIEVEREJ gc_RetrieveCall() CRN Generated when a
rejection message
is sent in response
to a request to
retrieve held call.

GCEV_SETBILLING gc_SetBilling() CRN Generated when
billing information
for the call is
acknowledged by
the network.

GCEV_SETCHANSTA
TE

gc_SetChanState()
or unsolicited

CRN Sets operating
state of channel.
Or if an
unsolicited event,
generated when
the status of the

GlobalCall™ API Software Reference for UNIX and Windows NT

290

Event Terminates Ref Description
B channel changes
or a maintenance
message is
received from the
network.

GCEV_SETUP_ACK Unsolicited (disabled
by default)

CRN Generated when
an incoming setup
ACK message is
received.

GCEV_TASKFAIL Unsolicited Either
CRN
or
LDID

An unsolicited error
event occurred
during the execution
of a function.

GCEV_TRANSFERAC
K

Unsolicited CRN Generated when
an
acknowledgement
is sent in response
to a transfer call to
another destination
message using
DPNSS protocol.

GCEV_TRANSFERCA
LL

Unsolicited CRN Generated when a
transfer call to
another destination
message is
received.

GCEV_TRANSFERREJ Unsolicited CRN Generated when a
rejection message
is sent in response
to a request to
transfer call to
another destination
using DPNSS
protocol.

Appendix A - Summary of GlobalCall Functions and Events

291

Event Terminates Ref Description

GCEV_TRANSIT Unsolicited CRN Generated when a
message is sent via
a call transferring
party to the
destination party
after a transfer call
connection is
completed using
DPNSS protocol.

GCEV_UNBLOCKED Unsolicited (enabled
by default)

LDID Line is unblocked.
Application may
issue call-related
commands to this
line device.

GCEV_USRINFO Unsolicited CRN Generated when
an incoming User-
to-User
Information (UUI)
message is
received.

GlobalCall™ API Software Reference for UNIX and Windows NT

292

293

Appendix B
GlobalCall Error Code & Result Value Summary

Table 39. GlobalCall Error Code Summary

Error Code Returned Description

EGC_ALARM Function interrupted by alarm

EGC_ALARMDBINIT Alarm database failed to initialize

EGC_ATTACHED Specified resource already attached

EGC_BADFCN Wrong function code (TSR)

EGC_BUSY Line is busy

EGC_CCLIBSPECIFIC Error specific to call control library

EGC_CCLIBSTART At least one call control library failed to start

EGC_CEPT Operator intercept detected

EGC_COMPATIBILITY Incompatible components

EGC_CPERROR SIT detection error

EGC_DEVICE Invalid device handle

EGC_DIALTONE No dial tone detected

EGC_DRIVER Driver error

EGC_DTOPEN dt_open() function failed

EGC_DUPENTRY Duplicate entry inserted into GlobalCall
database

EGC_FILEOPEN Error opening file

EGC_FILEREAD Error reading file

GlobalCall™ API Software Reference for UNIX and Windows NT

294

Error Code Returned Description

EGC_FILEWRITE Error writing file

EGC_FUNC_NOT_
DEFINED

Protocol function not defined

EGC_GC_STARTED GlobalCall library is already started

EGC_GCDBERR GlobalCall database error

EGC_GCNOTSTARTED GlobalCall not started

EGC_ILLSTATE Function is not supported in the current state

EGC_INTERR Internal GlobalCall Error

EGC_INVCRN Invalid call reference number

EGC_INVDEVNAME Invalid device name

EGC_INVLINEDEV Invalid line device passed

EGC_INVMETAEVENT Invalid metaevent

EGC_INVPARM Invalid parameter (argument)

EGC_INVPROTOCOL Invalid protocol name

EGC_INVSTATE Invalid state

EGC_LINERELATED Error is related to line device

EGC_MAXDEVICES Exceeded maximum devices limit

EGC_NAMENOTFOUND Trunk device name not found

EGC_NDEVICE Too many devices opened

EGC_NOANSWER Rang called party, called party did not answer

EGC_NOCALL No call was made or transferred

EGC_NOERR No error

EGC_NOMEM Out of memory

Appendix B - GlobalCall Error Code & Result Value Summary

295

Error Code Returned Description

EGC_NORB No ringback detected

EGC_NOT_INSERVICE Called number is not in-service

EGC_NOVOICE Call needs voice resource, use gc_Attach()
function

EGC_NPROTOCOL Too many protocols opened

EGC_OPENH Error opening voice channel

EGC_PFILE Error opening parameter file

EGC_PROTOCOL Protocol error

EGC_PUTEVT Error queuing event

EGC_SETALRM Set alarm mode failed

EGC_SRL SRL failure

EGC_STOPD Call progress stopped

EGC_SYNC Set mode flag to EV_ASYNC instead of
EV_SYNC

EGC_SYSTEM System error

EGC_TASKABORTED Task aborted

EGC_TIMEOUT Function time out

EGC_TIMER Error starting timer

EGC_TSRNOTACTIVE cclib not active (TSR)

EGC_UNSUPPORTED Function is not supported by this technology

EGC_USER Function interrupted by user

EGC_USRATTRNOTSET User attribute for this line device was not set

EGC_VOICE No voice resource attached

GlobalCall™ API Software Reference for UNIX and Windows NT

296

Error Code Returned Description

EGC_VOXERR Error from voice software

EGC_XMITALRM Send alarm failed

Table 40. GlobalCall Result Value Summary

Result Value Description

GCRV_ALARM Event caused by alarm

GCRV_B8ZSD Bipolar eight zero substitution detected

GCRV_B8ZSDOK Bipolar eight zero substitution detected
recovered

GCRV_BPVS Bipolar violation count saturation

GCRV_BPVSOK Bipolar violation count saturation recovered

GCRV_BUSY Line is busy

GCRV_CCLIBSPECIFIC Event caused by specific call control library
failure

GCRV_CECS CRC4 error count saturation

GCRV_CECSOK CRC4 error count saturation recovered

GCRV_CEPT Operator intercept detected

GCRV_CPERROR SIT detection error

GCRV_DIALTONE No dial tone detected

GCRV_DPM Driver performance monitor failure

GCRV_DPMOK Driver performance monitor failure recovered

GCRV_ECS Error count saturation

GCRV_ECSOK Error count saturation recovered

Appendix B - GlobalCall Error Code & Result Value Summary

297

Result Value Description

GCRV_FERR Frame bit error

GCRV_FERROK Frame bit error recovered

GCRV_FSERR Frame sync error

GCRV_FSERROK Frame sync error recovered

GCRV_INTERNAL Event caused internal failure

GCRV_LOS Initial loss of signal detection

GCRV_LOSOK Initial loss of signal detection recovered

GCRV_MFSERR Received multi frame sync error

GCRV_MFSERROK Received multi frame sync error recovered

GCRV_NOANSWER Event caused by no answer

GCRV_NORB No ringback detected

GCRV_NORMAL Normal completion

GCRV_NOT_INSERVICE Called number is not in-service

GCRV_NOVOICE Call needs voice resource, use gc_Attach()
function

GCRV_OOF Out of frame error, count saturation

GCRV_OOFOK Out of frame error, count saturation recovered

GCRV_PROTOCOL Event caused by protocol error

GCRV_RBL Received blue alarm

GCRV_RBLOK Received blue alarm recovered

GCRV_RCL Received carrier loss

GCRV_RCLOK Received carrier loss recovered

GCRV_RDMA Received distant multi-frame alarm

GlobalCall™ API Software Reference for UNIX and Windows NT

298

Result Value Description

GCRV_RDMAOK Received distant multi-frame alarm recovered

GCRV_RED Got a red alarm condition

GCRV_REDOK Got a red alarm condition recovered

GCRV_RLOS Received loss of sync

GCRV_RLOSOK Received loss of sync recovered

GCRV_RRA Remote alarm

GCRV_RRAOK Remote alarm recovered

GCRV_RSA1 Received signaling all 1s

GCRV_RSA1OK Received signaling all 1s recovered

GCRV_RUA1 Received unframed all 1s

GCRV_RUA1OK Received unframed all 1s recovered

GCRV_RYEL Received yellow alarm

GCRV_RYELOK Received yellow alarm recovered

GCRV_SIGNALLING Signaling change

GCRV_STOPD Call progress stopped

GCRV_TIMEOUT Event caused by time-out

299

Appendix C
GlobalCall Header Files

The GlobalCall header files, gclib.h and gcerr.h , listed in this appendix are for
both Windows NT and UNIX. These header files apply to all technologies.

gclib.h Header File
/**
*
* C Header: gclib.h
* Instance: dnj25
* Description: GlobalCall header file for application use
* %created_by: wienerc %
* %date_created: Tue Feb 10 15:59:54 1998 %
*
**/
/**
 * Copyright (C) 1996-1998 Dialogic Corp.
 * All Rights Reserved
 *
 * THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF Dialogic Corp.
 * The copyright notice above does not evidence any actual or
 * intended publication of such source code.
 **/

#ifndef GCLIB_H
#define GCLIB_H

#ifndef lint
static char *_dnj25_gclib_h = "@(#) %filespec: gclib.h-22.1.3 % (%full_filespec:
gclib.h-22.1.3:incl:dnj25 %)";
#endif /* !lint */

#ifndef DOS
#include <stdio.h>
#endif /* !DOS */

#ifdef __cplusplus
extern "C" { // C++ func bindings to enable funcs to be called from C++
#endif /* __cplusplus */

#ifdef _WIN32
#pragma pack(1)
#endif /* _WIN32 */

/*
 * --- Rel Type: 0=Prod, 1=Beta, 2=Alpha, 3=Exp
 * | ----- Major Number
 * || ----- Minor Number
 * || | ----- Beta Number
 * || | | ----- Alpha Number
 * || | | |
 * vv v v v
 */

GlobalCall™ API Software Reference for UNIX and Windows NT

300

#ifdef unix
#define GC_VERSION (long int)0x11030100
#else /* !unix */
#if defined(_WIN32) && defined(_M_IX86)
#define GC_VERSION (long int)0x01000000
#else /* !_WIN32 && !_M_IX86 */
#if defined(_WIN32) && defined(_M_ALPHA)
#define GC_VERSION (long int)0x21000001
#endif /* _WIN32 && _M_ALPHA */
#endif /* _WIN32 && _M_IX86 */
#endif /* unix */

#define METAEVENT_MAGICNO 0xBAD012FBL
/*
 * This file will be exported to application
 */

/*
 * Typedefs used throughout GlobalCall software, and application.
 */
#define GCLIB_DEBUG_FILE_NAME "gclib.dbg" /* controls where debug file
 list is kept */
#define MAX_BOARD_NAME_LENGTH 100 /* Not including the trailing
 NULL */
#define MAX_CCLIB_NAME_LENGTH 10 /* Not including the trailing
 NULL */
#define LIBID_GC 0 /* GlobalCall lib’s id */
#define GC_MAX_CRNS_PER_LINEDEV 20

/*gc1*/
#define LINEDEV long
/*gc2*/
#define CRN long

/*
-- bit mask for gc_GetCCLibInfo
*/
#define GC_CCLIB_AVL 0x1
#define GC_CCLIB_CONFIGURED 0x2
#define GC_CCLIB_FAILED 0x4
#define GC_CCLIB_STUB 0x8

/*
-- defines for gc_GetCallInfo()
*/
/*#define CALLED_SUBS 0x5*/ /* In ISDN header files */
/*#define U_IES 0x10*/ /* In ISDN header files */
#define CATEGORY_DIGIT 0x100 /* Get category digit */
#define CONNECT_TYPE 0x101 /* get callp connect type */
#define CALLNAME 0x102 /* get caller name call ID */
#define CALLTIME 0x103 /* get caller time call ID */

/*
-- Defines for the connect types
*/
#define GCCT_NA 0 /* call progress is not available */
#define GCCT_CAD 1 /* connect due to cadence */
#define GCCT_LPC 2 /* connect due to loop current */
#define GCCT_PVD 3 /* connect due to positive voice detection */

Appendix C - GlobalCall Header Files

301

#define GCCT_PAMD 4 /* connect due to positive answering machine
 detection */
#define GCCT_FAX 5 /* connect due to FAX */

/*gc3*/
/*
-- Note: this structure is intended to be used in the future
-- by gc_Start(), but is not yet implemented
*/
typedef struct {

int rfu;
} GC_START_STRUCT, *GC_START_STRUCTP;

typedef struct {
 int num_avllibraries;
 int num_configuredlibraries;
 int num_failedlibraries;
 int num_stublibraries;

 /*
 -- these are an array of strings, each string terminated with a NULL
 -- e.g. avl_libraries[0] = "ICAPI"
 -- avl_libraries[1] = "ISDN"
 -- avl_libraries[2] = "ANAPI"
 */
 char **avllibraries;
 char **configuredlibraries;
 char **failedlibraries;
 char **stublibraries;
} GC_CCLIB_STATUS, *GC_CCLIB_STATUSP;

typedef struct {
 long poll_units; /* # of poll units before gc_GetEvent */
 /* should return */
 /* -1 = no limit */
 /* 0 is the same as 1 */
 /* NB - Only 1 or forever is currently */
 /* implemented */
 /* in the future, poll_units may be */
 /* either cycles or time */
 int rfu1; /* reserved for future use */
 int rfu2; /* reserved for future use */
} GETEVENT;

/*
-- for gc_Open() successful "termination event"
-- need to distinguish from normal BLOCKED/UNBLOCKED codes
*/
#define GCEV_OPEN_UNBLOCKED -1L /* result of open being successful */
 /* a - number so not to conflict with */
 /* DTILIB codes */

/*
 * Data structure types
 */
#define GCME_UNKNOWN_STRUCT_TYPE 0
#define GCME_EVTBLK_STRUCT_TYPE 1
#define GCME_EVTDATA_STRUCT_TYPE 2

GlobalCall™ API Software Reference for UNIX and Windows NT

302

/*
 * Defines for GlobalCall API event codes
 */
#ifndef DOS
#define DT_GC 0x800
#else /* DOS */
#define DT_GC 0x2000
#endif /* !DOS */

#ifdef DOS
#define DV_GCAPI (DT_GC | 100) /* DV_ICAPI is 100 */
#endif /* DOS */

/*gc4*/
#define GCEV_TASKFAIL (DT_GC | 0x01) /* Abnormal condition; state unchanged
 */
#define GCEV_ANSWERED (DT_GC | 0x02) /* Call answered and connected */
#define GCEV_CALLPROGRESS (DT_GC | 0x03)
#define GCEV_ACCEPT (DT_GC | 0x04) /* Call is accepted */
#define GCEV_DROPCALL (DT_GC | 0x05) /* gc_DropCall is completed */
#define GCEV_RESETLINEDEV (DT_GC | 0x06) /* Restart event */
#define GCEV_CALLINFO (DT_GC | 0x07) /* Info message received */
#define GCEV_REQANI (DT_GC | 0x08) /* gc_ReqANI() is completed */
#define GCEV_SETCHANSTATE (DT_GC | 0x09) /* gc_SetChanState() is completed */
#define GCEV_FACILITY_ACK (DT_GC | 0x0A)
#define GCEV_FACILITY_REJ (DT_GC | 0x0B)
#define GCEV_MOREDIGITS (DT_GC | 0x0C) /* cc_moredigits() is completed*/
#define GCEV_SETBILLING (DT_GC | 0x0E) /* gc_SetBilling() is completed */
#define GCEV_ALERTING (DT_GC | 0x21) /* The destination telephone terminal
 * equipment has received connection
 * request (in ISDN accepted the
 * connection request. This event is
 * an unsolicited event
 */
#define GCEV_CONNECTED (DT_GC | 0x22) /* Destination answered the request */
#define GCEV_ERROR (DT_GC | 0x23) /* unexpected error event */
#define GCEV_OFFERED (DT_GC | 0x24) /* A connection request has been made
 */
#define GCEV_DISCONNECTED (DT_GC | 0x26) /* Remote end disconnected */
#define GCEV_PROCEEDING (DT_GC | 0x27) /* The call state has been changed to
 * the proceeding state */
#define GCEV_PROGRESSING (DT_GC | 0x28) /* A call progress message has been
 * received */
#define GCEV_USRINFO (DT_GC | 0x29) /* A user to user information event is
 * coming */
#define GCEV_FACILITYREQ (DT_GC | 0x2A) /* A facility request is made by CO */
 /* NB: ISDN equivalent value is */
 /* CCEV_FACILITY */
#define GCEV_CONGESTION (DT_GC | 0x2B) /* Remote end is not ready to accept
 * incoming user information */
#define GCEV_FACILITY (DT_GC | 0x2C) /* Facility info. available */
#define GCEV_D_CHAN_STATUS (DT_GC | 0x2E) /* Report D-channel status to the user */
#define GCEV_NOUSRINFOBUF (DT_GC | 0x30) /* User information element buffer is
 * not ready */
#define GCEV_NOFACILITYBUF (DT_GC | 0x31) /* Facility buffer is not ready */
#define GCEV_BLOCKED (DT_GC | 0x32) /* Line device is blocked */
#define GCEV_UNBLOCKED (DT_GC | 0x33) /* Line device is no longer blocked */
#define GCEV_ISDNMSG (DT_GC | 0x34)
#define GCEV_NOTIFY (DT_GC | 0x35) /* Notify message received */
#define GCEV_L2FRAME (DT_GC | 0x36)
#define GCEV_L2BFFRFULL (DT_GC | 0x37)

Appendix C - GlobalCall Header Files

303

#define GCEV_L2NOBFFR (DT_GC | 0x38)
#define GCEV_SETUP_ACK (DT_GC | 0x39)
#define GCEV_CALLSTATUS (DT_GC | 0x3A) /* call status, e.g. busy */

#ifdef _WIN32
/*gc5*/
/* these events only apply to those sites using ISDN DPNSS */
#define GCEV_DIVERTED (DT_GC | 0x40)
#define GCEV_HOLDACK (DT_GC | 0x41)
#define GCEV_HOLDCALL (DT_GC | 0x42)
#define GCEV_HOLDREJ (DT_GC | 0x43)
#define GCEV_RETRIEVEACK (DT_GC | 0x44)
#define GCEV_RETRIEVECALL (DT_GC | 0x45)
#define GCEV_RETRIEVEREJ (DT_GC | 0x46)
#define GCEV_NSI (DT_GC | 0x47)
#define GCEV_TRANSFERACK (DT_GC | 0x48)
#define GCEV_TRANSFERREJ (DT_GC | 0x49)
#define GCEV_TRANSIT (DT_GC | 0x4A)

/* end of ISDN DPNSS specific */
#endif /* _WIN32 */
#define GCEV_ACKCALL (DT_GC | 0x50) /* Termination event for gc_CallACK()
 */

/*
 * MASK defines which may be modified by gc_SetEvtMsk().
 * These masks are used to mask or unmask their corresponding events,
 * GCEV_xxxx.
 */
#define GCMSK_ALERTING 0x01
#define GCMSK_PROCEEDING 0x02
#define GCMSK_PROGRESS 0x04
#define GCMSK_NOFACILITYBUF 0x08
#define GCMSK_NOUERINFO 0x10
#define GCMSK_BLOCKED 0x20
#define GCMSK_UNBLOCKED 0x40
#define GCMSK_PROC_SEND 0x80
#define GCMSK_SETUP_ACK 0x100

/*
 * Event Mask Action values
 *
 */
#define GCACT_SETMSK 0x01 /* Enable notification of events
 * specified in bitmask and disable
 * notification of previously set
 * events */
#define GCACT_ADDMSK 0x02 /* Enable notification of events
 * specified in bitmask in addition
 * to previously set events. */
#define GCACT_SUBMSK 0x03 /* Disable notification of events
 * specified in bitmask. */

/*
 * BUFFER sizes
 */
#define GC_BILLSIZE 0x60 /* For storing billing info */
#define GC_ADDRSIZE 0x30 /* For storing ANI or DNIS digits. */

GlobalCall™ API Software Reference for UNIX and Windows NT

304

/*
 * Components supported for gc_GetVer()
 */
#define GCGV_LIB 0 /* GlobalCall library */
#define ICGV_LIB 1 /* ICAPI library */
#define ISGV_LIB 2 /* ISDN library */
#define ANGV_LIB 3 /* ANAPI library */

/*
 * Cause definitions for dropping a call
 */
#define GC_UNASSIGNED_NUMBER 0x01 /* Number unassigned / unallocated */
#define GC_NORMAL_CLEARING 0x10 /* Call dropped under normal conditions*/
#define GC_CHANNEL_UNACCEPTABLE 0x06
#define GC_USER_BUSY 0x11 /* End user is busy */
#define GC_CALL_REJECTED 0x15 /* Call was rejected */
#define GC_DEST_OUT_OF_ORDER 0x19 /* Destination is out of order */
#define GC_NETWORK_CONGESTION 0x2a
#define GC_REQ_CHANNEL_NOT_AVAIL 0x2c /* Requested channel is not available
 */
#define GC_SEND_SIT 0x300 /* send Special Info. Tone (SIT) */

/*
 * RATE types for gc_SetBilling()
 */
#define GCR_CHARGE 0x0000 /* Charge call (default) */
#define GCR_NOCHARGE 0x0100 /* Do not charge call */

/*
 * Defines for ’parm’ parameter of gc_SetParm() and gc_GetParm()
 * gc6
 */
#define GCPR_ALARM 1 /* Enable or disable alarm handling */
#define GCPR_WAITIDLE 2 /* Change wait for idle time-out */
#define GCPR_LOADTONES 4 /* Enable or disable loading tone */
#define GCPR_RINGBACKID 5 /* GTD id for ring back tone */
#define GCPR_OUTGUARD 6 /* maximum time for call progress */
#define GCPR_MINDIGITS 7 /* min # of digits */
#define GCPR_CALLINGPARTY 0x4001 /* set or get terminal phone number */
#define GCPR_CATEGORY 0x104 /* request caller category */

#define GCPV_ENABLE 1 /* enable feature */
#define GCPV_DISABLE 0 /* disable feature */

/*
 * Call States
 */
#define GCST_NULL 0x00
#define GCST_ACCEPTED 0x01
#define GCST_ALERTING 0x02
#define GCST_CONNECTED 0x04
#define GCST_OFFERED 0x08
#define GCST_DIALING 0x10
#define GCST_IDLE 0x20
#define GCST_DISCONNECTED 0x40

/*

Appendix C - GlobalCall Header Files

305

 * Channel states which may be set using gc_SetChanState()
 */
#define GCLS_INSERVICE 0 /* Set channel to in service */
#define GCLS_MAINTENANCE 1 /* Set channel to maintenance state */
#define GCLS_OUT_OF_SERVICE 2 /* Set channel to out of service */

/*
 * Defines for gc_CallACK() when getting more digits.
 */

#define GCIF_DDI 1 /* get additional DDI digits */

/*gc7*/
#define GCDG_COMPLETE 0x0000 /* No more digits after that */
#define GCDG_PARTIAL 0x0100 /* Maybe more digits after that */

#define GCDG_NDIGIT 0x00FF /* Get infinite string of digits */
#define GCDG_MAXDIGIT 0x00E /* maximum # of DDI digits which can
 be collected */

/*
-- Defines for gc_GetLinedevState
*/
#define GCGLS_BCHANNEL 0x0 /* B channel (ISDN) */
#define GCGLS_DCHANNEL 0x1 /* D channel (ISDN) */

#define GC_MAXNFACNETWORKID 251 /* Maximum non-facility network ID */

typedef struct {
/*
-- Note: structure is ordered with longest fields 1st
-- to improve access time with some compilers
*/
 long magicno; /* for internal validity check */

 /* application calls gc_GetMetaEvent() to fill in these fields */
 unsigned long flags; /* flags field */
 /* - possibly event data structure type
 */
 /* i.e. evtdata_struct_type */
 void *evtdatap; /* pointer to the event data block */
 /* DOS will be of type EVTBLK for
 ICAPI,ISDN */
 /* other libraries to be determined */
 /* UNIX will be sr_getevtdatap() */
 long evtlen; /* event length */
 /* DOS - initially sizeof(EVTBLK) */
 /* UNIX sr_getevtlen */
#ifdef DOS
 long devtype; /* Specifies the product generating event */
 long evtcode; /* Event Code identifying the event */
 long evtdata; /* Data relevant to the event */
 long devchan; /* Device Channel: Channel Number on which
event occoured */
 long board; /* Board Number: For non voice events
specifies board Number */
#else /* !DOS */
 long evtdev; /* UNIX - sr_getevtdev */
 long evttype; /* Event type */
#endif /* DOS */

GlobalCall™ API Software Reference for UNIX and Windows NT

306

 /* linedev & crn are only valid for GlobalCall events */
 LINEDEV linedev; /* linedevice */
 CRN crn; /* crn - if 0 then no crn for this event */
 long rfu2; /* for future use only */

 void *usrattr; /* user attribute */
 int cclibid; /* ID of CCLib that event is associated
 with */
 /* + = CCLib ID number */
 /* -1 = unknown */
#ifdef DOS
 int evt_data_struct_type; /* event data structure type */
#else /* !DOS */
 int rfu1; /* for future use only */
#endif /* DOS */

} METAEVENT, *METAEVENTP;

/* define(s) for flags field within METAEVENT structure */
#define GCME_GC_EVENT 0x1 /* Event is a GlobalCall event */

/*gc8*/
#define MAXPHONENUM 32

/* this structure is for future use */
typedef struct {
 long flags;
 long connecttype;
} GCLIB_MAKECALL_BLK;

typedef struct {
 GCLIB_MAKECALL_BLK *gclib; /* GlobalCall specific portion */
 void *cclib; /* cclib specific portion */
} GC_MAKECALL_BLK, *GC_MAKECALL_BLKP;

typedef union {
 struct {
 long cents;
 } ATT, *ATT_PTR;
} GC_RATE_U, *GC_RATE_U_PTR;

typedef struct {
 long flags;
 long rfu;
} GCLIB_WAITCALL_BLK;

typedef struct {
 GCLIB_WAITCALL_BLK *gclib; /* GlobalCall specific portion */
 void *cclib;
/* cclib specific portion */
} GC_WAITCALL_BLK, *GC_WAITCALL_BLKP;

/* define(s) for type field within GC_CALLACK_BLK structure */
#define GCACK_SERVICE_DNIS 0x1
#define GCACK_SERVICE_ISDN 0x2

typedef struct {
 unsigned long type; /* type of a structure inside following union */
 long rfu; /* will be used for common functionality */

Appendix C - GlobalCall Header Files

307

 union {
 struct {
 int accept;
 } dnis;
 struct {
 int acceptance;
 /* 0x0000 proceding with the same B chan */
 /* 0x0001 proceding with the new B chan */
 /* 0x0002 setup ACK */
 LINEDEV linedev;
 } isdn;
 struct {
 long gc_private[4];
 } gc_private;
 } service; /* what kind of service is requested */
 /* related to type field */
} GC_CALLACK_BLK, *GC_CALLACK_BLK_PTR;

typedef union {
 short shortvalue;
 long longvalue;
 int intvalue;
 char charvalue;
 char *paddress;
 void *pstruct;
} GC_PARM;

/* structure for gc_GetDeviceNameInfo */
typedef struct {
 int cclibid;
 long rfu;
} GC_DEVICENAME_INFO, *GC_DEVICENAME_INFOP;

/*
-- structures for gc_SndMsg
-- This structure is an rfu
*/
typedef struct {
 long flags;
 long rfu;
} GCLIB_IE_BLK, *GCLIB_IE_BLKP;

typedef struct {
 GCLIB_IE_BLK *gclib; /* GlobalCall specific portion */
 void *cclib; /* cclib specific portion */
} GC_IE_BLK, *GC_IE_BLKP;

/*
-- structures for gc_SndFrame
-- This structure is an rfu
*/
typedef struct {
 long flags;
 long rfu;
} GCLIB_L2_BLK, *GCLIB_L2_BLKP;

typedef struct {

GlobalCall™ API Software Reference for UNIX and Windows NT

308

 GCLIB_L2_BLK *gclib; /* GlobalCall specific portion */
 void *cclib; /* cclib specific portion */
} GC_L2_BLK, *GC_L2_BLKP;

/*
 * GlobalCall Function Prototypes
 * Note: New functions will need to be addeded twice: once for
 * _MSC_VER ... & once for not
 */
#if (defined (_MSC_VER) || defined (__STDC__) || defined (__cplusplus))

#if defined (__cplusplus)
extern "C" {
#endif /* __cplusplus */
int gc_AcceptCall(CRN crn, int rings, unsigned long mode);
int gc_AnswerCall(CRN crn, int rings, unsigned long mode);
int gc_Attach(LINEDEV linedev, int voiceh, unsigned long mode);
int gc_CallAck(CRN crn, GC_CALLACK_BLK *callack_blkp, unsigned long mode);
int gc_CallProgress(CRN crn, int indicator);
int gc_CCLibIDToName(int cclibid, char **lib_name);
int gc_CCLibNameToID(char *lib_name, int *cclibidp);
int gc_CCLibStatus(char *cclib_name, int *cclib_infop);
int gc_CCLibStatusAll(GC_CCLIB_STATUS *cclib_status);
int gc_Close(LINEDEV linedev);
int gc_CRN2LineDev(CRN crn, LINEDEV *linedevp);
int gc_Detach(LINEDEV linedev, int voiceh, unsigned long mode);
int gc_DropCall(CRN crn, int cause, unsigned long mode);
int gc_ErrorValue(int *gc_errorp, int *cclibidp, long *cclib_errorp);
int gc_ExtensionFunction(int cclibid, LINEDEV linedev, CRN crn, void *datap);
int gc_GetANI(CRN crn, char * anibuf);
int gc_GetBilling(CRN crn, char *billing_buf);
int gc_GetCallInfo(CRN crn,int info_id, char *valuep);
int gc_GetCallState(CRN crn, int *state_ptr);
int gc_GetCRN(CRN *crn_ptr, METAEVENT *metaeventp);
int gc_GetDeviceNameInfo(char *DeviceName, GC_DEVICENAME_INFOP devicename_infop);
int gc_GetDlgerrValue(LINEDEV linedev, int *dlgerrp);
int gc_GetDNIS(CRN crn, char *dnis);
#ifdef DOS
int gc_GetEvent(GETEVENT *geteventp, METAEVENT *metaeventp);
#endif /* DOS */
#ifdef _WIN32
int gc_GetFrame(LINEDEV linedev, GC_L2_BLK *l2_blkp);
#endif /* _WIN32 */
int gc_GetLineDev(LINEDEV *linedevp, METAEVENT *metaeventp);
int gc_GetLinedevState(LINEDEV linedev, int type, int *state_buf);
#ifndef DOS
int gc_GetMetaEvent(METAEVENT *metaeventp);
#ifdef _WIN32
int gc_GetMetaEventEx(METAEVENT *metaeventp, unsigned long evt_handle);
#endif /* _WIN32 */
#endif /* !DOS */
int gc_GetNetworkH(LINEDEV linedev, int *networkhp);
int gc_GetParm(LINEDEV linedev, int parm_id, GC_PARM *valuep);
int gc_GetUsrAttr(LINEDEV linedev, void **usr_attrp);
int gc_GetVer(LINEDEV linedev, unsigned int *releasenump,
 unsigned int *intnump, long component);
int gc_GetVoiceH(LINEDEV linedev, int * voicehp);
#ifdef _WIN32
int gc_HoldCall(CRN crn, unsigned long mode);
int gc_HoldCallACK(CRN crn);
int gc_HoldCallRej(CRN crn, int cause);

Appendix C - GlobalCall Header Files

309

int gc_LibInit(void);
#endif /* _WIN32 */
int gc_LoadDxParm(LINEDEV linedev, char *pathp, char *errmsgp, int err_length);
int gc_MakeCall(LINEDEV linedev, CRN *crnp, char *numberstr,
 GC_MAKECALL_BLK *makecallp, int timeout, unsigned long mode);
int gc_Open(LINEDEV *linedevp, char *devicename, int rfu);
int gc_OpenEx(LINEDEV *linedevp, char *devicename, int rfu, void *usrattr);

int gc_ReleaseCall(CRN crn);
int gc_ReqANI(CRN crn, char *anibuf, int req_type, unsigned long mode);
int gc_ResetLineDev(LINEDEV linedev, unsigned long mode);
int gc_ResultMsg(int cclibid, long result_code, char **msg);
int gc_ResultValue(METAEVENT *metaeventp, int *gc_result, int *cclibidp,
 long *cclib_resultp);
#ifdef _WIN32
int gc_RetrieveCall(CRN crn, unsigned long mode);
int gc_RetrieveCallAck(CRN crn);
int gc_RetrieveCallRej(CRN crn, int cause);
#endif /* _WIN32 */
int gc_SetBilling(CRN crn,int rate_type, GC_RATE_U *ratep, unsigned long mode);
int gc_SetCallingNum(LINEDEV linedev, char *calling_num);
int gc_SetChanState(LINEDEV linedev, int chanstate, unsigned long mode);
int gc_SetDlgerrValue(LINEDEV linedev, int dlgerr);
int gc_SetEvtMsk(LINEDEV linedev, unsigned long mask, int action);
int gc_SetInfoElem(LINEDEV linedev, GC_IE_BLK *iep);
int gc_SetParm(LINEDEV linedev, int parm_id, GC_PARM value);
int gc_SetUsrAttr(LINEDEV linedev, void *usr_attr);
#ifdef _WIN32
int gc_SndFrame(LINEDEV linedev, GC_L2_BLK* l2_blkp);
#endif /* _WIN32 */
int gc_SndMsg(LINEDEV linedev, CRN crn, int msg_type, GC_IE_BLK *sndmsgptr);
int gc_Start(GC_START_STRUCT *startp);
int gc_StartTrace(LINEDEV linedev, char *tracefilename);
int gc_Stop(void);
int gc_StopTrace(LINEDEV linedev);
int gc_WaitCall(LINEDEV linedev, CRN *crnp, GC_WAITCALL_BLK *waitcallp,
 int timeout, unsigned long mode);
#if defined (__cplusplus)
}
#endif /* __cplusplus */

#else /* !_MSC_VER && !__STDC__ && !__cplusplus */
int gc_AcceptCall();
int gc_AnswerCall();
int gc_Attach();
int gc_CallAck();
int gc_CallProgress();
int gc_CCLibIDToName();
int gc_CCLibNameToID();
int gc_CCLibStatus();
int gc_CCLibStatusAll();
int gc_CRN2LineDev();
int gc_Close();
int gc_Detach();
int gc_DropCall();
int gc_ErrorValue();
int gc_ExtensionFunction();
int gc_GetANI();
int gc_GetBilling();
int gc_GetCallInfo();
int gc_GetCallState();
int gc_GetCRN();

GlobalCall™ API Software Reference for UNIX and Windows NT

310

int gc_GetDeviceNameInfo();
int gc_GetDlgerrValue();
int gc_GetDNIS();
#ifdef DOS
int gc_GetEvent();
#endif /* DOS */
#ifdef _WIN32
int gc_GetFrame();
#endif /* _WIN32 */
int gc_GetLineDev();
int gc_GetLinedevState();
#ifndef DOS
int gc_GetMetaEvent();
#ifdef _WIN32
int gc_GetMetaEventEx();
#endif /* _WIN32 */
#endif /* !DOS */
int gc_GetNetworkH();
int gc_GetParm();
int gc_GetUsrAttr();
int gc_GetVer();
int gc_GetVoiceH();
#ifdef _WIN32
int gc_HoldCall();
int gc_HoldCallACK();
int gc_HoldCallRej();
int gc_LibInit();
#endif /* _WIN32 */
int gc_LoadDxParm();
int gc_MakeCall();
int gc_Open();
int gc_OpenEx();
int gc_ReleaseCall();
int gc_ReqANI();
int gc_ResetLineDev();
int gc_ResultMsg();
int gc_ResultValue();
#ifdef _WIN32
int gc_RetrieveCall();
int gc_RetrieveCallAck();
int gc_RetrieveCallRej();
#endif /* _WIN32 */
int gc_SetBilling();
int gc_SetCallingNum();
int gc_SetChanState();
int gc_SetDlgerrValue();
int gc_SetEvtMsk();
int gc_SetInfoElem();
int gc_SetParm();
int gc_SetUsrAttr();
#ifdef _WIN32
int gc_SndFrame();
#endif /* _WIN32 */
int gc_SndMsg();
int gc_Start();
int gc_StartTrace();
int gc_Stop();
int gc_StopTrace();
int gc_WaitCall();
#endif /* _MSC_VER || __STDC__ || __cplusplus */

#ifdef _WIN32

Appendix C - GlobalCall Header Files

311

#pragma pack()
#endif /* _WIN32 */

#ifdef __cplusplus
}
#endif /* __cplusplus */

#endif /* _GCLIB_H */

gcerr.h Header File
/**
*
* C Header: gcerr.h
* Instance: dnj25
* Description: GlobalCall error header file for application use
* %created_by: wienerc %
* %date_created: Mon Feb 9 13:09:58 1998 %
*
**/
/**
* Copyright (C) 1996-1998 Dialogic Corp.
* All Rights Reserved
*
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF Dialogic Corp.
* The copyright notice above does not evidence any actual or
* intended publication of such source code.
***/

#ifndef _GCERR_H_
#define _GCERR_H_

#ifndef lint
static char *_dnj25_gcerr_h = "@(#) %filespec: gcerr.h-11 % (%full_filespec:
gcerr.h-11:incl:dnj25 %)";
#endif

/****************/
/* Error values */
/****************/
/*gc1*/
/* Note: when adding error codes, recall that ICAPI error codes for the
 most part may not excede 0x7F - cf. r2_updateline() */
#define GC_ERROR -1
#define EGC_NOERR 0 /* No error */
#define GC_SUCCESS EGC_NOERR /* synonym of EGC_NOERR */
#define EGC_NOCALL 1 /* No call was made or transfered */
#define EGC_ALARM 2 /* Function interrupt by alarm */
#define EGC_ATTACHED 3 /* specified resource already attached */
#define EGC_DEVICE 4 /* Bad device handle */
#define EGC_INVPROTOCOL 5 /* Ivalid protocol name */
#define EGC_PROTOCOL 7 /* Protocol error */
#define EGC_SYNC 8 /* The mode flag must be EV_ASYNC */
#define EGC_TIMEOUT 9 /* function time out */
#define EGC_UNSUPPORTED 0xA /* Function is not supported */
#define EGC_USER 0xB /* Function interrupted by user */
#define EGC_VOICE 0xc /* No voice resource attached */
#define EGC_NDEVICE 0xd /* Too many devices opened */
#define EGC_NPROTOCOL 0xe /* Too many protocols opened */

GlobalCall™ API Software Reference for UNIX and Windows NT

312

#define EGC_BADFCN 0xf /* Bad function code (TSR) */
#define EGC_TSRNOTACTIVE 0x10 /* CCLIB not active (TSR) */
#define EGC_COMPATIBILITY 0x11 /* incompatible components */
/*gc2*/
/*gc3*/
#define EGC_EVTERR 0x13 /* Internal Dialogic use only */
/*gc4*/
#define EGC_PUTEVT 0x14 /* Error queuing event */
#define EGC_MAXDEVICES 0x15 /* Exceeded Maximum devices limit */
#define EGC_OPENH 0x16 /* Error opening voice channel */
/*gc5*/
#define EGC_INTERR 0x18 /* Internal Global Call Error */
#define EGC_NOMEM 0x19 /* Out of memory */
#define EGC_PFILE 0x1A /* Error opening parameter file */
#define EGC_TIMER 0x1B /* Error starting timer */
#define EGC_FILEWRITE 0x1C /* Error writing file */
#define EGC_SYSTEM 0x1D /* System error */
/*gc6*/
#define EGC_VOXERR 0x1E /* Internal Dialogic use only */
#define EGC_DTIERR 0x32 /* Internal Dialogic use only */
/*gc7*/
#define EGC_ERR 0x39 /* Internal Dialogic use only */
/*gc8*/
#define EGC_LINERELATED 0x40 /* Error is related to line device */
#define EGC_INVSTATE 0x41 /* Invalid state */
#define EGC_INVCRN 0x42 /* Invalid call reference number */
#define EGC_INVLINEDEV 0x43 /* Invalid line device passed */
#define EGC_INVPARM 0x44 /* Invalid parameter(argument) */
#define EGC_SRL 0x45 /* SRL failure */
/*gc9*/
#define EGC_OTHERERRORS 0x80 /* Internal Dialogic use only */
#define EGC_USRATTRNOTSET 0x81 /* UsrAttr was not set for this ldev*/
#define EGC_INVMETAEVENT 0x82 /* Invalid metaevent */
#define EGC_GCDBERR 0x83 /* GlobalCall database error */
#define EGC_NAMENOTFOUND 0x84 /* trunk device name name not found */
#define EGC_DRIVER 0x85 /* driver error */
#define EGC_FILEREAD 0x86 /* File read */
#define EGC_FILEOPEN 0x87 /* file open */
#define EGC_TASKABORTED 0x88 /* task aborted */
#define EGC_CCLIBSPECIFIC 0x89 /* cclib specific - a catchall */
#define EGC_XMITALRM 0x8A /* Send alarm failed */
#define EGC_SETALRM 0x8B /* Set alarm mode failed */
#define EGC_CCLIBSTART 0x8C /* At least one cclib failed to start*/
#define EGC_ALARMDBINIT 0x8D /* Alarm database failed to init */
#define EGC_INVDEVNAME 0x8E /* Invalid device name */
#define EGC_DTOPEN 0x8F /* dt open failed */
#define EGC_GCNOTSTARTED 0x90 /* GlobalCall not started */
#define EGC_DUPENTRY 0x91 /* inserting a duplicate entry into
 the database */
#define EGC_ILLSTATE 0x92 /* Function is not supported in the
 current state */
#define EGC_FUNC_NOT_DEFINED 0x93 /* Low level function is not defined */
#define EGC_GC_STARTED 0x94 /* GlobalCall is already started */
#define EGC_BUSY 0x95 /* Line is busy */
#define EGC_NOANSWER 0x96 /* Ring, no answer */
#define EGC_NOT_INSERVICE 0x97 /* Number not in service */
#define EGC_NOVOICE 0x98 /* No voice */
#define EGC_NORB 0x99 /* no ringback */
#define EGC_CEPT 0x100 /* operator intercept */
#define EGC_STOPD 0x101 /* call progress stopped */
#define EGC_CPERROR 0x102 /* SIT detection error */
#define EGC_DIALTONE 0x103 /* no dial tone detected */

Appendix C - GlobalCall Header Files

313

#define EGC_ROUTEFAIL 0x104 /* routing failed */
#define EGC_DTUNLISTEN 0x105 /* dt_unlisten failed */
#define EGC_DXUNLISTEN 0x106 /* dx_unlisten failed */
#define EGC_AGUNLISTEN 0x107 /* ag_unlisten failed */
#define EGC_DTGETXMITSLOT 0x108 /* dt_getxmitslot failed */
#define EGC_DXGETXMITSLOT 0x109 /* dx_getxmitslot failed */
#define EGC_AGGETXMITSLOT 0x10A /* ag_getxmitslot failed */
#define EGC_DTLISTEN 0x10B /* dt_listen failed */
#define EGC_DXLISTEN 0x10C /* dx_listen failed */
#define EGC_AGLISTEN 0x10D /* ag_listen failed */

/* Note: when adding error codes, recall that ICAPI error codes for the
 most part may not excede 0x7F - cf. r2_updateline() */
/*****************/
/* result values */
/*****************/
/*gc9*/
#define GCRV_RESULT 0x500
#define GCRV_NORMAL (GCRV_RESULT | 0) /* normal completion */
#define GCRV_ALARM (GCRV_RESULT | 1) /* event caused by alarm */
#define GCRV_TIMEOUT (GCRV_RESULT | 2) /* event caused by timeout */
#define GCRV_PROTOCOL (GCRV_RESULT | 3) /* event caused by protocol error*/
#define GCRV_NOANSWER (GCRV_RESULT | 4) /* event caused by no answer */
#define GCRV_INTERNAL (GCRV_RESULT | 5) /* event caused internal failure */
#define GCRV_CCLIBSPECIFIC (GCRV_RESULT | 6) /* event caused by cclib specific
 failure */
#define GCRV_NOVOICE (GCRV_RESULT | 7) /* Call needs voice, use ic_attach()
 */
#define GCRV_SIGNALLING (GCRV_RESULT | 8) /* Signaling change */
#define GCRV_BUSY (GCRV_RESULT | 9) /* Line is busy */
#define GCRV_NOT_INSERVICE (GCRV_RESULT | 0x40) /* Number not in service */
#define GCRV_NORB (GCRV_RESULT | 0x41) /* no ringback */
#define GCRV_CEPT (GCRV_RESULT | 0x42) /* operator intercept */
#define GCRV_STOPD (GCRV_RESULT | 0x43) /* call progress stopped */
#define GCRV_CPERROR (GCRV_RESULT | 0x44) /* call progress error */
#define GCRV_DIALTONE (GCRV_RESULT | 0x45) /* no dial tone */

/*
-- alarm values
-- initialized such that matches values (well actually +0x10)
-- in DTT1_xxx and DTE1_xxx (as of 4/8/96).
-- Also, doesn’t differentiate between T1 & E1 when the same value
-- is used for both with a different meaning. The same value
-- will be returned here (albeit from different mneumonics)
-- User is expected to know if the board is T1 or E1
-- At the present time (4/8/96) Dialogic software does not tell
-- the difference at the library level.
-- gc_ResultMsg() will use the E1 vocabulary.
*/
#define GCRV_OOF (GCRV_RESULT | 0x10) /* out of frame error, count saturation
 */
#define GCRV_LOS (GCRV_RESULT | 0x11) /* Initial loss of signal detection */
#define GCRV_DPM (GCRV_RESULT | 0x12) /* Driver performance monitor failure
 */
#define GCRV_BPVS (GCRV_RESULT | 0x13) /* Bipolar violation count saturation
 */
#define GCRV_ECS (GCRV_RESULT | 0x14) /* Error count saturation */
#define GCRV_RYEL (GCRV_RESULT | 0x15) /* Received yellow alarm */
#define GCRV_RRA GCRV_RYEL /* Received remote alarm */
#define GCRV_RCL (GCRV_RESULT | 0x16) /* Received carrier loss */
#define GCRV_FERR (GCRV_RESULT | 0x17) /* Frame bit error */
#define GCRV_FSERR GCRV_FERR /* Received frame sync error */

GlobalCall™ API Software Reference for UNIX and Windows NT

314

#define GCRV_B8ZSD (GCRV_RESULT | 0x18) /* Bipolar eight zero substitution
 detect */
#define GCRV_RBL (GCRV_RESULT | 0x19) /* Received blue alarm */
#define GCRV_RUA1 GCRV_RBL /* Received unframed all 1s */
#define GCRV_RLOS (GCRV_RESULT | 0x1A) /* Received loss of sync */
#define GCRV_RED (GCRV_RESULT | 0x1B) /* Got a read alarm condition */
#define GCRV_MFSERR (GCRV_RESULT | 0x1C) /* Received multi frame sync error */
#define GCRV_RSA1 (GCRV_RESULT | 0x1D) /* Received signalling all 1s */
#define GCRV_RDMA (GCRV_RESULT | 0x1E) /* Received distant multi-frame alarm
 */
#define GCRV_CECS (GCRV_RESULT | 0x1F) /* CRC4 error count saturation */

/* -- recovered series -- */
#define GCRV_OOFOK (GCRV_RESULT | 0x20) /* out of frame error, count saturation
 recovered */
#define GCRV_LOSOK (GCRV_RESULT | 0x21) /* Initial loss of signal detection
 recovered */
#define GCRV_DPMOK (GCRV_RESULT | 0x22) /* Driver performance monitor failure
 recovered */
#define GCRV_BPVSOK (GCRV_RESULT | 0x23) /* Bipolar violation count saturation
 recovered */
#define GCRV_ECSOK (GCRV_RESULT | 0x24) /* Error count saturation recovered */
#define GCRV_RYELOK (GCRV_RESULT | 0x25) /* Received yellow alarm recovered */
#define GCRV_RRAOK GCRV_RYELOK /* Received remote alarm recovered */
#define GCRV_RCLOK (GCRV_RESULT | 0x26) /* Received carrier loss recovered */
#define GCRV_FERROK (GCRV_RESULT | 0x27) /* Frame bit error recovered */
#define GCRV_FSERROK GCRV_FERROK /* Received frame sync error recovered
 */
#define GCRV_B8ZSDOK (GCRV_RESULT | 0x28) /* Bipolar eight zero substitution dtct
 recovered */
#define GCRV_RBLOK (GCRV_RESULT | 0x29) /* Received blue alarm recovered */
#define GCRV_RUA1OK GCRV_RBLOK /* Received unframed all 1s recovered
 */
#define GCRV_RLOSOK (GCRV_RESULT | 0x2A) /* Received loss of sync recovered */
#define GCRV_REDOK (GCRV_RESULT | 0x2B) /* Got a read alarm condition recovered
 */
#define GCRV_MFSERROK (GCRV_RESULT | 0x2C) /* Received multi frame sync error
 recovered */
#define GCRV_RSA1OK (GCRV_RESULT | 0x2D) /* Received signalling all 1s recovered
 */
#define GCRV_RDMAOK (GCRV_RESULT | 0x2E) /* Received distant multi-frame alarm
 recovered */
#define GCRV_CECSOK (GCRV_RESULT | 0x2F) /* CRC4 error count saturation
 recovered */

#endif /* _GCERR_H_ */

315

Appendix D
Related Publications

This appendix lists publications you should refer to for additional information on
Dialogic products or communications technology.

Dialogic Hardware References

• Quick Installation Card for your boards

Dialogic Software References

• GlobalCall Analog Technology User’s Guide for UNIX and Windows NT

• GlobalCall E-1/T-1 Technology User’s Guide for UNIX and
Windows NT

• GlobalCall Country Dependent Parameters (CDP) Reference

• GlobalCall ISDN Technology User’s Guide for UNIX and Windows NT

• System Software Release documentationr later for UNIX

• System Release documentation for your operating system

• SCbus Routing Guide

• SCbus Routing Function Reference for UNIX

• SCbus Routing Function Reference for Windows NT

• Voice Software Reference and Standard Runtime Library Programmer’s
Guide for UNIX

• Voice Software Reference for Windows NT and Standard Runtime
Library Programmer’s Guide for Windows NT

GlobalCall™ API Software Reference for UNIX and Windows NT

316

Communications Technology References

• Edgar, Bob, PC Based Voice Processing, New York: Flatiron Publishing Inc.
2nd edition, 1994, ISBN 0-936648-47-7

• Newton, Harry, Newton’s Telecom Dictionary (12th edition), Flatiron
Publishing, Inc. 1997, ISBN 1-57820-008-3

R2 MF Signaling References

• Specifications of Signaling Systems R1 and R2, International Telegraph and
Telephone Consultative Committee (CCITT), Blue Book Vol. VI, Fascicle
VI.4, ISBN 92-61-03481-0

• General Recommendations on Telephone Switching and Signaling,
International Telegraph and Telephone Consultative Committee (CCITT),
Blue Book Vol. VI, Fascicle VI.1, ISBN 92-61-03451-9

ISDN Signaling References

• CCITT. CCITT Recommendation Digital Subscriber Signalling System No.
1 (DSS 1), Network Layer, User-Network Management, Vol. VI - Fascicle
VI.11, Rec. Q.930 - Q.940. Geneva: CCITT, 1989.

• Stallings, William. ISDN: An Introduction. New York: Macmillan
Publishing Company, 1992.

T-1 Robbed Bit Signaling References

• Bellamy, John, Digital Telephony, 2nd ed. New York: John wiley & Sons,
1991

• Fike, John L., and George Friend, Understanding Telephone Electronics,
Indiana: Howard W. Sams & Company, 1988

• Flanagan, William A., The Guide to T-1 Networking, 4th ed. New York,
Telecom Library Inc., 1990

• LATA Switching Systems Generic Requirements (LSSGR), Bellcore Technical
Reference TR-TSY-000064, Issue 2, July 1987, and modules, Bellcore

317

Glossary

analog: 1. Refers to the telephone line interface that receives analog voice
and telephony signaling information from the telephone network. 2.
Refers to applications that use loop start signaling instead of digital
signaling. 3. A method of telephony transmission in which the
information from the source (for example, speech in a human
conversation) is converted into an electrical signal that varies
continuously over a range of amplitude values. 4. Telephone
transmissions or switching that is not digital. See also ground start,
loop start.

analog interface: see analog, loop start.

analog loop start: see analog, loop start.

analog voice: see analog, loop start.

ANI-on-Demand: A feature of AT&T ISDN service whereby the user can
automatically request caller ID from the network even when caller ID
does not exist.

ANI: Automatic Number Identification. A service that identifies the phone
number of the calling party.

asynchronous function: A function that returns immediately to the
application and returns a completion/termination at some future time.
An asynchronous function allows the current thread to continue
processing while the function is running.

asynchronous mode: Classification for functions that operate without
blocking other functions.

atomic synchronous function: typically terminates immediately, returns
control to the application and does not cause a call state transition.

available library: A call control library configured to be recognized by the
GlobalCall API and successfully started by the GlobalCall gc_Start()
function.

GlobalCall™ API Software Reference for UNIX and Windows NT

318

B channel: A “bearer” channel used in ISDN interfaces. This circuit-
switched, digital channel can carry voice or data at 64,000 bits/sec in
either direction

blind dialing: Dialing without waiting for dial tone detection.

bonding: Bandwidth ON Demand INteroperability Group - an inverse-
multiplexing method used to combine multiple channels into a single,
coherent channel.

BRI: Basic Rate Interface - interface for connecting data terminal and
voice telephones to an ISDN switch. The BRI includes two 64 Kbps
B channels and one 16 Kbps D channel.

call analysis: a process used to automatically determine what happened
after an outbound call is dialed. Call analysis monitors the progress of
an outbound call after dialing and provides information to allow the
application to process the call based on the status of the call. Call
analysis can determine 1) if the line is answered and, in many cases,
how the line is answered, 2) if the line rings but is not answered, 3) if
the line is busy or 4) the problem in completing the call. Also referred
to as call progress.

call control: the process of setting up a call and call tear-down.

Call control library: A collection of routines that interact directly with a
network interface. These libraries are used by the GlobalCall functions
to implement network specific commands and communications.

call progress tone: a tone sent from the PTT to tell the calling party the
progress of the call, (e.g., a dial tone, busy tone, ringback tone, etc.).
The PTT’s can provide additional tones, such as a confirmation tone,
splash tone or a reminder tone, to indicate a feature in use.

Call Reference Number (CRN): A number assigned by the GlobalCall
library to identify a call on a specific line device.

call states: Call processing stages in the application.

CAS: Channel Associated Signaling. Signaling protocols in which the
signaling bits for each time slot are in a fixed location with respect to
the framing. In E-1 systems, time slot 16 is dedicated to signaling for
all 30 voice channels (time slots). The time slot the signaling
corresponds to is determined by the frame number within the

Appendix D Related Publications

319

multiframe and whether it’s the high or low nibble of time slot 16.
In T-1 systems, the signaling is also referred to as robbed-bit signaling,
where the least significant bit of each time slot is used for the signaling
bits during specific frames.

CEPT: Conference des Adminstrations Europeenes des Postes et
Telecommunications. A collection of groups that set European
telecommunications standards.

compelled signaling: Transmission of next signal is held until
acknowledgment of the receipt of the previous signal is received at the
transmitting end.

configured library: A call control library supported by the GlobalCall
API.

congestion: Flow of user-to-user data

CRN - see Call Reference Number.

D channel: The data channel in an ISDN interface that carries control
signals and customer call data in packets.

data structure: Programming term for a data element consisting of fields,
where each field may have a different definition and length. A group of
data structure elements usually share a common purpose or
functionality.

device handle: numerical reference to a device, obtained when a device is
opened. This handle is used for all operations on that device. See also
Call Reference Number.

DDI string: string of Direct Dialing In digits that identifies a called
number.

DLL (Dynamically Linked Library) (Windows NT): a sequence of
instructions, dynamically linked at runtime and loaded into memory
when they are needed. These libraries can be shared by several
processes.

device: Any computer peripheral or component that is controlled through
a software device driver.

device channel: A Dialogic data path that processes one incoming or
outgoing call at a time. Compare time slot.

GlobalCall™ API Software Reference for UNIX and Windows NT

320

digital channel: Designates a bi-directional transfer of data for a single
time slot of a T-1 or an E-1 digital frame between a T-1/E-1 device that
connects to the digital service and the SCbus. Digitized information
from the T-1/E-1 device is sent to the SCbus over the digital transmit
channel. The response to this call is sent from the SCbus to the T-1/E-1
device over the digital receive (listen) channel.

driver: A software module that provides a defined interface between a
program and the hardware.

DNIS Dialed Number Identification Service. A feature of 800 lines that
allows a system with multiple 800 lines in its queue to access the 800
number the caller dialed. Also provides caller party number
information.

DPNSS Digital Private Network Signaling System. An E-1 primary rate
protocol used in Europe to pass calls transparently between PBXs.

E-1 CAS: E-1 line using Channel Associated Signaling. In CAS, one of the
32 channels (time slot 16) is dedicated to signaling for all of the 30
voice channels.

E-1: Another name given to the CEPT digital telephony format devised by
the CCITT that carries data at the rate of 2.048 Mbps (DS-1 level).

E&M: In an analog environment, an electrical circuit containing separate
signaling leads in addition to the leads for receiving and transmitting
audio. There can be a total of 4 or 6 wires, referred to as “four wire
E&M” and “six wire E&M”. In addition to the audio pairs, a pair of
dedicated signaling leads called “Ear” and “Mouth” exist. See also
analog, loop start.

event An unsolicited communication from a hardware device to an
operating system, application, or driver. Events are generally attention-
getting messages, allowing a process to know when a task is complete
or when an external event occurs.

extended asynchronous: For Windows NT environments, the extended
asynchronous (multithread asynchronous) model extends the features of
the asynchronous model with the extended functions, sr_WaitEvtEx()
and gc_GetMetaEventEx(). These extended functions allow an
application to run different threads, wherein each thread handles the
events from a different device.

Appendix D Related Publications

321

failed library: A non-stub call control library configured to be recognized
by the GlobalCall API and which did not successfully start when the
GlobalCall gc_Start() function was issued.

glare: when an inbound call arrives while an outbound call is in the
process of being setup, a “glare” condition occurs. Unless the protocol
specifies otherwise, the incoming call takes precedence over the
outbound call.

ground start: In an analog environment, an electrical circuit consisting of
2 wires (or leads) called tip and ring, which are the 2 conductors of a
telephone cable pair. The CO provides voltage (called “talk battery” or
just “battery”) to power the line. Although this sounds like loop start,
the difference is in the way the phone line is “siezed,” or how the
originator of the call signals the CO. When using Dialogic equipment,
an application cannot originate a call on a ground start line. However,
Dialogic equipment can receive and process calls (transfer, for
example) on ground start lines. See also analog, loop start.

ICAPI: The Dialogic Interface Control Application Programming Interface,
which provides a device specific telephony and signaling interface for
the GlobalCall API to control Dialogic network interface boards using
T-1 robbed bit or E-1 CAS signaling schemes. Also the name of a call
control library configured for GlobalCall.

Information Element (IE): Used by the ISDN (Integrated Services Digital
Network) protocol to transfer information. Each IE transfers
information in a standard format defined by CCITT standard Q.931.

ISDN: Integrated Services Digital Network. An internationally accepted
standard for voice, data, and signaling that provides users with
integrated services using digital encoding at the user-network interface.
Also the name of a call control library configured for GlobalCall.

Line Device Identifier: (LDID) A unique number that is assigned to a
specific device or device group by GlobalCall.

loop start: In an analog environment, an electrical circuit consisting of 2
wires (or leads) called tip and ring, which are the 2 conductors of a
telephone cable pair. The CO provides voltage (called “talk battery” or
just “battery”) to power the line. When the circuit is complete, this
voltage produces a current called loop current. The circuit provides a
method of starting (seizing) a telephone line or trunk by sending a

GlobalCall™ API Software Reference for UNIX and Windows NT

322

supervisory signal (going off-hook) to the CO. See also analog, ground
start.

main thread: see thread.

multitasking functions: Functions that allow the software to perform
concurrent operations. After being initiated, multitasking functions
return control to the application so that during the time it takes the
function to complete, the application program can perform other
operations, such as servicing a call on another line device. When using
the MS-DOS operating system, GlobalCall multitasking functions
operate in the same manner as asynchronous functions.

multithread asynchronous: see extended asynchronous.

network handle: SRL device handle associated with a network interface
board or time slot; equivalent to the device handle returned from the
network library’s dt_open() function.

network resource: Any device or group of devices that interface with the
telephone network. Network resources include analog (loop start,
ground start, etc.) and digital (E-1 CAS, T-1 robbed bit, and ISDN)
network interface devices. Network resources are assigned to telephone
lines (i.e., calls) on a dedicated or a shared resource basis. Network
resources control the signal handling required to manage incoming calls
from the network and the outgoing calls to the network.

NFAS: Network Facility Associated Signal - allows multiple spans to be
controlled by a single D channel subaddressing.

NSI: Network Specific Information message.

NT1: Network Terminator - the connector at either end of an ISDN link
that converts the two-wire ISDN circuit interface to four wires.

null: A state in which no call is assigned to the device (line or time slot).

overlap viewing: a condition of waiting for additional information about
the called party number (destination number).

preemptive multitasking: a form of multitasking wherein the execution of
one thread or process can be suspended by the operating system to
allow another thread to execute. UNIX and Windows NT use
preemptive multitasking to support multiple simultaneous processes.

Appendix D Related Publications

323

PRI: Primary Rate Interface - interface at the ends of high-volume trunks
linking CO facilities and ISDN network switches to each other. A T-1
ISDN PRI transmits 23 B channels and one D channel, each at 64 Kbps.
An E-1 ISDN PRI transmits 30 B channels, one D channel and one
framing channel, each at 64 Kbps.

primary thread: see thread.

process (UNIX): the execution of a program. In UNIX, process
incorporates the concept of an execution environment that includes the
contents of memory, register values, name of the current directory,
status of files and various other information. Each process is a distinct
entity, able to execute and terminate independent of all other processes.
A process can be forked/split into a parent process and a child process
with separate but initially identical, parent’s permissions, working
directory, root directory, open files, text, data, stack segments, etc.
Each child process executes independently of its parent process,
although the parent process may explicitly wait for the termination of
one or more child processes.

process (Windows NT): (1) an executing application comprising a private
virtual address space, code, data and other operating system resources,
such as files, pipes and synchronization objects that are visible to the
process. A process contains one or more threads that run in the context
of the process. (2) is the address space where the sequence of
executable instructions is loaded. A process in Windows NT consists
of blocks of code in memory loaded from executables and dynamically
linked libraries (DLL). Each process has its own 4 GB address space
and owns resources such as threads, files and dynamically allocated
memory. Code in the address space for a process is executed by a
thread. Each process comprises at least one thread which is the
component that Windows NT actually schedules for execution. When
an application is launched, Windows NT starts a process and a primary
thread.
Windows NT processes:
 1. are implemented as objects and accessed using object services;
 2. can have multiple threads executing in their address space;
 3. have build-in synchronization for both process objects and thread
objects.
In contrast to UNIX, Windows NT does not use a parent/child
relationship with the processes it creates.

GlobalCall™ API Software Reference for UNIX and Windows NT

324

Process or System Scheduler for UNIX: controls the execution of each
process or program. This Scheduler enables processes to spawn
(create) child processes that are necessary for the operation of the
parent process. By default, the Scheduler uses a time-sharing policy
that adjusts process priorities dynamically to provide good response
time for interactive processes and good throughput for CPU intensive
processes. The Scheduler also enables an application to specify the
exact order in which processes run. The Scheduler maintains process
priorities based on configuration parameters, process behavior and user
requests. See also synchronization objects for Windows NT.

R2 MFC: An international signaling system that is used in Europe, South
America and the Far East to permit the transmission of numerical and
other information relating to the called and calling subscribers’ lines.

receive: Accepting or taking digitized information transmitted by another
device.

result value: Describes the reason for an event.

rfu: Reserved for future use.

SCbus: Signal Computing bus. Third generation TDM (Time Division
Multiplexed) resource sharing bus that allows information to be
transmitted and received among resources over multiple data lines. A
hardwired connection between Switch Handlers (SC2000 chips) on
SCbus-based products for transmitting information over 1024 time slots
to all devices connected to the SCbus.

SCSA: Signal Computing System Architecture. An open-hardware and
software standard architecture that incorporates virtually every other
standard in PC-based switching. SCSA describes the components and
specifies the interfaces for a signal processing system. SCSA describes
all elements of the system architecture from the electrical
characteristics of the SCbus and SCxbus to the high level device
programming interfaces. All signaling is out of band. In addition,
SCSA offers time slot bundling and allows for scalability.

SIT - Special Information Tone

Special Information Tone (SIT)

SpringBoard: A Dialogic expansion board using digital signal processing
to emulate the functions of other products.

Appendix D Related Publications

325

SRL (Standard Runtime Library): A Dialogic library that contains C
functions common to all Dialogic devices, a data structure to support
application development and a common interface for event handling.

stub library: A library with a minimal set of internal functions that
represents a call control library that is not required for a particular
application. This stub library is entered into the list of configured call
control libraries recognized by the GlobalCall API but is not capable of
being started. (Used only to avoid link errors.)

synchronous function: Synchronous functions block an application or
process until the required task is successfully completed or a
failed/error message is returned.

synchronization objects: Windows NT executive objects used to
synchronize the execution of one or more threads. These objects allow
one thread to wait for the completion of another thread and enable the
completed thread to signal its completion to any waiting thread(s).
Threads in Windows NT are scheduled according to their priority level
(31 levels are available) and run until one of the following occurs: 1)
its maximum allocated execution time is exceeded, 2) a higher priority
thread marked as waiting becomes waiting or 3) the running thread
decides to wait for an event or an object. See also Process Scheduler
for UNIX.

synchronous mode: programming characterized by functions that run
uninterrupted to completion. Synchronous functions block an
application or process until the required task is successfully completed
or a failed/error message is returned.

T-1: A digital line transmitting at 1.544 Mbps over 2 pairs of twisted
wires. Designed to handle a minimum of 24 voice conversations or
channels, each conversation digitized at 64 Kbps. T-1 is a digital
transmission standard in North America.

T-1 robbed bit: A T-1 digital line using robbed bit signaling. In T-1
robbed bit signaling systems, typically the least significant bit in every
sixth frame of each of the 24 time slots is used for carrying dialing and
control information. The signaling combinations are typically limited
to ringing, hang up, wink and pulse digit dialing.

termination events: GlobalCall events returned to the application to
terminate function calls.

GlobalCall™ API Software Reference for UNIX and Windows NT

326

thread (Windows NT): The executable instructions stored in the address
space of a process that the operating system actually executes. All
processes have at least one thread, but no thread belongs to more than
one process. A multithreaded process has more than one thread that are
executed seemingly simultaneously. When the last thread finishes its
task, then the process terminates. The main thread is also referred to as
a primary thread; both main and primary thread refer to the first thread
started in a process. A thread of execution is just a synonym for thread.

time slot: In a digital telephony environment, a normally continuous and
individual communication (for example, someone speaking on a
telephone) is (1) digitized, (2) broken up into pieces consisting of a
fixed number of bits, (3) combined with pieces of other individual
communications in a regularly repeating, timed sequence (multiplexed),
and (4) transmitted serially over a single telephone line. The process
happens at such a fast rate that, once the pieces are sorted out and put
back together again at the receiving end, the speech is normal and
continuous. Each individual pieced-together communication is called a
time slot.

tone resource: Same as a voice resource except that a tone resource
cannot perform voice store and forward functions.

transmit: Sending or broadcasting of digitized information by a device.

TSR: Transmit and Stay Resident. Loading a program into memory in a
MS-DOS operating system so that the program is always ready to run.

unsolicited event: an event that occurs without prompting (e.g.,
GCEV_BLOCKED, GCEV_UNBLOCKED, etc.).

UUI: User-to-User Information. Proprietary messages sent to remote
system during call establishment.

voice channel: Designates a bi-directional transfer of data for a single call
between a voice device processing that call and the SCbus. Digitized
voice from the analog or T-1/E-1 interface device is transmitted over
the SCbus to the voice receive (listen) channel for processing by the
voice device. The voice device sends the response to the call over the
voice transmit channel to an SCbus time slot that transmits this response
to the analog or T-1/E-1 interface device.

Appendix D Related Publications

327

voice handle: SRL device handle associated with a voice channel;
equivalent to the device handle returned from the voice library’s
dx_open() function.

voice resource: same as a voice channel.

GlobalCall™ API Software Reference for UNIX and Windows NT

328

329

Index

.

.cdp file, 166

.prm file, 245

.vcp file
parsing error, 164

A
Accepted state, 27, 28, 36, 37, 57, 59,

113
transition, 28

access message, 51, 272

access message buffer
ISDN, 51, 272

alarm, 43

alarm database, 277

alarm event, 45
unsolicited event, 45

alarm mode, 278

alarm recovery, 46
GCEV_UNBLOCKED, 45

Alerting message, 29, 38

Alerting state, 29, 170

analog, 313
demonstration, 241

analog protocol, 247

analog bidirectional protocol
demonstration program, 247

analog interface, 313

analog loop start, 3, 6, 13, 38, 161, 167,
244, 313, 319

Analog Loop Start Alarm, 46

analog network, 7, 246, 247, 252

Analog technology, 236

analog technology configuration file,
247

analog voice, 313

ANAPI
library, 7, 9, 57, 59, 62, 63, 64, 157,

244

ANAPI stub library, 9

ancountry.c, 62

ANGV_LIB, 157

ANI, 37
Automatic Number Identification,

313

ANI information, 37, 117

ANI string length, 117

ani_buf buffer, 117, 196

ANI-on-Demand, 73, 196, 269, 313

API
Application Programming Interface,

13

Application Programming Interface, 1,
13

application-handler thread
Windows NT, 20

ASCII string, 119, 130, 219
error code, 55

GlobalCall™ API Software Reference for UNIX and Windows NT

330

error description, 55
library, 10

asynchronous call termination, 33

asynchronous callback model
UNIX, 15

asynchronous demonstration
Windows NT, 252, 253

asynchronous function, 56
defined, 14, 17

asynchronous internal-thread callback
model

event handler, 175

asynchronous mode, 14, 17, 23, 26, 58,
313

Windows NT, 18, 176

asynchronous model
UNIX, 15
Windows NT, 18

Asynchronous models
defined, 58

asynchronous non-signal callback model
UNIX, 45

asynchronous polled model
UNIX, 15

asynchronous programming, 58

asynchronous programming model
Windows NT, 15, 18

asynchronous signal callback model, 45

asynchronous with SRL callback, 20

asynchronous with SRL callback model
Windows NT, 18, 19, 20

asynchronous with SRL callback
programming

Windows NT, 18

asynchronous with SRL callback thread,
16, 17

unsolicited event, 17

asynchronous with Win32
synchronization

Windows NT, 18

asynchronous with Win32
synchronization model, 21

asynchronous with Windows callback
Windows NT, 18

asynchronous with windows callback
model

Windows NT, 20

asynchronous worker-thread callback
model

event handler, 175

AT&T ISDN, 196, 313

atomic
synchronous, 34

atomic synchronous function, 34, 313

attribute, 70, 71, 268, 269

Automatic Number Identification, 313

available library, 9, 227, 314

B
B channel, 52, 135, 224, 273, 274, 314

backward compatibility
gc_GetLineDev(), 133

Bandwidth ON Demand
INteroperability Group

bonding, 314

Basic Functions
GlobalCall, 67

basic GlobalCall functions, 67

Index

331

Basic Rate Interface, 314

BC_INFO_MODE, 219

BC_XFER_CAP, 219

BC_XFER_MODE, 219

BC_XFER_RATE, 219

bearer channel, 219, 314

Beta, 156

billing information, 120
gc_GetBilling(), 33, 41

billing_buf buffer, 120

Bipolar eight zero substitution detected,
47

Bipolar violation count saturation, 46,
47

bitmask, 212

bitmask values, 212

blind dialing, 314

blocking condition, 44

blue alarm, 279

bonding, 314

Brazil R2 protocol, 65

BRI
Basic Rate Interface, 314

bus configurations, 4

C
call

dropped, 26
inbound, 24, 26, 36
network originated, 26
outbound, 24
termination, 31, 39

call control, 314
library, 7

call control library, 6, 7, 10, 59, 70, 79,
99, 201, 203, 226, 244, 261,
268, 277, 314, 315, 317

error, 115

call control library ID, 10

call control library name, 97

call control library time-out, 115

call disconnect, 31, 39

call establishment, 13, 26, 241, 256

call event, 47

call forward
ISDN, 50, 271

Call handling, 4

call information
retrieve, 27, 37

call notification event, 236

call oriented, 4, 13

call progress tone, 94

Call Reference Number, 5, 117, 315
assigned, 4, 13
CRN, 79
released, 26

call related event, 44

call request, 68, 267

call scenarios, 28

call setup, 71, 269

call setup information, 28, 37

call state, 23, 46, 125
summary, 24

call state transition, 34

GlobalCall™ API Software Reference for UNIX and Windows NT

332

call states, 315
summary, 31, 39

call teardown, 13, 31

call terminated, 56

call termination, 33, 41, 241, 256

call transition, 23

CALL_PROCEEDING, 76

CALL_SETUP_ACK, 76

callback
UNIX, 15

CALLED_NUM_PLAN, 219

CALLED_NUM_TYPE, 219

CALLED_SUBS, 122

caller ID, 28

caller identification, 68, 267

caller party number, 316

caller’s identification
ISDN setup message, 269

calling party, 207

calling party number, 68, 269

CALLING_NUM_PLAN, 220

CALLING_NUM_TYPE, 219

CALLING_PRESENTATION, 220

CALLING_SCREENING, 220

CALLNAME, 122

CALLTIME, 122

carrier loss, 279

CAS, 317
Channel Associated Signaling, 315
GCEV_ALERTING event, 29, 38

CAS Interface, 72

CAS signaling, 318

Category digit, 122

CATEGORY_DIGIT, 122

cc_an_d.dll, 64

cc_an_d.o, 63

cc_an_ffff_d.o, 63

cc_an_ffff_io.dll, 64

cc_tt_d.dll, 64

cc_tt_d.o, 63

cc_tt_ffff_d.dll, 64

cc_tt_ffff_d.o, 63

cclib, 77, 78

cclib_errorp, 115

CEPT, 315

Channel Associated Signaling, 315
CAS, 317

charges, call, 26

coding example, 82

compelled signaling, 7, 13, 88, 315

completion message, 34

component:, 157

configuration file, 65
demonstration program, 245
user-modifiable, 241

configuration file setting, 65

configured library, 9, 64, 71, 269, 315

congestion, 315

congestion message, 49, 270, 271

Index

333

CONNECT_TYPE, 122

Connected state, 23, 27, 28, 29, 36, 38,
48, 170, 270

transition, 28, 170

connects a voice resource, 72, 267

convenience function, 138, 146

country.c, 62

CRC4 error count saturation, 46

CRN, 47, 56, 58, 70, 107, 113, 169,
237, 267, 268, 315

assigned, 6, 38
call established, 29
Call Reference Number, 4, 5, 79,

117, 315
gc_DropCall(), 33
gc_ReleaseCall(), 30
lifespan, 6
Offered state, 27

CRN assigned
released, 36

crnp, 236

D
D channel, 94, 216

D channel, 49, 73, 135, 234, 269, 271,
315

D/160SC-LS, 4

D/240PCI-T1, 4

D/240SC, 4

D/240SC-T1, 4

D/300PCI-E1, 4

D/300SC-E1, 4

D/300SC-E1, 65

D/320SC, 4

D/41ESC, 4

D/480SC-2T1, 4

D/600SC-2E1, 4

data structure, 75, 315
metaevent, 43, 138, 146

DATA_LINK_DOWN, 135

DATA_LINK_UP, 135

DDI
Direct Dialing In, 316

DDI digit, 37, 91, 130
demonstration program, 253

DDI digits, 27, 28, 37, 68, 75, 76, 91,
130, 220, 251, 268

DDI string, 48, 270

debugging, 115

default value, 71, 269

demo program
running, 251, 262, 264
structure, 242

demonstration, 241

demonstration program, 244
inbound and outbound, 241
recompile, 244
UNIX, 241

device, 316

device channel, 316

device descriptor
non GlobalCall events, 43

device driver, 15, 18

device handle, 42, 56, 58

device thread, 16

device, line, 4, 13

GlobalCall™ API Software Reference for UNIX and Windows NT

334

devicename components
gc_Open(), 178

Dialed Number Identification Service,
316

Dialing state, 29

Dialogic Configuration Manager utility
Windows NT, 65

digital channel, 316

Direct Dialing In, 316

disconnect/failure event, 47

Disconnected state, 23, 46
transition, 33, 41

disconnection, 31, 39

DLL, 316
dynamically linked library, 320

DNIS, 34, 37, 68, 268
call information, 27
Dialed Number Identification

Service, 316

dnis service structure, 75

DNIS string, 130

dnis_buf buffer, 130

DPNSS
Digital Private Network Signaling

System, 316

DPNSS protocol
ISDN, 50, 51, 52, 53, 271, 272,

274, 275

driver, 14, 16, 316

Driver performance monitor failure, 46,
47

drop and insert configuration, 95

dt_getevt(), 16

dt_open(), 277, 319

dt_setevtmsk(), 57, 59

dt_settssig(), 57, 59

DTI/240SC, 4

DTI/241SC, 4

DTI/300SC, 4

DTI/301SC, 4

DTMF dialing, 88

DX_CAP data structure, 164

DX_CAP structure, 164

dx_getevt(), 16

dx_open(), 56, 59, 324

dx_play(), 56, 59, 159

dx_setparm(), 164, 165

dxchan.vcp, 161

Dynamically Linked Library
DLL, 316, 320

dynamically loaded
Windows NT, 64

E
E&M, 317

E-1, 317

E-1 ISDN interface, 13

E-1 Alarm, 46

E-1 CAS, 3, 6, 7, 28, 37, 57, 59, 113,
205, 317

interface, 3, 319

E-1 CAS, 236

E-1 CAS Parameters, 219

Index

335

E-1 CAS protocol, 64

E-1/T-1
demonstration, 241

EGC_ALARMDBINIT, 229

EGC_BUSY, 172

EGC_CCLIBSTART, 228

EGC_NOANSWER, 172

EGC_PROTOCOL, 172

EGC_TASKABORTED, 278

EGC_TIMEOUT, 36, 115, 172, 236,
237, 278

EGC_UNSUPPORTED, 84, 89, 92, 95,
110, 117, 120, 123, 130, 136,
149, 159, 167, 196, 205, 208,
216, 224, 230, 234, 278

environment, application development,
5

environment, application or thread
(Windows NT only)
development, 13

errno variable, 178

error code, 55, 115
gcerr.h header file, 55
summary, 277

Error count saturation, 46, 47

error event
GCEV_TASKFAIL, 55

error message, 64

error message string
msglength, 165, 167

error returns from gc_Open(), 178

error value, 70, 267
call control library, 56

EV_ASYNC, 82

EV_SYNC, 82

event, 5, 45, 47, 317
CRN, 43
disable, 43
enable, 43
masked, 26
termination, 23
unsolicited, 23

event bitmask, 212

event data
metaevent, 43

event data block
EVTBLK, 79

event data pointer
non GlobalCall events, 43

event handler, 15, 17, 19, 44, 45, 175,
184

UNIX, 44, 176
unsolicited event, 17
Windows NT, 19, 45, 175, 176

event handler thread, 20, 21

event handling thread
Windows NT, 176

event logger, 64

event mask, 38, 71

event notification, 17

event processing, 19

event processing thread, 17

event queue, 56, 176

event retrieved, 43

event type
non GlobalCall events, 43

exiting an application, 57, 59

GlobalCall™ API Software Reference for UNIX and Windows NT

336

extended asynchronous, 317

extended asynchronous mode
Windows NT, 70, 268

extended asynchronous model
Windows NT, 22

extended asynchronous programming
Windows NT, 18

extended asynchronous programming
model

Windows NT, 15, 21

F
facility ACK message, 50, 271

facility message, 50, 271

facility reject message, 50, 271

failed library, 9, 317

failure, function, 31, 39

filepathp parameter, 161

firmware, 14, 16

forced release, 28, 37, 57, 59, 113

Frame bit error, 47

function
fail, 55

function call
return value, 55

function call return
state change, 23

function fail, 55

function prototypes
gclib.h file, 67

Function reference, 81

function return, 55

function return value
mneumonic GC_SUCCESS, 82

G
gc_AcceptCall(), 27, 28, 36, 37, 48, 57,

59, 68, 83, 84, 88, 94, 113, 257,
267, 270

GC_ADDRSIZE, 130, 196

gc_AnswerCall(), 27, 28, 36, 37, 48,
68, 85, 86, 94, 195, 257, 258,
267, 270

gc_Attach(), 42, 72, 88, 89, 107, 109,
111, 190, 267, 278, 279

GC_CALL_REJECTED, 112

gc_CallAck(), 3, 27, 28, 37, 48, 68, 75,
76, 91, 92, 130, 132, 262, 267,
270

GC_CALLACK_BLK, 75

GC_CALLACK_BLK, 91
data structure, 75

gc_CallProgress(), 73, 94, 267

GC_CCLIB_AVL, 101

GC_CCLIB_CONFIGURED, 101

GC_CCLIB_FAILED, 101

GC_CCLIB_STATUS structure, 103

GC_CCLIB_STUB, 101

gc_CCLibIDToName(), 10, 68, 97,
100, 267

gc_CCLibNameToID(), 10, 68, 98, 99,
267

gc_CCLibStatus(), 10, 68, 100, 105,
267

gc_CCLibStatusAll(), 10, 68, 102, 103,
227, 229, 267

Index

337

GC_CHANNEL_UNACCEPTABLE,
112

gc_Close(), 5, 6, 57, 59, 70, 90, 105,
106, 109, 111, 161, 190, 226,
230, 267

gc_CRN2LineDev(), 70, 107, 267

GC_DEST_OUT_OF_ORDER, 112

gc_Detach(), 72, 90, 106, 107, 109,
110, 190, 267

gc_DropCall(), 27, 28, 33, 37, 41, 44,
49, 57, 59, 60, 68, 84, 88, 96,
112, 113, 170, 171, 173, 174,
193, 195, 236, 237, 239, 258,
259, 267, 268, 271

gc_errorp, 115

gc_ErrorValue(), 55, 56, 70, 84, 85, 87,
89, 90, 92, 94, 95, 96, 98, 100,
102, 105, 107, 108, 110, 111,
114, 115, 117, 119, 120, 121,
123, 124, 127, 129, 130, 132,
134, 136, 138, 145, 148, 149,
150, 152, 155, 158, 159, 160,
167, 168, 171, 174, 178, 189,
195, 197, 198, 200, 201, 202,
204, 205, 207, 208, 209, 211,
215, 216, 217, 221, 223, 224,
226, 228, 230, 231, 233, 234,
235, 239, 267

error code, 55

gc_GetANI(), 28, 37, 68, 117, 132,
198, 262, 267

gc_GetBilling(), 33, 41, 68, 119, 267

gc_GetCallInfo(), 73, 121, 268

gc_GetCallState(), 70, 124, 125, 268

gc_GetCRN(), 70, 79, 127, 134, 145,
148, 268

gc_GetDNIS(), 28, 34, 37, 48, 68, 91,
94, 130, 268, 270

gc_GetLineDev(), 70, 79, 129, 132,
133, 145, 148, 268

backward compatibility, 133

gc_GetLinedevState(), 68, 135, 268

gc_GetMetaEvent(), 5, 15, 16, 18, 19,
20, 21, 43, 70, 127, 128, 129,
133, 134, 138, 139, 148, 203,
268

gc_GetMetaEventEx(), 5, 22, 43, 70,
127, 128, 129, 133, 134, 145,
146, 147, 203, 268, 317

Windows NT, 60

gc_GetMetEvent(), 138

gc_GetMetEventEx(), 146

gc_GetNetworkH(), 42, 56, 59, 70, 90,
148, 161, 190, 268

gc_GetParm(), 70, 79, 151, 165, 220,
221, 268

gc_GetUsrAttr(), 70, 79, 153, 193, 222,
223, 268

gc_GetVer(), 68, 155, 268

gc_GetVoiceH(), 42, 56, 59, 72, 150,
159, 190, 268

gc_HoldCall(), 50, 271, 272

gc_LoadDxParm(), 72, 90, 161, 164,
165, 174, 190, 268

gc_MakeCall(), 3, 6, 23, 29, 30, 38, 39,
48, 68, 77, 78, 114, 129, 161,
164, 168, 169, 170, 195, 209,
239, 258, 268, 270, 271

GC_MAKECALL_BLK, 77
inbound call conflict, 30

GC_MAKECALL_BLK

GlobalCall™ API Software Reference for UNIX and Windows NT

338

data structure, 75
gc_MakeCall(), 77

GC_MAKECALL_BLK structure, 169,
170

GC_NETWORK_CONGESTION, 112

GC_NORMAL_CLEARING, 112

gc_Open(), 5, 6, 26, 28, 37, 42, 45, 70,
89, 90, 107, 108, 111, 161, 165,
168, 175, 176, 178, 184, 190,
191, 193, 268

gc_Open() or gc_OpenEx(), 5, 6, 26,
28, 37, 42, 89, 111, 165

gc_OpenEx(), 5, 6, 26, 28, 37, 42, 45,
70, 89, 90, 107, 108, 111, 153,
155, 161, 165, 168, 190, 191,
223, 268

GC_PARM
data structure, 75

GC_PARM structure, 79, 219

gc_RcvPkt(), 77

gc_ReleaseCall(), 6, 23, 27, 30, 33, 34,
37, 41, 44, 57, 59, 68, 108, 112,
113, 114, 170, 171, 174, 193,
194, 236, 237, 239, 258, 259,
268

GC_REQ_CHANNEL_NOT_AVAIL,
112

gc_ReqANI(), 51, 73, 119, 196, 269,
273

gc_ResetLineDev(), 26, 36, 49, 70,
198, 237, 239, 269, 273

gc_ResultMsg(), 44, 55, 70, 85, 87, 90,
94, 96, 98, 100, 102, 105, 107,
108, 111, 114, 116, 119, 121,
124, 127, 129, 132, 134, 138,
145, 148, 150, 152, 155, 158,

160, 168, 171, 174, 178, 189,
195, 198, 200, 201, 202, 204,
207, 209, 211, 215, 217, 221,
223, 226, 228, 231, 233, 235,
239, 269

error code, 55

gc_ResultValue(), 44, 46, 54, 56, 71,
85, 87, 94, 96, 114, 145, 148,
171, 174, 198, 200, 201, 202,
203, 211, 239, 269, 270

gc_RetrieveCall(), 51, 52, 273

GC_SEND_SIT, 112

gc_SetBilling(), 52, 68, 205, 269, 273

gc_SetCallingNum(), 68, 207, 262, 269

gc_SetChanState(), 52, 54, 69, 138,
209, 269, 273

gc_SetEvtMsk(), 30, 38, 43, 47, 71,
212, 213, 269

gc_SetInfoElem(), 73, 77, 216, 269

gc_SetParm(), 71, 79, 151, 152, 165,
207, 215, 218, 220, 269

gc_SetUsrAttr(), 70, 71, 153, 155, 176,
190, 191, 193, 221, 268, 269

gc_SndMsg(), 73, 77, 224, 269

gc_SndPkt(), 77

gc_Start(), 6, 9, 64, 71, 102, 105, 226,
227, 228, 232, 233, 269, 314,
317

gc_StartTrace(), 73, 229, 235, 269

gc_Stop(), 6, 71, 227, 229, 232, 269

gc_StopTrace(), 73, 229, 230, 231,
234, 269

GC_SUCCESS, 82

GC_UNASSIGNED_NUMBER, 112

Index

339

GC_USER_BUSY, 112

gc_WaitCall(), 26, 27, 28, 36, 37, 46,
68, 80, 83, 85, 88, 91, 94, 97,
114, 119, 129, 132, 195, 198,
199, 200, 211, 220, 235, 236,
237, 257, 269

GC_WAITCALL_BLK, 80
GCEV_UNBLOCKED, 46

GC_WAITCALL_BLK
data structure, 75
gc_WaitCall(), 80

GCACT_ADDMSK, 212

GCACT_SETMSK, 212

GCACT_SUBMSK, 212

gcanalog.cfg
analog technology configuration

file, 247
configuration file, 241

gcerr.h, 82
header file, 62, 64

gcerr.h file, 281

gcerr.h header, 56

gcerr.h header file
error code, 55

GCEV_ACCEPT, 27, 28, 48, 83, 86,
270

GCEV_ACKCALL, 28, 48, 92, 270

GCEV_ALERTING, 29, 30, 38, 48,
170, 213, 270

maskable, 29
signal handler, 38

GCEV_ANSWERED, 23, 27, 28, 48,
86, 270

GCEV_BLOCKED, 38, 45, 46, 54, 56,
57, 58, 59, 176, 213, 258, 270

signal handler, 38
UNIX, 176
Windows NT, 175

GCEV_CALLINFO, 49, 270

GCEV_CALLSTATUS, 48, 171, 174,
270

GCEV_CONGESTION, 49, 270

GCEV_CONNECTED, 29, 30, 48, 170,
172, 271

GCEV_D_CHAN_STATUS, 49, 271

GCEV_DISCONNECTED, 23, 28, 29,
30, 33, 37, 39, 41, 46, 49, 56,
57, 58, 59, 68, 84, 86, 92, 112,
113, 171, 172, 174, 196, 258,
267, 271

signal handler, 39

GCEV_DIVERTED, 50, 271

GCEV_DROPCALL, 33, 49, 112, 271

GCEV_FACILITY, 50, 271

GCEV_FACILITY_ACK, 271

GCEV_FACILITY_REJ, 271

GCEV_HOLDACK, 50, 271

GCEV_HOLDCALL, 50, 272

GCEV_HOLDREJ, 50, 272

GCEV_ISDNMSG, 50, 272

GCEV_L2BFFRFULL, 51, 272

GCEV_L2FRAME, 51, 272

GCEV_L2NOBRFR, 51, 272

GCEV_NOFACILITYBUF, 122

GCEV_NOTIFY, 51, 272

GCEV_NOUSRINFOBUF, 122

GlobalCall™ API Software Reference for UNIX and Windows NT

340

GCEV_NSI, 51, 272

GCEV_OFFERED, 27, 28, 48, 70, 83,
86, 91, 94, 236, 237, 268, 273

GCEV_PROCEEDING, 51, 213, 273

GCEV_PROGRESS, 213

GCEV_PROGRESSING, 51, 273

GCEV_REQANI, 51, 196, 273

GCEV_RESETLINEDEV, 49, 198,
199, 273

GCEV_RETRIEVEACK, 51, 273

GCEV_RETRIEVECALL, 52, 273

GCEV_RETRIEVEREJ, 52, 273

GCEV_SETBILLING, 52, 205, 273

GCEV_SETCHANSTATE, 52, 54, 210,
273

GCEV_SETUP_ACK, 52, 274

GCEV_TASKFAIL, 29, 30, 54, 56,
168, 171, 174, 274

error event, 55
signal handler, 39

GCEV_TRANSFERACK, 52, 274

GCEV_TRANSFERCALL, 53, 274

GCEV_TRANSFERREJ, 53, 274

GCEV_TRANSIT, 53, 274

GCEV_UNBLOCKED, 38, 45, 46, 54,
57, 58, 59, 175, 176, 178, 184,
213, 258, 275

alarm recovery, 45
gc_WaitCall(), 46
signal handler, 38
UNIX, 176
Windows NT, 175

GCEV_UNLOCKED, 257

GCEV_USRINFO, 53, 275

GCGLS_BCHANNEL, 135

GCGLS_DCHANNEL, 135

GCGV_LIB, 157

gcin.cfg
configuration file, 241

gclib, 77, 78

gclib.h
header file, 62, 64

gclib.h file, 75, 81, 281
function prototypes, 67

GCLS_INSERVICE, 135, 210

GCLS_MAINTENANCE, 135, 210

GCLS_OUT_OF_SERVICE, 135, 210

GCME_GC_EVENT bit, 139, 146

GCMSK_ALERTING, 213

GCMSK_BLOCKED, 213

GCMSK_PROC_SEND, 213

GCMSK_PROCEEDING, 213

GCMSK_PROGRESS, 213

GCMSK_SETUP_ACK, 213

GCMSK_UNBLOCKED, 213

gcmtsync_cui
demonstration program, 252, 264

gcmulti
demonstration program, 252, 262

gcout.cfg
configuration file, 241

GCPR_CALLINGPARTY, 219

GCPR_LOADTONES, 219

Index

341

GCPR_MINDIGITS, 220

GCRV_BUSY, 172

GCRV_NOANSWER, 172

GCRV_PROTOCOL, 172

GCRV_TIMEOUT, 172

GCST_ACCEPTED, 125, 257, 258

GCST_ALERTING, 125

GCST_CONNECTED, 125, 257, 258

GCST_DIALING, 125

GCST_DISCONNECTED, 125

GCST_IDLE, 125, 258

GCST_NULL, 125

GCST_OFFERED, 125, 257, 258

glare, 30, 171, 317

global variable, 175

GlobalCall
Features, 4

GlobalCall Basic Functions, 67

GlobalCall call states, 23

GlobalCall error code, 115

GlobalCall error information, 178

GlobalCall event, 43, 47
METAEVENT structure, 43

GlobalCall flag, 79

GlobalCall functions
basic, 67
interface specific, 67
optional, 67
summary, 267
system controls and tools, 67

GlobalCall handle, 58

GlobalCall library, 5, 6, 7, 9, 57, 59, 64,
277, 315

GlobalCall line device, 58

Got a read alarm condition, 47

ground start, 317

H
handler, 58

hang up
signaling, 323

Hardware Compatibility, 4

hardware platform, 5

header file, 62, 64
gcerr.h, 82

header files, 281
gcerr.h, 281
gclih.h, 281

hold call message
ISDN, 50, 271, 272

hold call reject message
ISDN, 50, 272

hold call request rejected
ISDN, 50, 272

hread execution, 16

I
ICAPI, 318

call control library, 244, 261
call control library name, 97, 99,

100, 103
library, 7, 9, 157

ICAPI library, 57, 59, 62, 63

ICAPI protocol, 64

ICAPI stub library, 9

GlobalCall™ API Software Reference for UNIX and Windows NT

342

ICGV_LIB, 157

ID number
library, 10

identifying a call, 5

Idle state, 41, 49, 271
transition, 33

IE, 122

iep
information element pointer, 216

in service, 209

in-band tone, 95

inbound
demonstration program, 245

inbound call, 26, 28, 30, 36, 37, 48,
112, 237, 273

demonstration program, 241, 253,
256

example, 28, 37
glare, 171
in progress, 39
pending, 30
processed, 27

inbound call event, 47

inbound configuration file
demonstration program, 246

inbound demonstration, 241

inbound protocol
demonstration program, 247

info_id Paramete, 122

Information Element, 122, 216

Information Element (IE), 318

information element pointer
iep, 216

information message, 49, 270

information retrieval
metaevent, 43, 138, 146

Initial loss of signal detection, 46, 47

in-maintenance, 69

in-service, 69

installation directory, 244, 245

Integrated Services Digital Network
ISDN, 318

interactive voice response, 21

interface, 3

Interface Control Application
Programming Interface

ICAPI, 318

Interface Specific Functions, 67

interface specific GlobalCall functions,
67

internal SRL event handler thread, 19

ISDN, 3, 6, 7, 68, 94, 196, 205, 216,
229, 267, 318

call control library, 244, 261
call control library name, 97, 99,

100, 103
GCEV_ALERTING event, 29, 38
Integrated Services Digital Network,

318
interface, 3, 319
library, 7, 9, 157

ISDN application, 236

ISDN call control library, 214

ISDN CTR4 protocol, 65

ISDN interface, 73

ISDN library, 57, 59, 63

ISDN message, 7, 269

Index

343

ISDN Parameters, 219

ISDN protocol, 64
demonstration program, 247

ISDN setup message, 269

ISDN time-out, 115

isdn.h
header file, 62

ISDN_BN, 196

ISDN_BN_PREF, 196

ISDN_CA_TSC, 196

ISDN_CPN, 196

ISDN_CPN_PREF, 196

ISGV_LIB, 157

IVR
interactive voice response, 21

L
LAPD protocol, 224

late event, 44

Layer 1, 219

layer 2, 135

layer 2 access message
ISDN, 51, 272

layer 2 access message buffer
ISDN, 51, 272

LDID, 5, 13, 47, 161
information, 43
Line Device Identifier, 5, 318

libanalog.a file, 63

libanapi.a file, 63

libatlib.a file, 63

libdti.a, 57

libdti.a file, 62, 63

libdtimt.lib file, 64

libdxxmt.lib file, 64

libdxxx.a file, 62, 63

libgc.a file, 62, 63

libgc.lib
Windows NT, 64

libgc.lib file, 64

libgcis.a file, 63

libgcis.dll, 64

libgcr2.dll, 64

libgncf.a, 57

libgncf.a file, 63

libicapi.a file, 63

libisdn.a file, 63

libr2lib.a file, 63

library, 6, 7, 9, 71, 269
ASCII string, 10
available, 9
call control, 7
configured, 71, 269
failed, 9
GlobalCall, 3, 7
ID number, 10
non-stub, 9
stub, 9

library file, 62, 64

library function, 10

library identification code, 99

library, interface specific, 6

libsrl.a file, 62, 63

GlobalCall™ API Software Reference for UNIX and Windows NT

344

libsrlmt.lib file, 64

Line Device, 5, 56, 58

line device ID, 70, 267, 268

Line Device Identifier, 5, 13, 318

line device mask, 214

line related event, 57, 59

LINEBAG data structure, 244

linedevp, 175

linked to the application, 63

linking library file, 57

loop start, 318

loop start signaling, 313

loop timed, 65

loss of sync, 280

M
main process

UNIX, 45

main thread, 318

maintenance message, 52, 273, 274

makecallp, 169

makefile, 245

mask
event, 38
line device, 214

maskable
GCEV_ALERTING, 29

maskable event, 28, 30, 34, 37

master clock, 65

memory problem, 44, 237

message/eventing
Windows NT, 18

metaevent, 43, 70, 127, 138, 146, 203,
236, 268

data structure, 75, 78, 133

METAEVENT data structure, 18, 22,
60, 79, 139, 146

METAEVENT structure, 5, 128, 133,
140, 143

metaeventp crn field, 127

Microsoft Visual C+, 65

mode, 82
asynchronous, 14, 17
operating, 14, 15, 23

model
asynchronous. See mode,

asynchronous. See mode,
asynchronous. See mode,
asynchronous. See mode,
asynchronous

extended asynchronous. See mode,
extended asynchronous

synchronous. See mode,
synchronous. See mode,
synchronous. See mode,
synchronous. See mode,
synchronous

synchronous with SRL callback. See
mode, synchronous

msgbufferp parameter, 167, 168

msglength
error message string, 167

multi-frame alarm, 279, 280

multiline application, 14

multiple thread, 6
Windows NT, 22, 60

Index

345

multitasking
synchronous, 34

multitasking function, 319

multitasking synchronous function, 34

multithread asynchronous, 317, 319

multithreaded
Windows NT, 70, 184, 268

multithreaded asynchronous and
synchronous demonstration
program

Windows NT, 252

multithreaded asynchronous
demonstration program

Windows NT, 253

multithreaded synchronous
demonstration program

Windows NT, 256

N
naming convention

analog protocol, 63
ICAPI protocol, 63, 64

Network Facility Associated Signal
NFAS, 319

network handle, 56, 59, 149, 319

network interface, 4

network library function, 59

network resource, 319

Network Specific Facility IE, 122

Network Specific Information (NSI)
message

ISDN, 51, 272

Network Terminator, 319

network time slot, 42

network_device_name, 176, 177

NFAS, 319

non-signal callback model
UNIX, 45

non-signal mode
UNIX asynchronous callback

model, 15

non-stub library, 9

North America analog protocol, 247

notify message, 51, 272

nr_scroute(), 56, 59, 149

NSI
Network Specific Information

(ISDN), 51, 272

NT1, 319

null, 319

Null state, 24, 26, 29, 33, 34, 36, 41,
106, 198, 210, 236, 237

transition, 33, 34, 41

numberstr, 169

O
object file, 63

Offered state, 27, 28, 36, 37, 48, 273
transition, 28

open line device, 57, 59

Optional Call Handling and Features
Functions, 67

optional GlobalCall call handling
functions, 67

Out of frame error, count saturation, 47

out of memory, 278

outbound

GlobalCall™ API Software Reference for UNIX and Windows NT

346

demonstration program, 245

outbound call, 29, 30, 38, 39, 47, 48, 56
demonstration program, 255

outbound calls, 68, 69, 269
demonstration program, 241, 253,

256

outbound configuration file
demonstration program, 247

outbound demonstration, 241

out-of-service, 69

overlap receiving, 68, 267

overlap viewing, 319

P
parmno parameter, 176

sr_setparm(), 17

parsing error
.vcp file, 164

physical port, 6

polled
UNIX, 15

polled model, 15

porting
application, 7

preemptive multitasking, 319

PRI
Primary Rate Interface, 320

Primary Rate Interface, 320

primary thread, 6, 320

PRITRACE utility program, 229

proceeding message, 51, 76, 213, 273

process (UNIX), 320

process (Windows NT), 320

process latency time, 125

processes, 6

Production, 156

Products
listing of, 1

Programming conventions, 82

programming model
UNIX asynchronous, 13
UNIX synchronous, 13

progress message, 51, 273

protocol, 3, 6, 261, 278

protocol file, 64

protocol handler, 43

protocol module, 63, 64

protocol operation, 56

protocol package, 245

protocol_name, 176, 177

pulse digit dialing
signaling, 323

Q
Q.931

CCITT standard, 318

R
R2 MFC, 3, 5, 321

reason code, 44

receive, 321

Received blue alarm, 47

Received carrier loss, 47

Received distant multi-frame alarm, 46

Index

347

Received frame sync error, 46

Received loss of sync, 46, 47

Received multi frame sync error, 46

Received remote alarm, 46

Received signaling all 1’s, 46

Received unframed all 1’s, 46

Received yellow alarm, 47

recompile
demonstration program, 244

recovery, 198

red alarm, 280

rejection message
ISDN, 52, 53, 273, 274

release
system resources, 41

release number, 155

release type, 155

releases, system software, 3

remote alarm, 280

reply message, 34

request to transfer call
ISDN, 53, 274

result code, 44

result value, 29, 46, 278, 321
summary, 277

retrieve event information, 138, 146

retrieve held call
ISDN, 52, 273

retrieve hold call
ISDN, 51, 52, 273

retrieve hold call message

ISDN, 52, 273

return value
function call, 55

returned caller ID, 196

returned value, 55

rfu, 321

ring
signaling, 323

ring detected, 27

ringback, 26, 29

ringing, 68, 267

rings parameter, 166

Robbed Bit, 4
T-1, 318

robbed bit signaling, 7

robbed bit, 323

robbed-bit signaling, 13
T-1, 315

routing, 42, 110

S
SCbus

Signal Computing bus, 321

SCSA
Signal Computing System

Architecture, 322

seizing, 318

send alarm, 278

service state of line, 209

setting up a call, 24, 31, 34, 39, 77, 314

setup ACK message, 52, 274

GlobalCall™ API Software Reference for UNIX and Windows NT

348

Setup Acknowledge message, 76

setup message, 73

SETUP_ACK, 52, 76, 213, 274

SIGMODE, 58

Signal Computing bus, 321

Signal Computing System Architecture,
322

signal handler, 38, 39, 45

signal mode
UNIX, 176, 178
UNIX asynchronous callback

model, 15

signaling interfaces, 6

signaling mode, 58

Signaling References
ISDN, 310
R2 MF, 310
T-1 Robbed Bit, 310

signaling system, 4, 5

SIT, 322
Special Information Tone, 94

Special Information Tone, 94, 112, 322

SpringBoard, 322

sr_enbhdlr(), 19, 20, 22

sr_getevtdatap(), 79

sr_getevtdev(), 79

sr_getevtlen(), 79

sr_getevttype(), 79

sr_hold(), 176

SR_MODELTYPE, 20

SR_MODELTYPE value, 17, 19, 20,
21, 22

SR_MTASYNC, 20

SR_MTASYNC., 17

sr_NotifyEvt(), 21

sr_release(), 176

sr_setparm(), 17, 19, 176

SR_STASYNC, 19, 20, 21, 22
SR_MODELTYPE value, 176

sr_waitevt(), 15, 17, 18, 19, 20, 21, 22,
45, 140

sr_waitevtEx(), 22, 146, 317

SRL, 14, 17, 44, 45, 58
Standard Runtime Library, 322
Windows NT, 45

SRL callback thread, 16

SRL device handle, 88, 109, 148, 319,
324

SRL event, 138, 146

SRL event handle
Windows NT, 70

SRL event handler thread
Windows NT, 22

SRL handler thread, 19, 20
Windows NT, 19, 20

Standard Runtime Library
SRL, 322

start trace, 73

starts trace, 269

state
accepted, 26
alerting, 26
call, 23

Index

349

connected, 26
current, 23
dialing, 26
disconnected, 26
idle, 26
null, 26
offered, 26

state machine, 18, 256

statebuf, 135

states, call establishment, 24, 34

stop trace, 73, 269

structure
METAEVENT, 43

stub library, 9, 62, 63, 227, 322

Switch Handler
SC2000 chip, 321

synchronization object, 322

synchronous
atomic, 34

synchronous demonstration
Windows NT, 252, 256

synchronous function, 14

synchronous mode, 14, 16, 34, 57, 322,
323, 324

Windows NT, 175

synchronous programming model
Windows NT, 15, 16

synchronous thread, 17

System Controls and Tools Functions,
67

System Scheduler for UNIX, 321

T
T-1, 323

T-1 Alarm, 47

T-1 ISDN interface, 13

T-1 robbed bit, 3, 7
interface, 6, 38, 64, 65, 236, 244,

261, 318, 319, 323

T-1 robbed bit
interface, 3

T-1 robbed bit protocol, 64

T-1 robbed bit, 323

Technology User’s Guides, 7

terminate a call, 33, 41

termination event, 14, 15, 16, 18, 23,
28, 43, 47, 323

termination scenario, 33, 41

thread
Windows NT, 16, 323

time out, 278

time slot, 323

time slot level line device, 214

timed-out, 49, 271

timeout, 170, 236

time-out, 36, 115, 280

time-out error, 115, 170

timeout parameter, 36

tone resource, 42, 324

trace, 269

transfer call message
ISDN, 53, 274

transfer call message acknowledgement
ISDN, 52, 53, 274

transmit, 324

GlobalCall™ API Software Reference for UNIX and Windows NT

350

Transmit and Stay Resident
TSR, 324

troubleshooting, 115

trunk error
recovery, 198

TSR
Transmit and Stay Resident, 324

U
U_IES, 122

UNIX
demonstration program, 241

UNIX application
porting to Windows NT, 20

UNIX event handler, 44

UNIX in signal mode, 176

UNIX signal mode, 178

unpredictable results, 6

unrouting, 110

unsolicited event, 16, 17, 33, 39, 41, 43,
47, 58

alarm event, 45
synchronous mode, 38

unsolicited event handler, 17

user attributes, 176

user-modifiable configuration file, 241

user-specified application window, 21

user-specified message, 21

User-to-User Information, 53, 122, 216,
275, 324

USR_RATE, 219

usrattr, 191, 221, 222

usrattr parameter, 190

USRINFO_LAYER1_PROTOCOL,
219

UUI
User-to-User Information, 53, 122,

275, 324

V
variable data

non GlobalCall events, 43

variable length data
non GlobalCall events, 43

Vari-Bill service, 205

vcp file
voice channel parameter, 161

verbosity, 262

version number, 68, 155, 268

VFX/40ESC, 4

VFX/40ESC plus, 4

VFX/40SC, 4

Visual C++, 261

voice channel, 42, 324

voice channel parameter
vcp, 161

voice device handle, 42

voice file
demonstration program, 253

voice handle, 56, 59, 324

voice parameter, 72, 268

voice parameter file, 161, 163

voice resource, 4, 5, 72, 88, 106, 109,
159, 178, 219, 267, 278, 279,
324

Index

351

voice_device_name, 176, 177

voiceh, 88

W
wildcard handler, 58

Windows NT
synchronous programming model,

16

Windows NT application, 9

Windows NT environment, 15

Windows NT
programming models, 15

Windows NT message handling, 20

wink
signaling, 323

Y
yellow alarm, 280

NOTES

NOTES

NOTES

