GlobalCall™ API Software
Reference

for UNIX and Windows NT

Copyright © 1998 Dialogic Corporation

PRINTED ON RECYCLED PAPER

05-0387-003

COPYRIGHT NOTICE

Copyright 1998 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment
on the part of Dialogic Corporation. Every effort is made to ensure the accuracy of thisinformation.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot
guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. No
warranties of any nature are extended by the information contained in these copyrighted materials.
Use or implementation of any one of the concepts, applications, or ideas described on Web pages
maintained by Dialogic-may infringe one or more patents or other intellectual property rights owned
by third parties. Dialogic does not condone or encourage such infringement. Dia ogic makes no
warranty with respect to such infringement, nor does Dialogic waive any of its own intellectual
property rights which may cover systems implementing one or more of the ideas contained herein.
Procurement of appropriate intellectual property rights and licensesis solely the responsibility of the
system implementor. The software referred to in this document is provided under a Software License
Agreement. Refer to the Software License Agreement for complete details governing the use of the
software.

Part Number: 05-0387-003

All names, products, and services mentioned herein are the trademarks or registered trademarks of
their respective organizations and are the sole property of their respective owners. DIALOGIC
(nalogiogtredriaiogic logo), DTI/124, SpringBoard, and Signal Computing System Architecture
(STSRpare nepistered trademarks of Dialogic Corporation. The following are also trademarks of
Pakgh dea: Board Locator Technology, D/41ESC, D/4XE, D/160SC-L S, D/240SC,
D/240PCI-T1, D/240SC-T1, D/300PCI-E1, D/300SC-E1, D/320SC, D/480SC-2T1, D/600SC-2E1,
DbARsa/HIappdrti240SC, DTI1/241SC, DTI/300SC, DTI/301SC, Dual Span, GammaFax, Global Call,
SChupHIREA7TID9B6MARECXbus, Signal Computing System Architecture, SpringWare, V/S24T1,
V/S30Ek; Yriced3 8887\ FX/40ESC, VFX/40ESC plus, VFX/40SC and World Card. UNIX isa
registBBdtreaeraak@dadovell, Inc., licensed exclusively to X/Open Company Limited. Intel] isa
regi steneditreGestay@dittb@onmration. Windows NT is aregistered trademark of Microsoft
BobjSedsmiates bt ciih@968ntact information, visit our website at http://www.dialogic.com

Table of Contents

1. HOW tO USE THIS GUIE.....ceiieieieiieeee e 1
1.1. Products Covered By ThiS GUITEcceeeeieieeieiereeereesee s 1
1.2. Organization of thiSGUIE...........ccccerveeririceecees e 1
2. ProdUCE OVENVIBIWooveiiierieiesieiete ettt sttt st s e et seene s 3
2.1. Hardware CoOmMPatibilityccoeovriierineirieseeeresesee s 4
2.2, GlODAlCall FEALUIES.......eiui ittt 5
2.2.1. Line Device [dentifier ... 5
2.2.2. Call Reference NUMDBENccoooiieeeeee e 6
2.2.3. Resource Sharing ACross PrOCESSES........ccuvveiiereririeesesese e 6
2.3. GlobalCall ArChiteCtUIe.......cc.eevieeeeee e e 7
2.4. Call Control Librari€S......ccoouiieireieeiieeeeeeeeeeeee et 8
2.4.1. Library Terminology for UNIX Environments...........cccooeevennenenenens 10
2.4.2. Library Terminology for Windows NT Environments.............ccecevuene. 10
2.4.3. Library Information FUNCLIONS..........cceeeririeirieinineeseeeseeeeesee s 11
T] (o] o = L0 2N = 13
3.1. UNIX Programming MOGEIScooveieiieieeie e 13
3.1.1. UNIX Synchronous Mode Programming..........ccccceeeeveiieeveesesieeseeenne. 14
3.1.2. UNIX Asynchronous Mode Programming..........cccceceeeveveesenseesiennnenns 14
3.2. Windows NT Programming MOUEIS.........cccecvrveeneeii e 15
3.2.1. Windows NT Synchronous Mode Programmingccccceceveervennnnne 16
3.2.2. Windows NT Asynchronous Mode Programming.........ccccccevecvevveennene. 17
3.3. GlobaAlCall Call SALEScveiveeeiireeiirieeeie ettt seeneas 23
3.4. Asynchronous Mode Operation...........cccceeveveeveeieesee et 24
3.4.1. Establishing and Terminating Calls - Asynchronous............cc.ccecveeuen. 24
3.4.2. Inbound Calls - ASYNChIONOUS..........cceeiieeiieiiesieeie e seeie e ee s 26
3.4.3. Outbound Calls - ASYNCAIONOUS.........ceieerierieseeseeie e e s e seeeeeas 29
3.4.4. Cdl Termination - ASYNCHIONOUS.........cccevueerieeiiesie e erie e ee e 31
3.5. Synchronous Mode OPErationccecevceeieeiesieesee e e s 34
3.5.1. Inbound Calls - SYNChrONOUS..........ccccveiieeiesieesie et 36
3.5.2. Outbound Calls - SYNChIrONOUScoeiuirieriiriene e 38
3.5.3. Call Termination - SYNChIrONOUS..........ccereririereneneerereeee e 39
3.6. Routing for UNIX ENVIrONMENLS.........cccoreriririieieeeeieeeeee e 42
3.7. Routing for Windows NT ENVirOnmMEents..........ccceceeeeeeereeneenieneeneenieseeseenie s 43
3.8, Event HanliNg.......cocooiiiriiiieeeeeeeee e 43
3.8.1. EVENt REIHEVAEL ..o 44

ifi

GlobalCall™ API Software Reference for UNIX and Windows NT

3.8.2. Alarm Handlingcocooeeireiieiie e 46
3.9, EVENt DEfINITIONS.coiiiiieiieeieeee e 48
3.10. Return Value HandliNgooeerieerieiene et 57
311, Error HAaNAING.....cceiveeieeecieneeee ettt 57
3.12. Programming TipSfor UNIX ...t 58

3.12.1. SRL Related Programming Tipsfor UNIX.......ccoovninriinnienciennens 60
3.13. Programming Tips for Windows NTcccccvireinrinineeneeneeeseeneens 60
3.14. Programming Tipsfor Drop and Insert Applicationsccccveevvereenes 62
3.15. Building Applications for UNIX ..o 63

3.15.1. Using Only ICAPI Protocolsin UNIX Applications...........ccccveeennene. 65

3.15.2. Using Only Analog Protocolsin UNIX Applications.........ccccceeeeeen. 65
3.16. Building Applications for Windows NTccccceverinnienenneneese e 66

3.16.1. Compiling and Linking aWindows NT Applicationccccecuvuee. 67
3.17. Using Analog, E-1 CAS, T-1 Robbed Bit and ISDN Protocols 67
4. FUNCLION OVEINVIBW ..ottt sttt be s 69
5. Data Structur @ REFEIENCE ..o 77
5.1, GC_CALLACK _BLK ...ttt e 77
5.2, GC_IE BLK ..t 79
5.3, GC_MAKECALL_BLK ...ooiiiiieeserre e 80
5.4, METAEVENT oottt 80
5.5, GC_PARM ..ottt e 82
5.6. GC_WAITCALL_BLK ..ottt 82
6. FUNCLioN REFErENCE........cocoiic s 83
6.1. Alphabetical List of FUNCLIONS........c.ccceiieiiiieceee e 83
6.2. Programming CONVENLIONS..........cccceviueieereiiie e seeeeseesre e e s e saeesne e 84
gc_AcceptCall() - optional response to aninbound callcccooeiiinininnnns 85
gc_AnswerCall() - equivalent to conventional “set hook off” function............... 88
gc_Attach() - attaches a VOICE FESOUICEuuvuriiiiiiiiiaaee et 91
gc_CallAck() - provides information about the incoming call................c.oeouee 94
gc_CallProgress() - connection request iS iN Progressuvvveeeveeeeeeneniiivevieneeen. 98
gc_CCLibIDToName() - converts call control library ID to name.................... 101
gc_CCLibNameTolD() - converts call control library name to ID.................... 103
gc_CClLibStatus() - retrieves status of call control librarycccccceeeiiinis 105
gc_CClLibStatusAll() - retrieves status of all call control libraries.................... 107
gc_Close() - closes a previously opened devVviCeccceeeeiiiiiiiiiiiiiieiieneeeen. 110
gc_CRNZ2LineDev() - matches a CRN to its line device IDcceoeivivinnen. 113
gc_Detach() - logically detach a vOICEe reSOUICEccoviiiiiiiiieiiieiee e 115
gc_DropCall() - disconnects @ Calluuueiiiiiiiiiiiiii e 118

Table of Contents

gc_ErrorVaue() - getsan error value/failure reason code...........ccooevvveneienenne 122
gc_GetANI() - returns ANT information...........ccocevevenenie e 125
gc_GetBilling() - getsthe charge information.............ccocevevevenencene s, 128
gc_GetCallinfo() - getsinformation for the callcoooveveieienecceee, 131
gc_GetCallState() - acquiresthe state of the callcoovveveieieneieeee, 135
0C_GetCRN() - getSThe CRN ..o e 138
gc_GetDNIS() - getsthe DNIS informationc.cceveeereeeeneneenenesesesee e 141
gc_GetLineDev() - getsaline deViCecoveveieieiereee e 144
gc_GetLinedevState() - retrieves status of the line device........cc.cocvevvcvieienenne 147
gc_GetMetaEvent() - maps the current SRL event into a metaevent................. 151
gc_GetMetaEventEx() - maps the current SRL event into a metaevent............. 157
gc_GetNetworkH() - returns the network device handle..........ccccoceveveeeenenee. 160
gc_GetParm() - retrieves the parameter value specified........cocovveevereercnnene 163
gc_GetUsrAttr() - retrievesthe attribute...........cvevveeeeeeieeeeeeeeee e 165
gc_GetVer() - gets version number of specified software component............... 168
gc_GetVoiceH() - returnsthe voice device handle.........cccoocvevveveienerecenenne, 172
gc_LoadDxParm() - sets voice parameters associated with aline device.......... 175
gc_MakeCall() - enables the application to make an outgoing cal 184
gc_Open() - opensaGloba Call deviCe.......cccovvveveverere e 190
gc_OpenEX() - opens a Global Call device and sets user defined attribute 203
gc_ReleaseCall() - releases all internal reSOUrCES.........oovvvveerierereesieneeseeeenene 206
gC RegANI() - returnsthe Caller S ID.......coeveeeieeereser e 208
gc_ResetLineDev() - disconnects any active Calls.......ccoovvevvvriencereneneseeeenene, 211
gc_ResultMsg() - retrieves an ASCI| string describing result code................... 214
gc _ResultValue() - retrieVeSthe CAUSEccveverere e 216
gc_SetBilling() - setsbilling information for the callccccoveeveeevcencvcenene 219
gc_SetCallingNum() - sets default calling party number..........ccccccceveveevennene. 222
gc_SetChanState() - changes the maintenance State........covevevvevererrvereeneenes 224
gC _SetEVtMSK() - setsthe event Maskccececerereereresesese s 227
gc_SetinfoElem() - set an additional information elementccccoevvevvivienene 231
gc_SetParm() - setsthe default parameters..........coceeveeeeveecerevesese e 234
gc_SetUsrAttr() - sets an attribute defined by the userccccevveceevvcececennene 238
gc_SndMsg() - sends non-call state related ISDN MeSSage.......ccovvvvvveernneerenns 240
gc_Start() - starts all configured call control libraries........cccoveveciecvececennnnene, 243
gc_StartTrace() - trace and place resultsin shared RAMccoccvveveeveeecneenene 246
gc_Stop() - stops all configured call control libraries........cccceeevveceeevcenvcennnne, 249
gC_StopTrace() - StOPSNETIACEvevve e 251
gc_WaitCall() - sets up conditions for processing inbound calls....................... 253
7. GlobalCall DEMO Programs.........cccecvineninnn s 257

GlobalCall™ API Software Reference for UNIX and Windows NT

7.1. Demo Programs for UNIX ... 257
7.1.1. Physical Connectionsfor the UNIX Demo........cccoeeeveienencnenenienenn 260
7.1.2. Before Running the UNIX Demo Programs.........c.cceveeenenenenenienenn 260
7.1.3. Demo Configuration FilES...........cocoiireiiiieneneecere e 261
7.1.4. Running the UNIX DemO Program...........cocoeveereneeneeneseneesseenees 266

7.2. Demo Programs for WindoWS NTccoreirinnieneeneese e 267
7.2.1. Multithreaded Asynchronous Demo Overview for Windows NT 268
7.2.2. Multithreaded Synchronous Demo Overview for Windows NT 271
7.2.3. Physical Connections for the Windows NT Demo..........ccoccceveenienene 276
7.2.4. Before Running the Windows NT Demo Programs..........ccceeeeeeeenene 276
7.2.5. Running the Asynchronous Windows NT Demo Program 277
7.2.6. Running the Synchronous Windows NT Demo Program................... 279

Appendix A - Summary of GlobalCall Functionsand Events...................... 281

Appendix B - GlobalCall Error Code & Result Value Summary................. 293

Appendix C - GlobalCall Header Files........cocccviriinenineereseeees 299

Lo o T ol gl 1= o (=l = 299

(oo g ol =T [T 311

Appendix D - Related PUDIICALIONS.........cccoccevieiecie e 315

Dialogic Hardware REFENENCES.........ccoveiriiiere s 315

Dialogic Software REFErENCESccoireirieiree s 315

Communications Technology REfErenCeS........ccovvirrerenene e 316

R2 MF Signaling REFEIENCES......c..cvriiiiieerieeee s 316

ISDN Signaling REFEIENCES.ccceiriiiriiicerie s 316

T-1 Robbed Bit Signaling REFErENCES ..o 316

GIOSSANY .ttt ettt ettt st b et b e e bbb e bt et re e 317

Appendix D Related Publications..........ccccceieeieiiesecsece e 317

3T [SRS 329

Vi

List

Table 1.
Table 2.
Table 3.
Table 4.
Tableb5.
Table 6.
Table7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.

of Tables
Hardware Compatibility Chartcccoeiiiinineinereeeeese e 4
Call State DEfiNItiONScccoeieeeerese e 26
Inbound Call Set-Up (ASYNCArONOUS)covevereeerieinienieenieesie e 28
Outbound Call Set-up (Asynchronous) Example..........ccoceveveeeeneenens 31
Call Termination (ASYNCAIONOUS)c.crveerereeierieeneneeie s 33
Inbound Call Set-Up (SyNChronOUS).........ccecvrvereeerieesienenieniee e 37
Call Termination (SYNCAFONOUS)ccerveueriereeerieeseese e 42
Alarm CONAItIONScveeeereesese e ean 47
INbOUNd Call EVENLS ..o s s 49
Outbound Call EVENES........cocoiiirieiriereeesese e 49
Disconnected/Failed Call EVENLS.........cocovirieienennineeseesesee e 50
ISDN Call EVENES....ooveieieeeeieeeeeeeeeeeee e 50
Other Global Call EVENLS........ccovvieieereeerere e 56
UNIX Filestobe Linkedccccooveeieeinineeeeeeeeeeee e 65
BaSiC FUNCLIONSccecieieeecese e 70
Library Information FUNCLIONS..........cceoeiirieiriiinineeeseesieeeseeeeens 70
Optional Call Handling and Features FUNCtions............ccoceveveeeeennene. 71
System Controls and TooIS FUNCLIONScoveinennenieesesereee 72
Analog Loop Start Interface Specific FUNCtions..........cocoveveeeieeeenens 74
CAS Interface Specific FUNCLIONS..........coeiiinneniecsesee e 74
ISDN Interface Specific FUNCLIONS.........cccoovrerireerereeesee e 75
GC_CALLACK_BLK Field DeSCriptions.........cccveeereerieeneenerieeneens 78
GC_IE BLK Field DESCIPtIONScccevvveeeierieesieresie e 79
GC_MAKECALL_BLK Field DesCriptionsccoeeereeenenesenenienenne 80
METAEVENT Field DeSCriptionsccccverrireenieneineeseseee e 81
Call Progress INdiCaLOrS.........uoveereirinieereeese e 99
GC_CCLIB_STATUS Field DeSCriptionscccoeereeerierenieneseenennes 107
0C_DropCall() CAUSESc.creereieeeereeerierieie et 119
GetCalllnfo() info_id Parameter ID Definitions.........c.ccocvvevverienenne 132
gc _GetVer() REUN VAUES.......ccceeeeeeeeieeeeeeree e seesee e 170
Voice Channel-level Parameters[dx_setparm()] List.......ccocvvvvennnne 179
Voice Cal Anaysis Parameters (DX_CAP) LiSt ...ccccovevevvvvvrierinne 180
ANI REQUESE TYPES ..ttt nee e e 209
SEIVICE SEAES ..ottt 225
bitmask Parameter ValUEScooovireiriirineeseses e 228
Parameter Descriptions, gc_GetParm() and gc_SetParm().............. 235

vii

GlobalCall™ API Software Reference for UNIX and Windows NT

Table 37. Summary of GlobalCall FUNCLIONS..........ccoeiiicceeceeee 281
Table 38. Global Call Event SUMMATYcccoeeeerieerinieenieesieese e 285
Table 39. GlobaCall Error Code SUMMAYccvirieenieierieneeenieeseeseee e 293
Table40. GlobalCall Result Value SUMMArYccoeeririnenieieneneesieesieeee 296

viif

List of Figures

Figure 1. GlobalCall ArChiteCtUreccciveeiiirieereereeeie e 9
Figure 2. Asynchronous Call Establishment State Diagram...........cccocecevenerienene 25
Figure 3. Asynchronous Call Tear-Down State Diagram............ccccovceecnerecnenn. 32
Figure 4. Synchronous Call Establishment Process..............cccovvcionniccecnenn 35
Figure 5. Synchronous Call Tear-DOWNccoveeiirreneieneese e 40
Figure 6. Component Version Number Formatccccoiciinicinnccicnnns 169
Figure 7. UNIX Demo Program SEELES.........cccecererirerieerienisese s 259
Figure 8. Inbound (gcin_r2is.cfg) Configuration Sample File..........ccccccvennee. 265
Figure 9. Outbound (gcout_anis.cfg) Configuration Sample File...................... 265
Figure 10. Analog (gcanalog.cfg) Technology Configuration Sample File....... 265
Figure 11. Multithreaded Asynchronous Demo, Call Processing..........cc.ccueu... 270
Figure 12. Synchronous Demo, Call Establishment Process........cc.ccccvevvveenee. 274
Figure 13. Synchronous Demo, Application State Call Processing................... 275
Figure 14. Demo Call Information EXamplecccoerrinninennenscneeseee 279

ix

GlobalCall™ API Software Reference for UNIX and Windows NT

1. How to Use This Guide

The Global Call API (Application Programming Interface) provides auniform call
control interface for developing applications for multiple network interface
technologies, for avariety of protocols and for various operating systems. This
guide provides devel opers with an overview of Global Call; summarizes

Global Call features and files; provides application development information and
other information as it appliesto all technologies and protocols for a host
computer operating in aUNIX or aWindows NT environment. Information
relating to a particular technology or protocol isfound in companion volumes,
(see Appendix D for alist of Related Publications). Products covered, product
terminology conventions and the organization of this guide are described in this
chapter.

Where differences exist between the implementation of a Global Call application
inaUNIX or aWindows NT environment, these differences are indicated by
qualifying specific items parenthetically or by presenting separate
paragraphs/sections devoted to the implementation within a specific operating
system environment. Notable differences for Windows NT include the use of
executable threadsin contrast to the UNIX parent and child processes, an
extended asynchronous programming model and functions to support this model
and the capability to dynamically link to specific library or libraries as needed.

1.1. Products Covered By This Guide

The Global Call software provides a consistent interface for call control using the
following Dialogic products. See Table 1. Hardware Compatibility Chart for
technology and bus compatibility. See the Release Catalog for your operating
system or our web site for the Dia ogic products that support Global Call
applications.

1.2. Organization of this Guide

This guide provides:

GlobalCall™ API Software Reference for UNIX and Windows NT

« anoverview of the Dialogic GlobalCall Network Interface Control API for all
technologies for UNIX or Windows NT operating systems

e anoverview of the functions used to develop network interface control
applications and a detailed description of each of these functions

e asynopsis of the GlobalCall library functions
« alisting of the GlobalCall header files
e adefinitive glossary for the terms used to describe Global Call.

Chapter 2 presents a product overview describing the compatibility, features and
structure of GlobalCall.

Chapter 3 presents an overview of programming models, call states, event
handling, event definitions and error handling of the Global Call API

Chapter 4 provides an overview of the GlobalCall function library and a
tabulated summary of the Global Call functions.

Chapter 5 describes the data structures used by selected functions.
Chapter 6 contains a detailed description of each Global Call function.

Chapter 7 describes the Global Call demonstration programs for inbound and
outbound protocols.

Appendix A provides a tabulated summary of the Global Call functions and
events.

Appendix B provides a tabulated summary of the Global Call error codes and
result values.

Appendix C provides alisting of the Global Call header files.

Appendix D lists related publications for further information on GlobalCall AP
and other Dialogic products.

A Glossary and an I ndex follow the appendices.

2. Product Overview

The Global Call software provides a uniform application programming interface
for multiple network interface technologies. The GlobalCall API:

» isdesigned to support avariety of protocolsfor E-1 CAS, T-1 robbed bit,
ISDN, analog loop start and other interfaces

» provides a consistent application interface for the various protocols and
technologies

» usesthe same input and output parameters at the application level to
configure and control the different interfaces.

The core Global Call functionality provides a uniform interface for developing
applications for multiple network interface technologies, for avariety of protocols
and for various operating systems. For example, GlobalCall provides asingle
gc_MakeCall() function for an E-1 CASinterface, a T-1 robbed bit interface, an
ISDN interface, and an analog loop start interface that is capable of handling the
different requirements of these signaling systems.

Specific functions and parameters are included within the Global Call library to
address interface-specific applications such as R2 MFC signaling and ISDN. For
example, thegc_CallAck() function will request interface specific servicesin a
manner compatible with the particular network interface handling the call.

This chapter addresses:
e hardware compatibility
* ClobaCall features
* ClobaCall architecture

e Cadl Control libraries

The compatibility of the GlobalCall API with specific Dialogic system software
releases is defined in the Release Notes.

GlobalCall™ API Software Reference for UNIX and Windows NT

2.1. Hardware Compatibility

The Dialogic network interface boards, bus configurations, and signaling systems
currently supported are listed in Table 1. Hardware Compatibility Chart.

Contact your nearest Dialogic Sales Office or visit our web site for the most up-to-
date list of supported products.

Table 1. Hardware Compatibility Chart

Product Bus
D/41ESC ISA
D/160SC-LS | ISA
D/240SC ISA

D/300PCI-E1 | PCI

D/300SC-E1 | ISA

D/600SC-2E1 | ISA

D/320sC ISA

DTI/300SC ISA

DTI/301SC ISA

D/240PCI-T1 | PCI

D/240SC-T1 | ISA

D/480SC-2T1 | ISA

DTI1/240SC ISA

DTI/241SC ISA

2. Product Overview

E-1 T-1 E-1 T-1
Product Bus Analog | CAS R.B. ISDN | ISDN

VFX/40ESC, | ISA Yes
VFX/40ESC
plus,
VFX/40SC

A voice resource is required for this interface.

= Wndows NT only
B. = Robbed Bit

2.2. GlobalCall Features

GlobalCall presents a consistent interface across multiple types of signaling
systems The GlobalCall APl iscall oriented; that is, each call initiated by the
application or the network is assigned a Call Reference Number (CRN) for control
and tracking purposes. Call handling isindependent of the line device over which
the call isrouted.

Among its many advantages, the call-oriented approach:
e providesacommon API for multiple signaling systems

e supports a standard interface for network transactions, including call
establishment, call maintenance, call clearing, call signaling and control,
and application development

* narrows the differences among the APIs used in different operating
system environments

The flexible and convenient devel opment environment provided by Global Call is
achieved by using the Line Device Identifier (LDID) and the Call Reference
Number (CRN), which together enable applications to handle call establishment
and teardown consistently across hardware platforms or signaling systems.

2.2.1. Line Device ldentifier

The LDID isaunique logical number assigned to a specific resource (e.g., atime
slot) or agroup of resources within a process by the Global Call library.

GlobalCall™ API Software Reference for UNIX and Windows NT

Minimally, the LDID number will represent a network resource. For example,
both a network resource and a voice resource are needed to processaR2 MFC
dialing function. Using Global Call, asingle LDID number is used by the
application or thread (Windows NT only) to represent this combination of
resources for call control.

A LDID number is assigned to represent physical device(s) that will handle a call,
such as a network interface resource, when thegc_Open() or gc_OpenEx()
function iscalled. Thisidentification number assignment remains valid until the
gc _Close() functioniscalled to close the line device.

When an event arrives, the application or thread (Windows NT only) can retrieve
the LDID number associated with the event by using thelinedev field of the
METAEVENT structure (retrieved using the gc_GetM etaEvent() or the
gc_GetMetaEventEx() (Windows NT only) function). Thetermsline device
and LDID are used interchangeably.

2.2.2. Call Reference Number

A CRN isameans of identifying acall on aspecific linedevice. A CRN is
created by the Global Call library when a call is requested by the application or
thread (Windows NT only) or by the network.

With the CRN approach, the application or thread (Windows NT only) can access
and control the call without any reference to a specific physical port or line
device. The CRN isassigned immediately after thegc_MakeCall() functionis
called or when an incoming call isreceived. This CRN hasasingle LDID
associated with it (e.g., the line device on which the call was made). However, a
single line device may have multiple CRNs associated with it (i.e., more than one
call may exist on agivenline). At any given instant, each CRN isaunique
number within a process. After acall isterminated and the gc_ReleaseCall()
function is called to release the resources used for the call, the CRN is no longer
vaid.

2.2.3. Resource Sharing Across Processes

The CRNs and LDIDs assigned by the Global Call API library can not be shared
among multiple processes. These assigned CRNs and LDIDs remain valid only

2. Product Overview

within the process invoked. That is, you should not open the same physical device
from more than one process (nor from multiple threads in aWindows NT
environment) for call control purposes. If either of these conditions occur,
unpredictable results may occur.

When using multiple threads in a Windows NT environment, a GlobalCall line
device can be opened by calling the gc_Open() or gc_OpenEx() function from
one thread and then closed by calling the gc_Close() function from a different
thread. However, when starting or stopping a configured call control library, the
gc_Start() and gc_Stop() functions must be called from the same thread,
preferably the primary thread.

2.3. GlobalCall Architecture

Global Call provides acommon interface to multiple network interface specific
libraries (i.e., cal control libraries). The Global Call software consists of a
GlobalCall library that uses a set of call control libraries that support avariety of
signaling interfaces and protocols. The GlobalCall library provides the following
support for al technologies (analog loop start, E-1 CAS, T-1 robbed bit and
ISDN, for example):

e providesacommon API for handling different network interfaces

« implements basic functions that are common to al interface-specific
libraries in a consistent manner

« trandates and routes the application or thread (Windows NT only)
requests to the appropriate interface-specific library

e screensthe cal control libraries from the application or thread (Windows
NT only)

Thus, Global Call alows application programmers to devel op their applications
without a detailed knowledge of the underlying technology (how compelled
signaling works, how to handle ISDN messages, what signaling bits are used to set
up acall, etc.). GlobalCall also facilitates easy porting of an application to meet
the requirements of other countries, communication systems and different
operating systems. See the GlobalCall Technology User’s Guidéer details
about technology specific features.

GlobalCall™ API Software Reference for UNIX and Windows NT

2.4. Call Control Libraries

Each network technology requires a call control library to provide the interface
between the network and the GlobalCall library.

The call control libraries currently supported by the GlobalCall API are:

* ANAPI the call control library controlling access to analog network
interfaces using loop start signaling

* ICAPI the call control library controlling accessto network interfaces
using T-1 robbed bit signaling or E-1 CAS

* ISDN the call control library controlling network interfaces connected

to an ISDN network

The application only needs to use the Global Call library and does not need to use
these lower-level libraries directly. The following diagram, Figure 1. GlobalCall
Architecture, illustrates how the Global Call library uses the call control libraries
to access the network.

2. Product Overview

e N
USER APPLICATION
\ J
) (N
(h
| GlobalCall API |
D R T
Other Call Control Libraries
Dialogic
Libraries ANAPI ICAPI ISDN
V'S
\. J
4 i > i B
Device Drivers
Operating Systems
- 4)

4

Firmware

Network

Interface

4

y

Firmware

Network Interface

7

PSTN

Figure 1. GlobalCall Architecture

GlobalCall™ API Software Reference for UNIX and Windows NT

2.4.1. Library Terminology for UNIX Environments

Call controal libraries must be specifically configured to be used with the
Globa Call library. Such alibrary istermed a configured library. For example,
the ANAPI, ICAPI and the ISDN libraries are configured libraries.

For a UNIX application to use the network interface devices supported by the
configured libraries, al configured libraries must be linked to the application. For
applications in which a particular call control library is not required, alibrary with
aminimal set of interna functionsis provided. Thislibrary iscalled astub
library. Thus, when an application will only handle a specific technology, astub
library may be linked as a substitute for the unused call control library. Using a
stub library saves memory, ensures proper startup of the GlobalCall API and
enables the application to avoid unresolved external errors while linking. For
example, if your application only handles ISDN calls, the ANAPI and ICAPI stub
libraries may be linked to your application instead of the ANAPI and ICAPI cal
control libraries.

All configured call-control libraries, other than stub libraries, start when the
gc_Start() function isissued. Once successfully started, these libraries are
termed available libraries. |f a configured non-stub library does not start, the
library istermed afailed library. A stub library is configured, never startsand is
never available.

2.4.2. Library Terminology for Windows NT Environments

Call control libraries must be specifically configured to be used with the

Global Call library. Such alibrary istermed a configured library. For example,
the ICAPI and the ISDN libraries are configured libraries. For aWindows NT
application or thread to use the network interface devices supported by a
configured library or libraries, the application or thread must call the gc_Start()
function which will dynamically link to all configured libraries.

All configured call-control libraries start when thegc_Start() function is called.

Once successfully started, these libraries are termed available libraries. If a
configured library does not start, the library istermed afailed library.

10

2. Product Overview

2.4.3. Library Information Functions

Each configured call control library is assigned an ID number by Global Call.
Each library also hasanamein ASCII string format. Library functions perform
tasks such as converting acall control library ID to an ASCII name and vice-
versa, determining the configured libraries, determining the available libraries, the
libraries started, the libraries that failed to start and other library functions.

The following functions are the call control library information functions. All the
library functions are synchronous, thus they return without a termination event.

e gc_CCLibIDToName()
e gc_CCLibNameTolD()
e gc_ CCLibStatus()

e gc_CCLibStatusAll()

e gc GetVer()

11

GlobalCall™ API Software Reference for UNIX and Windows NT

12

3. GlobalCall API

This chapter describes the Global Call Application Programming I nterface,
including:

* UNIX programming models

e Windows NT programming models

+ cal states

« event handling including event retrieval and alarm handling
* event definitions

* eror handling

The GlobalCall APl is designed to support the E-1 and T-1 ISDN interfaces, T-1
robbed-bit signaling, E-1 R1 and R2 compelled signaling, analog loop start
signaling and other signaling systems. Refer to the Global Call APl Software
Package Release Notes for the interfaces and signaling currently supported and to
the appropriate GlobalCall Technology User’'s Guider application devel opment
information for a specific interface; see aso publicationslisted in Appendix D

The GlobalCall API iscall oriented; that is, each call initiated by the application
or thread (Windows NT only) or the network is assigned a Call Reference
Number (CRN) for control and tracking purposes. Call handling isaso
independent of the line device over which the call isrouted. Each line device or
device group isassigned a Line Device Identifier (LDID) that enables the
application or thread (Windows NT only) to address any resource or group of
resources using asingle device identifier. The flexible and convenient
development environment provided by the Global Call CRN and LDID enable
applications or threads (Windows NT only) to handle call establishment and
teardown consistently across hardware platforms or signaling systems

3.1. UNIX Programming Models

The GlobalCall API provides UNIX synchronous and asynchronous programming
models for use in developing your applications. Your call processing will differ

13

GlobalCall™ API Software Reference for UNIX and Windows NT

depending on the model used and is discussed later in this chapter in paragraph
3.3. GlobalCall Call States.

For UNIX environments, function calls can be handled using:
e asynchronous model or

e an asynchronous model

Applications can use a combination of the UNIX synchronous and asynchronous
models.

By usage, the asynchronous and synchronous models are often referred to as the
asynchronous and synchronous operating modes. This convention isfollowed in
thismanual. For detailed information on these models, see the Sandard Runtime
Library Programmer’s Guidéocated in the Voice Software Reference for UNIX

3.1.1. UNIX Synchronous Mode Programming

Synchronous mode programming is characterized by functions that run
uninterrupted to completion. Synchronous functions block an application or
process until the required task is successfully completed or a failed/error message
isreturned. Thus, a synchronous function blocks the application and waits for a
completion indication from the firmware or driver before returning control to the
application. Since further execution is blocked by a synchronous mode function, a
separate process is needed for each channel or task managed by the application. A
termination event is not generated for a synchronous function.

The synchronous mode can handle multiple calls in a multiline application by
structuring the application as a single-line application and then spawning a process
for each line required.

3.1.2. UNIX Asynchronous Mode Programming

Asynchronous mode programming is characterized by allowing other processing
to take place while a function executes. In asynchronous mode programming,
multiple channels are handled in a single process rather than in separate processes
asrequired in synchronous mode programming. An asynchronous modefunction
typically receives an event from the SRL indicating compl etion (termination) of

14

3. GlobalCall API

the function in order for the application to continue processing acall on a
particular channel. A function called in the asynchronous mode:

« returns control to the application after the request is passed to the device
driver; and

* atermination event is returned when the requested operation compl etes.
For UNIX environments, the asynchronous models provided for application
development include:

e polled

+ calback

When using the UNIX asynchronous polled model, the application polls for or
waits for eventsusing thesr_waitevt() function. When an event is available,
event information may be retrieved using thegc_GetM etaEvent() function.
Event information retrieved is valid until the sr_waitevt() function is called

again. Typically, the polled model is used for applications that do not need to use
event handlersto process events.

The UNIX asynchronous callback model may be run in signal or non-signal mode.
With the callback model, event handlers can be enabled or disabled for specific
events on specific devices, see paragraph 3.8. Event Handling for details.

3.2. Windows NT Programming Models

The GlobalCall API provides Windows NT synchronous and asynchronous
programming models and an extended asynchronous programming model for use
in developing your applications. Your call processing will differ depending on
the model used and is discussed later in this chapter in paragraph 3.3. GlobalCall
Call Sates.

For Windows NT environments, applications can use:
e asynchronous model or a synchronous with SRL callback model

e asynchronousor extended asynchronous models

15

GlobalCall™ API Software Reference for UNIX and Windows NT

or acombination of the Windows NT synchronous and asynchronous models; or
the Windows NT synchronous and extended asynchronous models.

By usage, the asynchronous and synchronous models are often referred to as the
asynchronous and synchronous operating modes. This convention isfollowed in
thismanual. For detailed information on these programming models, see the
Standard Runtime Library Programmer’s Guilteated in the Voice Software
Reference for Windows NT

3.2.1. Windows NT Synchronous Mode Programming

Synchronous mode programming is characterized by functions that block thread
execution until the function completes or a failed/error message isreturned. The
operating system can put individual device threads to sleep while allowing other

device threads to continue their actions unabated. Thus, a synchronous function

waits for a completion indication from the firmware or driver before returning

control to the thread. Since further execution is blocked by a synchronous

function, a separate thread is needed for each channel or task. When aDiaogic
function completes, the operating system wakes up the function’s thread so that
processing continues. A termination event is not generated for a synchronous
function.

The Windows NT synchronous programming model is recommended for less
complex applications wherein only a limited number of channels and calls will be
handled and processor loading remains light. The synchronous model should be
used only for simple and straight flow control applications with only one action
per device occuring at any time.

A synchronous model application can handle multiple channels by structuring the
application as a single-channel application and then creating a separate
synchronous thread for each channel (e.g., for a 60 channel application, the
application creates 60 synchronous threads, one thread to handle each of the 60
channels). You would not need event-driven state machine processing because
each Dialogic function runs uninterrupted to completion. Since this model calls
functions synchronously, it would be less complex than a corresponding
asynchronous model application. However, since synchronous applications imply
creating a thread or a process for each channel used, these applications tend to
slow down the response of the system and to require a high level of system
resources (i.e., increases processor loading) to handle each channel. This can

16

3. GlobalCall API

limit maximum device density; thus the synchronous model provides limited
scalability for growing systems.

When using the synchronous model, unsolicited events are not processed until the
thread callsa Diaogic function such asgc_GetM etaEvent(), dx_getevt() or
dt_getevt(). Unsolicited events can be retrieved by creating a separate
asynchronous with SRL callback thread, see the Asynchronous with SRL Callback
paragraph below, (called the combined synchronous and asynchronous model) or
by enabling event handler(s) within the application before creating the
synchronous threads that handle each channel. For example:

to use the unsolicited events asynchronous with SRL callback thread
approach, the synchronous application would first create an asynchronous
thread to handle all unsolicited events and then the application could create
synchronous threads, one for each channel, to process the calls on each
channel. The asynchronous thread will use thesr_waitevt() functionto do a
blocking call. When an unsolicited event occurs, the asynchronous
unsolicited event-processing thread identifies the event to a device, services
the event and notifies the synchronous thread controlling the device of the
action taken. When the application runs an unsolicited events asynchronous
thread, then the event processing thread internal to the SRL should be
disabled by setting the SR_MODELTY PE value of the sr_setparm()
function’sparmno parameter to SR_STASYNC.

to use the unsolicited event handler(s) approach, the synchronous application
would first enable the unsolicited event handler(s) for the device(s) and
event(s) and/or for any device, any event. Then the application would create
synchronous threads, one for each channel, to process the calls on each
channel. When an unsolicited event specified by a enabled event handler
occurs, the SRL passes the unsolicited event information to the application.
When the application uses the unsolicited event handler(s) approach, then the
event processing thread internal to the SRL must be enabled (default). The
SRL event processing thread can also be enabled by setting the
SR_MODELTYPE value of ther_setparm() function’sparmno parameter

to SR_MTASYNC.

3.2.2. Windows NT Asynchronous Mode Programming

Asynchronous mode programming is characterized by the calling thread
performing other processing while a function executes. At completion, the

17

GlobalCall™ API Software Reference for UNIX and Windows NT

application receives event notification from the SRL and then the thread
continues processing the call on a particular channel. A function called in the
asynchronous mode:

* returns control immediately after the request is passed to the device driver
and allows thread processing to continue; and

e atermination event is returned when the requested operation completes, thus
allowing the Dialogic operation (state machine processing) to continue.

In the asynchronous mode, functions may be initiated asynchronously from a
single thread and/or the completion (termination) event can be picked up by the
same or adifferent thread that callsthe sr_waitevt() and gc_GetM etaEvent()
functions. When these functions return with an event, the event information is
stored inthe METAEVENT data structure. The event information retrieved
determines the exact event that occurred and isvalid until the sr_waitevt() and
gc_GetMetaEvent() functions are called again.

For Windows NT environments, the asynchronous models provided for
application development further includes:

« combined synchronous and asynchronous programming, see paragraph 3.2.1.
Windows NT Synchronous Mode Programming

e asynchronous with SRL callback programming (this model can be used with
event handlers)

e asynchronous with Windows callback
e asynchronous with Win32 synchronization

e extended asynchronous programming

The asynchronous programming models are recommended for more complex
applications that require coordinating multiple tasks. Asynchronous model
applications typically run faster than a synchronous model and require a lower
level of system resources. Asynchronous models reduce processor loading
because of the reduced number of threads inherent in asynchronous models and
the elimination of scheduling overhead. Asynchronous models use processor
resources more efficiency because multiple channels are handled in a single thread
orinafew threads. See paragraph 3.13. Programming Tips for Windows NT for
details. Of the asynchronous models, the asynchronous with SRL callback model

18

3. GlobalCall API

and the asynchronous with Windows callback model provide the tightest
integration with the Windows NT message/eventing mechanism. Asynchronous
model applications are typically more complex than a corresponding synchronous
model application dueto ahigher level of resource management (i.e., the number
of channels managed by athread and the tracking of completion events) and the
development of a state machine.

After the application issues an asynchronous function, the application uses the
sr_waitevt() function to wait for events on Dialogic devices. All event coding
can be accomplished using switch statements in the main thread. When an event
isavailable, event information may be retrieved using thegc_GetM etaEvent()
function. Event information retrieved isvalid until thesr_waitevt() functionis
called again. The asynchronous model does not use event handlers to process
events.

In thismodel, the SRL handler thread must be initiated by the application by
setting the SR_MODELTY PE value to SR_STASYNC.

Using Event Handlers in a Windows NT Environment

Typicaly, inaWindows NT environment, event processing within athread or
using a separate thread to process events tends to be more efficient than using
event handlers. However, if event handlers are to be used, such as when an
application is being ported from UNIX, then you must use the asynchronous with
SRL callback model.

The following guidelines apply to using event handlers:

* more than one handler can be enabled for an event. The SRL callsALL
specified handlers when the event is detected.

« handlers can be enabled or disabled from any thread.
« general handlers can be enabled to handle ALL events on a specific device.
* ahandler can be enabled to handle ANY event on ANY device.

« synchronous functions cannot be called from a handler.

By default, when the sr_enbhdlr (') function isfirst called, athread internal to the
SRL is created to service the application enabled event handlers. This SRL

19

GlobalCall™ API Software Reference for UNIX and Windows NT

handler thread exists aslong as one handler is still enabled. The creation of this
internal SRL event handler thread is controlled by the SR_MODELTY PE value of
the SRL sr_setparm() function. The SRL handler thread should be:

¢ enabled when using the asynchronous with SRL callback model. Enable the
SRL event handler thread by NOT specifying the SR_MODELTY PE value
(default isto enable) or by setting thisvalueto SR_MTASYNC (do NOT
specify SR_STASYNC).

« disabled when using an application-handler thread wherein a separate event
handler thread is created within the application that calls the sr_waitevt()
and gc_GetM etaEvent() functions. For an application-handler model, use
the asynchronous with SRL callback model BUT set the SR_MODELTY PE
valueto SR_STASY NC to disable the creation of the internal SRL event
handler thread.

NOTE: An application-handler thread must NOT call any synchronous
functions.

See the Standard Runtime Library Programmer’s Guilteated in the Voice
Software Reference for Windows MF the hierarchy (priority) order in which
event handlers are called.

Asynchronous with SRL Callback

The asynchronous with SRL callback model usesthe sr_enbhdir () function to
automatically create the SRL handler thread. The application does not need to

call the sr_waitevt() function since the sr_enbhdlr() created thread already calls
the sr_waitevt() function to get events. Each call to the sr_enbhdir () function
alowsthe Diaogic events to be serviced when the operating system schedules the
SRL handler thread for execution.

NOTE: The SR_MODELTYPE value must NOT be set to SR_STASYNC
because the SRL handler thread must be created by the sr_enbhdlr ()
call.

Y our event handler must NOT call the sr_waitevt() function or any
synchronous Dialogic function.

Individual handlers can be written to handle events for each channel. The SRL
handler thread can be used when porting some UNIX applications.

20

3. GlobalCall API

Asynchronous with Windows Callback

The asynchronous with windows callback model allows an asynchronous
application to receive SRL event notification through the standard Windows NT
message handling scheme. This model is used to achieve the tightest possible
integration with the Windows NT messaging scheme. Using this model, you
could run the entire Dialogic portion of the application on asingle thread. This
model callsthe sr_NotifyEvt() function once to define a user-specified
application window handle and a user-specified message type. When an event is
detected, a message is sent to the application window. The application responds
by calling the sr_waitevt() function with a0 timeout value. For Global Call
events and optionally for non-Global Call events, the application must then call the
gc_GetMetaEvent() function before servicing the event.

In thismodel, the SRL event handler thread must be initiated by the application by
setting the SR_MODELTY PE valueto SR_STASYNC. For detailed information

on this programming model, seethe Standard Runtime Library Programmer’s

Guidelocated in the Voice Software Reference for Windows NT

Asynchronous with Win32 Synchronization

The asynchronous with Win32 synchronization model allows an asynchronous
application to receive SRL event notification through standard Windows NT
synchronization mechanisms. This model uses one thread to run all Dialogic
devices and thus requires alower level of system resources then the synchronous
model. Thismodel allows for greater scalability in growing systems. For detailed
information on this programming model, see the Standard Runtime Library
Programmer’s Guidéocated in the VVoice Software Reference for Windows NT

Extended Asynchronous Programming

The extended asynchronous programming model is basically the same as the
asynchronous model except that the application uses multiple asynchronous
threads each of which controls multiple devices. In this model, each thread hasits
own specific state machine for the devices that it controls. Thus, asingle thread
can look for separate events for more than one group of channels. This model
may be useful, for example, when you have one group of devices that provide fax
services and another group that provides interactive voice response (IVR)
services, while both groups share the same process space and database resources.

21

GlobalCall™ API Software Reference for UNIX and Windows NT

The extended asynchronous model can be used when an application needs to wait
for events from more than one group of devices and requires a state machine.

Because the extended asynchronous model uses only afew threadsfor all Dialogic
devices, it requires alower level of system resources than the synchronous model.
This model also enables using only afew threads to run the entire Dialogic portion
of the application.

Whereas, default asynchronous programming uses thesr_waitevt() function to
wait for events specific to one device, extended asynchronous programming uses
the sr_waitevtEx() function to wait for events specific to a number of devices
(channels).

NOTE: Do not usethe sr_waitevtEx() function in combination with either the
sr_waitevt() function or event handlers.

This model can run an entire application using only afew threads. When an
event isavailable, the gc_GetM etaEventEx() function is used to retrieve event
specific information. The values returned are valid until the sr_waitevtEXx()
function is called again. Event commands can be executed from the main thread
through switch statements and the events are processed immediately.

The extended asynchronous model callsthe sr_waitevtEx() function for agroup
of devices (e.g., channels) and pollsfor (waits for) events specific to that group of
devices. Inthismodel, the SRL event handler thread is NOT created (the
SR_MODELTYPE valueisset to SR_STASYNC) and the sr_enbhdlr () function
in NOT used.

In the extended asynchronous model, functions are initiated asynchronously from
different threads. A thread waits for events using the sr_waitevtEx() function,
The event information can be retrieved using the gc_GetM etaEventEx()
function. When thisfunction returns, the event information is stored in the
METAEVENT data structure.

22

3. GlobalCall API

CAUTION

When calling the gc_GetM etaEventEx() function from multiple
threads, ensure that your application uses unique thread-related
METAEVENT data structures (i.e., use thread local variables or local
variables) or ensure that the METAEVENT data structure is not over
written until all processing of the current event has completed.

The event information retrieved determines the exact event that occurred and is
valid until the sr_waitevtEx() function returns with another event.

3.3. GlobalCall Call States

Each call received or generated by Global Call is processed through a series of
states wherein each state represents the completion of certain tasks and/or the
current status of the call. The call states change in accordance with the sequence
of functions called by the application and the events that originate in the network
and system hardware. The current state of a call can be changed by:

« function call returns
e termination events (indications of function completion) or

¢ unsolicited events.

For UNIX environments, calls can be handled using the asynchronous model or
the synchronous model. For Windows NT environments, calls can be handled
using the asynchronous model, extended asynchronous model or the synchronous
model. By usage, the asynchronous and synchronous models are often referred to
as the asynchronous and synchronous operating modes. This convention is
followed in thismanual. For detailed information on these models, see also the
Standard Runtime Library Programmer’s Guilbeated in the Voice Software
Referencdor your operating system.

23

GlobalCall™ API Software Reference for UNIX and Windows NT

3.4. Asynchronous Mode Operation

In general, when Global Call API functions are issued in asynchronous mode,
events trigger the transitions between call states. For example, the termination
event, GCEV_ANSWERED, causes the call state to change to the Connected
state. Likewise, the unsolicited event, GCEV_DISCONNECTED, causes the call
state to change to the Disconnected state. The following functions:

 gc_MakeCall()and
e gc ReleaseCall()

cause the call state to change upon their successful return. For more detail about
how a call transitions from state-to-state, see the following paragraphs.

3.4.1. Establishing and Terminating Calls - Asynchronous

Figure 2 illustrates the call states associated with establishing or setting up a call
in the asynchronous mode. The call establishment process for outbound callsis
shown on the right side of the diagram; the inbound call set up processis shown
ontheleft. All calls start from aNull state. See Table 2. Call State Definitions
for asummary of the call states.

24

3. GlobalCall API

INBOUND CALL OUTBOUND CALL

gc_WaitCall()
(issued only once)

gc_MakeCall()

GCEV_OFFERED

Offered

gc_AcceptCall()

GCEV_ALERTING

GCEV_ACCEPT (Maskable)

gc\AnswerCall() gc_AnswerCall()

GCEV

GCEV)\ANSWERED

CONNECTED

GCEV_ANSWERED

D/
Connected

Figure 2. Asynchronous Call Establishment State Diagram

25

GlobalCall™ API Software Reference for UNIX and Windows NT

Table 2. Call State Definitions

State

Description

Null

No call is assigned to the device (time slot or line); call
released.

Offered

An inbound call from the network is offered to the application
or thread (Windows NT only); call received.

Accepted

Indicates an acknowledgment, such as ringing, ringback, etc.,
to the calling party, that an inbound call is received but not
yet connected to the called party; call accepted.

Connected

A connection is established for an inbound or outbound call.
Call charge begins.

Diding

Call establishment isin progress; outbound call request.
Dialing information was sent to, and acknowledged, by the
network.

Disconnected

Network disconnects the call. Subsequently, the application or
thread (Windows NT only) drops the call and releases the
CRN and other resources used for the call.

Alerting

The destination was reached and the application or thread
(Windows NT only) iswaiting for the destination party to
answer the call; call alerted sent or received. This state event
may be reported to the application or may be masked.

Idle

The call was dropped; cal is not active. Subsequently the
application or thread (Windows NT only) releases the CRN
and other resources used for the call, see Figure 3.
Asynchronous Call Tear-Down Sate Diagram.

3.4.2. Inbound Calls - Asynchronous

The application or thread (Windows NT only) issuesagc_WaitCall() function
in the Null state to indicate readiness to accept an inbound call request on the
specified line device. In the asynchronous mode, the gc_ WaitCall() function
need only be called once after the line device is opened using the gc_Open() or
gc_OpenEx() function (unlessthe gc_ResetLineDev() function was issued).
Afterward, the line device will receive calls until closed.

26

3. GlobalCall API

Aninbound call is processed as follows, see Figure 2. The inbound call from the
network is received on the line device specified in the gc_WaitCall() function,

thus causing the generation of an unsolicited GCEV_OFFERED event (equivalent

to a “ring detected” notification). This GCEV_OFFERED event causes the call to
change to the Offered state.

In the Offered state, a CRN is assigned as a means of identifying the call on a
specific line device. From the Offered state, the call state changes to either:

+ the Connected state or

* the Accepted state.

When the call is to be directly connected, such as to a voice messaging system or
the like, agc_AnswerCall() function is issued to make the final connection.

Upon answering the call, a GCEV_ANSWERED event is generated and the call
changes to the Connected state. At this point, the call is connected to the called
party and call charges begin.

If the application or thread (Windows NT only) is not ready to answer the call, a
gc_AcceptCall() function is issued to indicate to the remote end that the call was
received but not yet answered. This provides an interval during which the system
can verify parameters, determine routing, and perform other tasks before
connecting the call. A GCEV_ACCEPT event is generated when the
gc_AcceptCall() function is successfully completed and the call changes to the
Accepted state.

To complete the connectionga Answer Call() function is issued as described
above.

When the call is in the Offered state (after generation of the unsolicited
GCEV_OFFERED event) or the Accepted state (beforgeh&nswer Call()

function is issued), the application or thread (Windows NT only) may selectively
retrieve call information, such as DDI digits (DNIS) and caller ID (ANI). The
application or thread (Windows NT only) may also request more dialing
information using thgc_CallAck() function.

From the Offered state, the application or thread (Windows NT only) may reject

the call by issuing gc_DropCall() function followed by ajc_ReleaseCall()
function, sed-igure 3. Asynchronous Call Tear-Down Sate Diagram.

27

GlobalCall™ API Software Reference for UNIX and Windows NT

From the Accepted state, not all E-1 CAS protocols support aforced release of the
ling; that is, issuing agc_DropCall() function after agc_AcceptCall() function.
If aforced release is attempted, the function will fail and an error isreturned. To

recover, the application should issue agc_Answer Call() function followed by
gc_DropCall() and gc_ReleaseCall() functions. See the GlobalCall Country
Dependent Parameters (CDP) Reference for protocol specific limitations.

However, anytime a GCEV_DISCONNECTED event is received in the Accepted
state, the gc_DropCall() function can be issued.

Table 3 is an example of asimple inbound call using the asynchronous
programming model. The items denoted by a dagger (1) are optional
functions/events or maskable eventsthat may be reported to the application for
specific signaling protocols. For call scenarios used for a specific signaling
protocol, see the GlobalCall Technology User’s Guider that protocol.

Table 3. Inbound Call Set-Up (Asynchronous)

Function/Event

Action/Description

gc WaitCall()

I ssued once after line device opened with
gc_Open() or gc_OpenEx().

GCEV_OFFERED

Indicates arrival of inbound call and initiates
transition to Offered state.

tgc_GetANI()

Request caller ID information.

tgc_GetDNIS()

Retrieves DDI digits received from the network.

tgc_CallAck()

Request additional call setup information

TGCEV_ACKCALL

Termination event - indicates completion of
gc_CallAck() function

tgc_AcceptCall()

Issued to acknowledge that call was received but
called party has not answered

tGCEV_ACCEPT

Termination event - indicates call received, but not
yet answered; causes transition to Accepted state.

gc_AnswerCall()

Issued to connect call to called party (answer
inbound call).

28

3. GlobalCall API

Function/Event Action/Description

GCEV_ANSWERED Termination event - inbound call connected; causes
transition to Connected state.

T = Optional functions and events or maskable events

3.4.3. Outbound Calls - Asynchronous

To initiate an outbound call (see Figure 2) using the asynchronous mode, the
application issuesagc_MakeCall() function that requests an outgoing call to be
made on a specific line device. The gc_MakeCall(') function returns
immediately. Thisgc MakeCall(') function causes the call state to change to the
Dialing state. A CRN is assigned to the call being established on that line device.
If the gc_MakeCall() function fails, the line device remainsin the Null state

In the Dialing state, dialing information is sent to and acknowledged by the
network. From the Dialing state, the call state changesto either:

¢ the Connected state or
* theAlerting state.

When the called party immediately accepts the call, such asacall directed to a
FAX or voice messaging system or the like, a GCEV_CONNECTED event is
generated to indicate that the connection was established. This event changes the
call to the Connected state. In the Connected state the call is connected to the
called party and call charges begin.

If the remote end is not ready to answer the call, a GCEV_ALERTING
(maskable) event is generated. This event indicates that the called party has not
answered the call and that the network iswaiting for the called party to complete
the connection. This GCEV_ALERTING event changes the call stete to the
Alerting state. For example:

« foraCASsystem, aGCEV_ALERTING event indicates that the remote end
is generating ringback and has not answered the call.

» foranISDN system, aGCEV_ALERTING event indicates that the remote
end has sent back an Alerting message.

29

GlobalCall™ API Software Reference for UNIX and Windows NT

When the call is answered (the remote end makes the connection), a
GCEV_CONNECTED event changes the call to the Connected state. In the
Connected state the call is connected to the called party and call charges begin.
The GCEV_CONNECTED event indicates successful completion of the
gc_MakeCall() function; otherwise, a GCEV_TASKFAIL event or a
GCEV_DISCONNECTED event is sent to the application. The result value
associated with the event indicates the reason for the event. For example, if the
GCEV_TASKFAIL event is sent, then a problem occurred when placing the call
from the local end; whereas, a GCEV_DISCONNECTED event may indicate that
the remote end did not answer the call.

When an inbound call arrives while the application is setting up an outbound call,

a “glare” condition occurs. Unless the protocol specifies otherwise, the incoming
call takes precedence over the outbound call. When an asynchronous
gc_MakeCall() function conflicts with the arrival of an inbound call, the CRN

and any resources assigned to the outbound call are released. Subsequently, the
GCEV_DISCONNECTED event is generated with a result value indicating that

an inbound call took precedence. @ MakeCall() function is issued while

the inbound call is being set-up, te MakeCall() function fails.

The inbound call event is held in the driver until the CRN of the outbound call is
released using thge ReleaseCall() function. After release of the outbound
CRN, the pending inbound call event is sent to the application.

Table 4 illustrates a simple scenario for making an outbound call using the
asynchronous programming model. The items denoted by a déjpger (
optiona functiong/events or maskable events that may be reported to the
application for specific signaling protocols. For call scenarios used for a specific
signaling protocol, see the GlobalCall Technology User’'s Guider that protocol.

30

3. GlobalCall API

Table 4. Outbound Call Set-up (Asynchronous) Example

Function/Event

Action/Description

tgc_SetEvtMsk()

Specifies the events enabled or disabled for a
specified line device.

gc_MakeCall()

Requests a connection using a specified line device;
aCRN isassigned and returned immediately.
GCEV_CONNECTED event sent if call connected;
otherwise a GCEV_TASKFAIL event is sent.

TGCEV_ALERTING

Remote end was reached but a connection has not
been established. When the call isanswered, a
GCEV_CONNECTED event is sent.

GCEV_CONNECTED

Indicates successful completion of gc_MakeCall().

T = Optional functions and events or maskable events

3.4.4. Call Termination - Asynchronous

Figure 3 illustrates the call states associated with call termination or call teardown

in the asynchronous mode initiated by either call disconnection or failure. See
Table 2. Call Sate Definitions for asummary of the call states. A call can be

terminated by the application or by the detection of call disconnect from the
network. Either of these terminations can occur at any point in the process of
setting up acal and during any call state.

31

GlobalCall™ API Software Reference for UNIX and Windows NT

TERMINATED
BY APPLICATION

FROM ANY
TERMINATED STATE SHOWN
BY NETWORK BELOW

Offered
FROM ANY
STATE SHOWN
BELOW Accepted*

/

Offered
Connected

Accepted
GCEV_DISCONNECTED

gc_DropcCall()

Connected

06000
v

gc_DropcCall()
GCEV_DROPCALL

GCEV_DROPCALL

Legend:

* = See the GlobalCall
CDP Reference for
protocols that support
a forced release

of the line.

gc_ReleaseCall()

No event
returned

Figure 3. Asynchronous Call Tear-Down State Diagram

[N
N

3. GlobalCall API

The application terminates a call by issuing agc_DropCall() function that
initiates disconnection of the call specified by the CRN. Thisgc_DropCall()
function causes atransition from the current call state to the Idle state. Oncein
the Idle state, the call has been disconnected and the application must issue a
gc_ReleaseCall() function to free the line device for another call. The
gc_ReleaseCall() function releases all internal system resources committed to
servicing the call and causes atransition to the Null state.

A network call terminationis initiated when an unsolicited
GCEV_DISCONNECTED event is generated. This event indicates that the call
was disconnected at the remote end or that an error was detected that prevented
further call processing. The GCEV_DISCONNECTED event causes the call state
to change from the current call state to the Disconnected state. This event may be
received during call setup or after a connection is requested. In the Disconnected
state, the call is disconnected and then waits for agc_DropCall() function from
the application. The gc_DropCall() function is equivalent to “set hook ON.”
Thisgc_DropCall() function causes the call state to change to the Idle state. In
the Idle state, thgc_ReleaseCall() function releases all internal resources
committed to servicing the call and causes a transition to the Null state.

Table 5 presents an asynchronous call termination scenario. For call scenarios
used for a specific signaling protocol, check @lebalCall Technology User’'s
Guidefor that technology.

Table 5. Call Termination (Asynchronous)

Function/Event Action/Description

GCEV_DISCONNECTED | Unsolicited event generated when call is
terminated by network; initiates transition to
Disconnected state.

gc_DropCall() Disconnects call specified by CRN.
GCEV_DROPCALL event indicates
completion of function

GCEV_DROPCALL Termination event - call disconnected and
changesto Idle state.

tgc_GetBilling() Retrieve billing information

33

GlobalCall™ API Software Reference for UNIX and Windows NT

Function/Event Action/Description

gc_ReleaseCall() Issued to release all resources used for call;
network port is ready to receive next call.
Causestransition to Null state.

T = Optional functions and events or maskable events

3.5. Synchronous Mode Operation

Functions called in the synchronous mode can be either multitasking or atomic
(non-multitasking). A multitasking synchronous functionblocks the application
until the operation is completed. The function waits for a completion message
from the firmware before it terminates.

Atomic synchronous functions typically terminate immediately, return control to
the application, and do not cause a call state transition. Most atomic functions
receive an (immediate) associated reply message from the firmware at which time
the function terminates. Some atomic synchronous functions return information to
the application; for example: in response to the gc_GetDNI S() function, the
DNIS string isreturned and stored in a buffer. Some atomic functions are internal
to the driver or firmware and have no need to return any information to the
application; for example: the gc_ReleaseCall() function. Note that atomic
synchronous functions return information, not events.

Figure 4 illustrates the call states associated with establishing or setting up acall
in the synchronous mode. The call establishment process for inbound calls and
outbound callsis shown. All calls start from aNull state. See Table 2. Call Sate
Definitions for asummary of the call states.

34

3. GlobalCall API

INBOUND CALL OUTBOUND CALL

gc_MakeCall()

gc_WaitCall()

Offered { Dialing

gc Acceptcall(y T

GCEV_ALERTING
(Maskable)

Accepted Alerting

gc_AnswerCall()

Completion of
gc_MakeCall()

Legend:
Dotted line indicates
activity, not state.

N/
Connected

A

Figure 4. Synchronous Call Establishment Process

35

GlobalCall™ API Software Reference for UNIX and Windows NT

3.5.1. Inbound Calls - Synchronous

The application issuesagc_WaitCall() function in the Null state to indicate
readiness to accept an inbound call request on the specified line device. Inthe
synchronous mode, the gc_WaitCall() function waits for an inbound call for the
length of time specified by the timeout parameter When the time-out expires, the
function failswith an error code, EGC_TIMEOUT, and must be reissued. If the
time specified is 0, the function fails unless a call is aready pending on the
specified line device.

A gc_WaitCall(') function waiting for a call to arrive can be stopped (terminated)
by issuing agc_ResetLineDev() function. When thegc WaitCall() function
failsor is stopped, al system resources including the CRN assigned to the call are
released. To accept inbound calls, another gc_WaitCall() function must be
issued. The application must repeat the poll for incoming calls by issuing a
gc_WaitCall() function each time it pollsfor acall.

Aninbound call is processed as follows, see Figure 4. The inbound call from the
network is received on the specified line device thus causing the call stateto
change to the Offered state.

In the Offered state, the call may be accepted by the application. From the
Offered state, the call state changesto either:

* the Connected state or
e the Accepted state.

When the call isto be directly connected, such as to a voice messaging system or
thelike, agc_Answer Call() function isissued to make the final connection.
When the gc_Answer Call() function is successfully completed, the call changes
to the Connected state. At thistime, the call is connected to the called party and
call charges begin.

If the application is not ready to answer the call, agc_AcceptCall() functionis
issued to indicate to the remote end that the call was received but not yet
answered. This provides an interval during which the system can verify
parameters, determine routing, and perform other tasks before connecting the call.
When the gc_AcceptCall() function is successfully completed, the call changes
to the Accepted state.

36

3. GlobalCall API

To complete the connection, agc_Answer Call() function isissued as described
above.

When the call isin the Offered state or the Accepted state, the application may
selectively retrieve call information, such as DDI digits (DNIS) and caller ID
(ANI). The application may a so request more dialing information using the
gc_CallAck() function.

From the Offered state, the application may reject the call by issuing a
gc_DropCall() function followed by agc_ReleaseCall() function, see Figure 5.
Synchronous Call Tear-Down.

From the Accepted state, not all E-1 CAS protocols support aforced release of the
ling; that is, issuing agc_DropCall() function after agc_AcceptCall() function.
If aforced release is attempted, the function will fail and an error isreturned. To
recover, the application should issue a gc_Answer Call() function followed by

gc _DropCall() and gc_ReleaseCall() functions. See the GlobalCall Country
Dependent Parameters (CDP) Reference for protocol specific limitations.
However, anytime a GCEV_DISCONNECTED event is received in the Accepted
state, the gc_DropCall() function can be issued.

Table 6 is an example of asimple inbound call using the synchronous
programming model. The items denoted by a dagger (1) are optional
functiong/events or maskable events that may be reported to the application for
specific signaling protocols. For call scenarios used for a specific signaling
protocol, see the GlobalCall Technology User's Guider that protocol.

Table 6. Inbound Call Set-Up (Synchronous)

Function Action/Description

gc_WaitCall() Enables natification of an incoming call after line
device opened with gc_Open() or gc_OpenEXx().

tgc_GetANI() Request ANI information

tgc_GetDNIS() Retrieves DDI digits received from the network.

tgc_CallAck() Request additional call setup information

37

GlobalCall™ API Software Reference for UNIX and Windows NT

Function Action/Description

tgc_AcceptCall() Issued to acknowledge that call was received but
called party has not answered

gc_AnswerCall() Issued to connect call to called party (answer
inbound call).

T = Optional functions

3.5.2. Outbound Calls - Synchronous

To initiate an outbound call (see Figure 4) using the synchronous mode, the
application issuesagc_MakeCall() function that requests an outgoing call to be
made on a specific line device. A CRN is assigned to the call being made on the
specific line device. Dialing information isthen sent to and acknowledged by the
network. When the gc_MakeCall(') function isissued in the synchronous mode,
the function returns successfully when the call reaches the Connected state See
the GlobalCall Technology User’s Guider your technology for valid
completion points for the gc_MakeCall() function.

The gc_SetEvtM sk() function specifies the events enabled or disabled for a
specified line device. Thisfunction setsthe event mask associated with the
specified line device. If an event bit in the mask is cleared, the event is disabled
and is not sent to the application. When an event (referred to as a maskable event)
is enabled, this event may be received from the network while the
gc_MakeCall() function isin progress. Receiving the GCEV_ALERTING event
indicates that the called party has not answered the call and that the network is
waiting for the called party to complete the connection. For example;

« foraE-1CAS, T-1robbed bit or an analog loop start system, a
GCEV_ALERTING event indicates that the remote end is generating
ringback and has not answered the call.

« foranISDN system, a GCEV_ALERTING event indicates that the remote
end has sent back an Alerting message.

When the call is answered (the remote end makes the connection), the
gc_MakeCall() function completes successfully and the call changes to the
Connected state.

38

3. GlobalCall API

The application must handle unsolicited events in the synchronous mode, unless
these events are masked or disabled. The following unsolicited events, if enabled,
require asignal handler:

e GCEV_ALERTING - default isto disable; can be masked.
e GCEV_BLOCKED - default isto enable; can be masked.
e GCEV_UNBLOCKED - default isto enable; can be masked.

e GCEV_DISCONNECTED - default isto enable. Event is not maskable
and requires asignal handler.

e GCEV_TASKFAIL - default isto enable. Event is not maskable and
requiresasigna handler.

* All technology specific unsolicited events (see the Global Call
Technology User’s Guidir your technology for details).

If these events are not masked by the application and signal handlers are not
defined, they are queued without being retrievable and memory problems are
likely to occur.

If asynchronousgc_MakeCall() function isissued to make an outbound call
while an inbound call isin progress, the function fails, and the error value will
indicate that an inbound call isin process.

3.5.3. Call Termination - Synchronous

Figure 5illustrates the call states associated with call termination or call tear-
down in the synchronous mode initialized by either call disconnection or failure.
See Table 2. Call State Definitiorfer a summary of the call states. A call can be
terminated by the application or by the detection of call disconnect from the
network. Either of these terminations can occur at any point in the process of
setting up acall and during any call state.

39

GlobalCall™ API Software Reference for UNIX and Windows NT

TERMINATED
BY APPLICATION

FROM ANY
TERMINATED STATE SHOWN
BY NETWORK BELOW

Offered
FROM ANY
STATE SHOWN
BELOW Accepted*

Offered A
Connected

Accepted
GCEV_DISCONNECTED

gc_DropcCall()

Connected

v

gc_DropcCall()

Legend:

* = See the GlobalCall
CDP Reference for
protocols that support
a forced release
of the line.

gc_ReleaseCall()

Figure 5. Synchronous Call Tear-Down

N
()

3. GlobalCall API

The application terminates a call by issuing agc_DropCall() function that
initiates disconnection of the call specified by the CRN. Thisgc_DropCall()
function causes the call to change from the current call state to the Idle state. In
the Idle state, the call has been disconnected and the application must issue a
gc_ReleaseCall() function to free the line device for another call. This
gc_ReleaseCall() function instructs the driver and firmware to release al system
resources committed to servicing the call and causes the call state to change to the
Null state.

A network call terminationisinitiated when an unsolicited
GCEV_DISCONNECTED event is generated. This event indicates that the call

was disconnected at the remote end or that an error was detected that prevented
further call processing. The GCEV_DISCONNECTED event causes the call state

to change from the current call state to the Disconnected state. In the

Disconnected state, the call is disconnected and then waits for agc_DropCall()
function from the application. The gc_DropCall() function is equivalent to “set
hook ON.” Thisgc_DropCall() function causes the call state to change to the
Idle state. In the Idle state, the ReleaseCall() function instructs the driver and
firmware to release all resources committed to servicing the call and causes the
call state to change to the Null state.

Table 7 presents a synchronous call termination scenario. For call scenarios used

for a specific signaling protocol, check tBébalCall Technology User’'s Guide
for that technology.

41

GlobalCall™ API Software Reference for UNIX and Windows NT

Table 7. Call Termination (Synchronous)

Function/Event Action/Description

GCEV_DISCONNECTED | Unsolicited event generated when call is
terminated by network; initiates transition to
Disconnected state.

gc _DropCall() Disconnects call specified by CRN.
tgc_GetBilling() Retrieve hilling information
gc_ReleaseCall() Issued to release all resources used for call;

network port is ready to receive next call.
Causestransition to Null state.

t = Optional function

3.6. Routing for UNIX Environments

When using Global Call, the standard Dialogic routing functions for routing voice,
fax, and other non-network interface resources are used. These routing functions
use the device handles of resources such as a voice channel or a network time slot.
Two Global Call functions, gc_GetNetworkH (') and gc_GetVoiceH(), extract
the network and voice device handles, respectively, associated with the specified
linedevice. The gc_GetNetworkH() function returns the network device handle
for the specified line device. The gc_GetVoiceH () function returns the voice
device handle only if the specified line device has a voice or tone resource
associated with it (e.g., if avoice channel was specified inthegc_Open() or
gc_OpenEx() function device name argument and if this channel has remained
attached to that line device).

Refer to the appropriate GlobalCall Technology User’s Guider technology
specific information on routing resources when using thegc_Open() or
gc_OpenEx() function to specify a voice or tone resource or when using the
gc_Attach() function to associate a voice resource with a Global Call line device.

42

3. GlobalCall API

3.7. Routing for Windows NT Environments

When using GlobalCall, the standard Dialogic routing functions for routing voice,
fax, and other non-network interface resources are used. The

gc_GetNetwor kH() function returns the network device handle for a specified
line device which is then used by the routing functions to route the device. The
gc_GetVoiceH() function extracts the voice device handle associated with a
specified line device. The gc_GetVoiceH (') function returns the voice device
handle only if the specified line device has a voice or tone resource associated
withit (e.g., if avoice channel was specified in thegc_Open() or gc_OpenEx()
function device name argument and if this channel has remained attached to that
line device).

Refer to the appropriate GlobalCall Technology User's Guider technology
specific information on routing resources when using thegc_Open() or
gc_OpenEx() function to specify a voice or tone resource or when using the
gc_Attach(') function to associate a voice resource with a Global Call line device.

3.8. Event Handling

The GlobalCall protocol handler continuously monitors the line device for events
from the network. As each call is processed through its various states,
corresponding events are generated and passed to the application. An overview
of GlobalCall eventsthat apply to all technologies are described in this section
and specific event definitions are described in the next section, 3.9. Event
Definitions Refer to the appropriate GlobalCall Technology User’s Guider
technology specific event information.

Each GlobalCall event is classified as an:

e unsolicited event: generated when an alarm is detected or when certain
signals are received from the network; or a

e termination event: generated when afunction completes (asynchronous
mode only).

To enable or disable events on aline device basis, you can use the
gc_SetEvtMsk() function.

43

GlobalCall™ API Software Reference for UNIX and Windows NT

3.8.1. Event Retrieval

All events are retrieved using the current SRL event retrieval mechanisms (see the
Voice Software Reference for UNIX, Volume 1 or the Voice Software Reference
for Windows NT, Volume 1, for details), including event handlers. The
gc_GetMetaEvent() or gc_GetMetaEventEx() (Windows NT extended
asynchronous mode) function maps the current SRL event into ametaevent. This
metaevent is a data structure that explicitly contains the information describing the
event. Thisdata structure provides uniform information retrieval among all call
control libraries.

For GlobalCall events, the structure contains Global Call related information
(CRN and line device) used by the application. For non-Globa Call events, the
Dialogic device descriptor, the event type, the event data pointer to the variable
length data and the length of the variable data are available through the
METAEVENT structure. Since event data is present in the metaevent and thus
will be stored inthe METAEVENT structure, corresponding SRL callsto obtain
event information need not be made.

The LDID associated with an event is available from thelinedev field of the
metaevent. The CRN associated with each event is available from the crn field of
the metaevent (only if the event is CRN related). If the CRN isO, thenthe eventis
not acall related event.

Late events are events that arrive for areleased CRN. Late events can occur if the
gc_ReleaseCall() function isissued before the application has retrieved all of the
termination events. To avoid late events, the application should issue a
gc_DropCall() function before issuing the gc_ReleaseCall() function. Failure
to issue this function could result in one or more of the following problems:

* memory problemsdue to memory being allocated and not being rel eased
¢ blocking condition

e eventssent to the previous user of a CRN could be processed by alater user
of the CRN with unexpected results.

The reason or result code for an event isretrieved using the gc_ResultValug()
function. The code returned uniquely identifies the cause of the event. Having

44

3. GlobalCall API

retrieved the result value of the event, use the gc_ResultM sg() function to
retrieve the ASCII string that describes this result value.

Event Handler for UNIX

An event handler is auser-defined or a Global Call API defined function called by
the SRL to handle a specific event that occurs on a specified device. The
following guidelines apply to UNIX event handlers (For detailed information, see
the Standard Runtime Library Programmer’s Guiteated in the Voice
Software Reference for UNIX

* More than one handler can be enabled for an event.

e Genera handlers can be enabled that handle any event on a specified device.
« Handlers can be enabled to handle any event on any device.

« Synchronous functions cannot be called in ahandler.

e Handlers must return a 1 to advise the SRL to keep the event in the SRL
gueue and a 0 to advise the SRL to remove the event from the SRL queue.

After initiation of an asynchronous function when using the asynchronous signal
callback model, the process can receive termination (solicited) or unsolicited
events. When an event occurs, the process is interrupted and control is assigned
to acentral signal handler within the SRL. From this central signal handler, the
SRL cdllsdl event handlers that are enabled for that event on that device. After
al event handlers are called, control returns to the process at the place where the
interrupt occurred and the process continues until notified of the next event.

When using the asynchronous non-signal callback model, after initiation of the
asynchronous function, the process cannot receive termination (solicited) or
unsolicited events until the sr_waitevt() function iscaled. When using the non-
signal callback model, the main process typically issues asingle call for the
sr_waitevt() function. If ahandler returns a non-zero value, the sr_waitevt()
function returns to the main process.

Event Handler for Windows NT

An event handler is auser-defined or a GlobalCall API defined function called by
the SRL to handle a specific event that occurs on a specified device. The

45

GlobalCall™ API Software Reference for UNIX and Windows NT

guidelineslisted in paragraph 3.2.2. Windows NT Asynchronous Mode
Programming apply to Windows NT event handlers (For detailed information, see
the Standard Runtime Library Programmer’s Guibkeated in the Voice
Software Reference for Windows)NT

3.8.2. Alarm Handling

GlobalCall alarm events are generated on aline device basis even though aarms
occur on atrunk basis. A line device can be associated with an E-1 or T-1 trunk
or an individual time slot specified when thegc_Open() or gc_OpenEx()
function isissued. Alarm events are unsolicited events sent in addition to other
Global Call events and do not require any application initiated action. All

Global Call devices associated with agiven E-1 or T-1 trunk on which an alarm
occurs will receive a GCEV_BLOCKED event. The blocked event is generated
only for the first alarm condition detected. Subsequent alarms on the same trunk
will not generate additional blocked events. Until al alarm conditions are cleared,
the line device(s) affected by the alarm (i.e., received the GCEV_BLOCKED
event) cannot generate or accept calls. Complete alarm recovery isindicated by a
GCEV_UNBLOCKED event.

When an alarm occurs while acall isin progress or connected, any calls on the
.trunk in the alarm condition are treated in the same manner as if aremote
disconnection occurred; an unsolicited GCEV_DISCONNECTED event is sent to
the application and the call changes to the Disconnected state. The result value
retrieved for the event by issuing agc_ResultValue() function will indicate that
an alarm condition occurred. The GCEV_BLOCKED event (Alarm On
condition) is also sent to the application to indicate that an alarm occurred. The
alarm conditionslisted in Table 8. Alarm Conditionwill generate a
GCEV_BLOCKED event. The gc_ResultValue() function may be used to
identify the condition that caused the GCEV_BLOCKED event to be generated.

The GCEV_BLOCKED and GCEV_DISCONNECTED events may arrive in any
order. When the alarm condition(s) clears, an unsolicited GCEV_UNBLOCKED
event (Alarm Off condition) indicating complete alarm recovery is sent to the
application.

When an alarm occurs while aline device is in the Null, Disconnected, or Idle
state, only the GCEV_BLOCKED event is sent since thereis no call to

46

3. GlobalCall API

disconnect. The call state does not change when a GCEV_BLOCKED or
GCEV_UNBLOCKED event is sent to the application.

In the asynchronous mode, if agc_WaitCall() function is pending when a
GCEV_UNBLOCKED event is generated, the gc_ WaitCall() function need not
be reissued.

Table 8. Alarm Conditions

Analog L oop Start Alarms:

None

E-1 Alarms:

Bipolar violation count saturation
CRCA4 error count saturation

Driver performance monitor failure
Error count saturation

Initial loss of signal detection
Received distant multi-frame alarm
Received frame sync error
Received loss of sync

Received multi frame sync error
Received remote alarm

Received signaling all 1's

Received unframed all 1's

T-1Alarms;

Bipolar eight zero substitution detected

Bipolar violation count saturation

47

GlobalCall™ API Software Reference for UNIX and Windows NT

e Driver performance monitor failure
e Error count saturation

e Frame bit error

e Got aread alarm condition

e Initial loss of signal detection

e Out of frame error, count saturation
e Received bluealarm

e Received carrier loss

¢ Received lossof sync

¢ Received yellow alarm

3.9. Event Definitions

The following Global Call scenarios briefly describe events common to all
protocol interfaces (see the appropriate GlobalCall Technology User’s Guider
a specific protocol for additional events supported by that protocol):

e inbound call events (Table 9,

e outbound cal events (Table 10,

» disconnect/failure events (Table 13 and

e other GlobalCall events (Table 12and Table 13.

For termination events, the terminated function is listed in the “Terminates”
column; termination events only apply when using the asynchronous
programming model.

For unsolicited events, ‘Unsolicited’ appears in the “Terminates” column;
unsolicited events apply to both the synchronous and the asynchronous
programming models. The referenced parameter, CRN or LDID, is identified for
each event in the “Ref” column. If the event is maskable, its default setting is

48

3. GlobalCall API

indicated in the “Terminates” column. Refer to goeSetEvtM sk() function
description inChapter 6. Function Reference for specific information regarding
enabling and disabling events.

Table 9. Inbound Call Events

Event

Terminates

Ref

Description

GCEV_ACCEPT

gc_AcceptCall()

CRN

Call received at remoteg
end, but not yet
answered

GCEV_ANSWERED

gc_Answer Call()

CRN

Call established and
enters Connected state|

GCEV_ACKCALL

gc _CallAck()

CRN

Indicates termination o
gc_CallAck() and that
the DDI string may be
retrieved by using
gc_GetDNIS()

GCEV_OFFERED

Unsolicited

CRN

Inbound call arrived;
call enters Offered staté.

174

Table 10. Outbound Call Events

Event Terminates Ref Description

GCEV_ALERTING Unsolicited CRN | Destination party hag
(enabled by answered call.
default)

GCEV_CALLSTATUS | Unsolicited CRN | Indicates that a
timeout or a no
answer (call control
library dependent)
condition was
returned while the
gc_MakeCall()
function is active

GCEV_CONNECTED | gc MakeCall() CRN | Callis connected

49

GlobalCall™ API Software Reference for UNIX and Windows NT

Table 11. Disconnected/Failed Call Events

Event

Terminates

Ref

Description

GCEV_DROPCALL

gc _DropCall()

CRN

Cdlis
disconnected
and call
entersldle
state

GCEV_DISCONNECTED

Unsolicited

CRN

Cal
disconnected
by remote
end.

GCEV_DISCONNECTED

Any request or
message rejected by
network or that has
timed-out

Either
CRN
or
LDID

The error
detected
prevents
further call
processing on
this call.

GCEV_RESETLINEDEV

gc_ResetLineDev()

LDID

Disconnects
any active
callsonthe
line device.

Table 12. ISDN Call Events

Event

Terminates

Ref

Description

GCEV_CALLINFO

Unsolicited

CRN

Generated when
an incoming
information
messageis
received.

GCEV_CONGESTION

Unsolicited

CRN

Generated when
an incoming
congestion
messageis

50

3. GlobalCall API

Event

Terminates

Ref

Description

received.

GCEV_D_CHAN_STATU
S

Unsolicited

LDID

Generated when
the status of the
D channel
changes.

GCEV_DIVERTED

Unsolicited

CRN

Received request
to call forward
using DPNSS
protocol.

GCEV_FACILITY

Unsolicited

LDID

Generated when
an incoming
facility message
isreceived.

GCEV_FACILITY_ACK

Unsolicited

LDID

Generated when
an incoming
facility ACK
messageis
received.

GCEV_FACILITY_REJ

Unsolicited

LDID

Generated when
an incoming
facility reject
messageis
received.

GCEV_HOLDACK

gc_HoldCall()

CRN

Generated when
an
acknowledgemen
tissentin
response to a
hold call

message.

GCEV_HOLDCALL

Unsolicited

CRN

Generated when
ahold current
call messageis

51

GlobalCall™ API Software Reference for UNIX and Windows NT

Event

Terminates

Ref

Description

received.

GCEV_HOLDREJ

gc_HoldCall()

CRN

Generated when
ahold call

request is
rejected and the
hold call reject
message is sent to
remote end.

GCEV_ISDNMSG

Unsolicited

CRN

Generated when
an incoming
unrecognized
ISDN messageis
received.

GCEV_L2BFFRFULL

Unsolicited

CRN

Generated when
the incoming
layer 2 access
message buffer is
full. (reserved for
future use)

GCEV_L2FRAME

Unsolicited

CRN

Generated when
anincoming layer
2 access message
isreceived.

GCEV_L2NOBFFR

Unsolicited

CRN

Generated when
no free spaceis
available for an
incoming layer 2
access message.

GCEV_NOTIFY

Unsolicited

CRN

Generated when
an incoming
notify messageis
received.

GCEV_NSI

Unsolicited

CRN

Generated when

52

3. GlobalCall API

Event

Terminates

Ref

Description

aNetwork
Specific
Information
(NSI) messageis
received using
DPNSS protocol.

GCEV_PROCEEDING

Unsolicited
(enabled by
default)

CRN

Generated when
an incoming
proceeding
messageis
received.

GCEV_PROGRESSING

Unsolicited
(enabled by
default)

CRN

Generated when
an incoming
progress message
is received.

GCEV_REQANI

gc_RegANI()

CRN

Generated when
ANI information
isreceived from
network.

GCEV_RETRIEVEACK

gc RetrieveCall()

CRN

Generated when
an
acknowledgemen
tissentin
response to a
retrieve hold call

message.

GCEV_RETRIEVECALL

Unsolicited

CRN

Generated when
aretrieve hold
call messageis
received.

GCEV_RETRIEVEREJ

gc RetrieveCall()

CRN

Generated when
arejection
messageissent in
response to a

53

GlobalCall™ API Software Reference for UNIX and Windows NT

Event

Terminates

Ref

Description

request to
retrieve held call.

GCEV_SETBILLING

gc_SetBilling()

CRN

Generated when
billing
information for
thecal is
acknowledged by
the network.

GCEV_SETCHANSTATE

gc_SetChanState(
)

or unsolicited

CRN

Sets operating
state of channel.
Orif an
unsolicited event,
generated when
the status of the
B channel
changesor a
maintenance
messageis
received from the
network.

GCEV_SETUP ACK

Unsolicited
(disabled by
default)

CRN

Generated when
an incoming
setup ACK
messageis
received.

GCEV_TRANSFERACK

Unsolicited

CRN

Generated when
an
acknowledgemen
tissentin
response to a
transfer call to
another
destination
message using
DPNSS protocol.

54

3. GlobalCall API

Event

Terminates

Ref

Description

GCEV_TRANSFERCALL

Unsolicited

CRN

Generated when
atransfer call to
another
destination
messageis
received.

GCEV_TRANSFERREJ]

Unsolicited

CRN

Generated when
arejection
messageissent in
response to a
request to
transfer call to
another
destination using
DPNSS protocol.

GCEV_TRANSIT

Unsolicited

CRN

Generated when
amessageis sent
viaacall
transferring party
to the destination
party after a
transfer call
connection is
completed using
DPNSS protocol.

GCEV_USRINFO

Unsolicited

CRN

Generated when
an incoming
User-to-User
Information
(UUI) messageis
received.

55

GlobalCall™ API Software Reference for UNIX and Windows NT

Table 13. Other GlobalCall Events

Event Terminates Ref Description

GCEV_BLOCKED Unsolicited (enabled | LDID | Lineis

by default) blocked and
application
cannot issue
call-related
function calls.
Retrieve
reason for line
blockage
using
gc_Resultval
ue().

GCEV_UNBLOCKED Unsolicited (enabled | LDID | Lineis

by default) unblocked.
Application
may issue call-
related
commands to
thisline
device.

GCEV_SETCHANSTATE | gc_SetChanState() | LDID | Linedeviceis
placed in
requested
state.

GCEV_TASKFAIL Unsolicited Either | Anunsolicited
CRN error event

or occurred
LDID | duringthe
execution of a
function.

56

3. GlobalCall API

3.10. Return Value Handling

When afunction call returns, the GlobalCall library assigns areturn valueto
indicate to the calling application the success, failure or condition of the results of
the cal:

e 0(zero) - returned indicates successful initiation of the function.
e <0(zero) - returned indicates the function failed to complete
successfully.

When afunction fails, avaue lessthan zero is returned. The error code for this
failureisretrieved by issuing agc_ErrorValue() cal. Thisfunction must be
called immediately after the function failed value is returned. Having retrieved
the error code for the failure, an ASCII string that describes the reason for the
failure may be retrieved by issuing agc_ResultM sg() function.

NOTE: When afunction fails, the value returned is less than zero. Do not test
explicitly for avalue of —1; future versions of the Global Call APl may
not use —1 asthe returned value.

The geerr.h header file contains a comprehensive list of error codes; seelisting in
Appendix C.

3.11. Error Handling

When an error occurs during execution of a function, one of the following occurs:
» thefunction returns with avalue < 0 or

* theunsolicited error event, GCEV_TASKFAIL, is sent to the application.
When afunction returns with avalue < 0, the error code defining the reason for
the failure may beretrieved by calling thegc_ErrorValue() function
immediately after the function returns. Thegc ResultM sg() function converts

any GlobalCall error code into an ASCI|I string containing a description of the
error.

57

GlobalCall™ API Software Reference for UNIX and Windows NT

Call control libraries supported by the GlobalCall APl may have alarger set of
error codes than those defined in the gcerr.h header file. The call control library
error values are also available using the gc_ErrorValue() function.

If an error occurs during execution of an asynchronous function, the
GCEV_TASKFAIL event is sent to the application. No change of state is
triggered by thisevent. If events on the line require a state change, this state
change occurs as described in paragraph 3.4.1. Establishing and Terminating
Calls- Asynchronous.

When an error occurs during a protocol operation, the error event is placed in the
event queue with the error value that identifies the error. Upon receiving a
GCEV_TASKFAIL event, the application can retrieve the reason for the failure
using thegc_ResultValue() function.

A call isterminated as shown in Figure 3. Asynchronous Call Tear-Down State
Diagramand in Figure 5. Synchronous Call Tear-Down. For example, if an
alarm occurs while making an outbound call, a GCEV_DISCONNECTED event
is sent to the application with aresult value indicating an alarm on theline. The
GCEV_BLOCKED event is aso generated with aresult value that also indicates
an alarm on theline. See aso the appropriate GlobalCall Technology User’s
Guidefor information on specific protocol errors.

3.12. Programming Tips for UNIX

1. When using GlobalCall functions, the application must use the Global Call
handles (i.e., line device ID and CRN) to access GlobalCall functions. Do
not substitute a network or voice device handle for the Global Call line device
ID or CRN. If the application needs to use a network or voice device handle
for a specific network or voice library cal, (e.g., nr_scroute(), dx_play(),
etc.), you must use thegc_GetNetworkH() or the gc_GetVoiceH () function
to retrieve the network or voice handle, respectively, associated with the
specified GlobalCall line device. The gc_GetVoiceH() function isonly
needed if the voice or tone resource is associated with a Global Call line
device. If avoice or tone resourceis not part of the Global Call line device,
the device handle returned from the dx_open() call should be used.

58

3. GlobalCall API

Do not access the underlying call control libraries directly (i.e., do not issue
calsdirectly to the ANAPI, ISDN or the ICAPI libraries); ALL accesses
must beviathe Globa Call library.

Do not call any network library function directly from your application that
may affect the state of the line or the reporting of events (e.g., dt_settssig(),
dt_setevtmsk(), or thelike).

The GCEV_BLOCKED and the GCEV_UNBLOCKED events are line
related events, not call related events. These events do not cause the state of
acall to change.

Before exiting an application, perform the following:

- drop (using the gc_DropCall() function) and release (using the
gc_ReleaseCall() function) ALL active calls;

NOTE: From the Accepted state, not all E-1 CAS protocols support aforced
release of theling; that is, issuing agc_DropCall() function after a
gc_AcceptCall() function. If aforced releaseis attempted, the function will
fail and an error isreturned. To recover, the application should issue a
gc_Answer Call() function followed by gc_DropCall() and
gc_ReleaseCall() functions. See the Global Call Country Dependent
Parameters (CDP) Reference for protocol specific limitations. However,
anytime a GCEV_DISCONNECTED event isreceived in the Accepted state,
the gc_DropCall() function can be issued.

- close all open line devices (using the gc_Close() function).

Beforeissuing agc_DropCall() function, you must first terminate any voice
related function currently in progress. For example, if aplay or arecordisin
progress, then before you can drop the call, issue a stop channel function on

that voice channel and then call the gc_DropCall() function to drop the call.

When using thelibdti.a library file, the application must also link with the
libgncf.a library file.

When programming in synchronous mode, performance may deteriorate as
the number of synchronous processes increase due the increased UNIX
overhead needed to handle these processes. When programming
multichannel applications, asynchronous mode programming is likely to
provide better performance.

59

GlobalCall™ API Software Reference for UNIX and Windows NT

3.12.1. SRL Related Programming Tips for UNIX

1.

When a SRL isin signaling mode (SIGMODE), do not call any synchronous
mode (i.e., mode=EV_SYNC) GlobalCall function from within a handler
registered to the SRL.

When a SRL isin signaling mode (SIGMODE) and a Global Call functionis
issued synchronousdly (i.e., mode=EV_SY NC), then ensure that the
application only enables handlers with the SRL to catch the exceptions (i.e.,
unsolicited events like GCEV_BLOCKED, GCEV_UNBLOCKED or
GCEV_DISCONNECTED) instead of enabling wildcard handlersto catch all
events. If you enable wildcard handlers, the application may receive
unexpected events which should not be consumed.

3.13. Programming Tips for Windows NT

1.

60

Although Asynchronous models are more complex than the Synchronous
model, asynchronous programming is recommended for more complex
applications that require coordinating multiple tasks. Asynchronous
programming can handle multiple channelsin asingle thread. In contrast,
synchronous programming requires separate threads. Asynchronous
programming uses system resources more efficiently because it handles
multiple channelsin asingle thread.

Asynchronous models et you program complex applications easily, and
achieve ahigh level of resource management in your application by
combining multiple voice channelsin asingle thread. This streamlined code
reduces the system overhead required for interprocess communication and
simplifies the coordination of events from many devices.

When using Global Call functions, the application or thread must use the
GlobalCall handles (i.e., line device ID and CRN) to access Global Call
functions. Do not substitute a network or voice device handle for the
GlobalCall line device ID or CRN. If the application or thread needs to use a
network or voice device handle for a specific network or voice library call,
(e.g., nr_scroute(), dx_play(), etc.), you must use thegc_GetNetworkH()
or the gc_GetVoiceH () function to retrieve the network or voice handle,
respectively, associated with the specified GlobalCall line device. The
gc_GetVoiceH() function is only needed if the voice or tone resource is
associated with a GlobalCall line device. If avoice or tone resource is not

3. GlobalCall API

part of the Global Call line device, the device handle returned from the
dx_open() call should be used.

Do not access the underlying call control libraries directly (i.e., do not issue
callsdirectly to the ANAPI, ISDN or the ICAPI libraries); ALL accesses
must beviathe Global Call library.

Do not call any network library function directly from your application or
thread that may affect the state of the line or the reporting of events (e.g.,
dt_settssig(), dt_setevtmsk(), or the like).

The GCEV_BLOCKED and the GCEV_UNBLOCKED events are line
related events, not call related events. These events do not cause the state of
acall to change.

Before exiting an application, perform the following:

- drop (using the gc_DropCall() function) and release (using the
gc_ReleaseCall() function) ALL active calls;

NOTE: From the Accepted state, not all E-1 CAS protocols support aforced
release of theling; that is, issuing agc_DropCall() function after a
gc_AcceptCall() function. If aforced releaseis attempted, the function will
fail and an error isreturned. To recover, the application should issue a
gc_Answer Call() function followed by gc_DropCall() and
gc_ReleaseCall() functions. See the Global Call Country Dependent
Parameters (CDP) Reference for protocol specific limitations. However,
anytime a GCEV_DISCONNECTED event isreceived in the Accepted state,
the gc_DropCall() function can be issued.

- close all open line devices (using the gc_Close() function).

Beforeissuing agc_DropCall() function, you must first terminate any voice
related function currently in progress. For example, if aplay or arecordisin
progress, then before you can drop the call, issue a stop channel function on

that voice channel and then call the gc_DropCall() function to drop the call.

When calling the gc_GetM etaEventEx() function from multiple threads,
ensure that your application uses unique thread-related METAEVENT data
structures or ensure that the METAEVENT data structure is not written to
simultaneously.

61

GlobalCall™ API Software Reference for UNIX and Windows NT

3.14. Programming Tips for Drop and Insert Applications

When dealing with E-1 CAS or T-1 robbed bit protocols:

« dignaling such asline answered is passed to the application as the
GCEV_ANSWERED event.

« dignaling such asline busy is available to the application as an error code
EGC_BUSY or aresult value GCRV_BUSY ; line no answer as an error code
EGC_NOANSWER or aresult vallue GCRV_NOANSWER.

« signaling such as a protocol error, an aerting event, afast busy, an undefined
telephone number or network congestion are all returned to the application as
an error code EGC_BUSY or aresult value GCRV_BUSY.

» non-backward signaling protocols generate a GCEV_DISCONNECTED
event with an error code EGC_BUSY or aresult value GCRV_BUSY when
time outs or protocol errors occur during dialing.

For adrop and insert application wherein the calling party needs to be notified of
the exact status of the called party’s line, the following approach may be used:

« Upon receipt of an incoming call from a calling party, issue a
gc_MakeCall() function on the outbound line to the called party.

« After dialing completes on the outbound line, the application should drop the
dialing resource, turn off call progress and connect the inbound line to the
outbound line so that the calling party can hear the tones returned on the
outbound line. These tones provide positive feedback to the calling party as
to the status of the called party’s line. If the status of the called party’s line is
such that the call cannot be completed, the calling party will hang up and the
application can then drop the call and release the resources used. Otherwise,
when the call is answered, a GCEV_CONNECTED event will be received.

When call progress is being used, after dialing completes, the call progress
software looks for ringback or voice on the outbound line. When ringback is
detected, a GCEV_ALERTING event is generated. When voice is detected, a
GCEV_ANSWERED event is generated. A unacceptable amount of time may
lapse before either of these events is generated while the calling party is waiting
for a response that indicates the status of the call. Thus, for drop and insert
applications, call progress should be disabled as soon as dialing completes and the

62

3. GlobalCall API

inbound and outbound lines connected so asto provide the calling party with
immediate outbound line status and voice cut-through.

For adrop and insert application wherein a call cannot be completed, the
application can simulate and return a busy tone or afast busy (redial) tone to the
calling party. Typically, this condition occurs when a GCEV_DISCONNECTED
event is generated due to atime out or a protocol error during dialing or due to R2
backward signaling indicating a busy called party’s line, equipment failure,
network congestion or an invalid telephone number. When a call cannot be
completed because the called party’s line is busy:

use a tone or voice resource to generate a busy tone [60 ipm (impulses per
minute)] or to record a busy tone.

connect this busy tone to the calling party’s line or playback the recorded
busy tone file.

then drop and release the calling party’s line when a
GCEV_DISCONNECTED event is received.

When a call cannot be completed because of equipment failure, network
congestion or an invalid telephone number:

use a tone or voice resource to generate a fast busy tone (120 ipm) or to
record a fast busy tone.

connect this fast busy tone to the calling party’s line or playback the recorded
fast busy tone file.

then drop and release the calling party’s line when a
GCEV_DISCONNECTED event is received.

For voice function information, see tkeice Software Reference for your
operating system.

3.15. Building Applications for UNIX

The following header files contain equates that are required for each UNIX
application that uses the GlobalCall library:

63

GlobalCall™ API Software Reference for UNIX and Windows NT

gecerr.h
gclib.h
gcisdn.h (for applications that use ISDN symbols)

When using the ANAPI library or the ICAPI library, the following source file
must be compiled by the user and linked to the application:

« for ANAPI library, link ancountry.c
« for ICAPI library, link country.c

The library fileslisted in Table 14. UNIX Filesto be Linked, must be linked to
the application IN THE FOLLOWING ORDER:

* libgc.afile

» thenthelibrary files (or their stub library file) in the order listed

» thenthelibdxxx.a, libdti.a and libsrl.a files

For each library, either the library files or their corresponding stub library file

must be linked. For information on stub libraries, see paragraph 2.4. Call
Control Libraries.

64

3. GlobalCall API

Table 14. UNIX Files to be Linked

Thefollowing library filesMUST ALWAY S be linked:

¢ libgc.a
o libdxxx.a
e libdti.a
e libsrl.a

Select the libraries (protocols) to be used with your application and link the
fileslisted below. For libraries not used, link the corresponding stub library
file.

NOTE: For each GlobalCall library listed below, either the library files OR
the corresponding stub library file MUST be linked to your

application.
ICAPI library: ANAPI library: ISDN library:
e libr2lib.a e libatlib.a e libgcisa
e libr2mf.a e libanalog.a e libgncf.a
Stub library:
« libicapi.a | « libanapi.a |« libisdna

3.15.1. Using Only ICAPI Protocols in UNIX Applications

The following object files (located in the /usr/dialogic/ictools directory) must be
linked to the application (i.e., for al installed protocol modules):

e dl protocol modules with the format:
cc_tt ffff d.oorcc tt do

See the GlobalCall E-1/T-1 Technology User’s Guidefor information on the
naming convention used for ICAPI protocols.

3.15.2. Using Only Analog Protocols in UNIX Applications

The following object files (located in the /usr/dialogic/ictools directory) must be
linked to the application (i.e., for al installed protocol modules):

65

GlobalCall™ API Software Reference for UNIX and Windows NT

e dl protocol modules with the format:
cc_an ffff d.oorcc an d.o

See the Global Call Analog Technology User’s Guide for information on the
naming convention used for anal og protocols.

3.16. Building Applications for Windows NT

When building a Windows NT application, the application with its Global Call
header fileincludes, is compiled and linked with the libgc.lib library file.
Thereafter, when you issue agc_Start() call, the configured library or libraries
(e.g., libgcan.dll for ANAPI protocols, libger2.dil for ICAPI protocols, libgcis.dil
for ISDN protocols, etc.) that you are using are dynamically loaded. If a
configured library cannot be found, the Global Call API enters an error message in
the event logger. When a particular country dependent/specific protocol file(s)
(e.g., br_r2.dll for Brazil R2 protocol, us mf.dll for U.S. T-1 robbed bit protocol,
etc.) is needed, this protocol file(s) is dynamically loaded.

The following header files contain equates that are required for each application
that uses the GlobalCall library:

gcerr.h
gclib.h

Thefollowing library files must be linked to the application:

« libgclib
« libdxxrrt.lib
« libdtimtlib
. libsrimtlib

Thelibger2.dll and libgcis.dll files are dynamically loaded. The E-1 CASor T-1
robbed bit protocol modules are al'so dynamically loaded when needed by the
application. These protocol modules use the following naming format:

e cc_tt ffff_d.dll or cc_tt _d.dll

66

3. GlobalCall API

The analog protocol module(s) is aso dynamically loaded when needed by the
application. These protocol modules use the following naming format:

e cc an ffff_io.dll or cc_an_d.dll

See the Global Call E-1/T-1 Technology User’s Guide or the Global Call Analog
Technology User’s Guidefor more information on the naming convention used for
these protocols.

3.16.1. Compiling and Linking a Windows NT Application

Dialogic Windows NT libraries may be linked and run using Microsoft Visual C+
(2.0 or higher).

3.17. Using Analog, E-1 CAS, T-1 Robbed Bit and ISDN
Protocols

To use analog, E-1 CAS and ISDN protocols or analog, T-1 robbed bit and ISDN
protocols in the same system, the configuration file settings for each board must
reflect the protocol running on that board. 1n UNIX and Windows NT systems,
this configuration file can be updated at installation. Subsequently, the
configuration file:

« for UNIX can be updated using a text editor.

« for Windows NT can be updated using the Dialogic Configuration Manager
utility.

For example, the configuration file, /usr/dialogic/cfg/dialogic.cfg for UNIX, for
an application using a D/300SC-E1 board (ID = 0) running the Brazil R2 protocol
and using a D/300SC-E1 board (ID = 1) running the ISDN CTR4 protocol would
be asfollows:

[Genload - All Boards]
BLTAddress = DO000
Dialog/HD = YES
BusType =SCBUS

67

GlobalCall™ API Software Reference for UNIX and Windows NT

[Genload - ID O] /* E-1 board running Brazil protocol */
ParameterFile = br_300.prm
ClockSource = loop

[Genload - ID 1] /* E-1 board running ISDN CTR4 protocol */
| SDNProtocol = ctr4
ParameterFile = isctr4.prm
ClockSource = none

The E-1 CAS board provides master clock to the SChus and isloop timed (i.e.,
taking its clock from the network). The ISDN board receives clock from the
SChbus.

For Windows NT, the Dialogic Configuration Manager utility is used to select or
update the configuration file for each board.

68

4. Function Overview

The Dialogic GlobalCall library functions provide the building blocks for creating
network interface control applications. An overview of these functions, grouped
into the following categories, is presented in this chapter:

* ClobaCall Basic Functions

e Library Information Functions

e Optiona Call Handling and Features Functions
e System Controls and Tools Functions

* Interface Specific Functions
Detailed function descriptions are provided in Chapter 6. Function Reference.
GlobalCall basic functions may be used to interface with all signaling systems.

The library information functions retrieve the status, names and number of call
control libraries.

The Global Call optional call handling functions may be used to interface with all
signaling systems. These functions provide additional call handling capabilities
related to billing and number identification that are not provided by the basic
Globa Call functions. See aso the appropriate GlobalCall Technology User's
Guidefor technology specific information.

The Global Call system controls and tools functions provide call state, parameter
and call control library management capabilities. These functions may be used to
interface with all signaling systems.

The Global Call interface specific functions are signaling system specific.

All function prototypes are in the gclib.h header file.

69

GlobalCall™ API Software Reference for UNIX and Windows NT

Table 15. Basic Functions

Function

Description

gc_AnswerCall()

response to an incoming call (like a “pick up the
phone” command)

gc_DropCall()

disconnects a call; equivalent to a “hang-up”

call

gc_MakeCall() makes an outgoing call

gc_ReleaseCall() releases all internal resources for the specified

gc_WaitCall() sets up conditions for processing incoming calls
Table 16. Library Information Functions

Function Description

gc_CCLibIDToName(
)

converts call control library identification code
library name.

to

gc_CCLibNameTol D(
)

converts call control library name to library
identification code

gc CCLibStatus()

retrieves status of the call control library
specified

gc_CCLibStatusAll()

retrieves status information for all call control
libraries

70

4. Function Overview

Table 17. Optional Call Handling and Features Functions

Function Description

gc_AcceptCall() optional response to an incoming call request;
used to indicate “ringing” to the remote end

gc_CallAck() enables user to control the response to an
incoming call request by retrieving call
information from the network.

For ISDN PRI applicationgic_CallAck()
function is used in overlap receiving operation

gc_GetANI() returns caller identification information

gc_GetBilling() gets the charge information for the call, after
GCEV_DISCONNECTED event is received or
gc_DropCall() function is terminated

gc_GetDNIS() gets the DNIS (DDl digits) associated with a
specific CRN

gc_GetLinedevState() | retrieves the status of the specified line device|

gc_GetVer() returns the version number of the specified
software component

gc_SetBilling() for protocols that support this feature, sets billing
information for the call

gc_SetCallingNum() sets the default calling party number on a spegific
line device; the calling party number thus defined
will be used on all subsequent outbound calls

” o

gc_SetChanState() sets a channel to the “in-service,” “out-of-

service,” or “in-maintenance” state

71

GlobalCall™ API Software Reference for UNIX and Windows NT

Table 18. System Controls and Tools Functions

Function

Description

gc_Closg()

closes apreviously opened device and removes
the channel from service

gc_CRN2LineDev()

acquires the line device ID associated with a
given CRN

gc_ErrorValue()

returns the error value/failure reason related to
the last Global Call function call. To process an
error, this function must be called immediately
after aGlobal Call function failed.

gc_GetCallState()

acquires the state of the call associated with the
CRN

gc_GetCRN()

gets the CRN associated with arecently arrived
event (such as GCEV_OFFERED)

gc_GetLineDev()

getsthe line device ID associated with a recently
arrived event

gc_GetMetaEvent()

transforms acall control library event (or any
SRL event) into a Global Call metaevent

gc_GetMetaEventEx()

(Windows NT extended asynchronous mode
only) transforms acall control library event (or
any SRL event) into a Global Call metaevent.
Passes the SRL event handle to the application so
that multithreaded applications can be
implemented.

gc_GetNetworkH()

returns network device handle associated with the
specified line device

gc_GetParm()

retrieves the parameter value specified for aline
device

gc_GetUsrAttr()

retrieves the attribute established using

72

4. Function Overview

Function Description
gc_SetUsrAttr() function

gc_Open() opens a GlobalCall device and returns a unique
line device handle to identify the physical
device(s) that carry the call

gc_OpenEx() opens a GlobalCall device, sets a user defined

attribute and returns a unique line device handle
to identify the physical device(s) that carry the
call Thisfunction can be used in place of the
gc_Open() function followed by a
gc_SetUsrAttr() function.

gc_ResetLineDev()

disconnects any active calls on the line device;
aborts al calls being setup

gc_ResultM sg()

retrieves an ASCI|I string describing the result
code

gc_ResultValue()

returns the cause of an event

gc_SetEvtMsk()

sets the event mask associated with the specified
line device

gc_SetParm()

sets the default value of parameters used in call
setup process

gc_SetUsrAttr()

sets an attribute defined by the user

gc_Start() starts al configured, call control libraries
For UNIX applications, non-stub libraries are
started.

gc_Stop() stops all configured call control libraries started

73

GlobalCall™ API Software Reference for UNIX and Windows NT

Table 19. Analog Loop Start Interface Specific Functions

Function Description

gc_L cadDxParm() Sets voice parameters associated
with aline device

Table 20. CAS Interface Specific Functions

Function Description
gc_Attach() logically connects a voice resource to aline device
gc_Detach() logically detaches a voice resource from the

associated line device

gc_GetVoiceH() returns the voice device handle associated with the
specified call control line device

74

4. Function Overview

Table 21. ISDN Interface Specific Functions

Function

Description

gc_CallProgress()

notifies the network that the connection request is
in progress.

gc_GetCalllnfo()

gets information for the call

gc_ReqgANI()

returns the caller’s identification, normally
included in the ISDN setup message and ANI-gn-
Demand requests

gc_SetInfoElem()

enables setting an additional information element
in the next outbound ISDN call

gc_SndMsg()

sends non-call state-related ISDN message to
network over the D channel while a call exists

gc_StartTrace()

start trace and place result in shared RAM

gc_StopTrace()

stops the trace and closes the file

75

GlobalCall™ API Software Reference for UNIX and Windows NT

76

5. Data Structure Reference

The data structures used by selected GlobalCall functions are described in this
chapter. These structures are used to control the operation of functions and to
return information. The data structures defined include:

« GC_CALLACK_ BLK
« GCIEBLK

« GC_MAKECALL_BLK
« METAEVENT

« GC_PARM

« GC_WAITCALL_BLK

The data structure definition is followed by atable providing a detailed
description of the fields in the data structure. These fields arelisted in the
sequence in which they are defined in the data structure.

Refer to the appropriate GlobalCall Technology User’s Guider additional
technology specific data structures.

5.1. GC_CALLACK_BLK

The GC_CALLACK_BLK structure contains information provided to the

gc_CallAck() function regarding the operation to be performed by this function.

When using thegc_CallAck() function in E-1 CAS environments, the dnis
servicestructure specifies the number of additional DDI digits to be acquired.
The structure is defined in the gclib.h header file and is also listed below.

typedef struct {
unsi gned | ong type; /* type of a structure inside follow ng union */
long rfu; /* will be used for common functionality */

uni on {
struct {
int accept;
} dnis;
struct {
int accept ance;

77

GlobalCall™ API Software Reference for UNIX and Windows NT

LI NEDEV | i nedev;

} isdn;

struct {
long gc_private[4];

} gc_private;

} service; /* what kind of service is requested */
/* related to type field */
} GC CALLAXK BLK, *QGC CALLAXK BLK PTR

Table 22. GC_CALLACK_BLK Field Descriptions

Field Description

type type of structure inside following union; ‘type’
specifies the type of service requested by the
gc_CallAck() function. For example, to request the
retrieval of additional DNIS digits, set ‘type’ to
GCACK_SERVICE_DNIS.

rfu reserved for future use; must be set to 0.
service kind of service requested; related to type field
dnis structure containing the information needed for

collecting DDI digits

dnis.accept indicates type and number of digits to be requested.
Set to the number of DDI digits to be collected.
Refer to the appropriat®lobal Call Technology
User's Guidefor technology specific information.

isdn structure containing information for ISDN
procedures supported by this function. Refer to the
appropriate GlobalCall Technology User's Guide
for more details.

78

5. Data Structure Reference

Field

Description

isdn.acceptance

indicates type of message to be sent to network.
Valid values are;

* CALL_PROCEEDING to send Proceeding
message

e CALL_SETUP ACK to send Setup
Acknowledge

message

isdn.linedev

the new GlobalCall line device to be used for the
call. If setto 0O, the channel requested by the
network will be used.

gc_private[4]

for internal use by Global Call

5.2. GC_IE_BLK

The GC_IE_BLK structureis used to send an Information Element (IE) block to

an ISDN interface using the gc_SetInfoElem(') or gc_SndMsg() function. Refer

to the appropriate GlobalCall Technology User’'s Guider technology specific

information; e.g., for using the cclib field.

The structure is defined as follows:

t ypedef struct {
QLIB_IE BLK
voi d

*gcl i b;
*cclib;

} ®&CIEBK *GCIEBLKP,

Table 23. GC_IE_BLK Field Descriptions

Field Description

gclib pointer to |E information that is common across
Global Call technologies. Pointer must be set to
NULL inthisrelease.

cclib pointer to |E information that is specific to the call

79

GlobalCall™ API Software Reference for UNIX and Windows NT

Field Description

control library (technology) being used; refer to the
appropriate GlobalCall Technology User’s Guider
technology specific information.

5.3. GC_MAKECALL_BLK

The pointer to the GC_MAKECALL_BLK structurein the argument list for the
gc_MakeCall() function must be set to NULL to use the default value for the
call.

The GC_MAKECALL_BLK structure contains information used by the
gc_MakeCall() function when setting up acall. The structureis defined as
follows:

t ypedef struct {
QLI B_ MAKECALL_BLK *gclib;
voi d *cclib;
} GC_MAKECALL_BLK, *QC_MAKECALL_BLKP,

Table 24. GC_MAKECALL_BLK Field Descriptions

Field Description

gclib pointer to information used by the gc_MakeCall(') function
that is common across technologies. Pointer must be set to
NULL inthisrelease.

cclib pointer to information used by the gc MakeCall() function
that is specific to the call control library (technology) being
used; refer to the appropriate GlobalCall Technology User’s
Guidefor technology specific information.

5.4. METAEVENT

This structure contains the event descriptor for a metaevent and is defined as
follows:

80

t ypedef struct {

| ong nagi cno;
unsi gned | ong fl ags;
voi d *evt dat ap;
| ong evtlen;

| ong evt dev;

| ong evttype;
LINEDEV | i nedev;
RN crn;

| ong rfuz;

voi d *usrattr;
int cclibid;
int rfuil;

5. Data Structure Reference

/* for internal validity check */

/* NOTE Application calls gc_Get Met aEvent ()
* or gc_Get MetaEvent Ex() (Wndows NI) to

* fill in these fields */

/* only valid if an event was returned */

/* flags field */

/* pointer to the event data bl ock -

sr_getevtdatap */

/* will be f(event, cclib) */
/* event length - UN X or Wndows NT sr_getevtlen */
/* May change as libraries are added */
/* event device - sr_getevtdev */
/* event type - sr_getevttype */

/* line device */

/* crn - if 0, nocrn for this event */

/* reserved for future use */

/* user attribute associated with |inedev */
/* 1D of cclib of associated event */

/* reserved for future use */

} METAEVENT, *METAEVENTP;

Table 25. METAEVENT Field Descriptions describes each element used in the

metaevent data structure and lists the function that the GlobalCall APl used to
retrieve the information stored in the associated field. This data structure
eliminates the need for the application to issue the listed functions.

Table 25. METAEVENT Field Descriptions

Field Description Function Equivalent
magicno used for internal validity check None
flags flagsfield; GlobalCall flagisset | None
for all GlobalCall events.
evtdatap pointer to the event data block Sr_getevtdatap()
evtlen event length sr_getevtlen()
evtdev event device sr_getevtdev()
evttype event type Sr_getevitype()
linedev line device for GlobalCall events | gc_GetLineDev()
crn call reference number for gc_GetCRN()
Global Call events- if 0, no crn

81

GlobalCall™ API Software Reference for UNIX and Windows NT

Field Description Function Equivalent
for this event

rfu2 reserved for future use None

usrattr user assigned attribute gc_GetUsrAttr()

associated with the line device.

cclibid identification of call control
library associated with the event:
n = cclib ID number

-1 =unknown

rful reserved for future use

5.5. GC_PARM

The GC_PARM structure contains information about the call parameter(s) set by
the gc_SetParm() function or read by the gc_GetParm() function. The
information stored and retrieved is technology dependent; refer to the appropriate
GlobalCall Technology User’s Guider technology specific information. The
structure is defined as follows:

typedef union {

short shortval ue;
| ong | ongval ue;
int i ntval ue;
char charval ue;
char *paddr ess;
voi d *pstruct;

} CCPARV

Thefield of the GC_PARM structure used varies in accordance with the
parameter used. Thefield used for each parameter islisted in Table 36.
Parameter Descriptions, gc_GetParm() and gc_SetParm()

5.6. GC_WAITCALL_BLK

The pointer to the GC_WAITCALL_BLK structure in the argument list for the
gc_WaitCall() function must be set to NULL in thisrelease.

82

6. Function Reference

A detailed description of each Global Call function included in the gclib.h file,
presented in alphabetical order, is contained in this chapter. Unless otherwise
indicated, the functions described in this chapter are available for application
development in al supported technologies, see the Technology linein the function
header table for specific technology applicability. See Appendix C for alisting of

the gclib.h file.

6.1. Alphabetical List of Functions

The Dialogic GlobalCall library functions are listed alphabetically in the
following paragraphs. The format for each function description is:

Function header
Name:
Inputs:

Returns:
Includes:
Category:
Mode:
Technology:

Description paragraph

Cautions paragraph

Lists the function name and briefly states the
purpose of the function.

Defines the function name and function syntax
using standard C language syntax.

Listsall input parameters using standard C
language syntax.

Listsall returns of the function.

Listsall include files required by the function.
Lists the category classification of the function.
Asynchronous or synchronous

Lists the technol ogies supported by the function: a
filled box designates a supported technology. See
Release Notes for latest list of supported
technologies.

Provides a description of function operation,
including parameter descriptions.

A “Termination Event” paragraph describes the
event(s) returned to indicate function termination.

Provides warnings and reminders.

83

GlobalCall™ API Software Reference for UNIX and Windows NT

Example paragraph Provides C language coding example(s) showing
how the function can be used in application code.

Errors paragraph Lists specific error codes for each function.

See Also paragraph Provides alist of related functions.

6.2. Programming Conventions
The Global Call functions use the following format:

gc_function(reference, parameterl, parameter?, ..., parameterN, mode)

where:

gc_function: Function name.

reference: Aninput field that directs the function to a specific line device
or call when the referenceisa CRN or aline device.

parameters: Input or output fields.

mode: Input field indicating how the function is executed. Set value
to:

* EV_ASYNC for asynchronous mode execution
* EV_SYNC for synchronous mode execution.

NOTE: Inthe C language coding example listed in the Example paragraph, the
example code uses the mnemonic GC_SUCCESS as the function return
value. GC_SUCCESS s defined in the gcerr.h header file to equate to 0.

84

optional response to an inbound call gc_AcceptcCall()

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_AcceptCall(crn, rings, mode)

CRN crn » call reference number
int rings number of rings before return
unsigned long mode e async or sync

0 if successful

<0 if failure

gclib.h

geerr.h

optional feature

asynchronous or synchronous

m |ISDN PRI m E-1CAS m T-1 robbed hit
m Anaog

B Description

The gc_AcceptCall() function is an optional response to an inbound call request
[GCEV_OFFERED event or termination of the gc_WaitCall() function] that
acknowledges that the call has been received but is not yet answered (e.g., the
phoneisringing). Normally, agc_AcceptCall(') function is not required in most
voice termination applications. This function may be used when the application
needs more time to process an inbound call request, such as in a drop/insert
application in which the outbound dialing process may be time consuming.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description

crn: Call Reference Number

rings. specifies how long (the number of rings) the protocol handler
will wait before notifying the calling entity. (Maximum
supported number of ringsis 14. Values greater than 14 will
be set to 14.) For protocols not using rings, the rings
parameter isignored.

mode: set to EV_ASYNC for asynchronous execution or to

EV_SYNC for synchronous execution

85

gc_Acceptcall() optional response to an inbound call

Termination Event: In the asynchronous mode, GCEV_ACCEPT event sent to
application if successful; GCEV_TASKFAIL event if not successful.

A GCEV_DISCONNECTED event may be reported to the application as an
unsolicited event after agc_AcceptCall() function isissued. When a
GCEV_DISCONNECTED event isreceived, issue gc_DropCall() and
gc_ReleaseCall() functions to change the call state to Null.

B Cautions

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/ *
* Assune the foll ow ng has been done:
* 1. Qpened line devices for each time slot on DIl Bl.
* 2. Wit for a call using gc_WitCall()
* 3. An event has arrived and has been converted to a netaevent
* usi ng gc_Get MetaBEvent () or gc_Get Met aBvent Ex() (Wndows NT)
* 4. The event is determned to be a GCEV_CFFERED event
*/
int accept_call (void)
{
CN crn; /* Call Reference Nunber */
int gc_error; /* dobal Call error code */
int cclibid; /* Call Control Library ID*/
| ong cc_error; /* Call Control Library error code */
char *nsg; /* pointer to error nessage string */

/*
* Accept the inconming call.
*/

crn = netaevent.crn;
if (gc AcceptCall (crn, 0, EV.ASYNO != GC SUXCESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_| ResuItMsg(LIBID Q&S (long) gc_error, &nsg);
printf ("Error on Device handle: 0x%Xx, ErrorValue: %l - 9%\n",
net aevent . evtdev, gc_error, nsQ);
return(gc_error);

}

/*
* gc_AcceptCall () ternminates with GOEV_ACCEPT event.

86

optional response to an inbound call gc_AcceptcCall()

* When GOEV_ACCEPT is received, the state changes to

* Accepted and gc_AnswerCall () can be issued to conplete
* the connection.

*/

return (0);

B Errors

If thisfunction returnsa <0 to indicate failure or if the GCEV_TASKFAIL event
isreceived, usegc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultM sg() function as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also

e gc WaitCall()
e gc_ AnswerCall()

87

gc_AnswerCall() equivalent to conventional “set hook off” function

Name: int gc_AnswerCall(crn, rings, mode)
Inputs: CRN crn « call reference number
int rings number of rings before return
unsigned long mode « async or sync
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h
Category basiccal control
Mode: asynchronous or synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
= Anaog

B Description

The gc_AnswerCall() function is equivalent to conventional “set hook off”
function in answering an inbound call and must be used to complete the call
establishment process. It can be used any time after a GCEV_OFFERED or
GCEV_ACCEPT event is received.

Refer also to the appropria®obalCall Technology User’s Guider technology
specific information.

Parameter Description
crn: Call Reference Number
rings: specifies the number of rings the protocol handler waits

before notifying the calling entity. (Maximum supported
number of ringsis 14. Values greater than 14 will be set to
14.) For protocols not using rings, the rings parameter is
ignored.

mode: Set to EV_ASYNC for asynchronous execution or to
EV_SYNC for synchronous execution

Termination Event: In the asynchronous mode, GCEV_ANSWERED event sent
to application if successful; GCEV_TASKFAIL event if not successful.

88

equivalent to conventional “set hook off” function gc_AnswerCall()

A GCEV_DISCONNECTED event may be an unsolicited event reported to the
application after gc_Answer Call() function isissued.

B Cautions

The gc_Answer Call() function can only be called after an inbound call is
detected. Otherwise it fails.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/
Assune the follow ng has been done:
1. Qpened line devices for each tine slot on DIl Bl.
2. Wit for a call using gc_VéitCall ()
3. An event has arrived and has been converted to a netaevent
usi ng gc_Get Met aEvent () or gc_Get Met aBvent Ex() (Wndows NIT)
4. The event is deternined to be a GCEV_CFFERED event

* ok ok ok % % ok

*/
int answer_cal | (voi d)

{
CRN crn; /* call reference nunber */
int gc_error; /* Qobal Call Error */
int cclibid; /* QC Library ID*/
| ong cc_error; /* Call Qontrol Library error code */
char *nsQ; /* pointer to error nessage string */
/*

* Do the follow ng:
* 1. Get the RN fromthe netaevent

* 2. Proceed to answer the call as shown bel ow
*/

crn = netaevent.crn;

/*

* Answer the inconming call

*/

if (gc_AnswerCall(crn, 0, EV.ASYNO != GC SUOCESS) {
/* process error return as shown */
gc_ErrorVal ue(&gc_error, &cclibid, &c_error);
gc_Resul tMsg(LIB D GC (long) gc_error, &rsgQ);
printf ("Eror on Device handle: Ox%x, ErrorValue: %l - %\n",
net aevent . evtdev, gc_error, nsg);
return(gc_error);

/*
* gc_AnswerCal |l () terninates with GOEV_ANSWERED event

89

gc_AnswerCall() equivalent to conventional “set hook off” function

*/
return (0);

B Errors

If thisfunction returnsa <0 to indicate failure or if the GCEV_TASKFAIL event
isreceived, usegc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultM sg() function as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See also

e gc AcceptCall()
e gc DropCall()
e gc WaitCall()

90

attaches a voice resource gc_Attach()

Name:
Inputs:
Returns:
Includes:
Category:

Mode:
Technology:

int gc_Attach(linedev, voiceh, mode)

LINEDEV linedev + GlobaCall line device handle
int voiceh « voice device handle
unsigned long mode « sync

0 if successful

<0 if failure

gclib.h

gcerr.h

interface specific

synchronous

0 ISDN PRI m E-1CAS m T-1 robbed bit
= Anaog

B Description

The gc_Attach(') function attaches a voice resource to the specified line device.
By attaching the voice resource, an association is made between the line device
and the voice channel. The voice channel specified by the device handle, voiceh,
will be used to handle related Global Call functions requiring a voice resource for

that line device.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

voiceh: SRL device handle for a voice resource to be attached
to thelinedevice. The voiceh parameter specifiesthe
voice resource that handles the protocol sections
requiring tones (e.g., DTMF dialing or compelled
signaling).

mode: Set to EV_SYNC for synchronous execution

Termination None

Event:

91

gc_Attach() attaches a voice resource

B Cautions

The gc_Attach() function does not perform time slot routing functions. The
routing must be done during system configuration or performed by the application
using the voice and network routing functions. Alternatively, thegc_Open() or
gc_OpenEx() function may be used to open, attach and route both the voice and
the network resources.

If thisfunction isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <dxxxlib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

int attach(void)

LI NEDEV | dev; /* Qobal Call Iine device handle */
int voi ceh; /* Voi ce channel nunber */
int lineno, brds, tslots; /* Nunber of Iines, boards and */

/* time slots */
int gc_error; /* Qobal Call Error */
int cclibid; /* GC Library ID*/
| ong cc_error; /* Call Gontrol Library error code */
char *nsg; /* pointer to error nessage string */
/*

* Qpen line device for 1st network tine slot on dtiBl using i nbound
* Brazilian R2 protocol [E-1 CAS].
*/

if (gc_Qpen(& dev, ":NdtiB1TL:P br_r2_i", 0) == GC SUXESS) {
voi ceh = dx_open("dxxxB1Cl", NULL);

if (voiceh I=-1)
if (gc_Attach(ldev, voiceh, EV._SYNO == GC SUOCESS) {
/*

* Proceed to route the voice and network resources together,
* and then generate or wait for a call on the Iine device, 'ldev .
*/
} else {
/* process gc_Attach() error return as shown */
gc_ErrorVal ue(&gc_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GG (long) gc_error, &nsg);
printf ("Error on Device handle: 0x%Xx, ErrorValue: %l - 9%\n",
| dev, gc_error, nsgQ);
return(gc_error);

} else {
/* Process dx_open() error */

}

92

attaches a voice resource gc_Attach()

} else {
/* process error fromgc_Qpen() using gc_ErrorVal ue() */
/* and gc_Resul t Msg() */

return (0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also

e gc Close()

e gc _Detach()

e gc_GetNetworkH()

e gc _LoadDxParm()

e gc _Open() or gc_OpenEx()

93

gc_CallAck() provides information about the incoming call

Name: int gc_CalAck(crn, gc_callackp, mode)

Inputs: CRN crn « call reference number
GC_CALLACK_BLK e pointer to additional information
*gc_calackp for processing call

unsigned long mode e async or sync

Returns: 0if successful
<0 if failure

Includes: gclib.h
gcerr.h
gcisdn.h (for applications that use ISDN symbols)

Category: optiona feature

Mode: asynchronous or synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit

0 Anaog

B Description

The gc_CallAck() function provides information about the incoming call to the
network or retrieves information from the network about the incoming call. This
function is used after receiving a GCEV_OFFERED event (or after the successful
completion of the gc_WaitCall() function) and before answering the call. Some
services offered by this function are available to all technologies, such as
retrieving additional DNIS digits.

When this function is used to request additional DDI digits, use the
gc_GetDNIS() function to retrieve the DDI digits.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Par ameter Description

crn: Call Reference Number

gc_callackp: pointer to the GC_CALLACK_BLK structure where ‘type’
specifies the type of service requested bygth€allAck()
function. The GC_CALLACK_BLK data structure and the
value for each field are defined and describeBldaragraph
5.1. GC_CALLACK BLK.

mode: Set to EV_ASYNC for asynchronous execution or to

94

provides information about the incoming call gc_CallAck()

Par ameter Description
EV_SYNC for synchronous execution.

When using ISDN protocols and the type field in the
GC_CALLACK_BLK datastructureis set to
GCACK_SERVICE_ISDN, then this mode parameter must
be setto EV_SYNC.

For example, to use the gc_CallAck() function to collect 4 DDI digits, set:
» gc_callackp.type = GCACK_SERVICE_DNIS

» gc_callackp.service.dnis.accept =4

Termination Event: In the asynchronous mode, GCEV_ACKCALL event sent
to application if successful; GCEV_TASKFAIL event if not successful.

Depending on the call control library used (e.g., ISDN), the gc_CallAck()
function may return either a GCEV_MOREDIGITS or aGCEV_ACKCALL
termination event when thetype field in the GC_CALLACK_BLK data structure
isset to GCACK_SERVICE_DNIS.

GCEV_DISCONNECTED event may be an unsolicited event reported to the
application after gc_CallAck() function isissued.

B Cautions

If thisfunction isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <nenory. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

#i ncl ude <gci sdn. h>

/*
* Assune the foll ow ng has been done:

95

gc_CallAck() provides information about the incoming call

* 1. Qpened line devices for each tine slot on DIl Bl.

* 2. Wit for a call using gc_VéitCall ()

* 3. An event has arrived and has been converted to a netaevent

* usi ng gc_Get Met aEvent () or gc_Get Met aBvent Ex() (Wndows NIT)

* 4. The event is deternined to be a GCEV_CFFERED event

*

*/

int call_ack(void)
RN crn; /* call reference nunber */
QC CALLAK BLK cal | ack; /* type & nunber of digits to collect */
char dni s_buf [GC ADDRSI ZE]; /* Buffer for holding DNS digits */
int gc_error; /* Qobal Call error code */
int cclibid; /* Call Gontrol Library ID*/
| ong cc_error; /* Call Qontrol Library error code */
char *nsg; /* pointer to error nessage string */
/*

* Do the follow ng:

* 1. Get called party nunber using gc_GetDN §() and eval uate it.
* 2. If three nore digits are required by application to properly
* process or route the call, request that they be sent.

*/

nenset (&al | ack, 0, sizeof(callack));

/*
* Fll in GC_ CALLACK BLK structure according to protocol
* or technol ogy used for application, and call gc_Call Ack()
*
/
cal l ack.type = GCAOK SERUCE DN S
cal | ack. servi ce. dni s.accept = GDG NDQ T,
if (gc_Call Ack(crn, &callack, EV_ASYNO != GC SUCCESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_Resul t Msg(LIBID GG (long) gc_error, &sQ);
printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - %\n",
net aevent . evtdev, gc_error, nsg);
return(gc_error);

}

/*
* Now collect the remaining digits.
*/
if (gc_GetDN S(crn, dnis_buf) !'= GC SUCESS) {
/* process error fromgc_GetDN S using gc_ErrorValue() and gc_Resul t Msg */

/*
* Application can answer, accept, or terninate the call at this
* point, based on the DN'S infornation.

*/

return (0);
}
W Errors

If thisfunction returnsa <0 to indicate failure or if the GCEV_TASKFAIL event
isreceived, usegc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultM sg() function as described in Section 3.11. Error Handling to

96

provides information about the incoming call gc_CallAck()

retrieve the reason for the error. All GlobalCall error codes are defined in the
geerr.hfile, seelisting in Appendix C.

B See also

e gc_ AcceptCall()
e gc AnswerCall()
gc_GetDNI()

e gc WaitCall()

97

gc_CallProgress() connection request is in progress

Name: int gc_CalProgress(crn, indicator)
Inputs: CRN crn » cal reference number
int indicator * progress indicator
Returns: 0Oif successful
<0 if failure
Includes: gclib.h
gcerr.h
gcisdn.h
Category: interface specific
Mode: synchronous
Technology: = ISDN PRI 0 E-1CAS O T-1robbed bit
O Anaog

B Description

The gc_CallProgress() function notifies the network that the connection request
isin progress. The gc_CallProgress() function is an optional ISDN function that
iscalled after a GCEV_OFFERED event occurs (or after the successful
completion of the gc_WaitCall() function) and before agc_AcceptCall()
functioniscalled. Applications may usethe gc_CallProgress() function and the
message on the D channel to indicate either that the downstream connection is not
an ISDN terminal or that inband information is available from the called party.

In the voice terminating mode, this function is not needed. It may beusedin a
drop and insert configuration where inband Specia Information Tone (SIT) or call
progress tone is sent in the network direction.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description
crn: Call Reference Number
indicator: progress indicators listed in Table 26.

98

connection request is in progress gc_CallProgress()

Table 26. Call Progress Indicators

Code Description
CALL_NOT_END-TO- Cadll isnot end-to-end ISDN. Indrop and insert
END_ISDN configurations, the application may optionally

provide this information to the network.

IN_BAND_INFO In band information or appropriate pattern now
available. Indrop and insert configurations, the
application may optionally notify the network that
in-band tones are available.

Termination Event: None.

B Cautions

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

/

Assune the follow ng has been done:

1. device has been opened (e.g. :NdtiBLlT1: P_jsdn,
©N dti B1T2: P_isdn, etc...)

2. gc_VaitCall() has been issued to wait for a call.

3. gc_Get MetaEvent () or gc_Get MetaBvent Ex() (Wndows NT) has been
called to convert the event into netaevent.

4. a QEV_CGFFERED has been det ect ed.

* ok ok k% ok ok F

*/

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

#i ncl ude <gci sdn. h>

/ *
* the variabl e indicator can be assigned one of the two fol | ow ng
* values CALL_NOT _END TO END | SDN or | N _BAND | NFQ
*/

int call_progress(CRN crn, int indicator)

LI NEDEV ddd; /* Line device */

99

gc_CallProgress() connection request is in progress

int gc_err; /* Qobal Call Eror Code */
int cclibid; /* Call Qontrol library ID*/
| ong cclib_err; /* Call Qontrol Error Code */
char *nsg; /* Error Message */

i f (gc_CRN\eLi neDev(crn, &ldd) != GC SUCESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Error: gc_CRN\2Li neDev ErrorValue: % - %\n",
cclib_err, nsg);
return(cclib_err);

if(gc_Call Progress(crn, indicator) != QC.
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &sg);
printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - 9%\n",
ddd, cclib_err, nsg);
return(cclib_err);

return(0);

B Errors

If thisfunction returnsa <0 to indicate failure or if the GCEV_TASKFAIL event
isreceived, usegc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultM sg() function as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also

e gc DropCall()
e gc WaitCall()

100

converts call control library ID to name gc_CCLibIDToName()

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_CCLibIDToName(cclibid, lib_name)

int cclibid « ID code of library

char **lib_name * pointer to location of library name
0 if successful

<0 if failure

gclib.h

gecerr.h

library information

synchronous

m |ISDN PRI m E-1CAS m T-1robbed bit
= Analog

B Description

Thegc_CCLiblDToName() function converts cal control library ID to name of
call control library. Thelibrary name associated with the cclibid library
identification parameter is stored in a string designated by thelib_name

parameter.
Parameter Description
cclibid: identification number of call control library. If alibrary
name is not associated with this parameter, then NULL is
returned.
lib_name: name of the call control library associated with the cclibid

parameter.
Possible call control library names include ICAPI and ISDN.

Termination Event: None.

B Cautions

Do not overwrite the *lib_name pointer as it points to private internal Global Call

data space.

101

gc_CCLibIDToName() converts call control library ID to name

B Example

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

int cclibid_to_name(int cclibid, char **|ib_name)

{
int gc_error; /* Qobal Call error code */
int sub_ccl i bi d; /* Call Gontrol Library ID*/
| ong cc_error; /* Call Control Library error code */
char *nsg; /* pointer to error nessage string */
if (gc_QOCLibl DToNane(cclibid, lib_name) != GC SUCCESS) {
/* process error return as shown */
gc_ErrorVal ue(&gc_error, &sub_cclibid, &c_error);
gc_ResultMsg(LIBID GC (long) gc_error, &rsQ)
printf ("Error converting library id %l to library name\n", cclibid);
printf ("Error = %\n", nsQ);
return(gc_error);
return(0);
}
M Errors

If thisfunction returnsa <0 to indicate failure, usethegc _ErrorValue() and
gc_ResultM sg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
geerr.hfile, seelisting in Appendix C.

B See Also
e gc_CCLibNameTolD()

102

converts call control library name to ID

gc_CCLibNameTolD()

Name:
Inputs:
Returns:
Includes:
Category:

Mode:
Technology:

int gc_CCLibNameTolD(lib_name, cclibidp)

char *lib_name « name of library

int *cclibidp * pointer to location of library
identification code

0 if successful

<0 if failure

gclib.h

gecerr.h

library information

synchronous

m |ISDN PRI m E-1CAS m T-1robbed bit

= Anaog

B Description

The gc_CCLibNameTol D() function converts call control library nameto ID
code. The library identification code associated with the call control library,
lib_name, iswritten into * cclibidp.

Parameter Description

lib_name: name of the call control library whose library ID isto be
retrieved. If alibrary identification code is not associated
with this parameter, then avalue <0 isreturned.
Possible library namesinclude ICAPI and ISDN.

cclibidp: pointer to identification code of call control library.

Termination Event: None.

B Cautions

None

B Example

#i ncl ude <w ndows. h>
#i ncl ude <stdio. h>
#include <srllib. h>

/* For Wndows NT applications only */

103

gc_CCLibNameTolD() converts call control library name to ID

#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>

int cclibname_to_id(char *lib_nane, int *cclibidp)

{
int gc_error; /* Qobal Call error code */
int cclibid; /* Call Gontrol Library ID*/
| ong cc_error; /* Call Qontrol Library error code */
char *nsg; /* pointer to error nessage string */
if (gc_QOCLi bNanmeTol (1§ b_nare, cclibidp) != GC SUCCESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_Resul tMsg(LIB D GG (Iong) gc_error, &nsg);
printf ("Eror converting library nanme %i to library IDin", cclibid);
printf ("Error = 9%\n", nsQ);
return(gc_error);
}
return(0);
}
M Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also
e gc CCLibIDToName()

104

retrieves status of call control library gc_CCLibStatus()

Name: intgc CCLibStatus(cclib_name, cclib_info)

Inputs: char *cclib_name « name of call control library
int *cclib_info « status of call control library
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h

Category: library information
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
= Analog

B Description

Thegc_CCLibStatus() function retrieves status of call control library specified
by the cclib_name parameter. Status of alibrary can be available, configured,
failed or stub. This statusinformation is stored in *cclib_info.

Parameter Description

cclib_name: name of the call control library; valid namesinclude | CAPI
and ISDN. The string must be set to one of these names and
terminated by aNULL.

cclib_info: pointer to location of statusinformation. The status

information is a bitmask with either an available, configured
or stub mask set (these masks are mutually exclusive) and/or

afailed mask:

*« GC_CCLIB_AVL availablelibrary (started
successfully)

» GC_CCLIB_CONFIGURED configured library

* GC_CCLIB_FAILED library failed to start

« GC _CCLIB_STUB stub library (cannot be
started)

Termination Event: None.

105

gc_CCLibStatus() retrieves status of call control library

B Cautions

None

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

int print_cclib_status(char *lib_nane)

{
int lib_status; /* state of call control library */
int cclibid; /* cclibid for gc_ErrorVal ue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Qontrol Library error code */
char *nsg; /* points to the error nessage string */
if (gc_OCLibStatus(lib_nane, & ib_status) == GC SUCCESS) {
printf("cclib % status:\n", lib_nane);
printf(" configured: 9%\n",
(lib_status & GC OCOLIB CONFIGQURED) ? "yes" : "no");
printf(" available: 9%\n",
(lib_status & GC QCLIB AWL) ? "yes" : "nao");
printf(" failed: 9%\n",
(lib_status & GC GOLIB FAILED) ? "yes" : "no");
printf(" stub: 9%\n",
(lib_status & GC GOLIB STUB) ? "yes" : "no");
} else {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_Resul t Msg(LIBID GG (long) gc_error, &sQ);
printf ("BError getting gc_QCLi bStatus: ErrorValue: %l - %\n",
gc_error, nsg);
return(gc_error);
}
return(0);
}
W Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also
e gc CCLibStatusAll()
e gc Start()

106

retrieves status of all call control libraries gc_CCLibStatusAll()

Name: intgc CCLibStatusAll(cclib_status)
Inputs: GC_CCLIB_STATUS * pointer to location of library

*cclib_status status information
Returns: 0if successful

<0 if failure
Includes: gclib.h

gcerr.h

Category: library information
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

Thegc_CCLibStatusAll() function retrieves status of all call control libraries.
Information returned includes the number and names of the available, configured,
failed and stub call control libraries. The GlobalCall library isnot acall control
library and is therefore not counted.

Parameter Description

cclib_status: pointer to the GC_CCLIB_STATUS structure, see below
for details. Possible library names include ICAPI and ISDN.

The GC_CCLIB_STATUS structure is defined as follows:

typedef struct {

int numavl libraries;

int num confi guredlibraries;
int numfailedibraries;

int num st ubl i brari es;

char **avl libraries;

char **configuredlibraries;
char **failedlibraries;

char **stublibraries;

} GC OOLIB STATUS, *GC QOLI B STATUSP,

Table 27. GC_CCLIB_STATUS Field Descriptions

Field Description

num_avllibraries returns the number of available call control libraries

107

gc_CCLibStatusAll() retrieves status of all call control libraries

Field Description

num_configuredlibraries | returns the number of configured call control libraries

num_failedlibraries returns the number of failed (did not start) call control
libraries

num_stublibraries returns the number of stub libraries

avllibraries returns the name(s) of the available librariesin a

string terminated with aNULL; for example if both
the ICAPI and ISDN call control libraries are
available, then:

avllibraries[0] = “ICAPI”
avllibraries[1] = “ISDN”

configuredlibraries returns the name(s) of the configured libraries in a
string terminated with a NULL

failedlibraries returns the name(s) of the failed libraries in a string
terminated with a NULL

stublibraries returns the name(s) of the stub libraries in a string
terminated with a NULL

Termination Event: None

B Cautions

If any of thenum_* fields is 0, then the correspondihigbraries field is NULL;
e.g., if thenum_avllibrariesfield is O, then thavllibrariesis NULL.

Do not overwrite the fields that are pointers to strings as these point to private
internal GlobalCall data space.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

108

retrieves status of all call control libraries gc_CCLibStatusAll()

int print_all_avl_libraries(void)

.
int n;
int ret; /* function return code */
QC QCLI B_STATUS cclib_status; /* cclib information */
int cclibid; /* cclibid for gc_ErrorValue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Control Library error code */
char *nsQ; /* points to the error nessage string */
if (gc_OCLibStatusAll (&clib_status) == GC SUCCESS) {
for (n =0; n<cclib_status.numavllibraries; n++) {
printf("Next available library is: %\n",
cclib_status.avllibraries[n]);
}
} else {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GG (long) gc_error, &nsg);
printf ("Error getting gc_QCLibStatusAl: FErorValue: % - 9%\n",
gc_error, nsg);
return(gc_error);
}
return(0);
}
W Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also
e gc CCLibStatus()
e gc Start()

109

gc_Close() closes a previously opened device

Name: int gc_Close(linedev)
Inputs: LINEDEV linedev + GlobaCall line device handle
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h
Category: system control and tools
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_Close() function closes a previously opened device. The application can
no longer access the device viathe linedev parameter and inbound call
notification is disabled. Other deviceswill be unaffected.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description

linedev: GlobalCall line device to close

Termination Event: None.

B Cautions

The gc_Closeg() function only affects the link between the calling process and the
device. Other processes and devices are unaffected.

If avoice resource is attached to the linedev device, the voice resource will be
closed by the GlobalCall API. To keep the voice resource open for other
operations, use the gc_Detach() function to detach the voice resource from the
GlobalCall device before issuing the gc_Close() function.

110

closes a previously opened device gc_Close()

The gc_Close() function should be issued while the line device isin the Null
state.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

#define MAXCHAN 30 /* max. nunber of channels in system*/
/*
* Data structure which stores all information for each |ine
*/
struct |inebag {
LI NEDEV | dev; /* Qobal Call |ine device handle */
RN crn; /* Qobal Call APl call handle */
int state; /* state of first layer state nachi ne */

} port[MAXCHANH] ;
struct |inebag *pline; /* pointer to access |ine device */

int close_line_device(int port_num

LI NEDEV | dev; /* Qobal Call |ine device handl e

int gc_error; /* Qobal Call error code */

int cclibid; /* Call Gontrol Library ID*/

| ong cc_error; /* Call Control Library error code */
char *nsQ; /* points to the error nessage string */

/* Find info for this tinme slot, specified by ’port_num */
/* (Assunes port_numis valid) */
pline = port + port_num
Idev = pline -> |dev;
/*
* close the line device to renove the channel fromservice
*
/
if (gc_Qose(ldev) !'= QC SUXCESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_Resul t Msg(LIBID GG (long) gc_error, &sQ);
printf ("Error closing |inedev Ox%x, \"%\"\n", |dev, nsg);
return(gc_error);

}
return(0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

111

gc_Close() closes a previously opened device

B See Also

e gc Attach()
e gc _Detach()
e gc Open() or gc_ OpenEx()

112

matches a CRN to its line device ID gc_CRNZ2LineDev()

Name: int gc_CRNZ2LineDev (crn, linedevp)

Inputs: CRN crn « cal reference number
LINEDEV *linedevp * pointer to alocation to store
linedev
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_CRN2LineDev() function isa utility function that matches a CRN to its
line device ID. This function returns the line device identification associated with
the specified CRN.

Parameter Description
crn: Call Reference Number
linedevp: pointer to the location where the output LINEDEV

identification code will be stored. The line deviceis created
when the function gc_Open() or gc_OpenEXx() iscalled.

Termination Event: None.

B Cautions

A CRN isvalid only during the call until thegc_ReleaseCall() function has been
issued.

113

gc_CRNZLineDev() matches a CRN to its line device ID

B Example

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

int crn_to_linedev(CORN crn, LINEDEV *| devp)

{
int cclibid; /* cclibid for gc_ErrorVal ue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Control Library error code */
char *nsg; /* points to the error nessage string */
if (gc_CORN\eLi neDev(crn, ldevp) != GC SUCCESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID QS (long) gc_error, &nsg);
printf ("Error on converting RN to linedev \"%\"\n", nsg);
return(gc_error);
}
return(0);
}
M Errors

If thisfunction returnsa <0 to indicate failure, usethegc _ErrorValue() and
gc_ResultM sg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
geerr.hfile, seelisting in Appendix C.

B See Also

None

114

logically detach a voice resource gc_Detach()

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_Detach(linedev, voiceh, mode)

LINEDEV linedev + GlobaCall line device handle
int voiceh * voice device handle
unsigned long mode e sync

0 if successful

<0 if failure

gclib.h

gcerr.h

interface specific

synchronous

0 ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_Detach() function isused to logically detach a voice resource from the
line device. This breaks any association between the line device and the resource,
which would have been attached previoudly to the line device using the
gc_Attach() function.

When agc_Close() function closes aline device, any attached voice resource is
closed automatically. To keep the voice device open, first, issue agc_Detach()
function and then issue the gc_Close() function. Thiswill disassociate the voice
device from the line device.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description

linedev: Global Call line device handle

voiceh: SRL device handle of the voice resource to be detached from
the call contral line device

mode: set to EV_SYNC for synchronous execution

Termination Event: None.

115

gc_Detach() logically detach a voice resource

B Cautions

The gc_Detach() function does not perform any routing or unrouting function.
Routing must be performed using the voice and network routing functions.

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function isused to retrieve the error code.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/
Assune the follow ng has been done:

1. The line device (ldev) has been opened, specifying a
network tine slot and a protocol. For exanpl e, ’'devicenane
could be ":N dtiB1T1: P br_r2 i:V_dxxxBIlCl" [E-1 CAY

2. The voi ce and network resources have been routed toget her

3. Voice resource is no longer needed for this |ine device

* ok ok ok X % ok

*/

/* detaches the | dev's voice handl e fromldev */
int detach(LI NEDEV | dev)
{

int cclibid; /* cclibid for gc_ErrorValue() */

int gc_error; /* Qobal Call error code */

| ong cc_error; /* Call Qontrol Library error code */
char *nsg; /* points to the error nessage string */
int voi ceh; /* Voice handl e attached to | dev */

if (gc_GetVoiceHldev, &oiceh) == GC SUCCESS) {
if (gc_Detach(ldev, voiceh, EV_.SYNO != GC SUCCESS) {
/* process error return as shown */
gc_ErrorVal ue(&gc_error, &cclibid, &c_error);
gc_Resul tMsg(LIB D GC (long) gc_error, &rsg);
printf ("Eror on Device handle: Ox%x, ErorValue: %l - %\n",
I dev, gc_error, nsg);
return(gc_error);

}
/*
* Application shoul d now unroute the voice and network resources from
* each other (using functions |like nr_scunroute() or sb_unroute() to
* conpl ete the disassociation of themfromeach other.
*/
} else {
/* Process gc_Get VoiceH) error */

return (0);

116

logically detach a voice resource gc_Detach()

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also
e gc Attach()
« gc Clos«()

e gc Open()or gc_OpenEx()

117

gc_DropcCall()

disconnects a call

Name:

Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_DropCall(crn, cause, mode)

CRN crn « call reference number
int cause * reason to drop call
unsigned long mode * async or sync

0 if successful

<0 if falure

gclib.h

gcerr.h

basic call control

asynchronous or synchronous

m ISDN PRI m E-1CAS m T-1robbed bit
= Anaog

B Description

Thegc_DropCall() function disconnects a call specified by the CRN and
enables inbound calls to be detected internally to Global Call on the line device.
The application will not be notified of the call until after the gc_ReleaseCall()

function isissued .

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description

crn: Call Reference Number

cause: indicates reason for disconnecting or rejecting acall. See
Table 28for alist of possible causes and refer to the
appropriate GlobalCall Technology User’s Guider valid
and/or additional causes for your specific technology.

mode: set to EV_ASYNC for asynchronous execution or to

118

EV_SYNC for synchronous execution

disconnects a call gc_DropcCall()

Table 28. gc_DropCall() Causes

Causet Description
GC _CALL_REJECTED Call wasrejected

GC_CHANNEL_UNACCEPTABLE | Channel isnot acceptable

GC _DEST_OUT_OF ORDER Destination is out of order

GC_NETWORK_CONGESTION Call dropped dueto traffic volume on
network

GC_NORMAL_CLEARING Call dropped under normal conditions

GC_REQ_CHANNEL_NOT_AVAIL | Requested channel isnot available

GC_SEND_SIT Specia Information Tone
GC_UNASSIGNED_NUMBER Requested number is unknown
GC _USER BUSY End user is busy

t

Refer to the appropriate Global Call Technology User’s Guidefor valid and/or
additional causes for your specific technology.

Termination Event: In the asynchronous mode, GCEV_DROPCALL eventis
sent to the application; otherwise, a GCEV_TASKFAIL event is sent.

A GCEV_DISCONNECTED event may be reported to the application as an
unsolicited event after the gc_DropCall() function issues.

B Cautions

The gc_DropCall() function does not release a CRN. Therefore, the
gc_ReleaseCall() function must always be used after agc_DropCall() function.
Failure to do so will cause a blocking condition and may cause memory problems
due to memory being allocated and not being released.

Beforeissuing agc_DropCall() function, you must first terminate any voice
related function currently in progress. For example, if aplay or arecordisin

119

gc_DropcCall() disconnects a call

progress, then before you can drop the call, issue a stop channel function on that
voice channel and then call thegc_DropCall() function to drop the call.

From the Accepted state, not all E-1 CAS protocols support aforced release of the
ling; that is, issuing agc_DropCall() function after agc_AcceptCall() function.
If aforced release is attempted, the function will fail and an error isreturned. To
recover, the application should issue a gc_Answer Call() function followed by
gc_DropCall() and gc_ReleaseCall() functions. See the GlobalCall Country
Dependent Parameters (CDP) Reference for protocol specific limitations.
However, anytime a GCEV_DISCONNECTED event is received in the Accepted
state, the gc_DropCall() function can be issued.

Different technologies and protocol s support some or al of the cause values
defined above; refer to the appropriate GlobalCall Technology User’s Guider
valid causes for your specific technology.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/*
* Assune the fol |l owing has been done:
* 1. Qpened line devices for each tine slot on DIl Bl.

* 2. Wit for a call using gc_VéitCall ()

* 3. The application has chosen to termnate the call

* xR

* the unsolicited event GOEV_D SOONNECTED has arri ved

* Note: Acall nmay be dropped fromany state other than I DLE or NULL

*/

int drop_call (CRN crn)

{
int cclibid; /* cclibid for gc_ErorValue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Qontrol Library error code */
char *nsg; /* points to the error nessage string */

if (gc_DropCall(crn, GCNORVAL_ OLEARING EV_ASYNQ) != GC SUOESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GG (long) gc_error, &nsg);
printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - %\n",
net aevent . evtdev, gc_error, nsg);
return(gc_error);

}

/*
* gc_DropCall () is termnated by the GOEV_DROPCALL event.
* Application nust then release the call using gc_Rel easeCall ().
*/

return (0);

120

disconnects a call gc_DropcCall()

B Errors

If thisfunction returnsa <0 to indicate failure or if the GCEV_TASKFAIL event
isreceived, usegc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultM sg() function as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also

e gc MakeCall()
e gc ReeaseCall()
e gc WaitCall()

121

gc_ErrorValue() gets an error value/failure reason code

Name: intgc_ErrorVaue(gc _errorp, cclibidp, cclib_errorp)

Inputs: int*gc_errorp * |ocation to store GlobalCall error
int *cclibidp * location to store call contral library
ID

long *cclib_errorp < location to store call control library
error description

Returns: 0Oif error value successfully retrieved
<0if failsto retrieve error value

Includes: gclib.h
gcerr.h

Category: system control and tools

Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit

m Anaog

B Description

The gc_ErrorValue() function gets an error value/failure reason code associated
with the last GlobalCall function call. To retrieve an error, this function must be
called immediately after a GlobalCall function failed. This function returns the
Globa Call error code, *gc_errorp, aswell asthe lower level error code
associated directly with the call control library, *cclib_errorp. The Global Call
error code is ageneric error that has a consistent meaning across al call control
libraries.

A call control library error may be more specific to the supported technology.
These error values provide optimal debugging and troubleshooting for the
application developer. For example, atime-out error may occur for multiple
reasons when establishing acall. The specific reasons may vary for different
network interfaces (ISDN time-out errors differ from thosein an R2 MFC
protocol). Each of these call control library time-out errors are mapped to
EGC_TIMEOUT. However, the specific time-out error detected by the call
control library will be available through cclib_errorp.

Parameter Description

gc_errorp: pointer to the location where the Global Call error code will
be stored

cclibidp: pointer to the location to store the identification number of

122

gets an error value/failure reason code gc_ErrorValue()

Par ameter Description
the call control library where the error occurred
cclib_errorp: pointer to the location to store the call control library error

Termination Event: None.

description that is uniquely associated to its own library

B Cautions

To aid in debugging, both the gc_errorp and the cclib_errorp values should be
retrieved.

B Example

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<w ndows. h>
<stdio. h>
<srllib.h>
<gclib. h>
<gcerr. h>

voi d print_error_val ues(voi d)

int
int
| ong
char
char

cclibid;
gc_error;
cc_error;
*1i b_nane;

/*

For Wndows NT applications only */

/* cclibid for gc_ErrorVal ue() */

/* Qobal Call error code */

/* Call Control Library error code */
/* points to the error nessage string */
/* library nane for cclibid */

/* This could be called when any function fails;
* to print the error val ues */

if (gc_ErorValue(&c_error, &cclibid, &c_error) == GC SUXESS) {
gc_ResultMsg(LIBID QS (long) gc_error, &nsg);
printf("dobal Call error Ox%x - 9%\n", gc_error, nsQ);
gc_Resul tMsg(cclibid, cc_error, &nsg);
gc_QCLi bl DToNane(ccl i bid, & ib_nane);

printf("%]Ilibrary had error Ox%x - %\n", |ib_name, cc_error, nsg);
} else {
printf("Could not get error value\n");
}
M Errors

If thisfunction returnsa <0 to indicate failure, then at least one of itsinput
parametersisNULL.

123

gc_ErrorValue() gets an error value/failure reason code

B See Also
 gc ResultMsg()

124

returns ANI information gc_GetANI()

Name: int gc_GetANI(crn, ani_buf)

Inputs: CRN crn « call reference number
char *ani_buf « buffer for storing ANI digits
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h

Category: optional feature
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
= Analog

B Description

The gc_GetANI () function returns ANI information received during call
establishment/setup. If the ANI informationis not available, an error will be sent
and the gc_GetANI () function fails.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description
crn: Call Reference Number
ani_buf;: address of the buffer where ANI isto be loaded. The returned

digits will be terminated with \0'.

Termination Event: None

B Cautions
Theani_buf buffer MUST BE large enough to store the largest expected ANI

string length (including the zero terminator), which is defined by
GC_ADDRSIZE.

125

gc_GetANI() returns ANI information

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/*

* Assune the fol |l owing has been done:

* 1. Qpened line devices for each tine slot on DIl Bl.

* 2. Wit for a call using gc_VéitCall ()

* 3. An event has arrived and has been converted to a netaevent

* usi ng gc_Get Met aEvent () or gc_Get Met aBvent Ex() (Wndows NIT)

* 4. The event is deternined to be a GCEV_CFFERED event

*/

int get_ani(void)
RN crn; /* call reference nunber */
char ani _buf [GQC ADDRSI ZE]; /* Buffer for AN digits */
int cclibid; /* cclibid for gc_ErrorValue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Qontrol Library error code */
char *nsg; /* points to the error nessage string */
/*
* Get the calling party nunber
*/

crn = netaevent.crn;
if (gc_GetAN (crn, ani_buf) !'= GC SUCCESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GG (long) gc_error, &nsg);
printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - %\n",
net aevent . evtdev, gc_error, nsgQ);
return(gc_error);

/* Application can answer, accept, or termnate the call at this
* point, based on the AN information. */
return (0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

126

returns ANI information gc_GetANI()

B See Also

« gc RegANI()
e gc WaitCall()

127

gc_GetBilling()

gets the charge information

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_GetBilling(crn, billing_buf)

CRN crn « call reference number

char *hilling_buf « buffer for billing information
0if successful

<0 if failure

gclib.h

gcerr.h

optional feature

synchronous

m [SDN PRI 0 E-1CAS 0 T-1robbed bit
O Anaog

B Description

The gc_GetBilling() function gets the charge information associated with the
specified call. The charge information isin ASCII string format. The information
isretrieved from the Global Call software.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description
crn: Call Reference Number
billing_buf: address of the buffer where the requested information is

stored. Refer to the appropriate GlobalCall Technology
User's Guidefor the format and usage of thisfield.

Termination Event: None.

B Cautions

Ensure that the billing_buf buffer is large enough to store the greatest expected
amount of billing information, which is defined by GC_BILLSIZE.

128

gets the charge information gc_GetBilling()

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

/*

* Assune the fol |l owing has been done:

* 1. device was opened (e.g. :NdtiBLT1: P_isdn, :NdtiBlT2:P_isdn, etc...)
* 2. gc_WiitCGall() has been issued to wait for a call.

* 3. gc_Get MetaBEvent () or gc_Get MetaBvent Ex() (Wndows NT) has been

* called to convert the event into netaevent.

* 4. a QEV_CGFFERED has been det ect ed.

* 5. a call has been connected.

* 6. the call has been disconnected after conversation.

*/

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */

#i ncl ude <stdio. h>
#include <srllib.h>
#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>
#i ncl ude <gci sdn. h>

/* This is only available for AT&T 4ESS swtch. */
int get_billing_info(CRN crn, char *billing_buffer)
LI NEDEV ddd; /* Line device */
int gc_err; /* Qobal Call Error Code */
int cclibid; /* Call Control library ID*/
| ong cclib_err; /* Call Control Error Code */
char *nsQ; /* Error Message */
i f (gc_CRN\eLi neDev(crn, &ldd) != GC SUCESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Error: gc_CRN\2LineDev ErrorValue: % - %\n",
cclib_err, nsg);
return(cclib_err);
}
if(gc_GetBilling(crn, billing_buffer) !'= GC SUXCESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Eror on Device handle: 0x%Xx, ErrorValue: %l - %\n",
ddd, gc_err, nsg);
return(cclib_err);
}
return(0);
}

129

gc_GetBilling() gets the charge information

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also

¢ None

130

gets information for the call gc_GetcCallinfo()

Name: intgc GetCallnfo(crn, info_id, valuep)
Inputs: CRN crn « cal reference number
int info_id e cal infolD
char *valuep * pointer to info buffer
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h
gcisdn.h (for applications that use ISDN symbols)
Category: interface specific
Mode: synchronous
Technology: m ISDN PRI m E-1CAS O T-1robbed bit
m Anaog

B Description

The gc_GetCalllinfo() function getsinformation for the call. Y ou can use this
function at any time. The application can retrieve only one type of information at
atime.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Par ameter Description

crn: Call Reference Number

info_id: identifies parameter requested, see Table 29for definitions
valuep: buffer address where the requested information is stored

131

gc_GetCallinfo() gets information for the call

Table 29. GetCallinfo() info_id Parameter ID Definitions

info_id Parameter Definition Technology | *valuepForma
t
CALLED_SUBS Called party ISDN string
subaddress
CALLNAME Calling party’s namg Analog string
CALLTIME Time and date call | Analog string
was made
CATEGORY_DIGIT Category digit E-1 character
CAS
CONNECT_TYPE Defines the type of| Analog character

connection returned
by call progress
analysis

U_IES Unformatted user- | ISDN string
to-user Information
Elements

uul User-to-User ISDN string
Information

Termination Event: None

B Cautions

* Anincoming Information Element (IE) is not accepted until the existing IE is
read by the application. A GCEV_NOUSRINFOBUF event is sent to the
application.

e MultipleEsin the same message: Only happens to Network Specific
Facility IE. When it happens, the library stores all IEs. If the combination of
IEs is longer than the storage capacity, the Library discards the overflow IEs
and issues a GCEV_NOFACILITYBUF event to the application.

132

gets information for the call gc_GetcCallinfo()

« Ensurethat the application verifies that the buffer pointed to by the valuep
parameter is large enough to hold the information requested by theinfo_id
parameter.

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

/ *

* Assune the foll ow ng has been done:

* 1. device has been opened (e.g. :NdtiBLlT1: P_jsdn,

* ©N dti B1T2: P_isdn, etc...)

* 2. gc_WitCall() has been issued to wait for a call.

* 3. gc_GetMetaEvent() or gc_Get MetaBvent Ex() (Wndows NT) has been
* called to convert the event into netaevent.

* 4, a QEV_CFFERED has been det ect ed.

*/

#incl ude <w ndows. h> /* For Wndows NT applications only */

#i ncl ude <stdio. h>
#include <srllib. h>
#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>
#i ncl ude <gci sdn. h>

/*

* the variable info_id paraneter(s) defines the infornation
* requested fromthe network.

* The variabl e val uep stores the returned infornation.

*/

int get_call_info(CRNcrn, int info_id, char *val uep)

LI NEDEV ddd; /* Line device */

int gc_err; /* Qobal Call Error Value */
int cclibid; /* Call Control library ID*/
| ong cclib_err; /* Call Gontrol Error Value */
char *nsQ; /* Error Message */

i f(gc_CRN\2Li neDev(crn, &ddd) != GC.
gc_ErrorVal ue(&gc_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Error: gc_CRN\2Li neDev ErrorValue: %l - 9%\n",
cclib_err, nsg);
return(cclib_err);

}

if(gc_GetCalllnfo(crn, info_id, valuep) != GC SUCCESS) {
gc_ErrorVal ue(&gc_err, &cclibid, &clib_err);
gc_Resul tMsg(cclibid, cclib_err, &sg);
printf ("Error on Device handle: 0x%Xx, ErrorValue: %l - 9%\n",
ddd, gc_err, nsg);
return(cclib_err);

133

gc_GetCallinfo() gets information for the call

return(0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also

* None

134

acquires the state of the call gc_GetCallState()

Name:
Inputs:
Returns:
Includes:
Category:

Mode:
Technology:

int gc_GetCallState(crn, state_buf)

CRN crn » call reference number

int *state buf * pointer to variable for returning call
state

0 if successful

<0 if failure

gclib.h

gecerr.h

system control and tools

synchronous

m |ISDN PRI m E-1CAS m T-1robbed bit

m Anaog

B Description

The gc_GetCallState() function acquires the state of the call associated with the
CRN. The acquired state will be associated with the last message received by the
application. This function is especially useful when an error occurs and the
application requires an update as to whether the call state has changed.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

135

gc_GetCallState() acquires the state of the call

Par ameter Description

crn: Call Reference Number

state buf: pointer to the location where the call state value will be returned.
Possible state values are:
GCST_NULL call released
GCST_OFFERED inbound call received
GCST_ACCEPTED call accepted
GCST_CONNECTED call connected
GCST_DIALING outbound call request
GCST_ALERTING call alerted sent or received
GCST_DISCONNECTED call disconnected from

network

GCST_IDLE cal isnot active

State transition diagrams and call state definitions are presented in
paragraph 3.3. GlobalCall Call Sates.

Termination Event: None.

B Cautions

Due to the process latency time, the state value acquired through the
gc_GetCallState() function may lag behind the current call statein the protocol
state machine. If the two state values differ, the acquired state value is always
behind the actual state. Thisis especially evident in the process of establishing an
outbound call. The state acquired by the application will be associated with the
latest event received by the application.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

#def i ne MAXCHAN 30 /* max. nunber of channels in system*/
/*

* Data structure which stores all infornmation for each |ine

*/

struct |inebag {

LI NEDEV | dev; /* Qobal Call |ine device handle */
RN crn; /* Qobal Call APl call handle */
int state; /* state of first layer state nachi ne */

} port [MAXCHANH] ;

136

acquires the state of the call

gc_GetCallState()

struct |inebag *pline;

int get_call_state(int port_nun

{

LI NEDEV | dev;

RN crn;

int call _state;
int cclibid;
int gc_error;

| ong cc_error;
char *nsg;

/* pointer to access |line device */

/*
| *
| *
| *
/*
/*
/*

line device ID */

call reference nunber */

current state of call */

cclibid for gc_ErrorVal ue() */
Qobal Call error code */

Call Control Library error code */
points to the error nessage string */

/* Find info for this tine slot, specified by ’port_num */

/* (Assunes port_numis valid) */

pline = port + port_num
crn = pline -> crn;

/*
* Retrieve the call state and save it.
*/
if (crn) {
if (gc_CGetCallState(crn, &call_state) != GC SUCCESS) {
/* process error return as shown */
gc_ErrorVal ue(&gc_error, &cclibid, &c_error);
gc_Resul tMsg(LIBI D GC (long) gc_error, &rsg);
if (gc_CORN\eLineDev(crn, & dev) != GC SUCCESS) {
/* get and process error */
}
printf ("Eror on Device handle: Ox%x, ErorValue: %l - %\n",
I dev, gc_error, nsg);
return(gc_error);
}
}

pline->state = call _state;
return (0);

}

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also

* None

137

gc_GetCRN() gets the CRN

Name: int gc_GetCRN(crnp, metaeventp)
Inputs: CRN *crnp * pointer to returned CRN
METAEVENT * pointer to a metaevent block
*metaeventp
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h
Category: system control and tools
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

Thegc_GetCRN() function getsthe CRN for the event to which the pointer
metaeventp ispointing. This metaeventp pointer isfilled in by the
gc_GetMetaEvent() function or the gc_GetM etaEventEx() function (Windows
NT extended asynchronous mode only).

The application can access the CRN directly from the metaevent using the crn
field of metaeventp rather than using thisgc_ GetCRN() function. The
gc_GetCRN() function is supported for backward compatibility but is not
otherwise needed since the CRN is available when the metaevent is returned from
the gc_GetMetaEvent() function or the gc_GetM etaEventEx() function
(Windows NT extended asynchronous mode only).

If the event is call related, the metaeventp crn field contains the CRN. After a
call tothe gc_GetCRN() function, the*crnp also containsthe CRN. If the
event is not cal related but rather associated with the line device, the metaeventp
crnfieldisset to 0. Inthiscase, after acall to the gc_ GetCRN() function, the
*crnp isalso 0. Theline device may also be obtained directly from the
metaevent via the metaeventp linedev field.

Parameter Description

crnp: pointer to the memory address where the call reference
number is stored.

metaeventp: pointer to the METAEVENT structure filled in by

138

gets the CRN gc_GetCRN()

Par ameter Description

gc_GetMetaEvent() or the gc_GetM etaEventEx()
function (Windows NT extended asynchronous mode only).

Termination Event: None.

B Cautions

None

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/*

* Assune the follow ng has al ready been done:

* 1. Qpened line devices for each tinme slot on DIl Bl.

* 2. Wit for a call using gc_WitCall()

* 3. An event has arrived and has been converted to a netaevent

* using gc_Get MetaEvent () or gc_Get Met aBvent Ex() (Wndows NT)

*/

CRN get _crn(METAEVENT * et aevent p)

{
CN crn; /* call reference nunber */
int cclibid; /* cclibid for gc_ErrorValue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Control Library error code */
char *nsg; /* points to the error nessage string */

if (gc_Get RN &crn, netaeventp) != GC SUCCESS) {
/* process error return as shown */
gc_ErrorVal ue(&c_error, &cclibid, &c_error);
gc_| ResultM;g(LIBID G (long) gc_error, &nsg);
printf ("Error on Device handle: O0x%Xx, ErrorValue: %l - 9%\n",
net aevent . evtdev, gc_error, nsQ);
return(0);

el se {
/*
* Hse return the GRN and next issue the dobal Call function call
* using the GRN
*/
return(crn);

139

gc_GetCRN() gets the CRN

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also

e gc GetLineDev()

* gc _GetMetaEvent()

e gc GetMetaEventEx() (Windows NT extended asynchronous mode only)
* gc_MakeCall()

e gc WaitCall()

140

gets the DNIS information gc_GetDNIS()

Name: int gc_GetDNIS(crn, dnis_buf)

Inputs: CRN crn » cal reference number
char *dnis_buf * buffer to store DNISinfo
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h

Category: optional feature
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
O Anaog

B Description

The gc_GetDNIS() function getsthe DNIS information (DDI digits) associated
with a specific CRN. The DDI digitsarein ASCII string format and ends with '\0’.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description
crn: Call Reference Number
dnis_buf; address of the buffer where the DNIS is stored.

Termination Event: None.

B Cautions

The dnis_buf buffer MUST BE large enough to store the largest expected DNIS
string length, which is defined by GC_ADDRSIZE.

If the application needs more DDI digits, the application can use the

gc_CallAck() function to request more digits, if the protocol supportsthis
feature. The gc_GetDNIS() function may be called again to retrieve these digits.

141

gc_GetDNIS() gets the DNIS information

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <string. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/*

* Assune the fol |l owing has been done:

* 1. "nmaxddi’ has been setup dependi ng on needs

* of application/protocol .

* 2. Line devices have been opened for each tine slot on dtiBl.

* 3. Wit for a call using gc_VitCall()

* 4. An event has arrived and has been converted to a netaevent

* usi ng gc_Get Met aEvent () or gc_Get Met aBvent Ex() (Wndows NIT)

* 5. The event is determned to be a GXEV_CFFERED event

*/

int get_dnis(void)

{
RN crn; /* call reference nunber */
int naxddi = 10; /* maxi mumal | onabl e DD digits */
char dni s_buf [GC ADDRSI ZE]; /* DN S digit Buffer */
int cclibid; /* cclibid for gc_ErrorValue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Control Library error code */
char *nsg; /* points to the error nessage string */

/* 1st get the crn */

if (gc_GetORN&crn, &metaevent) != GC SUCCESS) {
/* handl e the gc_Get CRN error */

}

/*

* Get called party nunber and check that there were not too
* many digits collected.

*/

if (gc_GetDN S(crn, dnis_buf) !'= GC SUCCESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_Resul t Msg(LIBID GG (long) gc_error, &sQ);
printf ("Eror on Device handle: 0x%Xx, ErrorValue: %l - %\n",
net aevent . evtdev, gc_error, nsg);
return(gc_error);

—

(strlen(dnis_buf) <= maxddi) {
/*
* Process called party nunber as needed by the application.
*/
} else {
*
* Drop the call if nunber of DD digits exceeds nmaxi mumlimt
*/

if (gc_DropCall(crn, GC NORVAL OLEARNG EV_ASYNO) != GC SUOCESS) {
/* process error return fromgc_DropCall () */

142

gets the DNIS information gc_GetDNIS()

}
}
/*
* Application can answer, accept, or terninate the call at this
* point, based on the DN'S information.
*/
return (0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also

e gc _CallAck()
* gc_GetANI()
e gc WaitCall()

143

gc_GetLineDev()

gets a line device

Name:
Inputs:
Returns:
Includes:
Category:

Mode:
Technology:

int gc_GetLineDev(linedevp, metaeventp)

LINEDEV *linedevp « pointer to returned line device

METAEVENT * pointer to metaevent block
*metaeventp

0 if successful

<0 if failure

gclib.h

geerr.h

system control and tools

synchronous

= |SDN PRI m E-1CAS m T-1robbed bit

= Anaog

B Description

The gc_GetL ineDev() function gets a line device associated with the event
received from the event queue. If thisfunction is called for an event that isnot a
GlobalCall event, then the *linedevp parameter isset to 0. The line device may
aso be retrieved using the linedev field in the METAEVENT structure instead of

using this function.

The gc_GetLineDev() function is supported for backward compatibility but is
not otherwise needed since the line device ID is available when the metaevent is
returned from the gc_GetM etaEvent() function or the gc_GetM etaEventEXx()
function (Windows NT extended asynchronous mode only).

Parameter Description
linedevp: pointer to the location where the output LINEDEYV is stored
metaeventp: pointer to the METAEVENT structure filled in by

gc_GetMetaEvent() or the gc_GetM etaEventEx()
function (Windows NT extended asynchronous mode only)

Termination Event: None.

144

gets aline device gc_GetLineDev()

B Cautions

None

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/
Assune the follow ng has been done:
1. Qpened line devices for each tine slot on DIl Bl.
2. Wit for a call using gc_VéitCall ()
3. An event has arrived and has been converted to a netaevent
usi ng gc_Get Met aEvent () or gc_Get Met aBvent Ex() (Wndows NIT)
4. The event is deternined to be a GCEV_CFFERED event

* ok ok ok % % ok

*

/

int get_|inedev(LI NEDEV *| devp)
{

int cclibid; /* cclibid for gc_ErorValue() */

int gc_error; /* Qobal Call error code */

| ong cc_error; /* Call Qontrol Library error code */
char *nsg; /* points to the error nessage string */

/*
* Get Line Device corresponding to this event
*/
if (gc_GetLineDev(ldevp, &etaevent) != GC SUCCESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GG (long) gc_error, &nsg);
printf ("Eror on Device handle: 0x%Xx, ErrorValue: %l - %\n",
net aevent . evtdev, gc_error, nsg);
return(gc_error);

/*
* The line device ID nay then be used for functions |ike
gc_SetParn{), gc_SetWsrAttr(), and gc_Get Voi ceH().

*

*/

return (0);
}
M Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

145

gc_GetLineDev() gets aline device

B See Also

e gc GetCRN()
* gc GetMetaEvent()
e gc GetMetaEventEx() (Windows NT extended asynchronous mode only)

146

retrieves status of the line device gc_GetLinedevState()

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_GetLinedevState(linedev, type, statebuf)

LINEDEV linedev * line device

int type « specifies type of line device

int *statebuf * pointer to location of line device
state status

0 if successful

<0 if failure

gclib.h

gecerr.h

gcisdn.h

optional feature

synchronous

m |SDN PRI O E-1CAS O T-1robbed bit

0 Anaog

B Description

The gc_GetL inedevState() function retrieves status of the line device specified
by the linedev parameter.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description
linedev: GlobalCall line device
type: specifies B channel or D channel device type associated with

linedev, valid values are:
* GCGLS BCHANNEL get state of B channel
* GCGLS _DCHANNEL get state of D channel

147

gc_GetLinedevState() retrieves status of the line device

Par ameter Description
statebuf: location to which state information is written, valid state
vaues are:
« for B channel:
e GCLS INSERVICE B channel is
in service

e GCLS MAINTENANCE B channel is
in maintenance
e GCLS OUT_OF SERVICE B channd is

out of service
e for D channel:
e DATA_LINK_UP layer 2 operable
e DATA_LINK_DOWN layer 2 inoperable

Termination Event: None.

B Cautions

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

#i ncl ude <gci sdn. h>

int get_line_dev_state(void)

LINEDEV bdd; /* Board | evel device */

LI NEDEV ddd; /* Line device */

char bdevnane[40] ; /* Board devi ce name */

char | devnane[40] ; /* Line device nane */

int type; /* Type of line device */

int st at ebuf ; /* Buffer to store line device state */
int gc_err; /* Qobal Call Error Code */

148

retrieves status of the line device gc_GetLinedevState()

int cclibid; /* Call Control library ID*/
| ong cclib_err; /* Call Control Error Code */
char *nsg; /* Error Message */

sprint f (bdevnane, "dtiBl");
sprintf(ldevnane, "dtiBlT1");

/*
* (Qpen two devices, dtiBl and dtiB1T1.
*/

i f(gc_Qpen(&bdd, bdevnane, 0) != GC SUOCESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Error:gc_Q(pen, ErorValue: % - 9%\n", gc_err, nsg);
return(cclib_err);

if(gc_Qpen(&ddd, |devnane, 0) != GC SUOCESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Error:gc_Qpen, ErorValue: %l - 9%\n", gc_err, nsg);
return(cclib_err);

}

/*

* Find the status of the board.

* the D Channel can be in one of two states DATA LI NK_UP or
* DATA LI NK_DOM

*/

type = GOAS DCHANNEL;

i f(gc_GetLinedevState(bdd, type, &statebuf) != GC SUTESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - %\n",
bdd, gc_err, nsg);
return(cclib_err);

el se {
printf("D Channel Status: %\n", statebuf);

/*

* Find the status of the line.

* the B Channel can be in one of three states GOLS | NSERV CE,
* QCLS_MAINTENANCE, or GOLS QUT_CF SERVI CE

*/

type = GOAS BCHANNEL;

i f(gc_GetLinedevState(ddd, type, &tatebuf) != GC SUCCESS) {
gc_ErrorVal ue(&gc_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - %\n",
ddd, gc_err, nsg);
return(cclib_err);

el se {

printf("B Channel Status: %\n", statebuf);
gc_a ose(bdd);
gc_d ose(ddd);

return (0);

149

gc_GetLinedevState() retrieves status of the line device

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also
e gc_SetChanState()

150

maps the current SRL event into a metaevent gc_GetMetaEvent()

Name: int gc_GetMetaEvent(metaeventp)

Inputs: METAEVENT « pointer to METAEVENT block
*metaeventp
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_GetMetaEvent() function maps the current SRL event into a metaevent
that stores the Global Call and non-Global Call event information. This function
returns an event to the UNIX or Windows NT application in the form of a
metaevent. This metaevent is a data structure that explicitly contains the
information describing the event. This data structure provides uniform
information retrieval among call control libraries and across operating systems;
see paragraph 5.4. METAEVENT for data structure details.

The current SRL event information is not changed or altered by calling the
gc_GetMetaEvent() function to retrieve event information. This function may
be used as a convenience function to retrieve the event information for all SRL
events. Whether the event is a Global Call event or any other SRL event, the SRL
event information (e.g., evtdatap, evttype, etc.) may be retrieved from the
METAEVENT data structure instead of using SRL functions to retrieve this
information, see paragraph 5.4. METAEVENT for data structure details. If the
metaevent is a Global Call event, the GCME_GC_EVENT bit in the metaevent
flag field will be set. When thisbit is set, the Global Call related fields in the
METAEVENT data structure will be filled with Global Call event information.

Parameter Description

metaeventp: pointer to the structure of metaevent datafilled in by this
function; see paragraph 5.4. METAEVENT for data structure
details.

151

gc_GetMetaEvent() maps the current SRL event into a metaevent

Termination Event: None.

B Cautions

The gc_GetMetaEvent() [or gc_GetM etaEventEx() (Windows NT only)]
function MUST BE the first function called before processing any Global Call
event.

For Windows NT applications, when using the extended asynchronous mode, the
gc_GetMetaEventEx() function must be the first function called before
processing any GlobalCall event. For al other Windows NT modes, use the
gc_GetMetaEvent() function.

The gc_GetMetaEvent() and gc_GetM etaEventEx() functions should not be
used in the same application.

B Example

The following code illustrates calling the gc_GetM etaEvent() function in
response to receiving an event viathe SRL.

if(sr_waitevt(tineout) !'=-1) { /* i.e. an event occurred */
retcode = gc_Get Met aBEvent (&net aevent) ;
if (retcode <0) {
/* get and process the error */
} else {
/* Continue with normal processing */

}
}

OR

handler(...)

retcode = gc_Get Met aBEvent (&net aevent) ;
if (retcode <0) {

/* get and process the error */
} else {

/* Continue with normal processing */
}

}

To retrieve and process information associated with an event, the following
example code can be used. This code returns the event type, event data pointer,
event length and event device associated with the event from either the handler or
after asr_waitevt() function call.

152

maps the current SRL event into a metaevent gc_GetMetaEvent()

retcode = gc_Get Met aEvent (&net aevent) ;
if (retcode <0) {
/* get and process error */
} else {
/* Can now access SRL infornation for any @ obal Call or
non-Q obal Cal | event using: */
/* netaevent.evtdatap */
/* metaevent.evtlen */
/* metaevent.evtdev */
/* netaevent.evttype */
if (metaevent.flags & GOVE QC |
/* process Qobal Call event here */
} else {
/* process non-Q obal Cal| event here */

An alternative for determining whether an event is a GlobalCall APl event or a
non-GlobalCall event is as follows:

evttype = sr_getevttype();
if ((evttype & DT_Q) == DI Q) {
/* process Q@ obal Call event */
} else {
/* process non-Q obal Call event */

The following code illustrates retrieving event information from the
METAEVENT structure while making a call:

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */

#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

#define MAXCHAN 30 /* max. nunber of channels in system*/
#defi ne NULL_STATE 0

#define DALING STATE 1

#def i ne ALERTI NG STATE 2

#def i ne GONNECTED _STATE 3

/*

* Data structure which stores all infornation for each line

*/

struct |inebag {
LI NEDEV | dev; /* network |ine device handl e */
RN crn; /* Qobal Call APl call handle */
int state; /* state of first layer state nachi ne */

} port [MAXCHANH] ;

struct |inebag *pline; /* pointer to access |line device */

/*

* Assune the fol |l owing has been done:

* 1. Qpened line devices for each tine slot on DIl Bl.

* 2. Applicationis inthe NLL state

* Exanpl es are given in ASYNC node

* Bror handling i s not shown

*/

int makecal | (int port_num char *nunberstr)

{

153

gc_GetMetaEvent()

maps the current SRL event into a metaevent

int cclibid;
int gc_error;
| ong cc_error;
char *nsg;

| ong evttype;

/* Find info for this tine slot,
/* (Assunes port_numis valid) */
pline = port + port_num

/* cclibid for gc_ErorValue() */

/* Qobal Call error code */

/* Call Gontrol Library error code */
/* points to the error nessage string */
/* type of event */

specified by ’port_num */

if (gc_MakeGall(pline -> Idev, &line -> crn, nunberstr, NULL, 0, BV.ASYNQ !=
QC SUXESS) {

/* process error and return */

}
pline -> state = D ALI NG STATE;

for (;5) {

sr_waitevt(-1L);
/* Get the next event */

if (gc_Get Met aBvent (&net aevent
/* process error */

evttype = netaevent. evttype;

/* wait forever */

) 1= GC SUOCESS) {

if (metaevent.flags & GOME_GC EVENT) {
/* process Qobal Call event */

switch (pline -> state) {
case Dl ALI NG STATE
switch (evttype) {

case QCEV_ALERTI NG

pline -> state
br eak;

= ALERTI NG_STATE;

case GCEV_CONNECTED

pline -> state
/*

= OONNECTED_STATE;

* Can now do voice functions, etc.

*/
return(0);
defaul t:

/* SUCCESS RETURN PA NT */

/* handl e other events here */

br eak;
br eak;

case ALERTI NG STATE
switch (evttype) {
case GCEV_

pline -> state
/*

= OONNECTED_STATE;

* Can now do voice functions, etc.

*/
return(0);
defaul t:

/* SUCCESS RETURN PQ NT */

/* handl e other events here */

br eak;
br eak;

} else {

/* Process non-Q obal Call event */

}
}
}

154

maps the current SRL event into a metaevent

gc_GetMetaEvent()

The following code illustrates retrieving event information from the
METAEVENT structure while waiting for acall:

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

/*
* Data
*/
struct |

<wi ndows. h> /* For
<stdio. h>

<srllib.h>

<gclib. h>

<gcerr. h>

Wndows NT applications only */

MAXCHAN 30 /* max. nunber of channels in system*/

NULL_STATE 0

QONNECTED _STATE 3
CFFERED STATE 4
ACCEPTED STATE 5

structure which stores all

i nebag {

information for each line

LI NEDEV | dev; /* network |ine device handl e */
crn; /* Qobal Call APl call handle */

CRN
int

state; /* state of first layer state nachi ne */

} port [MAXCHANH] ;

struct |

/*

*

*

*

*

*

*

* Eror

*

*/

int wait
int
int
| ong
char
| ong

inebag *pline; /* pointer to access |ine device */

Assune the followi ng has been done:
1. Qpened line devices for each tine slot on DIl Bl.
2. Applicationis inthe NLL state
3. Agc_WitCall() has been successfully issued

Exanpl es are given i n ASYNC node

handling is not shown

call (int port_nunm

cclibid; /*
gc_error; /*
cc_error; /*
*msg; *

evttype; /*

cclibid for gc_ErorValue() */
Qobal CGall error code */

Call Control Library error code */
points to the error nmessage string */

type of event */

/* Findinfo for this time slot, specified by 'port_num */
/* (Assunes port_numis valid) */
pline = port + port_num

for (
sr

[*

) A
_waitevt (-1L); /*
Get the next event */

wait forever */

if (gc_Get Met aBvent (&netaevent) != GC SUCCESS) {

}

ev

/* process error return */

ttype = netaevent.evttype;

if (netaevent.flags & GOME_GC EVENI) {

/* process Q@ obal Call event */
switch (pline -> state) {
case NULL_STATE
switch (evttype) {
case QCEV_CFFERED

155

gc_GetMetaEvent() maps the current SRL event into a metaevent

pline -> state = GFFERED STATE;
accept _cal l ();
br eak;

defaul t:
/* handl e other events here */
br eak;

br eak;

case CFFERED STATE
switch (evttype) {
case GCEV_ACCEPT:
pline -> state = ACCEPTED STATE,
answer _cal | ();
br eak;
defaul t:
/* handl e other events here */
br eak;
}
br eak;
case AQCEPTED STATE
switch (evttype) {

case GCEV., X
pline -> state = GONNECTED STATE;
/*
* Can now do voice functions, etc.
*/
return(0); /* SUCCESS RETURN PA NT */
defaul t:
/* handl e other events here */
br eak;
br eak;
}
} else {
/* Process non-Q obal Call event */
}
}
}
W Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also

e gc GetCRN()

e gc _GetLineDev()

e gc_GetMetaEventEx() (Windows NT extended asynchronous mode only)
e gc ResultValue()

156

maps the current SRL event into a metaevent gc_GetMetaEventEx()

Name: int gc_GetMetaEventEx(metaeventp, evt_handle) [Windows
NT extended asynchronous mode only]
Inputs: unsigned long « SRL event handle
evt_handle
METAEVENT * pointer to METAEVENT block
*metaeventp
Returns: 0Oif successful
<0 if failure
Includes: windows.h
gclib.h
gcerr.h
Category: system control and tools
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
= Anaog

B Description

The gc_GetM etaEventEx() function maps the current SRL event into a
metaevent that passes the SRL event handle to the application or thread and stores
the Global Call and non-Global Call event information in the METAEVENT data
structure. This function returns an event to the Windows NT application running
multithreads in the extended asynchronous mode in the form of a metaevent and
an SRL event handle. This metaevent is a data structure that explicitly contains
the information describing the event. This data structure provides uniform
information retrieval among call control libraries and across operating systems;
see paragraph 5.4. METAEVENT for data structure details. The event handleis
passed to the application by the SRL:

* whenthesr_waitevtEx() function is caled, typically for multithreaded
applications or

» when the SRL handlers are called; the event handle is the first parameter in
the function call.

The current SRL event information is not changed or altered by calling the
gc_GetMetaEventEx() function to retrieve event information. This function
may be used as a convenience function to retrieve the event information for all

157

gc_GetMetaEventEx() maps the current SRL event into a metaevent

SRL events. Whether the event is a Global Call event or any other SRL event, the
SRL event information (e.g., evtdatap, evttype, etc.) may be retrieved from the
METAEVENT data structure instead of using SRL functionsto retrieve this
information, see paragraph 5.4. METAEVENT for data structure details. If the
metagvent is a Global Call event, the GCME_GC _EVENT bhit in the metaevent
flag field will be set. When this bit is set, the Global Call related fieldsin the
METAEVENT data structure will be filled with Global Call event information.

Parameter Description

evt_handle: SRL event handle used to identify event with a particular
thread.

metaeventp: pointer to the structure of metaevent datafilled in by this
function; see paragraph 5.4. METAEVENT for data structure
details.

Termination Event: None.

B Cautions

Thegc_GetMetaEvent() or gc_GetMetaEventEx() function MUST BE the
first function called before processing any Global Call event

When using the extended asynchronous mode, thegc_GetM etaEventEXx()
function must be the first function called before processing any Global Call event.
For all other Windows NT modes, use the gc_GetM etaEvent() function.

The gc_GetMetaEvent() and gc_GetM etaEventEx() functions should not be
used in the same application.

When calling the gc_GetM etaEventEx() function from multiple threads, ensure

that your application uses unique thread-related METAEVENT data structures or
ensure that the METAEVENT data structure is not written to simultaneously.

158

maps the current SRL event into a metaevent gc_GetMetaEventEx()

B Example

The following code illustrates event retrieval wherein the SRL gets the event and
then the extended gc_GetM etaEventEx() function fillsin the METAEVENT
data structure.

/*
* Do SRL event processing
*
/
hdlcnt = 0O;
hdl s[hdlcnt++] = Getd obal Cal | Handl e();
hdl s[hdl cnt++] = Get Voi ceHandl e() ;

/* Wit selectively for devices that belong to this thread */

rc = sr_waitevt Bx(hdl s,
hdl cnt,
Pol | Ti neout _ns,
&evt HI

)i
if (rc!=SRT™MUN {
/*
* Updat e
*/
rc = gc_Get Met aBvent Ex(&g_Met aevent, evtHll);
if (rc!= GC_SUCESS)

> | {
CheckError(rc, "gc_Get Met aBvent Ex") ;
return -1;

}

rc = vProcessCal | Events();
}

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also

* gc GetCRN()

e gc _GetLineDev()

* gc _GetMetaEvent()
* gc ResultValue()

159

gc_GetNetworkH() returns the network device handle

Name: int gc_GetNetworkH(linedev, networkhp)
Inputs: LINEDEV linedev « GlobalCall line device handle

int *networkhp * pointer to returned network device
handle
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h

Category: system control and tools
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_GetNetworkH() function returns the network device handle associated
with the specified line device linedev. The *networ khp parameter is actualy the
SRL device handle of the network resource associated with the line device. The
*networ khp parameter can be used as an input to functions requiring a network
handle, such as the SCbus routing function nr_scroute().

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description
linedev: GlobalCall line device handle
networ khp: address at which the network device handleis to be stored.

Termination Event: None.

B Cautions
If this function isinvoked for an unsupported technology, the function fails. The

error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc ErrorValue() function is used to retrieve the error code.

160

returns the network device handle gc_GetNetworkH()

B Example

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/*
* Assune the foll ow ng has been done:
* 1. Aline device (Idev) has been opened, specifying a
* network time slot and a protocol
* For exanpl e, 'devicenane’ could be ":NdtiB1T1L:P br_r2_ji".
*/
int route_fax_to_gc(LINEDEV I dev, int faxh)
{
int cclibid; /* cclibid for gc_ErrorValue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Control Library error code */
char *nsg; /* points to the error nessage string */
int net wor kh; /* network device handl e */
if (gc_Get NetworkH(| dev, &networkh) == GC SUOCESS) {
/*
* Route the fax resource to the network device in
* a full dupl ex manner.
*/
if (nr_scroute(networkh, SC DTl, faxh, SC FAX, SC FULLDUP) == -1) {
/* process error */
el se {
/* proceed with the fax call */
}
} else {
/* process error return as shown */
gc_ErrorVal ue(&c_error, &cclibid, &c_error);
gc_Resul t Msg(LIBID GC (long) gc_error, &nsg);
printf ("Error on Device handle: 0x%Xx, ErrorValue: %l - 9%\n",
| dev, gc_error, nsg);
return(gc_error);
}
/*
* Application nmay now generate or wait for a call on this line
* devi ce.
*/
return (0);
}
M Errors

If thisfunction returnsa <0 to indicate failure, usethegc _ErrorValue() and
gc_ResultM sg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
geerr.hfile, seelisting in Appendix C.

161

gc_GetNetworkH() returns the network device handle

B See Also
e gc _GetVoiceH()

162

retrieves the parameter value specified gc_GetParm()

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_GetParm(linedev, parm_id, valuep)
LINEDEV linedev * GlobalCall line device handle

int parm_id * parameter 1D

GC_PARM *valuep « pointer to buffer where value will
be stored

0if successful

<0 if failure

gclib.h

geerr.h

gcisdn.h (for applications that use ISDN symbols)
system control and tools

synchronous

m |SDN PRI m E-1CAS m T-1robbed bit
0 Anaog

B Description

The gc_GetParm() function retrieves the parameter value specified by the
parm_id parameter for aline device. The application can retrieve only one
parameter value at atime.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter

Description

linedev:
parm_id:

valuep:

GlobalCall line device handle

The parameter ID definitions are listed in Table 36.

Parameter Descriptions, gc_GetParm() and gc_SetParm()
inthe gc_SetParm(') function description section. The

“Level” column lists whether the parameter is a channel level
parameter or a trunk level parameter. To get a trunk level
parameter, thenedev parameter must be the device ID
associated with a network interface trunk.

The address of the buffer where the requested information
will be stored, separagraph 5.5. GC_PARM for data
structure details.

163

gc_GetParm() retrieves the parameter value specified

Termination Event: None.

B Cautions

None

B Example

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

int get_calling_party(LI NEDEV | dev, char *callerp)
{

GC_PARM parmval ; /* val ue of paraneter returned */

int cclibid; /* cclibid for gc_ErrorVal ue() */

int gc_error; /* Qobal Call error code */

| ong cc_error; /* Call Control Library error code */
char *nsg; /* points to the error nessage string */
/*

* Retrieve calling party nunber for E-1 CAS line device and print it.

*

/

if (gc_GetParn(ldev, GOPR CALLI NGPARTY, &parmval) == GC SUOCESS) {
strcpy(cal l erp, parmval . paddress);
printf ("Calling party No. is %\n", parmval.paddress);

el se {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GC (long) gc_error, &nsg);
printf ("Error on Device handle: 0x%Xx, ErrorValue: %l - 9%\n",
net aevent. | dev, gc_error, nsg);
return(gc_error);

}
return (0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethegc _ErrorValue() and
gc_ResultM sg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
geerr.hfile, seelisting in Appendix C.

B See Also
e gc SetParm()

164

retrieves the attribute

gc_GetUsrAttr()

Name: int gc_GetUsrAttr(linedev, usr_attrp)
Inputs: LINEDEV linedev + GlobaCall line device handle
void **usr_attrp * pointer to location where user
attribute info will be stored
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h
Category: system control and tools
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit

= Anaog

B Description

The gc_GetUsrAttr() function retrieves the attribute established previously for
the line device by the gc_SetUsr Attr() or gc_OpenEx() function.

Parameter Description
linedev: GlobalCall line device handle
usr_attrp: address of the location where the returned attribute

information will be stored. This parameter will be set to
NULL if the user attribute was not previously set using the

gc_SetUsrAttr() or gc_OpenEx() function.

Termination Event: None.

B Cautions

None

B Example

#i ncl ude <wi ndows. h>
#i ncl ude <stdio. h>
#include <srllib.h>

/* For Wndows NT applications only */

165

gc_GetUsrAttr() retrieves the attribute

#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>

#define MAXCHAN 30 /* max. nunber of channels in system*/
/*
* Data structure which stores all information for each |ine
*/
struct |inebag {
LI NEDEV | dev; /* Qobal Call |ine device handle */
RN crn; /* Qobal Call APl call handle */
int state; /* state of first layer state nachi ne */

} port[MAXCHANH] ;

/*
* Retrieves port_numthat was set for this device
* in set_usrattr (gc_SetUsrAttr())

*/
int get_usrattr(LINEDEV | dev, int *port_num)
{
int cclibid; /* cclibid for gc_ErrorVal ue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Gontrol Library error code */
char *nsg; /* points to the error nessage string */
voi d *vattrp; /* toretrieve the attribute */
/*
* Assuming that a line device is opened al ready and
* that its IDis ldev, let us retrieve the attribute set
:/for this Idev, previously set by the user using gc_SetUsrAttr()
if (gc_GetWsrAttr(ldev, &attrp) !'= QC SUCCESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_Resul t Msg(LIBID GG (long) gc_error, &sQ);
printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - %\n",
| dev, gc_error, nsg);
return(gc_error);
}
*port_num= (int) vattrp;
/*
* Processing may continue using this retrieved attribute
*/
return (0);
}
M Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

166

retrieves the attribute gc_GetUsrAttr()

B See Also

* gc _SetUsrAttr()
e gc OpenEx()

167

gc_GetVer()

gets version number of specified software component

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_GetVer(linedev, releasenump, inthump, component)
LINEDEV linedev « GlobalCall line device handle

unsigned int * pointer to location where production
*releasenump release number will be stored

unsigned int * pointer to location where internal

*intnump release number will be stored

long component * system component

0 if successful

<0 if failure

gclib.h

gecerr.h

optional feature

synchronous

m ISDN PRI m E-1CAS m T-1robbed bit
m Analog

B Description

The gc_GetVer() function gets version number of specified software component.
A Didogic version number consists of two parts that provide:

e Thereleasetype; i.e. production or beta

* Therelease number, which consists of different elements, depending on
the type of release.

edg.,

1.00 Production
1.00 Betas

The gc_GetVer () function returns the software version number as along integer
(32 hits) in BCD (binary coded decimal) format. Figure 6 shows the format of the
version number that is returned. Each section in the diagram represents anibble (4

bits).

168

gets version number of specified software component gc_GetVer()

MSB

¢ long int (8 nibbles = 32 bits)
|

| I T
Type Production Internal
Number Number

Figure 6. Component Version Number Format
Nibble 1 returns the type of release. The values convert to:

0 - Production
1 - Beta
4 - Specid

Nibbles 2, 3, and 4 return the Production Number.
NOTE: Nibbles 2 through 4 are used in all version numbers. Nibbles 5 through 8
only contain values if the release is not a production release.

Nibbles 5, 6, 7, and 8 return the Internal Number, which is used for pre-

production product releases. The Internal Number is assigned to beta product
releases. Nibbles 5 and 6 hold the product’s Beta number. Nibbles 7 and 8 hold
additional information that is used for internal releases.

Table 30 provides the values returned by each nibble in the long int. For example,
if a production version number is 1.02, then:

*releasenump = 0x0102
*inthump = 0x0000

For a version number of 1.02 beta 2, then:

*releasenump = 0x1102
*inthump = 0x0200

169

gc_GetVer()

gets version number of specified software component

Table 30. gc_GetVer() Return Values

*releasenump *intnump
1" 2! 38 4" 58 6' 788"
Type Production Number Internal Number
Production Major Prod. Minor Prod. N/A N/A
Number Number
Beta Major Prod. Minor Prod. BetaNo. N/A
Number Number

"= Nibble(s) [4 bits each]

Par ameter Description

linedev: Global Call line device handle. If this parameter is set to 0,
the version number of the GlobalCall API isreturned.

releasenump: pointer to the location where the production rel ease number
and type indicator will be stored.

intnump: pointer to the location where the internal release number will
be stored.

component: specifies the software component to which the version

number applies. Selections are:
GCGV_LIB GlobalCal library

ICGV_LIB ICAPI library
ANGV_LIB ANAP! library
ISGV_LIB ISDN library

Termination Event: None

B Cautions

None

170

gets version number of specified software component gc_GetVer()

B Example

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

int print_version(LI NEDEV | dev, |ong conponent)

{
unsi gned i nt rel easenum /* Production rel ease nunber */
unsi gned i nt i nt num /* Internal rel ease nunber */
int cclibid; /* cclibid for gc_ErrorVal ue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Control Library error code */
char *nsg; /* points to the error nessage string */
/*
* Get the version nunber of the library associate with the Iine
* devi ce.
*/
if (gc_GetVer(ldev, &eleasenum & ntnum conponent) == GC SUCCESS) {
printf("Production rel ease nunber = 0x%x\n", rel easenun);
printf("Internal rel ease nunber = 0x%x\n", intnun);
} else {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GC (long) gc_error, &nsg);
printf ("Error on Device handle: 0x%Xx, ErrorValue: %l - 9%\n",
| dev, gc_error, nsg);
return(gc_error);
return (0);
}
M Errors

If thisfunction returnsa <0 to indicate failure, usethegc _ErrorValue() and
gc_ResultM sg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
geerr.hfile, seelisting in Appendix C.

B See Also

* None

171

gc_GetVoiceH()

returns the voice device handle

Name:
Inputs:
Returns:
Includes:
Category:

Mode:
Technology:

int gc_GetVoiceH(linedev, voicehp)

LINEDEV linedev * GlobalCall line device handle

int *voicehp * pointer to returned voice device
handle

0 if successful

<0 if failure

gclib.h

gcerr.h

interface specific

synchronous

0 ISDN PRI m E-1CAS m T-1robbed bit

= Anaog

B Description

Thegc_GetVoiceH() function returns the voice device handle associated with
the specified line device, linedev. The *voicehp parameter is actually the SRL
handle of the voice resource associated with the line device. The *voicehp
parameter can be used as an input to functions requiring a voice handle, such as
the voice library’sdx_play() function.

Refer also to the appropria@&obalCall Technology User’s Guider technology
specific information.

Parameter Description
linedev: GlobalCall line device handle
voicehp address at which the voice device handle of the voice

resource associated with the GlobalCall line device, linedev,
will be stored

Termination Event: None.

172

returns the voice device handle gc_GetVoiceH()

B Cautions

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/*

* Assune the foll ow ng has been done:

* 1. Aline device has been opened specifying voi ce resource

* 2. Acall associated with Idev is in the connected state

*/

int get_voi ce_handl e(LI NEDEV | dev, int *voi cehp)

{
int cclibid; /* cclibid for gc_ErrorVal ue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Control Library error code */
char *nsg; /* points to the error nessage string */

if (gc_GetVoiceH|dev, voicehp) == GC SUCCESS) {
/*

* Application may now performvoice processing (e.g., play a pronpt)
* using the voi ce handl e.
*/
return(0);
} else {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GC (long) gc_error, &nsg);
printf ("Error on Device handle: 0x%Xx, ErrorValue: %l - 9%\n",
| dev, gc_error, nsg);
return(gc_error);

B Errors

If thisfunction returnsa <0 to indicate failure, usethegc _ErrorValue() and
gc_ResultM sg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
geerr.hfile, seelisting in Appendix C.

173

gc_GetVoiceH() returns the voice device handle

B See Also
e gc_GetNetworkH()

174

sets voice parameters associated with a line device gc_LoadDxParm()

Name: int gc_LoadDxParm(ldev, filepathp, msbufferp, msglength)

Inputs: LINEDEV Idev e line device
char *filepathp * pointer to parameter file
char * msbufferp * pointer to error message
int msglength * maximum error message length
Returns: 0Oif successful
<0 if failure
Includes: gclib.h
gecerr.h

Category: interface specific
Mode: synchronous
Technology: 0O ISDN PRI 0 E-1CAS 0 T-1robbed bit
m Anaog

B Description

The gc_L oadDxParm() function sets voice parameters associated with aline
device that operates as a dedicated or shared resource in conjunction with an
analog loop start network interface resource to handle call processing activities.
The parameters set by this function affect basic and enhanced call progress and
interact with thegc_MakeCall() function.

GlobalCall assigns aLDID number to represent the physical devices that will
handle acall, such as avoice resource and an analog loop start (or adigital)
network interface resource, when thegc_Open() or gc_OpenEx() functionis
called. Thisidentification number assignment remains valid until thegc_Close()
function is called to close the line devices.

When the gc_L oadDxParm() function is called, the function looks for avoice
parameter file listing only the voice parameters to be changed from their default
value in the location defined by the filepathp parameter, typically in the current
directory or in the /usr/dialogic/cfg directory. The voice parameter file isread
and the voice deviceis configured based on the parameters and parameter values
defined in thisfile. Any parameter not defined will use the default parameter
value.

The following is an example of avoice channel parameter (.vep) file called
dxchan.vep (file names are defined by the user):

175

gc_LoadDxParm() sets voice parameters associated with a line device

HHFHFHEHFE HHHFH HHFHHHE HHHFHEHFHEHFFFHEH

DX_CPTEN
DX_CPTDI S
DX_CPTNOOON
DX_PVDENABLE
DX_PVDCPTEN
DX_PVDCPTNOOCN
DX_PAVDENABLE
DX_PAVDCPTEN

D' xxx paraneter file for downl oadi ng channel | evel
paranet ers supported by dx_setparn{) and DX CAP structure.

Values are in decimal unless a leading Ox is included in which
case the val ue i s hexadeci mal .

Refer to the D al ogic Voice Software Reference for the DX CAP
structure ca * paraneters. The upper case paraneters can al so
be found in the D al ogi c Voice Software Reference under the
dx_set parn{) function.

To set a paraneter, unconment (delete the '# or ';’ and set a
value to the right of the paraneter nane.

ca_stdely
ca_cnosi g
ca lcdy
ca_lcdyl
ca_hedge
ca_cnosi |
ca_logltch

Val ues of bitmask flags for setting ca_intflg
add desired flags to set ca_intflg

O~NO U~ WNE

ca_intflg 5

HHFHHFFHF ST R

176

ca_loverfrq
ca_upperfrq
ca_tinefrq
ca_naxansr
ca_ansr dgl
ca_nxtinefrq
ca_l over2frq
ca_upper 2frq
ca_tine2frq
ca_nxtinme2frq
ca_lover3frq
ca_upper 3frq
ca_tine3frq
ca_nxtinme3frq
ca_dtn_pres
ca_dtn_npres
ca_dt n_debof f
ca_pand_failtime
ca_pand_m nri ng
ca_pand_spdval
ca_pand_qgt enp

sets voice parameters associated with a line device gc_LoadDxParm()

ca_noanswer
ca_maxintering

#
Channel |evel paraneters set by dx_set parn()

DXCH DFLAGS
DXCH DTl N TSET
DXCH DTMFTLK
DXCH DTMFDEB
DXCH MFMCDE
DXCH_MAXRW NK
DXCH M NRW NK
DXCH WNKDLY
DXCH R NGONT
DXCH W NKLEN
DXCH _PLAYDRATE
DXCH _RECRDRAT

HHFHFEHEFHEEEET OB
o A e e e e e

A voice parameter file contains parameter definition lines and may contain
comment lines. Each parameter definition line comprises:

e acase-sensitive voice parameter as defined in Table 31. Voice Channel-level
Parameters or Table 32. Voice Call Analysis Parametersas the first field of
the line, a space and

» asecond field defining the parameter value:

» for voice channel parameter values; see the Voice Board Parameter
Defines for dx_getparm() and dx_setparm() paragraph in the VVoice
Software Reference, Data Sructures and Device Parameters chapter .

« for DX_CAP data structure field parameter values; see the DX_CAP -
change default call analysis parameters paragraph in the Voice
Software Reference, Data Structures and Device Parameters chapter .

The parameter value may be entered as a decimal value or asa
hexadecimal value when prefixed with a “Ox”.

A comment line begins with a:
e # characterora

e ; character.

Thegc _LoadDxParm() function will return upon the first detected error. The
reason for the error, typically:

e aparsing error (in thecp file)

* alow-level function call error

177

gc_LoadDxParm() sets voice parameters associated with a line device

« anopenfilefailure error

will be stored in the msgbufferp location.

NOTE: Not al errors can be detected by the gc_L oadDxParm() function.
Errorsin the value of the voice call analysis parametersin the DX_CAP
structure cannot be detected until acall is setup by the gc_ MakeCall()
function.

All channel-level parameters set by the voice function, dx_setparm(), can be set
using thegc_L oadDxParm() function. GlobalCall usesthe dx_setparm()
parameter names to identify all voice channel-level parameters; see Table 31.
Voice Channel-level Parametersfor a summary list of these parameters. Also see
the Voice Board Parameter Defines for dx_getparm() and dx_setparm()
paragraph in the Voice Software Reference, Data Structures and Device
Parameters chapter for a description of these parameters.

The gc_L oadDxParm() function supports all basic and enhanced call progress
fields defined in the DX_CAP data structure. The call analysis parameters
defined in the DX_CAP data structure affect the gc_MakeCall() function.
Global Call usesthe DX_CAP data structure names to identify all call progress
parameters; see Table 32. Voice Call Analysis Parametersfor asummary list of
these parameters. Also see the DX_CAP - change default call analysis
parameter s paragraph in the VVoice Software Reference, Data Sructures and
Device Parameters chapter for a description of these parameters.

Observe the following criteriawhen using thegc_L oadDxPar m(') function:

e Beforecalling the gc_L oadDxParm() function, use thegc Open() or
gc_OpenEx() function to open the voice line device.

» Passthe maximum length of the error message string, msglength, to the
gc_LoadDxParm() function to avoid overwriting memory locations outside
the message string array.

For analog applications, the gc_L oadDxParm() function is used to set board and
channel-level parameters previously set by the voice function, dx_setparm().
While the gc_L oadDxParm() function is used for analog applications; the
gc_SetParm() and gc_GetParm() functions continue to be used to set and
display parameter values for other technologies such as E-1, T-1, ISDN, etc.

178

sets voice parameters associated with a line device gc_LoadDxParm()

Refer also to the GlobalCall Analog Technology User’s Guidler technology
specific information.

Parameter Description
Idev: GlobalCall line device handle
filepathp: specifies a pointer to the voice parameter fileto load

msgbuffer p: specifies a pointer to the storage address of any error message

msglength: defines the maximum length in bytes of the error message
stored at address defined by the msgbuffer p parameter

Table 31. Voice Channel-level Parameters [dx_setparm()] List

* DXCH_DFLAGS

* DXCH_DTINITSET

* DXCH_DTMFDEB

e DXCH_DTMFTLK

e DXCH_MAXRWINK
* DXCH_MFMODE

* DXCH_MINRWINK
* DXCH_PLAYDRATE
* DXCH_RECRDRATE

* DXCH_RINGCNT Not used. The default number of rings parameter
in the .cdpfile sets this parameter value.

* DXCH_WINKDLY
* DXCH_WINKLEN

179

gc_LoadDxParm() sets voice parameters associated with a line device

Table 32. Voice Call Analysis Parameters (DX_CAP) List

 ca_alowmax
* ca_ansrdgl

« ca_blowmax
e ca_cnosig

« ca_cnosil

ca_dtn_deboff

 ca_dtn_npres

ca dtn_pres

« ca_hedge

ca_hilbmax

ca hilceil

ca _hiltola

ca_hiltolb

ca higltch

* ca hisiz

ca intflg

e ca lcdly

ca lcdlyl

ca_lolbmax

ca lolceil

ca_lolrmax

ca_lo2bmax

ca lo2rmin

180

sets voice parameters associated with a line device

gc_LoadDxParm()

« ca_loltola

ca loltolb

ca lo2tola

ca lo2tolb

ca logltch

ca_lower2frq

ca_lower3frq

ca lowerfrqg
* ca_maxansr

* ca_maxintering

ca_mxtime2frq

ca_mxtime3frg

ca_mxtimefrq

* ca_nbrbeg

ca_nbrdna

* ca_noanswer

* ca_hsbusy
 ca_pamd _failtime
e ca_pamd_minring
e ca_pamd_qgtemp
* ca_pamd_spdval
* ca_stdely

ca time2frq

ca time3frqg

ca timefrq

181

gc_LoadDxParm() sets voice parameters associated with a line device

* ca_upper2frq
* ca_upper3frq

* ca_upperfrq

Termination Event: None

B Cautions

The maximum length of the error message string, msglength, should be passed to
the function to avoid overwriting memory locations outside the array pointed to by
the msgbuffer p parameter.

The call analysis parameters, see Table 32. Voice Call Analysis Parameters, are
only used for analog loop start protocols. If thisfunction isinvoked for an
unsupported technology, the function fails. The error value
EGC_UNSUPPORTED will be the Global Call value returned when the
gc_ErrorValue() function is used to retrieve the error code. See also the Errors
paragraph at the end of this function description.

B Example

#i ncl ude <stdio. h>
#include <srllib.h>
#i ncl ude <dxxxlib. h>
#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>

#def i ne MBALENGTH 80
mai n()

LI NEDEV | dev;

char errnsg[MBAENGTH ;
/
Assune the fol |l owi ng has been done:

Qpen |ine device (Idev) specifying voice and network resource using

ge_Cpen()
/

R S

/* call gc_LoadDxParn{) to downl oad the channel paraneters */

i f ((gc_LoadDxParm(ldev, “dxchan.vcp”’, ermsg, MSGLENGTH)) 1=0) {
if (gc_error() != EGC UNSUPPCRTED) {

printf(“Error gc_LoadDxParm() loading channel parameters\n”);

printf(*%s\n”, ermsg);

exit(1);

182

sets voice parameters associated with a line device gc_LoadDxParm()

}
printf(“gc_LoadDxParm() unsupported\n”;
exit(2);
}

B Errors

If thisfunction returnsa <0 to indicate failure or if the GCEV_TASKFAIL event
isreceived, usegc_ErrorValue() and the gc_ResultMsg() function as described
in section 3.11. Error Handling to retrieve the reason for the error. Al
GlobalCall error codes are defined in the geerr.h file, seelisting in Appendix C.

If the error isnot EGC_UNSUPPORTED, then a more detailed description of the
error is copied to the address specified by the msgbuffer p parameter. When a
parsing error is detected, an “Invalid line” followed by the line number and the
line containing the error are stored in thesgbuffer buffer.

B See Also

 gc MakeCall()
e gc Open() orgc OpenEx()

183

gc_MakeCall()

enables the application to make an outgoing call

Name:

Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_MakeCall(linedev, crnp, numberstr, makecallp,
timeout, mode)

LINEDEV linedev * linedevice
CRN *crnp * pointer to returned call
reference number

char *numberstr * destination phone number

GC_MAKECALL_BLK « pointer to outbound call info
*makecallp

int timeout * time-out value

unsigned long mode * async or sync

0if successful

<0 if failure

gclib.h

gcerr.h

gcisdn.h (for applications that use ISDN symbols)
basic call control

asynchronous or synchronous

m |SDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

Thegc_MakeCall() function enables the application to make an outgoing call on
the specified line device. When this function is issued asynchronously, a CRN will
be assigned and returned immediately if the function is successful. All subsequent
communi cations between the application and the Global Call library regarding that
call will usethe CRN asareference. If thisfunction isissued synchronously, the
CRN will be available at the successful completion of the function.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description
linedev: GlobalCall line device handle
crnp: pointer to the memory location where the CRN isto be
stored.
numberstr: called party’s telephone number (must be terminated with

184

\0"). Maximum length: 32 digits

enables the application to make an outgoing call gc_MakeCall()

Par ameter Description

makecallp: specifies a pointer to the GC_MAKECALL_BLK structure,
see paragraph 5.3. GC_MAKECALL_BLK for details.
Assigning aNULL to this parameter indicates that the default
value should be used for the call.

timeout: timeinterval (in seconds) during which the call must be
established, or function will return with atime-out error.
This parameter isignored when set to 0. Not all call control
libraries support this argument in asynchronous mode.
Refer to the appropriate GlobalCall Technology User’'s
Guidefor technology specific information.

mode: set to EV_ASYNC for asynchronous execution or to
EV_SYNC for synchronous execution

If the gc_MakeCall() function fails, the call state may differ depending upon the
point in the calling process where the failure occurred and the call control library
used.

In the asynchronous mode, if the function is successfully initiated but connection
isnot achieved (no GCEV_CONNECTED event returned), then the application
must issuegc_DropCall() and gc_ReleaseCall() functions to terminate the call
completely.

In the synchronous mode, if the*crnp is zero, the call stateis Null. A Null state
indicates that the call was fully terminated and that another gc_MakeCall()
function can beissued. For non-zero *crnp values, the application or thread
(Windows NT only) must issuegc_DropCall() and gc_ReleaseCall() functions
to terminate the call completely beforeissuing another gc_MakeCall() function.

The GC_MAKECALL_BLK structureisalist of parameters used to specify the
outbound call.

The GCEV_ALERTING event (enabled by default) notifies the application that
the call has reached its destination but is not yet connected to the called party.
When this event isreceived, the call state changesto Alerting. In the Alerting
state, the reception of a GCEV_CONNECTED event (or, if in synchronous mode,

185

gc_MakeCall() enables the application to make an outgoing call

the successful completion of the function) causes atransition to the Connected
state thus indicating a complete call connection.

The GCEV_CALLSTATUS event informs the application that a timeout or ano
answer (call control library dependent) condition occurred. This event does not
cause any state change. Not all call control libraries generate this event (e.g.,
ISDN library).

If glare handling is not specified in the protocol, the inbound call prevails when
glare occurs.

The following table lists error conditions, associated event/return values and the
result/error value returned. For all errors, the following apply:

* Asynchronous. When an error condition is encountered, an event value such
as GCEV_TASKFAIL, GCEV_CALLSTATUS or
GCEV_DISCONNECTED isreturned. Issue agc ResultValue() function
to retrieve the reason or result code for the event and then issue a
gc_ResultM sg() function to retrieve the ASCIl message describing the error
condition. When an error condition occurs in asynchronous mode, you must
issuethe gc_DropCall() and gc_ReleaseCall() functions before you can
initiate your next call.

e Synchronous: When an error condition is encountered, a<0 valueis
returned. Issueagc ErrorValue() function to retrieve the error code and
thenissue agc_ResultMsg() function to retrieve the ASCII message
describing the error condition.

When an error condition occurs in synchronous mode, if the crn returned is:

e 0, thenthe call stateis Null; you may initiate your next call or call related
operation.

* non-0, then you must issue thegc DropCall() and gc_ReleaseCall()
functions before you can initiate your next call or call related operation.

In asynchronous mode, when the function failsto start, <O isreturned. Inthis
case, no CRN was assigned to the call and you should not do adrop and release
call.

186

enables the application to make an outgoing call

gc_MakeCall()

Condition Event/Return Value Result/Error Value
Call answered Async: None - normal completion of
at remote end GCEV_CONNECTED function; line is connected

Error occurs
prior to dialing

Error occurs
during dialing

Busy line

Ring, no
answer

Other errors

Sync. 0

Async: GCEV_TASKFAIL
Sync: <0

Async: acall control library
related error or
GCEV_DISCONNECTED
Sync: <0

Async:
GCEV_DISCONNECTED
Sync: <0

Async:
GCEV_CALLSTATUS
Sync: <0

Not al call control libraries
generate this event (e.g.,
ISDN library).

Async: reflects the error
encountered and the call
control library used
Sync: <0

and called party answered

Varies depending on the
reason for the failure

Async: GCRV_TIMEOUT or
GCRV_PROTOCOL result
value

Sync: EGC_TIMEOUT or
EGC_PROTOCOL error
depending on the call control
library used

Async: GCRV_BUSY result
value
Sync: EGC_BUSY error

Async: GCRV_NOANSWER
or GCRV_TIMEOUT result
value

Sync: EGC_NOANSWER or
EGC_TIMEOUT error
depending on the call control
library used

Varies depending on the
reason for the failure and the
call control library used

Termination Event: In the asynchronous mode, if the call resultsin a successful
connection, a GCEV_CONNECTED event is sent to the application; otherwise, a
GCEV_TASKFAIL or GCEV_DISCONNECTED event is sent.

187

gc_MakeCall() enables the application to make an outgoing call

B Cautions

In both asynchronous and synchronous mode, after atimeout or a no answer
condition is reported and before the gc_DropCall() function has successfully
completed, a GCEV_CONNECTED event may arrive. Ignore this event since the
call cannot be salvaged.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

#i ncl ude <gci sdn. h>

#define MMXCHAN 30 /* max. nunber of channels in system*/
/*
* Data structure which stores all information for each line
*/
struct |inebag {
LI NEDEV | dev; /* Qobal Call Iine device handle */
CN crn; /* Qobal Call APl call handle */
int state; /* state of first layer state machine */
} port[MAXCHANH] ;
struct |inebag *pline; /* pointer to access |ine device */
/*
* Assune the foll ow ng has been done:
* 1. Qpened line devices for each tinme slot on DIl Bl.
* 2. Each line device is stored in linebag structure "port"
*/
int make_call (int port_num)
int cclibid; /* cclibid for gc_ErrorValue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Control Library error code */
char *nsg; /* points to the error nessage string */

/* Find info for this tinme slot, specified by ’port_num */
/* (assumes port_numis valid) */
pline = port + port_num

/*
* Make a call to the nunber 993-3000.
*/
if (gc_MakeCall (pline->ldev, &line->crn, "9933000", NULL, 0, EV_SYNOQ
= Q.
/* Call successfully connected; continue processing */
el se {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID QS (long) gc_error, &nsg);

printf ("Error on Device handle: 0x%Xx, ErrorValue: %l - 9%\n",
pline -> Idev, gc_error, nsg);

188

enables the application to make an outgoing call gc_MakeCall()

return(gc_error);

}

/*

* Application nmay nowwait for an event to indicate call
* conpl etion.

*/

return (0);

B Errors

If thisfunction returnsa <0 to indicate failure or if the GCEV_TASKFAIL,
GCEV_CALLSTATUS or GCEV_DISCONNECTED event is received, use
gc_ErrorValue() or gc_ResultValue(), respectively, and the gc_ResultM sg()
function as described in section 3.11. Error Handling to retrieve the reason for
the error. See the above description for more details on handling errors associated
with making acall. All GlobalCall error codes are defined in the gcerr.h file, see
listing in Appendix C.

B See Also

e gc DropCall()
e gc_LoadDxParm()
e gc ReeaseCall()

189

gc_Open() opens a GlobalCall device

Name: int gc_Open(linedevp, devicename, rfu)

Inputs: LINEDEV *linedevp * pointer to returned line device

char *devicename * pointer to ASCII string
int rfu * reserved for future use

Returns: 0if successful

<0 if faillure

Includes: gclib.h

gcerr.h

Category: system controls and tools

Mode: synchronous

Technology: m ISDN PRI m E-1CAS m T-1robbed bit

m Anaog

B Description

Thegc_Open() function opens a GlobalCall device and returns aunique line
device ID (or handle) to identify the physical device or devices that carry the call
(e.g., aline device may represent a single network, time slot or the grouping
together of atime slot and a voice channel). All subsequent referencesto the
opened device must be made using the line device ID. After the successful return
of the gc_Open() function, the application must wait for a
GCEV_UNBLOCKED event before proceeding with a call (make or wait call) on
the opened line device. When the GCEV_UNBLOCKED event is received, then
thelineis ready to accept calls.

NOTE:

190

When you issueagc_Open() cal, you may immediately get a
GCEV_UNBLOCKED event before the function returns. This event
may belost unless:

- typically, in aWindows NT environment, event processing within a
thread or using a separate thread to process events tends to be more
efficient than using event handlers. However, if event handlers are to be
used, such as when an application is being ported from UNIX, then you
must use the asynchronous internal-thread callback model or the
asynchronous worker-thread callback model. See paragraph 3.2.
Windows NT Programming Models for details and the following
summaries.

- for Windows NT synchronous mode applications, when using an event
handler for GCEV_BLOCKED and GCEV_UNBLOCKED events,

opens a GlobalCall device gc_Open()

enable the event handler BEFORE creating the threads to handle each
channel. (Ensure that the linedevp parameter passed to the gc_Open()
function isaglobal variable that can be accessed by your handler.)

- for Windows NT asynchronous mode applications, when the
application will handle the events, the automatic creation of an SRL
event handling thread can be disabled by setting the sr_setparm()
function parmno parameter SR_MODELTY PE valueto SR_STASYNC
so that the event is held in the event queue OR the application can enable
an event handler for GCEV_BLOCKED and GCEV_UNBLOCKED
events BEFORE opening each channel.

- when using UNIX in signal mode, enable an event handler for any
device, any event OR for any device and GCEV_BLOCKED and
GCEV_UNBLOCKED events before calling the gc_Open() function
OR you can wrap thegc_Open() function with sr_hold() and
sr_release() functions (this approach enables setting the user attributes
with thegc_SetUsr Attr (') function before opening a device).

Both network board and channél (i.e., time slot) devices can be opened using the
gc_Open() function. A device may only be opened once and cannot be re-opened
by the current process or by any other process until the deviceis closed.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description

linedevp: pointer to unique number to be filled in by this function to
identify a specific device

devicename: pointer to an ASCII string that defines the device(s) associated
with the returned linedevp number. The devicename
parameter specifies the device to be opened and the protocol
to be used. Theformat used to define devicenameis:

<field1><field2>...<fieldn>

These fields may be listed in any order. The format for afield
is:

<key>_ <field name>
Valid keys and their appropriate field names are:

191

gc_Open()

opens a GlobalCall device

Par ameter Description
key field name
P protocol_name
N network device name
\ voice _device_name

The protocol_name field specifies the protocol to be used.

Refer to the appropriate GlobalCall Technology User’s Guide

for technology specific protocol information.

The network_device_namand voice_device_namllow the

standard Dialogic naming convention:

« The network_device_nanféeld specifies the board name
and the time dlot name (if needed). If the board isto be
opened, the network_device_narris the board namein the
format:

dtiB<number of board>
If atime slot isto be opened, both the board and time slot
are specified in the format:

dtiB<number of board>T<time slot number>

» Thevoice_device_namspecifies the voice board and
channel:

dxxxB<uvirtual board number>C<channel humber>

The voice_device_nanmféeld is not valid when opening an

ISDN device.

See the GlobalCall Technology User’s Guider your

technology for information about which fields to use when

opening adevice.
rfu: reserved for future use. Set rfu to 0.

192

opens a GlobalCall device gc_Open()

Termination Event: None.

B Cautions

If ahandler is enabled for the GCEV_UNBLOCKED event, then the linedevp
parameter passed to the gc_Open() function must be global.

When you issue agc_Open() cal, you immediately get a GCEV_UNBLOCKED
event. Thisevent may be lost unless your application is structured to capture this
event when you open each channel, see Note above for details.

To handle error returns from the gc_Open() function, use the GlobalCall error
handling functions, gc_ErrorValue() and gc_ResultM sg(). Do not use the
UNIX errno variable to get GlobalCall error information.

See the Global Call Technology User’'s Guidior your network interface to
determine required devicename components and features unique to your network
interface such as voice resource usage.

B Example

UNIX example: the following example code illustrates opening multiple line
devices using the UNIX signal mode.

/*

* Standard D al ogi ¢ header (s)
*
/

#include <srllib.h>
#i ncl ude <dxxxlib. h>
#include <dtilib. h>

/*
* Q@ obal Call header (s)
*/

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

#define MAXCHAN 30 /* max. nunber of channels in system*/
/*

* Jobal variable

*/

METAEVENT net aevent ;

char *program nane; /* program nane */

/*
* Function prototype(s)
*/

int print_error(char *function);

193

gc_Open() opens a GlobalCall device

int evt_hdl r(void);
int open_|ine_devices(void);
int close_line_devices(void);

/*
* Data structure which stores all information for each |ine
*/
static struct channel {
LI NEDEV | dev; /* Qobal Call APl line device handl e */
RN crn; /* Qobal Call APl call handle */
int bl ocked,; /* channel bl ocked/ unbl ocked */
int net wor kh; /* network handl e */
int voi ceh; /* voice handl e */

} port [MAXCHANH] ;

/*
* Main Program
*/

void main(int argc, char *argv[])
int node;
/* Conpil er warning */
program nane = argv[0];

argc = argc;

/* Set SRL node */
node = SR PO.LMXIE,

if (sr_setparn{SRL_DEM CE, SR MDE D, &mwde) == -1) {
printf("Unable to set to Polled Mde");
exit(l);

}

/* Enabl e the event handler */
if (sr_enbhdl r(EV_ANYDEV, EV_ANYEVT,

(long (*) (void *))evt_hdlr) == -1) {
printf("sr_enbhdlr failed\n");
exit(1l);

/* Start the library */

if (gc_Start(NJUL) !'= GC SUCCESS) {
/* process error return as shown */
print_error("gc_Start");

/* open the line devices */
open_l i ne_devi ces();
sr_wai tevt (50);

/* close the line devices */
cl ose_line_devices();

/* Stop the library */

if (gc_Stop() != GC SUXESS {
/* process error return as shown */
print_error("gc_Stop");

}

* int print_error (char *function)

* |NPUT: char *function - function nane

194

opens a GlobalCall device gc_Open()
* RETURN gc_error - globalcall error nunber
*
*/
int print_error(char *function)
{
int cclibid; /* cclibid for gc_ErrorValue() */
int gc_error; /* Qobal Call error code */
| ong cclib_error; /* Call Control Library error code */
char *gcnsg; /* points to the gc error nessage string */
char *ccnsg; /* points to the cclib error message string */
gc_ErrorVal ue(&gc_error, &cclibid, &clib_error);
gc_Resul tMsg(LIBI D GC (long) gc_error, &gcnsg);
gc_Resul tMsg(cclibid, cclib_error , &ccnsg);
printf ("gc_Qpen failed, gc(Ox%x) - 9%, cc(0x%x) - %\n",
gc_error, gcnsg, cclib_error, ccnsg);
return (gc_error);
}
/*
* int evt_hdlr (void)
*
* RETURN O - function successful
* error - Qobal Gall error nunber
*
*/

nt evt_hdl r(voi d)

struct channel *pline;
int error; /* reason for failure of function */

if (gc_Get Met aEvent (&metaevent) != GC SUCCESS) {
/* process error return as shown */
error = print_error("gc_Get MetaEvent");
return(error);

if (metaevent.flags & GOME GC EVENT) {
/* process dobal Call events */

if (gc_GetUWsrAttr(netaevent.linedev, (void **)&line) != GC SUCCESS) {
/* process error return as shown */
error = print_error("gc_GetUsrAttr");
return(error);

switch (netaevent. evttype) {
case QCEV_UNBLOKED
printf("recei ved GCEV_UNBLOKED event on %\n",
ATDV_NAMEP(pl i ne- >net wor kh)) ;
pl i ne->bl ocked = 0;

br eak;
defaul t:
printf ("UWexpected G obal Call event received\n");
br eak;
}
el se {

/* process other events */

return O;

195

gc_Open() opens a GlobalCall device

}

/*

* int open_line_devices (void)

*

* RETURN O - function successful

* error - Qobal Gall error nunber

*

*/

int open_|ine_devices(void)

{
char devnane[64] ; /* argunent to gc_Qpen() function */
int vbnum = 0; /* virtual board nunber (1-based) */
int vch = 0; /* voi ce channel nunber (1-based) */
int ts; /* tinme slot nunber (1-based) */
int port _i ndex; /* index for 'port’ */
int lines, brds, tslots; /* variables used for voice/net lib calls */
int error; /* reason for failure of function */
/*

* Qonstruct device nane paraneter for Qpen function and

* Qpened |ine devices for each tinme slot on DIl Bl using i nbound
* Argentina R2 protocol .

*/

for (ts = 1,port_index = 1; ts <= MWXCHAN ts++ port_i ndex++) {

vbnum= (ts - 1) / 4 + 1;
vch = ((ts - 1) %4) + 1;
sprintf (devnane, ":N dtiBlT%: P_ar_r2_o: V_dxxxB%ICA", ts, vbnum vch);
sr_hol d();
if (gc_Qpen(&ort[port_index].|dev, devnane, 0) != GC SUXESS) {
/* process error return as shown */
error = print_error("gc_Qpen");
sr_rel ease();
return(error);

if (gc_SetUWsrAttr(port[port_index].ldev,
(void *)&port[port_index]) != GC SUCESS {
/* process error return as shown */
error = print_error("gc_SetUsrAttr");
sr_rel ease();
return(error);

if (gc_GetNetworkH port[port_index].I|dev,
& port[port_index].networkh)) !'= GC SUCCESS) {
/* process error return as shown */
error = print_error("gc_Get NetworkH');
sr_rel ease();
return(error);

if (gc_GetVoiceH port[port_index].!|dev,
& port[port_index].voiceh)) != GC SUCCESS) {
/* process error return as shown */
error = print_error("gc_GetVoi ceH');
sr_rel ease();
return(error);

}

port[port_index].blocked = 1; /* channel is blocked until unbl ocked */
/* event is received. */

sr_rel ease();

196

opens a GlobalCall device gc_Open()

}
/*
* Application is nowready to make a call or wait for a call.
*/
return (0);
}
/*
* int close_line_devices (void)
*
* RETURN 0 - function successful
* error - dobal Gl error nunber
*
*/
int close_line_devices(void)
int port_index; /* port index */
int error; /* reason for failure of function */

for (port_index = 1; port_index <= MAXCHAN port_i ndex++) {
if (gc_dose(port[port_index].ldev) != GC SUXESS) {
/* process error return as shown */
error = print_error("gc_d ose");

return (error);

}

if (sr_dishdlr(EV_ANYDEV, EV_ANYEVT,
(long (*) (void *))evt_hdlr) == -1) {
printf("sr_dishdlr failed\n");
exit(l);

return;

Windows NT example: the following example illustrates enabling an event
handler before issuing the gc_Open() function to capture the
GCEV_UNBLOCKED event when using Windows NT multithreaded
applications.

/ *
* Wndows header (s)
*/

#i ncl ude <wi ndows. h>

/ *
* Standard D al ogi ¢ header (s)
*
/

#include <srllib. h>
#i ncl ude <dxxxlib. h>
#include <dtilib. h>

/ *
* @ obal Cal | header(s)
*
/
#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>

197

gc_Open() opens a GlobalCall device

#define MAXCHAN 30 /* max. nunber of channels in system*/
/*
* Data structure which stores all information for each |ine
*/
static struct channel {
LI NEDEV | dev; /* Qobal Call APl line device handl e */
RN crn; /* Qobal Call APl call handle */
int bl ocked,; /* channel bl ocked/ unbl ocked */
int net wor kh; /* network handl e */
int voi ceh; /* voice handl e */

} port[MAXCHANH] ;

/*

* Q@ obal variabl e(s)

*/

METAEVENT net aevent ; /* netaevent structure */
char *program nane; /* program name */

/*

* Function prototype(s)
*/

int print_error(char *function);
int evt_hdl r(void);

int open_|ine_devices(void);

int close_line_devices(void);

/*
* Main Program
*/

void main(int argc, char *argv[])
{

/* Set srl node */

int node = SR STASYNG

/* Conpil er warnings */
program nane = argv[0];
argc = argc;

/* Set SRL node */
sr_set par n{ SRL_DEVI CE, SR MCDELTYPE, &node);

/* Enabl e the event handl er */
i f (sr_enbhdl r (EV_ANYDEV, EV_ANYEVT,

(long (*) (unsigned |ong)_)evt_hal ry =-1) {
printf("sr_enbhdlr failed\n");
exit(1);

/* Start the library */

if (gc_Start(NJL) !'= GC SUCCESS) {
/* process error return as shown */
print_error("gc_Start");

}

/* open the line devices */
open_| i ne_devi ces();

/* wait for an event */
sr_wai t evt (50);

/* close the line devices */
cl ose_line_devices();

/* Stop the library */

198

opens a GlobalCall device

gc_Open()

-

-~

if (gc_Stop() != GC SUESS {
/* process error return as shown */
print_error("gc_Stop");

*
*int print_error (char *function)
*
* INPUT: char *function - function name
* RETURN gc_error - Qobal Gall error nunber
*
*/
nt print_error(char *function)
int cclibid; /* cclibid for gc_ErrorValue() */
int gc_error; /* Qobal Call error code */
| ong cclib_error; /* Call Control Library error code */
char *gcnsg; /* points to the gc error nessage string */
char *ccnsg; /* points to the cclib error message string */

gc_ErrorVal ue(&gc_error, &cclibid, &clib_error);

gc_Resul tMsg(LIB D G (long) gc_error, &gycnsg);

gc_Resul tMsg(cclibid, cclib_error , &cnsg);

printf ("% failed\n gc(0x%x) - %\n cc(Ox%x) - 9%\n",
function, gc_error, gcnsg, cclib_error, ccnsg);

return (gc_error);

*

* int evt_hdlr (void)

*

* RETURN 0 - function successful

* error - globalcall error nunber
*

*/

nt evt_hdl r(voi d)

struct channel *pline;
int error; /* reason for failure of function */

if (gc_Get MetaEvent (&metaevent) != GC SUCCESS) {
/* process error return as shown */
error = print_error("gc_Get MetaEvent");
return(error);

if (metaevent.flags & GOME_GC EVENI) {
/* process dobal Call events */

if (gc_GetUWsrAttr(netaevent.linedev, (void **)&line) != GC SUCESS) {
/* process error return as shown */
error = print_error("gc_GetUsrAttr");
return(error);

}

switch (netaevent. evttype) {
case QCEV_UNBLCCKED
printf("recei ved GCEV_UNBLOKED event on %\n",
ATDV_NAMEP(pl i ne- >net wor kh)) ;
pl i ne->bl ocked = 0;
br eak;

defaul t:

199

gc_Open() opens a GlobalCall device

printf ("Unexpected @ obal Call event received\in");

br eak;
}
el se {
/* process other events */
}
return 0O
}
/*
* int open_line_devices (void)
*
* RETUR\N 0 - function successful
* error - dobal Gl error nunber
*
*/
int open_line_devices(void)
char devnane[64] ; /* argunent to gc_Qpen() function */
int vbnum = 0; /* virtual board nunber (1-based) */
int vch = 0; /* voi ce channel nunber (1-based) */
int ts; /* tinme slot nunber (1-based) */
int port _i ndex; /* index for 'port’ */
int error; /* reason for failure of function */
/*

* Qonstruct device nane paraneter for Qpen function and

* Qpened |ine devices for each tinme slot on DIl Bl using i nbound
* Brazil R2 protocol .

*/

for (ts = 1,port_index = 1; ts <= MWXCHAN ts++ port_i ndex++) {

vbnum= (ts - 1) / 4 + 1;
vch = ((ts - 1) %4) + 1;
sprintf (devnanme, ":N dtiBlT%: P_br_r2_o: V_dxxxB%ICA", ts, vbnum vch);

/* open |ine device */

if (gc_Qpen(&port[port_index].|dev, devnane, 0) != GC SUXESS) {
/* process error return as shown */
error = print_error("gc_Qpen");

return(error);

}

/* assign port[port_index].ldev to *dev_handl e */
printf("%d\n", port[port_index].!|dev);

/* set user attribute */

if (gc_SetWsrAttr(port[port_index].Idev,
(void *)&port[port_index]) != GC SUESS {
/* process error return as shown */
error = print_error("gc_SetUsrAttr");

return(error);

/* get network handle */

if (gc_Get Networ kH port[port_i ndex] .| dev,
& port[port_index].networkh)) !'= GC SUCCESS) {
/* process error return as shown */
error = print_error("gc_GetNetworkH');

200

opens a GlobalCall device gc_Open()

return(error);

}

/* get voice handl e */
if (gc_GetVoiceH port[port_index].!|dev,
& port[port_index].voiceh)) !'= GC SUXESS) {
/* process error return as shown */
error = print_error("gc_GetVoi ceH');

return(error);

}

port[port_index].blocked = 1; /* channel is blocked until unbl ocked */
/* event is received. */

}
/*
* Application is nowready to make a call or wait for a call.
*/
return (0);
}
/*
* int close_line_devices (void)
*
* RETURN O - function successful
* error - Qobal Gall error nunber
*
*/
int close_line_devices(void)
int port_index; /* port index */
int error; /* reason for failure of function */

for (port_index = 1; port_index <= MAXCHAN port_i ndex++) {
/* close line device */
if (gc_Qose(port[port_index].ldev) != GC SUXESS) {
/* process error return as shown */
error = print_error("gc_d ose");

return (error);

}

/* disable the handl er */
if (sr_dishdlr(EV_ANYDEV, EV_ANYEVT,

(long (*)(unsigned long))evt_hdir) == -1) {
printf("sr_dishdlr failed\n");
exit(l);
}
return O;
}
W Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

201

gc_Open()

opens a GlobalCall device

B See Also

202

gc_Attach()

gc Close()
gc_Detach()
gc_GetNetworkH()
gc_GetVoiceH()
gc_LoadDxParm()
gc_OpenEx()

opens a GlobalCall device and sets user defined attribute gc_OpenEx()

Name: int gc_OpenEx(linedevp, devicename, rfu, usrattr)
Inputs: LINEDEV *linedevp * pointer to returned line device
char *devicename * pointer to ASCII string
int rfu * reserved for future use
void *usrattr * pointer to user attribute
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h
Category: system controls and tools
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_OpenEx() function opens a GlobalCall device and sets user defined
attribute and returns a unique line device 1D (or handle€) to identify the physical
device or devicesthat carry the call (e.g., aline device may represent asingle
network, time ot or the grouping together of atime slot and a voice channel).

The gc_OpenEXx() function can be used in place of agc_Open() function
followed by agc_SetUsrAttr (') function. The gc_OpenEx() function includes
al the functionality of thegc_Open() function (see the gc_Open() function
description for details) plus the added feature of the usrattr parameter. The
usrattr parameter pointsto a buffer where a user defined attribute is stored thus
eliminating the need to call thegc_SetUsr Attr (') function after calling a
gc_Open() function.

Examples of using usrattr include using it as a pointer to a data structure
associated with aline device or an index to an array. The data structure may
contain user information such as the current call state, line device identification,
etc.

Parameter Description

linedevp: seethe gc_Open() function description for details
devicename: seethe gc_Open() function description for details

203

gc_OpenEx() opens a GlobalCall device and sets user defined attribute

Par ameter Description

rfu:

seethe gc_Open() function description for details

usrattr: pointer to buffer where a user defined attribute is stored.

Termination Event: None.

B Cautions

Seethe gc_Open() function description for details.

B Example

This gc_OpenEx() function example uses the same example code as the
gc_Open() function example except that the open line devices subroutine is
replaced with the following subroutine:

»
int open_|ine_devices(void)
{
char devnane[64] ; /* argunent to gc_QpenEx() function */
int vbnum = 0; /* virtual board nunber (1-based) */
int vch = 0; /* voi ce channel nunber (1-based) */
int ts; /* tinme slot nunber (1-based) */
int port _i ndex; /* index for 'port’ */
int lines, brds, tslots; /* variables used for voice/net lib calls */
int error; /* reason for failure of function */
/*

*
*

*
*

for

204

Qonstruct devi ce nane paraneter for Qpen function and
Qpened |ine devices for each tinme slot on DIl Bl using i nbound
Argentina R2 protocol .

(ts = 1,port_index = 1; ts <= MWXCHAN ts++, port_i ndex++) {

vbnum= (ts - 1) / 4 + 1;

vch = ((ts - 1) %4) + 1;

sprintf (devnanme, ":N dtiBlT%: P_ar_r2_o: V_dxxxB%ICA", ts, vbnum vch);

sr_hol d();

if (gc_QpenEx(&port[port_index].|dev, devnane, 0, (void *)&ort[port_index])
1= QC SUXCESS) {

/* process error return as shown */
error = print_error("gc_Qpen");
sr_rel ease();

return(error);

opens a GlobalCall device and sets user defined attribute

gc_OpenEx()

/* NOTE The gc_SetUWsrAttr() function is not required because

* the user attribute was set as a paraneter in the
* gc_QpenEx() function.
*/

if (gc_GetNetworkH port[port_index].I|dev,
& port[port_index].networkh)) !'= GC SUXCESS) {
/* process error return as shown */
error = print_error("gc_Get NetworkH');
sr_rel ease();
return(error);

if (gc_GetVoiceH port[port_index].!|dev,
& port[port_index].voiceh)) !'= GC SUXESS) {
/* process error return as shown */
error = print_error("gc_GetVoi ceH');
sr_rel ease();
return(error);

}

port[port_index].blocked = 1; /* channel is blocked until unbl ocked */

/* event is received. */

sr_rel ease();

}

/*
* Application is nowready to make a call or wait for a call.
*/

return (0);

B Errors

See the gc_Open() function description for details.

B See Also

* Seethegc Open() function description for details.
e gc GetUsrAttr()
* gc _SetUsrAttr()

205

gc_ReleasecCall() releases all internal resources

Name: int gc_ReleaseCall(crn)

Inputs: CRN crn » cal reference number
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h

Category: basic cal control
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_ReleaseCall() function releases al internal resources for the specified
call. Thisfunction must be called after agc_DropCall() function completes.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description

crn: Cadll Reference Number

Termination Event: None.

B Cautions

Applications should call the gc_ReleaseCall() function to release the CRN after a
connection is terminated. Failure to do so may cause memory problems due to
memory being allocated and not being rel eased.

After issuing this function, the CRN is no longer valid.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>
#include <srllib. h>

206

releases all internal resources gc_ReleaseCall()

#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>

/*

* Assune the fol |l owing has been done:

* 1. Qpened line devices for each tine slot on DIl Bl.

* 2. Wit for a call using gc_VéitCall ()

* 3. An event has arrived and has been converted to a netaevent
* usi ng gc_Get Met aEvent () or gc_Get Met aBvent Ex() (Wndows NIT)
* 4. The call has been dropped with gc_DropCall ()

*/
int release_call (CRN crn)
int cclibid; /* cclibid for gc_ErorValue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Qontrol Library error code */
char *nsg; /* points to the error nessage string */
/*
* Rel ease the systemresources using gc_Rel easeCall ().
*/

if (gc_ReleaseCall(crn) !'= GC SUCCESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GG (long) gc_error, &nsg);
printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - %\n",
net aevent . evtdev, gc_error, nsg);
return(gc_error);

}
/*
* (nce gc_Rel easeCal | () returns, systemis now ready to generate
* or accept another call on this Iine device.
*/
return (0);
}
W Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the

gcerr.hfile, seelisting in Appendix C.

B See Also

e gc AnswerCall()
gc _DropCall()
gc_MakeCall()
gc_WaitCall()

207

gc_RegANI()

returns the caller’s ID

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_RegANI(crn, ani_buf, reqtype, mode)

CRN crn » call reference number
char *ani_buf * buffer to store ANI digits
int regtype * request type

unsigned long mode « async or sync

0 if successful

<0 if failure

gclib.h

gcerr.h

gcisdn.h

interface specific

asynchronous or synchronous

m |ISDN PRI O E-1CAS O T-1robbed bit
O Anaog

B Description

The gc_RegANI () function returns the caller’ s 1D, which is normally included in
the ISDN setup message. If the caller ID does not exist, and the (AT&T) ANI-on-
Demand feature is avail able, the driver will automatically request caller ID from
the network. The returned caller ID is stored in the buffer indicated by the
ani_buf parameter.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description

crn: Call Reference Number

ani_buf: address of the buffer where ANI digitswill beloaded. This
buffer will be terminated by \0'.

regtype: request type; sekable 33 for possible values

mode; set to EV_ASYNC for asynchronous execution or to

208

EV_SYNC for synchronous execution

returns the caller’s ID gc_RegANI()

Table 33. ANI Request Types

Request Type Description
ISDN_CPN_PREF Calling party number preferred.
ISDN_BN_PREF Billing number preferred.
ISDN_CPN Calling party number only.
ISDN_BN Billing number only.
ISDN_CA_TSC Special use.

Termination Event: In the asynchronous mode, if the calling party number is
acquired successfully, a GCEV_REQANI event is sent to the application;
otherwise, aGCEV_TASKFAIL event is sent.

A GCEV_DISCONNECTED event may be an unsolicited event reported to the
application after agc_ReqANI () function isissued.

B Cautions

Ensure that ani_buf buffer is at least as large as GC_ADDRSIZE bytes.
Currently, ANI-on-Demand is only available on the AT&T ISDN network. If this
function isinvoked for an unsupported technology, the function fails. The error
value EGC_UNSUPPORTED will be the Global Call value returned when the
gc_ErrorValue() function is used to retrieve the error code.

B Example

/
Assune the follow ng has been done:
1. device has been opened (e.g. :NdtiB1lT1: P_jsdn

©N dti B1T2: P_isdn, etc...)
2. gc_VaitCall() has been issued to wait for a call
3. gc_MetaEvent () has been called to convert the event into netaevent
4. a QCEV_CGFFERED has been det ect ed.

R I S N S

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

209

gc_ReqANI() returns the caller’s ID

#i ncl ude <gci sdn. h>

/*

* For this exanple, let’s assune that the node = EV_SYNC and
* req_type = | SDN CPN PREF (Calling Party Nunber Preferred).
* reg_type can be one of follow ng:

* | SDN BN _PREF (Billing Nunber preferred)

* | SDN_CPN (Calling Party Nunber only)

* | SDN BN (Billing Nunber only)

* | SDN CA TSC (Special Use)

*/

int reg_cpn(CRN crn, char *ani _buf, int reg_type, unsigned |ong node)
LI NEDEV ddd; /* Line device */
int gc_err; /* Qobal Call Error Code */
int cclibid; /* Call Control library ID*/
| ong cclib_err; /* Call Control Error Code */
char *nsQ; /* Error Message */

i f (gc_CRN\eLi neDev(crn, &ldd) != GC SUCESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &sg);
printf ("Error: gc_CRN\2Li neDev ErrorValue: % - 9%\n",
cclib_err, nsg);
return(cclib_err);

}

if(gc_RegAN (crn, ani_buf, reg_type, node) != GC SUCCESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - %\n",
ddd, gc_err, nsg);
return(cclib_err);

}

return(0);

B Errors

If thisfunction returnsa <0 to indicate failure or if the GCEV_TASKFAIL event
isreceived, usegc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultM sg() function as described in section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also

e gc _GetANI()
e gc_WaitCall()

210

disconnects any active calls gc_ResetLineDev()

Name: int gc_ResetLineDev(linedev, mode)
Inputs: LINEDEV linedev « GlobalCall line device handle
unsigned long mode « async or sync
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h
Category: system control and tools
Mode: asynchronous or synchronous
Technology: m ISDN PRI 0 E-1CAS 0 T-1 robbed bit
m Anaog

B Description

The gc_ResetLineDev() function disconnects any active calls on the line device.
All calls being setup are aborted. Thisfunction istypically used after arecovery
from atrunk error, arecovery from an alarm condition or when resetting the
channel to the Null state.

When used in asynchronous mode, the GCEV_RESETLINEDEYV event indicates
successful termination of thegc_ResetLineDev() function. After receiving this
event, the application must issue anew gc_WaitCall() function to receive the
next incoming call on the channel.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description
linedev: GlobalCall line device
mode: set to EV_ASYNC for asynchronous execution or to

EV_SYNC for synchronous execution

Termination Event: Inthe asynchronous mode, GCEV_RESETLINEDEV event
is sent to application if successful; GCEV_TASKFAIL event if not successful.

211

gc_ResetLineDev() disconnects any active calls

B Cautions

After successful completion of this function, the application must issue a new
gc_WaitCall() function to receive the next call on the channel.

B Example

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>
#include <srllib. h>
#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>
#define MMXCHAN 30 /* max. nunber of channels in system*/
/*
* Data structure which stores all information for each line
*/
struct |inebag {
LI NEDEV | dev; /* Qobal Call Iine device handle */
CN crn; /* QobalCall APl call handle */
int state; /* state of first layer state nachi ne */
} port[MAXCHANH] ;

/
Assune the foll ow ng has been done:
1. Qpened line devices for each tinme slot on DIl Bl.
2. Application has recei ved QEV BLOXED due to an alarm
condition on the line
3. Application has recei ved GEV_UNBLOXKED due to alarm
recover ed

At this point, the application can 'reset’
all of it's line devices back to nornal.
(Aiternatively, this could be called at any tine)

* % ok Kk ok ok % ok ok F

*/

int restart(void)
{
int i; /* index for 'port’ */
int ts; /* network tine slot nunber */

/*
* (ean up and get ready to generate/accept calls again.
*/
for (ts = 1,i=1; ts <= MAXCHAN ts++i++) {
if (gc_ResetlLineDev(port[i].ldev, EV.SYNO != GC SUXCESS) {
/* get cause val ue and process error */

/*

* Application will need to re-issue gc_WitCall() to wait
* for incoming calls

*/

return (0);

212

disconnects any active calls gc_ResetLineDev()

B Errors

If thisfunction returnsa <0 to indicate failure or if the GCEV_TASKFAIL event
isreceived, usegc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultM sg() function as described in section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also
e gc WaitCall()

213

gc_ResultMsg()

retrieves an ASCII string describing result code

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_ResultMsg(cclibid, result_code, msg)

int cclibid « cdl control library ID

long result_code » used to get associated message

char **msg * pointer to address of returned
message string

0 if successful

<0 if failure

gclib.h

gecerr.h

system control and tools

synchronous

m |ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_ResultM sg() function retrieves an ASCI|I string describing result code.
The result_code parameter may represent an error code returned by the
gc_ErrorValue() function or aresult value returned by agc ResultValue()

function.

Parameter Description

cclibid: call control library identification from which theresult_code
was generated. If theresult_code valueis a GlobalCall error
code or result value, then set cclibid to LIBID_GC.

result_code: result value of the event or error code from the library,
cclibid

msg: pointer to address where the description of the result_code

message will be stored

Termination Event: None.

B Cautions

Do not overwrite the *msg pointer asit points to private internal GlobalCall data

space.

214

retrieves an ASCII string describing result code gc_ResultMsg()

B Example

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/* cclidid = LIBID G wll print G Libs error code */
void print_result_nsg(int cclibid, long result_code)

char *nsg; /* points to the error nessage string */
char *|'i b_narre; /* library nane for cclibid */

if (gc_ResultMsg(cclibid, result_code, &rsg) == GC SUCESS) {
gc_QCLi bl DToNane(ccl i bid, & ib_nane);
printf ("% library had error Ox%x - %\n", |ib_name, cc_error, nsg);

} else {
printf("gc_ResultMsg failed\n");

B Errors

If thisfunction returnsa <0 to indicate failure, usethegc _ErrorValue() and
gc_ResultM sg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All GlobalCall error codes are defined in the
geerr.hfile, seelisting in Appendix C.

B See Also
* gc_ResultValue()

215

gc_ResultValue()

retrieves the cause

Name:

Inputs:

Returns:

Includes:

Category:
Mode:
Technology:

int gc_ResultVaue(metaeventp, gc_resultp, cclibidp,
cclib_resultp)

METAEVENT * pointer to a metaevent block
*metaeventp

int *gc_resultp * pointer to returned Global Call
result

int *cclibidp * pointer to returned call control
library ID

long *cclib_resultp * pointer to returned call control
library result

0if successful

<0 if failure

gclib.h

gcerr.h

icapi.h (optional, if using ICAPI errors)

gcisdn.h (optional, if using ISDN errors)

system control and tools

synchronous

m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_ResultValue() function retrieves the cause of an event. The “result”
uniquely identifies the cause of the event to whichhibBmeventp parameter

points. The GlobalCall result value, the call control library 1D, and the actual call
control library result value are available upon successful return of the function.

Parameter Description

metaeventp: pointer to the event data block. This pointer is
acquired viggc_GetM etaEvent() or the
gc_GetMetaEventEx() function (Windows NT
extended asynchronous mode only)..

gc_resultp: address where the GlobalCall result value is to be
stored

cclibidp: address where the identification of the call control

216

library associated with this metaevent is to be stored

retrieves the cause

gc_ResultValue()

Par ameter Description

cclib_resultp:

control library metaevent is to be stored

Termination Event: None.

B Cautions

None

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

int get_result_val ue(void)

{

int gc_result; /* Qobal Call error code */

int cclibid; /* Call Gontrol Library ID*/

| ong cc_result; /* Call Gontrol Library error code */
char *nsg; /* pointer to error nessage string */

/* btain the event data */

sr_waitevt(-1); /* Wit indefinitely for an event */
gc_Get Met aBEvent (&net aevent) ; /* Get event paraneters into netaevent */

/* find the reason for the event */
if (gc_ResuI tVal ue(&metaevent, &jc_result, &cclibid, &c_result)
= QC_SUCCESS)

gc Resul t Msg(LIBID GG (I ong) gc_result, &nsg);

printf ("Event Ox%x received on LDEV: %d - 9%\n", netaevent.evttype,
net aevent . evt dev, nsg);

return(0);

} else {

/* process error return as shown */

gc_ErrorValue(&c_error, &cclibid, &c_error);

gc_Resul t Msg(LIB D GG (Iong) gc_error, &nsQ);

printf("Eror retrieving Resul tValue on |ine device handl e: 0x%x, \
ErrorVal ue: Ox%x - 9%\n",

net aevent . evtdev, gc_error, m;g);
return(gc_error);

address where the result value associated with the call

217

gc_ResultValue() retrieves the cause

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also
 gc ResultMsg()

218

sets billing information for the call gc_SetBilling()

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_SetBilling(crn, rate_type, ratep, mode)

CRN crn » cal reference number

int rate type * type of hilling data

GC _RATE_U *ratep * pointer to call charge rate
unsigned long mode * async or sync

0if successful

<0 if failure

gclib.h

gecerr.h

gcisdn.h (for applications that use ISDN symbols)
optional feature

asynchronous or synchronous

m |SDN PRI m E-1CAS 0 T-1robbed bit
0 Anaog

B Description

The gc_SetBilling() function sets billing information for the call associated with

the specified CRN. For protocols that support this feature, this function tells the
Centra Office whether or not to charge for the call. For AT&T ISDN

applications, the billing rate is available to applications that use AT&T’s Vari-Bill
service. For some E-1 CAS protocols, different billing rates can be chosen on a

per call basis.

Refer also to the appropria®&lobalCall Technology User’s Guider technology
specific information about the rate type, ratep and mode parameters.

Parameter Description

crn: Call Reference Number

rate type: type of billing data.

ratep: pointer to a data structure which contains the charge
information for the current call.

mode: set to EV_SYNC for synchronous execution or to

EV_ASYNC for asynchronous execution (refer to the
appropriate GlobalCall Technology User’s Guide
determine if the asynchronous mode is supported for your
technology)

219

gc_SetBilling() sets billing information for the call

Termination Event: In the asynchronous mode, a GCEV_SETBILLING eventis
sent to the application if successful; a GCEV_TASKFAIL event if not successful..

B Cautions

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc ErrorValue() function is used to retrieve the error code.

B Example

/*

* Assune the fol |l owing has been done:

* 1. device has been opened (e.g. :NdtiBlT1:P_isdn,

* :N dti B1T2: P_isdn, etc...)

* 2. gc_WiitCGall () has been issued to wait for a call.

* 3. gc_Get MetaBEvent () or gc_Get MetaBEvent Ex() (Wndows NT) has been
* called to convert the event into netaevent.

* 4. a QEV_CGFFERED has been det ect ed.

* 5. a call has been established.

*/

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */

#i ncl ude <stdio. h>
#include <srllib.h>
#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>
#i ncl ude <gci sdn. h>

/*
* For this exanple, let’s assune that node = SYNC and
* the rate_type = | SDN FLAT_RATE The ratep stores the billing information.
* rate_type can be one of the follow ng:
* | SDN_NEW RATE
* | SDN_PREM CHARGE
* | SDN PREM CRED' T
* | SDN_FREE CALL
*
* Note: This is only available for sone protocol s.
* This function call is used anytine after the connection
* i s established.
*/
int set_billing(ORNcrn, int rate_type, GC RATE U *ratep, unsigned | ong node)
LI NEDEV ddd; /* Line device */
int gc_err; /* Qobal Call Eror Code */
int cclibid; /* Call Control library ID*/
| ong cclib_err; /* Call Control Error Code */
char *nsg; /* Error Message */

i f (gc_CRN\eLi neDev(crn, &ldd) != GC SUCESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Error: gc_CORN\2LineDev ErrorValue: % - %\n",
cclib_err, nsg);

220

sets billing information for the call gc_SetBilling()

return(cclib_err);

}

if(gc_SetBilling(crn, rate type, ratep, node) != GC SUCCESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - %\n",
ddd, gc_err, nsg);
return(cclib_err);

}

return(0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also
e gc _SetParm()

221

gc_SetCallingNum() sets default calling party number

Name: int gc_SetCallingNum(linedev, calling_num)
Inputs: LINEDEV linedev « GlobalCall line device handle
char *calling_num e calling phone number string
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h
Category: optional feature
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
= Anaog

B Description
The gc_SetCallingNum(') function sets default calling party humber associated

with the specific line device. The calling party number ends with \0'. The calling
party number may also be set using tre SetParm() function.

Parameter Description

linedev: GlobalCall line device handle
calling_num: phone number of the calling party (ASCII string format)

Termination Event: None

B Cautions

If this function is invoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the GlobalCall value returned when
thegc ErrorValue() function is used to retrieve the error code.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

222

sets default calling party number

gc_SetCallingNum()

int set_calling_nun{LI NEDEV | dev)

{

int cclibid; /* cclibid for gc_ErorVal ue() */

int gc_error; /* Qobal Call error code */

| ong cc_error; /* Call Gontrol Library error code */
char *nsg; /* points to the error nessage string */

/*
if

—~—

* Ok bk
-

Set up the calling party nunber on the line device */

(gc_SetCal | i ngNun{| dev, "2019933000") != GC SUCCESS) {

/* process error return as shown */

gc_ErrorValue(&c_error, &cclibid, &c_error);

gc_ResultMsg(LIBID GG (long) gc_error, &nsg);

printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - %\n",
| dev, gc_error, nsQ);

return(gc_error);

Application can proceed to nake a call, and the calling party
nunber wll be as set above. It may be changed later, if
necessary.

return (0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also

gc_MakeCall()

223

gc_SetChanState() changes the maintenance state

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_SetChanState(linedev, chanstate, mode)
LINEDEV linedev + GlobaCall line device handle
int chanstate « channel service state
unsigned long mode « async or sync

0 if successful

<0 if failure

gclib.h

gecerr.h

optional feature

asynchronous or synchronous

m |ISDN PRI m E-1CAS m T-1robbed bit
O Anaog

B Description

The gc_SetChanState() function changes the maintenance state of the indicated
channel. When power isinitially applied, all channels are placed in the In Service

state.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description

linedev: Global Call line device handle

chanstate: service state of line. Possible values are: In Service,
Maintenance, and Out of Service, see Table 34

mode: set to EV_ASYNC for asynchronous execution or to EV_SYNC

224

for synchronous execution

changes the maintenance state gc_SetChanState()

Table 34. Service States

Type Description

GCLS INSERVICE Inform driver that host is ready to receive
and send a message.

GCLS MAINTENANCE Inform host that normal outbound traffic is
not allowed, and that only inbound test calls
can be made.

GCLS OUT_OF SERVICE | Inform driver that host is not ready to
receive or send messages. Seethe
GlobalCall Technology User’'s Guidior
your network interface for inbound and
outbound requests that will be rejected.

Termination Event: In the asynchronous mode, if the request for a change of
channel stateis accepted, a GCEV_SETCHANSTATE event is sent to the
application; otherwise, a GCEV_TASKFAIL event is sent.

B Cautions

This function should only be invoked while in the Null state.

M Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/* Assune fol | owi ng was done:

* |Fnot inthe Null state, THEN

* issue gc_DropCall () function (if needed) and then the
* gc_Rel easeCal | () function.

*/

int set_channel _| nServi ce(LI NEDEV | dev)

{

int state; /* State to which channel has to be set */
int cclibid; /* cclibid for gc_ErorVal ue() */

int gc_error; /* Qobal Call error code */

| ong cc_error; /* Call Control Library error code */

char *nsg; /* points to the error nessage string */

/*

225

gc_SetChanState() changes the maintenance state

* Set channel to "INSERVICE' state
*/
state = QLS | NSERVI CE /* constant describing channel state */
if (gc_SetChanState(ldev, state, EV.SYNO != GC SUCCESS) {

/* process error return as shown */

gc_ErrorValue(&c_error, &cclibid, &c_error);

gc_ResultMsg(LIBID GG (long) gc_error, &nsg);

printf ("Error on Device handle: 0x%Xx, ErrorValue: %l - %\n",

| dev, gc_error, nsQ);
return(gc_error);

}

/*
* Application can change state agai n when necessary.
*/

return (0);

B Errors

If thisfunction returnsa <0 to indicate failure or if the GCEV_TASKFAIL event
isreceived, usegc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultM sg() function as described in section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also
e gc WaitCall()

226

sets the event mask gc_SetEvtMsk()

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_SetEvtMsk(linedev, bitmask, action)

LINEDEV linedev * GlobalCall line device handle

unsigned long bitmask = bitmask or events

int action * action to be taken on the mask
bit

0 if successful

<0 if failure

gclib.h

gecerr.h

system control and tools

synchronous

m |ISDN PRI m E-1CAS m T-1robbed bit

m Anaog

B Description

Thegc_SetEvtMsk(') function sets the event mask associated with the specified
line device. If an event bitmask parameter is cleared, the event will be disabled
and will not be sent to the application. The default isto enable al events.

The linedev parameter may represent a network interface trunk or an individual
channel, e.g., atimesot. Seethe GlobalCall Technology User’s Guidior your
network interface to determine the level of the event masks needed.

Parameter Description

linedev: GlobalCall line device handle

bitmask: specifies the events to be enabled or disabled by setting the
bitmask. Multiple transition events may be enabled or
disabled with one function call if the bitmask values are
bitwise ORed. Possible bitmask values are listed in Table 35.

action: application may either set or reset the mask bit(s) as specified

in bitmask. Possible actions are:

e GCACT_SETMSK: Enables natification of events
specified in bitmask parameter and disables notification
of any event not specified.

« GCACT_ADDMSK: Adds natification of events
specified in bitmask parameter to previously enabled

227

gc_SetEvtMsk()

sets the event mask

Par ameter Description

events.

e GCACT_SUBMSK: Disables natification of events
specified in bitmask parameter.

Table 35. bitmask Parameter Values

Type

Description

GCMSK_ALERTING

Set mask for alerting event
GCEV_ALERTING (default: enabled).

GCMSK_BLOCKED

Set mask for GCEV_UNBLOCKED event
(default; enabled).

GCMSK_UNBLOCKED

Set mask for GCEV_UNBLOCKED event
(default; enabled).

GCMSK_PROCEEDING

(ISDN only) Set mask for proceeding event
GCEV_PROCEEDING (default: enabled).

GCMSK_PROC_SEND

(ISDN only) Set mask (enable) to allow
application to send the Proceeding message
or clear mask (disable) to have this handled
automatically (default: disabled - message
automatically sent by firmware).

GCMSK_PROGRESS

(ISDN only) Set mask for call progress event
GCEV_PROGRESS (default: enabled).

GCMSK_SETUP_ACK

(ISDN only) Set mask to report (enabled) or
to not report (disabled) the incoming

“SETUP_ACK” message (default: disabled

)

The GCEV_BLOCKED and GCEV_UNBLOCKED events are maskable on a line
device representing a trunk or a time slot level. The application may disable
(mask) the event on any line device so that the event is not sent to that line device.
For example, when a trunk alarm occurs, this alarm is reported via the

GCEV_BLOCKED event. If the application has not masked (disabled) this

GCEV_BLOCKED event on some or all of the opened time-slot level line devices
on the trunk, the GCEV_BLOCKED event will be sent to each of the line devices

228

sets the event mask gc_SetEvtMsk()

onthetrunk. Also, if this GCEV_BLOCKED event is not disabled on the board-
level line device, the alarm is sent to the board.

The GCEV_ALERTING event is maskable as described above except that this
event is always call related and always associated with atime-slot level line
device. Thetime-slot level line device should be passed to the gc_SetEvtM sk()
function.

See the Global Call Technology User’s Guidir your network interface for
additional details.

Termination Event: None.

B Cautions

When using the ISDN call control library, if the line device represents an ISDN
time slot, setting the mask for an event on any time slot results in setting the mask
to the same value for all time slots on the same trunk. The ISDN call control
library treats the line device asif it were at board level, thus setting the mask for
al time dot level line devices on atrunk when any line device maskiis set.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

/*

* Assune the fol |l owing has been done:

* 1. The line device has been opened.
*/

int set_event_mask(LI NEDEV | dev)

{

int cclibid; /* cclibid for gc_ErorValue() */

int gc_error; /* Qobal Call error code */

| ong cc_error; /* Call Qontrol Library error code */
char *nsg; /* points to the error nessage string */
/*

* Set the event bl ocked and unbl ocked event nasks to enabl e

* for this application.

*/

/*

* Enabl e the B ocked and Uhbl ocked events.

*/

if (gc_Set Evt Msk(1dev, (GOVBK BLOKED | GOVBK UNBLOCKED), GCACT_ADDVBK)
1= QC_SUXCESS) {
/* process error return as shown */

229

gc_SetEvtMsk() sets the event mask

}
/

/

i
}
i

Y

gc_ErrorValue(&c_error, &cclibid, &c_error);

gc_ResultMsg(LIBID GG (long) gc_error, &nsg);

printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - %\n",
| dev, gc_error, nsQ);

return(gc_error);

*

* Proceed to generate or accept calls on this |line device.

*/

*

* Now di sabl e notification of Bl ocked and Unhbl ocked events,

* and enabl e notification of Alerting event, w thout

* affecting any other event nasks which nay have been set.

*/

f (gc_Set BEvt Msk(| dev, (GOVBK BLOCKED | GOVBK UNBLOCKED), GCACT_SUBMVBK)
1= QC_SUXCESS) {
/* Process error */

f (gc_Set BEvt Msk(1 dev, QOVBK ALERTING GCACT_ADDVBK) != GC SUXCESS) {
/* Process error */

eturn (0);

Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and

gc_

ResultM sg() functions as described in Section 3.11. Error Handling to

retrieve the reason for the error. All GlobalCall error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also

230

gc_SetParm()

set an additional information element gc_SetinfoElem()

Name: int gc_SetInfoElem(linedev, iep)

Inputs: LINEDEV linedev * D channel GlobalCall line
device handle
GC_IE BLK *iep * pointer to information

element (IE) block

Returns: 0if successful
<0 if failure

Includes: gclib.h
gcerr.h
gcisdn.h

Category: interface specific

Mode: synchronous
Technology: = ISDN PRI 0 E-1CAS O T-1robbed bit

O Anaog

B Description

The gc_SetInfoElem() function alows applications to set an additional
information element in the next outbound | SDN message on a specific D channel.
This and the facility functions are useful tools for users who wish to use ISDN
flexibility and capabilities. A typical application for the gc_SetInfoElem()
function is inserting user-to-user information elements in outbound messages.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description

linedev: GlobalCall line device handle

iep: pointer to the starting address of the information element data
structure, see paragraph 5.2. GC_IE_BLIKor data structure
details

Termination Event: None.

231

gc_SetinfoElem() set an additional information element

B Cautions

The gc_SetlnfoElem() function must be used just prior to calling afunction that
sends an |SDN message. The information elements specified by the
gc_SetlnfoElem() function are applicable only to the next outbound ISDN

message.

The line device number in the parameter must match the line device number in the
function call that sends the ISDN message.

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

* Assune the foll ow ng has been done:

* 1. device has been opened (e.g. :NdtiBLlT1: P_jsdn,
* :N dti B1T2: P_isdn, etc...)

*/

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

#i ncl ude <gci sdn. h>

/ *
* the followng info elemblock structure can be passed to the function.
* IEBLK ie;
* ie.length = 0x08; ===> Length of the info el embl ock.
* ie.data[0] = Ox7e; Wser-Wser info elemid.
* ie data[1] = 0x06; Length of the info elem
* ie datal[2] = 0x08; => Protocol D scrimnator.
* ie data[3] = 0x41; ===>the following is the message.
* ie datal4] = 0x42;
* ie.data[5] = 0x43;
* ie data[6] = 0x44;
* ie.data[7] = 0x45;

*/

int set_info_el enent (LI NEDEV ddd, GC | E BLK *ie_bl kp)
{

int gc_err; /* dobal Call Error Code */
int cclibid; /* Call Control library ID*/
| ong cclib_err; /* Call Control Error Code */
char *nsg; /* Error Message */

if(gc_SetlnfoH en{ddd, ie_blkp) != GC SUCESS) {
gc_ErrorVal ue(&gc_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);

232

set an additional information element gc_SetinfoElem()

printf ("Eror on Device handle: 0x%Xx, ErorValue: %l - 9%\n",
ddd, gc_err, nsg);
return(cclib_err);

return(0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also
e gc _SetParm()

233

gc_SetParm() sets the default parameters

Name: int gc_SetParm(linedev, parm_id, value)
Inputs: LINEDEV linedev « GlobalCall line device handle
int parm_id * parameter 1D
GC_PARM value « parameter value
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h
gcisdn.h (for applications that use ISDN symbols)
Category: system control and tools
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
O Anaog

B Description

Thegc_SetParm() function sets the default parameters and all channel
information associated with the specific line device.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description
linedev: GlobalCall line device handle
parm_id: The parameter ID definitions are listed in Table 36.

Parameter Descriptions, gc_GetParm() and
gc_SetParm(.) The “Level” column lists whether the
parameter is a channel level parameter or a trunk level
parameter. To set a trunk level parameter|itieglev
parameter must be the device ID associated with a network
interface trunk; separagraph 5.5. GC_PARM for data
structure details.

value: value selected for parameter being set

234

sets the default parameters

gc_SetParm()

Table 36. Parameter Descriptions, gc_GetParm() and gc_SetParm()

Parametert Level | Description

GCPR_CALLINGPARTY chan | Calling party number (pointer to null-
terminated ASCI|I string) (possible
values are the existing GTD
identification numbers).
Use paddressfield of GC_PARM.

E-1 CAS Parameters

GCPR_LOADTONES chan | Load tones flag enables or disables
downloading of tones when avoice
resource is attached (possible vaues:
GCPV_ENABLE, GCPV_DISABLE;
default: enabled).
Use shortvalue field of GC_PARM.

ISDN Parametersi

BC_INFO_MODE chan | Bearer channel information transfer
mode

BC _XFER_CAP chan | Bearer channel information transfer
capacity

BC_XFER_MODE chan | Bearer channel information transfer
mode

BC _XFER_RATE chan | Bearer channel information transfer
rate

USRINFO_LAYER1 chan | Layer 1 protocol to use on bearer

PROTOCOL channel

USR_RATE chan | User rateto use on bearer channel
(layer 1 rate)

CALLED NUM_TYPE chan | Called party number type

CALLED NUM_PLAN chan | Called party number plan

CALLING NUM_TYPE chan | Calling party number type

CALLING NUM_PLAN chan | Calling party number plan

235

gc_SetParm() sets the default parameters

Parametert Level | Description

CALLING chan | Calling presentation indicator
PRESENTATION

CALLING SCREENING chan | Calling screening indicator field

GCPR_MINDIGITS trunk | Sets minimum number of DDI digits
to collect prior to terminating
gc_WaitCall().

GCPR_MINDIGITS may be set using
the gc_SetParm(Jfunction. This
parameter value cannot be retrieved
using thegc_GetParm()function.

T=Seethe GlobalCall Technology User's Guide for your network interface to
det ermine appl i cabl e paraneters.
F=AllISDN parameters use the i nt val ue field of GC_PARM.

Termination Event: None.

B Cautions

None.

B Example

#include <windows.h> * For Windows NT applications only */
#include <stdio.h>

#include <stllib.h>

#include <gclib.h>

#include <gcerr.n>

#include <gcisdn.h>

intset_parm(ldev)

int cclibid; [+ cclibid for gc_ErrorValue() */

int gc_error,; * GlobalCall error code */

long cC_error; * Call Control Library error code */
char *msg; * points to the error message string */
GC_PARM gc_parm; [+ parm values */

I*

* Disable downloading tones to firmware. This is to prevent GlobalCall
*from overwriting tones which the application has set up
*
gc_parm.shortvalue = GCPV_DISABLE;
if (gc_Set Parn{l dev, GOPR LQADTONES, gc_parn) '=GC_SUCCESS){
[* process error return as shown */
gc_ErrorValue(&gc_error, &cclibid, &cc_error);
gc_ResultMsg(LIBID_GC, (long) gc_error, &msg);
printf ("Error on Device handle: Ox%lx, ErrorValue: %d - %s\n",
Idev, gc_error, msg);
retum(gc_error);

236

sets the default parameters gc_SetParm()

return (0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also
* gc GetParm()

237

gc_SetUsrAttr()

sets an attribute defined by the user

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_SetUsrAttr(linedev, usrattr)

LINEDEV linedev + GlobaCall line device handle
void *usrattr e user attribute

0 if successful

<0 if failure

gclib.h

gecerr.h

system control and tools

synchronous

m |ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

Thegc_SetUsrAttr() function sets an attribute defined by the user. Examples of
using usrattr include using it as a pointer to a data structure associated with aline
device or an index to an array. The data structure may contain user information
such asthe current cal state, line device identification, etc. The attribute number
isretrieved using the gc_GetUsr Attr () function.

Parameter Description
linedev: GlobalCall line device handle
usrattr: user defined attribute. Applications can recall this number by

calling gc_GetUsrAttr().

Termination Event: None

B Cautions

None

B Example

#i ncl ude <wi ndows. h>

#i ncl ude <stdio. h>

#include <srllib. h>
#i ncl ude <gclib. h>

238

/* For Wndows NT applications only */

sets an attribute defined by the user gc_SetUsrAttr()

#i ncl ude <gcerr. h>

#define MAXCHAN 30 /* max. nunber of channels in system*/
/*
* Data structure which stores all information for each |ine
*/
struct |inebag {
LI NEDEV | dev; /* Qobal Call |ine device handle */
RN crn; /* Qobal Call APl call handle */
int state; /* state of first layer state nachi ne */

} port [MAXCHANH] ;

/*

* Associates port_numwith Idev for |ater use

* by other procedures - will save table searches
* for the port_num corresponding to | dev

*/

int set_usrattr(LINEDEV | dev, int port_num

{

int cclibid; /* cclibid for gc_ErorVal ue() */

int gc_error; /* Qobal Call error code */

| ong cc_error; /* Call Qontrol Library error code */
char *nsg; /* points to the error nessage string */
/*

* Assuming that a line device is opened al ready and
* that its IDis Idev, let us store a neani ngful nunber
* for this Idev as an attribute for this |Idev set by user
*/
if (gc_SetWsrAttr(ldev, (void *) port_num != GC SUCCESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GG (long) gc_error, &nsg);
printf ("Error on Device handle: 0x%Xx, ErrorValue: %l - %\n",
| dev, gc_error, nsQ);
return(gc_error);

}
return (0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also

e gc GetUsrAttr()
e gc _OpenEx()

239

gc_SndMsg()

sends non-call state related ISDN message

Name:
Inputs:

Returns:
Includes:
Category:

Mode:
Technology:

int gc_SndMsg(linedev, crn, msg_type, sndmsgptr)
LINEDEV linedev * line device number for the

B channel
CRN crn « call reference number
int msg_type « ISDN message type
GC_IE BLK * pointer to the Information Element
*sndmsgptr (IE) block
0if successful
<0 if failure
gclib.h
geerr.h
gcisdn.h
interface specific
synchronous

m ISDN PRI O E-1CAS O T-1robbed bit
O Anaog

B Description

The gc_SndM sg() function sends non-call state related ISDN message to the
network over the D channel while acall exists. The datais sent transparently over
the D channel datalink with LAPD protocol.

NOTE: The message must be sent over a channel that has a CRN assigned to it.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description
linedev: line device number for the time dot level line device (the
B channel)
crn: Call Reference Number. Each call needs a CRN.
msg_type: specifies the type of message to be sent, see the appropriate
GlobalCall Technology User’'s Guider details.
sndmsgptr: pointer to the buffer that contains the IEs to be sent in the

240

message; see paragraph 5.2. GC_IE_BLHKor data structure
details.

sends non-call state related ISDN message gc_SndMsg()

Termination Event: None.

B Cautions

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc ErrorValue() function is used to retrieve the error code.

For some call control libraries (e.g., ISDN library), if aninvalid parameter is used
for agc_SndMsg() cal, then the invalid parameter is ignored, processing
continues and the function terminates normally.

B Example

/ *

* Assune the foll ow ng has been done:

* 1. device has been opened (e.g. :NdtiBLlT1: P_jsdn,

* :N dti B1T2: P_isdn, etc...)

* 2. gc_WitCall() has been issued to wait for a call.

* 3. gc_MetaEvent () or gc_Get MetaBEvent Ex() (Wndows NT) has been
* called to convert the event into netaevent.

* 4, a QEV_CFFERED has been det ect ed.

* 5. a call has been established.

*/

#i ncl ude <w ndows. h> /* For Wndows NT applications only */

#i ncl ude <stdio. h>
#include <srllib. h>
#i ncl ude <gclib. h>
#i ncl ude <gcerr. h>
#i ncl ude <gci sdn. h>

/ *
* the followng info elemblock structure can be passed to the function.
* IEBLK ie;
* ie. length = 0x08; ===> Length of the info el embl ock.
* ie.data[0] = Ox7e; ===> Wser-User Info elemid.
* ie data[1] = 0x06; ===> Length of the info elem
* ie data[2] = 0x08; ===> Protocol D scrimnator.
* ie data[3] = 0x41; ===>the followng is the message.
* ie datal4] = 0x42;
* ie.data[5] = 0x43;
* ie data[6] = 0x44;
* ie.data[7] = 0x45;

*/

int send_nessage(CRN crn, int nsg_type, GC|E BLK *sndnsgp)

LI NEDEV ddd; /* Line device */

int gc_err; /* Qobal Call Error Code */
int cclibid; /* Call Control library ID*/
| ong cclib_err; /* Call Control Error Code */
char *nsg; /* Error Message */

241

gc_SndMsg() sends non-call state related ISDN message

i f (gc_CORN\eLi neDev(crn, &ldd) != GC SUCESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &sg);
printf ("Error on Device handle: 0x%Xx, ErorValue: %l - %\n",
ddd, gc_err, nsg);
return(cclib_err);

}

if(gc_SndMsg(ddd, crn, nsg_type, sndnsgp) != GC SUCCESS) {
gc_ErrorVal ue(&c_err, &cclibid, &clib_err);
gc_Resul t Msg(cclibid, cclib_err, &nsg);
printf ("Error on Device handle: 0x%Xx, ErorValue: %l - %\n",
ddd, gc_err, nsg);
return(cclib_err);

}

return(0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also
« gc Close()

242

starts all configured call control libraries gc_Start()

Name: int gc_Start(startp)
Inputs: GC_START_STRUCT * reserved for future use

*startp
Returns: 0if successful

<0 if failure
Includes: gclib.h

gcerr.h

Category: System controls and tools
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_Start() function starts all configured call control libraries. This function
MUST be called before any other GlobalCall functionis called. The function
opens the call control libraries that interface directly to the network interface so
that these libraries can be used by the GlobalCall library.

Thisfunction returns O if all call control libraries have successfully started.

Successfully started libraries are available to be used by the Global Call functions

and are called “available libraries.” Libraries which fail to start are called “failed”
libraries.

To avoid link errors in UNIX applications wherein a particular call control library
is not required, a library with a minimal set of internal functions is provided. This
library is called a “stub” library and it is entered into the list of configured call
control libraries recognized by the GlobalCall API. A stub library is not capable
of being started and thus does not become available. Th. Non-stub libraries
which fail to start are called “failed” libraries.

For UNIX applications, thgc_Start() function must be called from the parent
process when creating child processes.

For Windows NT applications, ttge_Start() function must be called from the

primary thread when creating multiple threads. dheéstop() function must be
called from the same thread that issuedgth&tart() call.

243

gc_Start() starts all configured call control libraries

Parameter Description

startp: reserved for future use: set startp to NULL.

Termination Event: None

Usethegc CCLibStatusAll() function to determine the number and status
(started, configured, failed, stub) of al call control libraries.

B Cautions

This function must be called BEFORE calling other Global Call functions and
should not be called again until gc_Stop() iscaled. Anerror isreturned if the
gc_Start() function is called more than once without calling thegc_Stop()
function.

For UNIX applications, this function must be called from the parent process when
creating child processes.

For Windows NT applications, this function must be called from the primary
thread when creating multiple threads.

This function automatically callsthegc_Stop() function to stop any library that
may be running before starting all libraries.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

int sysinit()
{

QC_START_STRUCT startp; /* Structure for gc_Start() */

int cclibid; /* cclibid for gc_ErorValue() */

int gc_error; /* Qobal Call error code */

| ong cc_error; /* Call Gontrol Library error code */
char *nsg; /* points to the error nessage string */

/* pen all necessary vox/log files */

/* Next issue a gc_Start() Call */

244

starts all configured call control libraries gc_Start()

nenset (&tartp, '\0', sizeof (GC_START_STRUCI));

if (gc_Start(&tartp) != GC SUGCESS) {
/* process error return as shown */
gc_ErrorVal ue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GG (long) gc_error, &nsg);
printf ("Error in gc_Start ErrorValue: %l - %\n",

gc_error, nsg);

return(gc_error);

}
/* Next open the @ obal Call Line Devices */

return(0);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

A gc_Start() function can fail for multiple, simultaneous causes. For example,
both of the following failure conditions might be present and therefore must be
rectified:

« EGC_CCLIBSTART indicates that at least one call control library failed
to start.

e EGC _ALARMDBINIT indicatesthat the alarm database failed to
initialize, probably due to insufficient dynamic memory.

If this function returns a-1, then all configured libraries did not start successfully.

B See Also
« gc CCLibStatusAll()
s gc_Stop()

245

gc_StartTrace() trace and place results in shared RAM

Name: int gc_StartTrace(linedev, filename)
Inputs: LINEDEV linedev + GlobaCall line device handle

char *filename « file name for trace
Returns: 0if successful

<0 if failure
Includes: gclib.h

gcerr.h

Category: interface specific
Mode: asynchronous
Technology: m ISDN PRI 0 E-1CAS 0 T-1robbed bit
O Anaog

B Description

The gc_StartTrace() function instructs the firmware to trace and place resultsin
shared RAM. Thisfunction opens afile under the filename parameter and saves
the results to this file. This function allows the application to trace ISDN messages
on the specified D channel. The saved trace fileisinterpreted off line by the
PRITRACE utility program supplied with the software package. The trace
continues until agc_StopTrace() function isissued.

NOTE: Thelinedev parameter must use the line device number for the D channel
board.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description
linedev: GlobalCall line device handle of D channel board.
filename: specifies file name for the trace.

Termination Event: None. Thetraceinitiated by this function continues until a
gc_StopTrace() function isissued for the line device.

246

trace and place results in shared RAM gc_StartTrace()

B Cautions

If the gc_StartTrace() function was issued, the application should call the
gc_StopTrace() function before calling the gc_Closeg() function for that line
device.

When using the gc_StartTrace() function, only one board can be traced at a
time. When using UNIX or Windows NT single process programming, an efror is
returned if the gc_StartTrace() function isissued when atraceis currently
running on another board.

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

LI NEDEV bdev; /* board | evel device nunber */

int parmid; /* paraneter id */

int rc; /* Return code */

int val ue; /* value to be for specified paraneter */
char *fil enare; /* file nanme for the trace */

int cclibid; /* cclibid for gc_ErrorValue() */

int gc_error; /* Qobal Call error code */

| ong cc_error; /* Call Control Library error code */
char *nsg; /* points to the error nessage string */
mai n()

i f(gc_Qpen(&bdev, "dtiBl", 0) != GC SUGCESS) {
gc_ErrorValue(&c_error, &cclibid, &clib_err);
gc_Resul tMsg(cclibid, cclib_error, &rsg);
printf ("Error: gc_Qpen, ErrorValue: %l - 9%\n",

cclib_err, nsg);
return(gclib_err);

/* Only one D channel can be traced at any given time */

filename="/tnp/trace.log";
rc = gc_StartTrace(bdev, filenane);
if (rc!= QGC SUXESS {
printf("Error in gc_StartTrace, rc = %\n", rc);
} else {
/* continue */

247

gc_StartTrace() trace and place results in shared RAM

}

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also
e gc StopTrace()

248

stops all configured call control libraries gc_Stop()

Name: int gc_Stop(void)
Inputs: none
Returns: 0Oif successful
<0 if failure
Includes: gclib.h
gcerr.h
Category: System controls and tools
Mode: synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_Stop() function stops all configured call control libraries started and
cleans-up the GlobalCall database. Thisfunction MUST be the last Global Call
function called before exiting the application or issuing another gc_Start()
function.

For UNIX applications, this function must be called from the parent process when
child processes are used.

For Windows NT applications, the gc_Stop() function must be called from the
same thread that issued the gc_Start() call.

Termination Event: None

B Cautions

This function must be called before exiting the application. If this function fails,
exit your application before issuing another gc_Start() function. Thisfunction
must be called from the parent process when child processes are used.

All open devices should be closed beforeissuing age_Stop() function.

B Example

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>
#include <srllib. h>

249

gc_Stop() stops all configured call control libraries

#i ncl ude <stdlib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

#def i ne MAXCHAN 30 /* Total Nunber of channel s opened */

LI NEDEV port [MAXCHAN + 1]; /* Array of line devices previously opened */

voi d sysexit(int exit_code)

int port_num /* Index used for port[] */

int cclibid; /* cclibid for gc_ErorValue() */

int gc_error; /* Qobal Call error code */

| ong cc_error; /* Call Gontrol Library error code */
char *nsg; /* points to the error nessage string */

/* First close all the handl es for the opened boards */

/* Now close all the open d obal Call devices */
for (port_num= 1; port_num<= MAXCHAN port_num++) {
if (gc_dose(port[port_nunj.ldev) !'= GQC SUCCESS) {
/* Process error return fromgc_d ose() */
}

}

/* Issue gc_Stop() Next */
if (gc_Stop() !'= GC SUAESS) {
/* process error return as shown */
gc_ErrorValue(&c_error, &cclibid, &c_error);
gc_ResultMsg(LIBID GG (long) gc_error, &nsg);
printf ("gc_Stop returns error ErrorValue: % - 9%\n",
gc_error, nsg);
}

/* Aose all open file handl es corresponding to recorded files and exit */

exi t(exit_code);

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also
e« gc Start()

250

stops the trace gc_StopTrace()

Name: int gc_StopTrace(linedev)
Inputs: LINEDEV linedev + GlobaCall line device handle
Returns: 0if successful
<0 if failure
Includes: gclib.h
gcerr.h
Category: interface specific
Mode: synchronous
Technology: m ISDN PRI 0 E-1CAS 0 T-1 robbed bit
O Anaog

B Description

The gc_StopTrace() function stops the trace that was started using the
gc_StartTrace() function.

Parameter Description

linedev: GlobalCall line device handle of D channel board.

Termination Event: None

B Cautions

If this function isinvoked for an unsupported technology, the function fails. The
error value EGC_UNSUPPORTED will be the Global Call value returned when
thegc_ErrorValue() function is used to retrieve the error code.

B Example

#i ncl ude <w ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib. h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

LI NEDEV bdev; /* board | evel device nunber */

int parmid; /* paraneter id */

int re; /* Return code */

int val ue; /* value to be for the specified paranmeter */
int D CH hdl ; /* identify D channel to be traced */

char *fil enane; /* file nane for the trace */

251

gc_StopTrace() stops the trace

i n()

/* Only one D channel can be traced at any given tine. */

.rc = gc_StopTrace(bdev);
SUCCESS) {

if (rc!=QC.
printf("Eror in gc_StopTrace, rc = %\n", rc);
} else {

/* Process event */

}

B Errors

If thisfunction returnsa <0 to indicate failure, usethe gc_ErrorValue() and
gc_ResultMsg() functions as described in Section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.hfile, seelisting in Appendix C.

B See Also
e gc StartTrace()

252

sets up conditions for processing inbound calls gc_WaitCall()

Name: int gc WaitCall(linedev, crnp, waitcallp, timeout, mode)

Inputs: LINEDEV linedev * GlobalCall line device handle
CRN *crnp * pointer to CRN
GC_WAITCALL_BLK e reserved for future use

*waitcallp
int timeout * time-out
unsigned long mode * async or sync
Returns: 0if successful
>0, if failure
Includes: gclib.h
gecerr.h

Category: basic cal control
Mode: asynchronous or synchronous
Technology: m ISDN PRI m E-1CAS m T-1robbed bit
m Anaog

B Description

The gc_WaitCall() function sets up conditions for processing inbound calls.
The gc_WaitCall() function unblocks the time slot (if the technology and the line
conditions permit unblocking the line) and enables notification of inbound calls:

e For E-1 CASand T-1 robbed bit applications, the line will be set to IDLE
after thefirst call to agc_WaitCall() function.

» Anaog technology does not provide a means to physically block or unblock
an analog line.

» For ISDN applications, the state will be set to NULL after the call to a
gc_WaitCall() function.

In the asynchronous mode, after thegc_WaitCall() function was successfully
called, the gc_ReleaseCall() function will not block the incoming notification.
Therefore, it isonly necessary to call agc WaitCall(') function once. A
subsequent usage of the gc_WaitCall() function in the asynchronous mode has
no additional effect. Also, the call reference parameter is not used in this function
call. The application must retrieve the CRN from the metaevent structure returned
when the call notification event (GCEV_OFFERED) arrives.

253

gc_WaitCall() sets up conditions for processing inbound calls

In the synchronous mode, notification of the next inbound call is blocked until the
next gc_ WaitCall() functionisissued. If aninbound call arrives between the
gc_ReleaseCall() and gc_WaitCall() functions, the call will be pending until
gc_WaitCall(') function isreissued, at which point the application will be
notified.

When called in the synchronous mode, the crnp parameter is assigned when the
gc_WaitCall(') function terminates. If the gc_WaitCall() function fails, the call
(and thus the CRN) will be released automatically.

Refer also to the appropriate GlobalCall Technology User’s Guider technology
specific information.

Parameter Description

linedev: Global Call line device handle

crnp: pointer to the CRN. The crnp parameter must be of a global
and non-temporary type. Thecrnp parameter isused only in
the synchronous mode.

For the asynchronous mode, this parameter must be set to
null. When the GCEV_OFFERED event is received, the
CRN can be retrieved.

waitcallp: not used in thisrelease. Set to NULL.

timeout: used only in synchronous mode, ignored in asynchronous
mode - specifiestheinterval (in seconds) to wait for the call.
When the timeout expires, the function will return -1 and the
call will remaininthe Null state. The error valueis set to
EGC _TIMEOUT.

If thetimeout is 0 and no inbound call is pending, the
function returns -1 with an EGC_TIMEOUT error value. In
synchronous mode, another gc_ WaitCall() function may be
issued immediately without issuing agc_DropCall() or
gc_ReleaseCall() function.

mode: set to EV_ASYNC for asynchronous execution or to
EV_SYNC for synchronous execution

Termination Event: None

254

sets up conditions for processing inbound calls gc_WaitCall()

In the asynchronous mode, the gc WaitCall() function does not return an event
and is assumed to have successfully completed when issued. The unsolicited event
GCEV_OFFERED may be received later.

B Cautions

The application should always call agc_ReleaseCall() function to release the
CRN after the termination of a connection. Failure to do so may cause memory
problems due to memory being allocated and not being released.

In the asynchronous mode, the CRN will not be available until an inbound call has
arrived (i.e.,, GCEV_OFFERED received).

For both the asynchronous and the synchronous modes, any activegc_WaitCall()
function can be stopped by using the gc_ResetLineDev() function. When the
gc_ResetLineDev() function completes, the application must reissue the
gc_WaitCall(') function to be able to receive incoming calls.

B Example

#i ncl ude <wi ndows. h> /* For Wndows NT applications only */
#i ncl ude <stdio. h>

#include <srllib.h>

#i ncl ude <gclib. h>

#i ncl ude <gcerr. h>

#define MAXCHAN 30 /* max. nunber of channels in system*/
/*
* Data structure which stores all information for each |ine
*/
struct |inebag {
LI NEDEV | dev; /* line device handl e */
RN crn; /* Qobal Call APl call handle */
int state; /* state of first layer state nmachi ne */
} port[MAXCHANH] ;
struct |inebag *pline; /* pointer to access |ine device */
/*

* Assune the fol |l owing has been done:
* 1. Qpen line devices for each tine slot on dtiBL.

* 2. Each Line Device IDis stored in linebag structure, 'port’.
*/
int wait_call(int port_num
int cclibid; /* cclibid for gc_ErorValue() */
int gc_error; /* Qobal Call error code */
| ong cc_error; /* Call Gontrol Library error code */
char *nsg; /* points to the error nessage string */

/* Findinfo for this time slot, specified by 'port_num */
pline = port + port_num

255

gc_WaitCall() sets up conditions for processing inbound calls

/*
* Wit for acall, with O tineout.
*/

if (pline->state == GCST_NULL) {
if (gc_WaitCall(pline->dev, NULL, NULL, 0, EV.ASYNQ != GC SUCCESS) {
/* process error return as shown */
gc_ErrorVal ue(&gc_error, &cclibid, &c_error);
gc_Resul tMsg(LIB D GC (long) gc_error, &rsgQ);
printf ("Eror on Device handle: Ox%x, ErorValue: %l - %\n",
pline -> ldev, gc_error, nsQ);
return(gc_error);
}
}
/*
* QCEV_CFFERED event will indicate incomng call has arrived.
*/
return (0);

B Errors

If thisfunction returnsa <0 to indicate failure or if the GCEV_TASKFAIL event
isreceived, usegc_ErrorValue() or gc_ResultValue(), respectively, and the
gc_ResultM sg() function as described in section 3.11. Error Handling to
retrieve the reason for the error. All Global Call error codes are defined in the
gcerr.h file, seelisting in Appendix C.

B See Also

e gc DropCall()
 gc_MakeCall()

e gc ReeaseCall()

e gc_ResetLineDev()

256

7. GlobalCall Demo Programs

Globa Call UNIX and Windows NT inbound and outbound demonstration
programsillustrating the application of GlobalCall functions are described in this
chapter in terms of:

e anoverview of the GlobalCall demo programs

« thephysical connection required to run these demo programs
e preparing to run the Global Call demo programs and

e running the GlobalCall demo programs

7.1. Demo Programs for UNIX

The following paragraphs describe analog technology and E-1/T-1 technology
demonstrations that run on a UNIX platform.

The demo programs use user-modifiable configuration files that define the
protocol to be run on each channel and the voice and/or network (E-1/T-1)
resources to be used. Separate configuration files can be defined for inbound
(gcin.cfg) calls, outbound (gcout.cfg) calls and for anal og (gcanal og.cfg)
technology only calls. In addition to compilable files, executable demo files using
sample configuration files similar to those described in this chapter are stored in
the Dialogic /usr/dialogic/gc_demos directory.

The Global Call demonstration programs are:

e inbound: demonstrates operation of the GlobalCall API for
handling inbound calls

e outbound: demonstrates operation of the Globa Call API for
handling outbound calls

The demonstration programs operate independent of each other. Each program
implements a double layer state machine based on the GlobalCall API. Thefirst
layer deals with the Global Call call establishment and termination processes. This
layer includes the following states:

257

GlobalCall™ API Software Reference for UNIX and Windows NT

« ST _BLOCKED,

e ST _NULL,
« ST_OFFERED,
« ST_TALK,

« ST _CLOSING,
.« ST_DISCONNECTED and
- ST IDLE.

The second layer deals with events that can occur during a conversation (the
ST_TALK state) and includes the following states for the inbound program:

* WELCOME,

« RECORD,

+ GOODBYE,

« GETDIGIT,

* INVALID,

e PLAYBACK and
»+ STOPPING

The outbound program uses only the WELCOME and the STOPPING states in
the second layer.

Figure 7. UNIX Demo Program Sates illustrates the structure of the Global Call
demo programes.

258

7. GlobalCall Demo Programs

INVALID

GOODBYE
GOODBYE

ST_DISCONNECTED

Figure 7. UNIX Demo Program States

259

GlobalCall™ API Software Reference for UNIX and Windows NT

Start the Global Call demo programs from the command line. Select the
parameters and options you wish to use by typing the parameter value or option
details after the appropriate option switch (see Section 7.1.4. Running the UNIX
Demo Program.

A LINEBAG data structure contained in the demo software holds the state of each
line device. The demo programs assume that voice channel nisrouted to DTI time
slot n. Unless you use the -n switch to specify a different number, the programs
will open as many devices as there are voice channels.

The Global Call distribution diskettes contain al the demonstration program files.
Thesefiles are installed on your system in the /usr/dialogic/gc_demos installation
directory when you install the Global Call software. The source code for the
demonstration programs is written in the C programming language.

7.1.1. Physical Connections for the UNIX Demo

To run the Global Call Demo programs, you need one or more of the following:

e aconnection to the network (analog loop start, E-1 CAS/T-1 robbed bit
or ISDN)

e anE-1, T-1 and/or ISDN simulator

e anaog loop start ssimulator or Dialogic PromptMaster devel opment tool

Y ou may make this connection either before or after installing the Global Call
software.

7.1.2. Before Running the UNIX Demo Programs

Global Call software must be installed to run the GlobalCall Demo programs. To
run the included executable demo programs or your compiled demos, see
Paragraph 7.1.4. Running the UNIX Demo Program

To recompile the demonstration programs using configuration files you created,
perform the following:

260

7. GlobalCall Demo Programs

NOTE: The ANAPI, ICAPI and ISDN call control libraries (or the equivalent
stub library) must be installed. Change the makefile to include the
appropriate stub libraries to match the system configuration.

* whilelogged on to the system with root privileges, change to the
/usr/dialogic/gc_demos installation directory.

* to compile the inbound program, type:

make inbound <Enter>

e to compile the outbound program, type:

make outbound <Enter>

NOTE: A protocol package must beinstalled on the system, and the makefile
must use an installed protocol. Initially, the protocol s specified in the
makefile arethear_r2 i and thear_r2_o. Be sureto modify the makefile
to use the protocol(s) installed on the system.

7.1.3. Demo Configuration Files

The executable demo programs stored in the /usr/dial ogic/gc_demos directory
were compiled using sample ASCI| configuration files such as shown in:

e Figure8. Inbound (gcin_r2is.cfg) Configuration Sample File,
e Figure9. Outbound (gcout_anis.cfg) Configuration Sample File and
e Figure 10. Analog (gcanalog.cfg) Technology Configuration Sample File.

Y ou can use these sample configuration files unchanged when you compile your
demo program or you can edit them (using atext editor such asthe vi editor) to
include the protocols and products used by your application.

Each channel can run a different protocol IF the .prm file parameters associated
with these protocols are compatible. To ensure compatibility, check that the
parameters specified in the .prmfile for aboard will work for al protocols that
will be run on that board. The parametersin the .prm file are downloaded at
system initialization, become part of the firmware and cannot be changed by the
application.

261

GlobalCall™ API Software Reference for UNIX and Windows NT

The protocol and resource information for each channel and the telephone number
dialed (up to 24 digits) are defined in these configuration files on a channel by
channel basis. The configuration is specified in the following order:

voice channel protocol anaog (1=yes,0=no) network (optional) phone
number

A digital network interfaceis not used for an analog call; if specified, the digital
interface entry isignored.

For example, using the following lines taken from Figure 9. Outbound
(gcout_anis.cfg) Configuration Sample File:

dxxxB8C2 ar_r2_o 0 dti B1T30 4812
dxxxBAC1l na_an_io 1 11

wherein the first line specifies that:

» voice channe 2 on board 8 (dxxxB8C?2) will provide the voice resources and
will be connected to the digital network interface resource dtiB1T30,

* theArgentinaR2 (ar_r2_o) outbound protocol will be used,

« adigital network interface is selected; O entry equatesto a digital network
interface,

* timedot 30 on E-1 digital network interface board 1 (dtiB1T30) will be
connected to dxxxB8C2 (board 8, voice channel 2) and

» thetelephone number to dial is4812.

wherein the second line specifies that:

* voice channe 1 on board 9 (dxxxB9C1) will provide the voice resources and
the analog network interface resource

« the North Americaanalog (na_an _io) bi-directional protocol will be used,
« ananalog network interface is selected; 1 entry selects ana og interface,
* nodigital network interface resource is used and

» thetelephone number to dial is 11.

262

7. GlobalCall Demo Programs

The sample inbound configuration file (gcin_r2is.cfg) shownin Figure 8.
Inbound (gcin_r2is.cfg) Configuration Sample File, configures two E-1 spansto
handle inbound calls on 60 digital interface channels using the Argentina R2
inbound protocol (ar_r2 i) on one span and ISDN protocol on the second span.
A voice resource is dedicated to each digital interface.

The outbound configuration file (gcout_anis.cfg) shown in Figure 9. Outbound
(gcout_anis.cfg) Configuration Sample File, configures asingle E-1 span to
handle outbound calls on 30 digital interface channels using the ISDN protocol
with avoice resource dedicated to each digital interface. Thisfile also configures
asingle channel of afour channel voice board with analog network interfaces to
handle outbound calls using the North America analog bidirectional protocol
(na_an_io).

The analog technology configuration file (gcanal og.cfg) shown in Figure 10.

Anal og (gcanal og.cfg) Technology Configuration Sample File, configures asingle
four channel voice board with analog network interfaces to handl e either inbound
or outbound calls using the North America analog bidirectional protocol
(na_an_io).

263

GlobalCall™ API Software Reference for UNIX and Windows NT

Deno configuration file for configuring voice channel s, network
channel s, protocol, anal og flag, and phone nunber

This configuration file is for 2 El spans (I nbound Confi g)

#

#

#

voice protocol anal og net wor k phone

channel (1=yes, 0=no) (optional) nunber
dxxxB1Cl ar_r2_i 0 dti B1T1 1234567
dxxxBlQ2 ar_r2_i dti B1T2 2345567
dxxxB1C3 ar_r2_i dti B1T3 3456567
dxxxB1G4 ar_r2_i dti B1T4 4567567
dxxxB2Cl ar_r2_i dti B1T5 5678567
dxxxB2Q2 ar_r2_i dti B1T6 6789567
dxxxB2C3 ar_r2_i dti B1T7 7890567
dxxxB2C4 ar_r2_i dti B1T8 8901567
dxxxB3Cl ar_r2_i dti B1T9 9012567

dxxxB3@ ar_r2_i
dxxxB3C3 ar_r2_i
dxxxB3&4 ar_r2_i
dxxxB4CL ar_r2_i
dxxxB4QR ar_r2_i
dxxxB4C3 ar_r2_i
dxxxB4GA ar_r2_i
dxxxB5CL ar_r2_i
dxxxB5@ ar_r2_i
dxxxB5C3 ar_r2_i
dxxxB5CG4 ar_r2_i
dxxxB6CL ar_r2_i
dxxxB6Q2 ar_r2_i
dxxxB6C3 ar_r2_i
dxxxB6CA ar_r2_i
dxxxB7CL ar_r2_i
dxxxB7Q ar_r2_i
dxxxB7C3 ar_r2_i
dxxxB7C4 ar_r2_i
dxxxB8CL ar_r2_i

dti B1T10 1357567
dti B1T11 3579567
dti B1T12 5791567
dti B1T13 7913567
dti B1T14 9135567
dti B1T15 2468567
dti B1T16 4680567
dti B1T17 6802567
dti B1T18 8024567
dti B1T19 2581567
dti B1T20 1234567
dti B1T21 2345567
dti B1T22 3456567
dti B1T23 4567567
dti B1T24 5678567
dti B1T25 6789567
dti B1T26 7890567
dti B1T27 8901567
dti B1T28 9012567
dti B1T29 3691567

[eeojeolojojofolojojoololojololojolololojololojolololojololololololojolololololojlofo oo olololoo oo oo NoNo)

ar_r2 i dti BLT30 4812567

i sdn dti B2T1

i sdn dti B2T2

i sdn dti B2T3
dxxxB9CA isdn dti B2T4
dxxxBL1OCL isdn dti B2T5
dxxxB10C2 isdn dti B2T6
dxxxB10C3 isdn dti B2T7
dxxxB10C4 isdn dti B2T8
dxxxB11Cl isdn dti B2T9
dxxxBl1C2 isdn dti B2T10
dxxxB11C3 isdn dti B2T11
dxxxB11C4 i sdn dti B2T12
dxxxB12Cl isdn dti B2T13
dxxxB12C2 isdn dti B2T14
dxxxB12C3 isdn dti B2T15
dxxxB12CG4 i sdn dti B2T16
dxxxB13Cl isdn dti B2T17
dxxxB13C2 isdn dti B2T18
dxxxB13C3 isdn dti B2T19
dxxxB13C4 isdn dti B2T20
dxxxB14Cl isdn dti B2T21
dxxxBl4C2 isdn dti B2T22
dxxxB14C3 isdn dti B2T23
dxxxB14C4 i sdn dti B2T24
dxxxB15CL isdn dti B2T25
dxxxB15C2 isdn dti B2T26

264

7. GlobalCall Demo Programs

dxxxB15C3 isdn 0 dti B2T27
dxxxB15C4 i sdn 0 dti B2T28
dxxxB16Cl isdn 0 dti B2T29
dxxxB16C2 isdn 0 dti B2T30

Figure 8. Inbound (gcin_r2is.cfg) Configuration Sample File

Deno configuration file for configuring voi ce channel s, network
channel s, protocol, analog flag, and phone nunber
This configuration file is for 1 El span and anal og (Qut bound Confi g)
#
voice protocol analog net wor k phone
channel (1=yes, 0=no) (optional) nunber

dxxxB1Cl isdn 0 dti B1T1 1234567

dxxxB1C2 isdn dti B1T2 2345567

dxxxB1C3 isdn dti B1T3 3456567

dxxxB1CG4 i sdn dti B1T4 4567567

dxxxB2Cl i sdn dti B1TS 5678567

dxxxB2C2 i sdn dti B1T6 6789567

dxxxB2C3 i sdn dti B1T7 7890567

dxxxB2CG4 i sdn dti B1T8 8901567

dxxxB3Cl isdn dti B1T9 9012567

dxxxB3CQ2 isdn
dxxxB3C3 isdn
dxxxB3CG4 isdn
dxxxB4Cl isdn
dxxxB4CQ2 isdn
dxxxB4C3 isdn
dxxxB4CG4 isdn
dxxxB5CL isdn
dxxxB5C2 isdn
dxxxB5C3 isdn
dxxxB5CG4 isdn
dxxxB6Cl isdn
dxxxB6C2 isdn
dxxxB6C3 isdn
dxxxB6CG4 isdn
dxxxB7CL isdn
dxxxB7CQ2 isdn
dxxxB7C3 isdn
dxxxB7CG4 isdn

dti B1T10 1357567
dti B1T11 3579567
dti B1T12 5791567
dti B1T13 7913567
dti B1T14 9135567
dti B1T15 2468567
dti B1T16 4680567
dti B1T17 6802567
dti B1T18 8024567
dti B1T19 2581567
dti B1T20 1234567
dti B1T21 2345567
dti B1T22 3456567
dti B1T23 4567567
dti B1T24 5678567
dti B1T25 6789567
dti B1T26 7890567
dti B1T27 8901567
dti B1T28 9012567
dxxxB8Cl i sdn dti B1T29 3691567
dxxxB8CQ2 isdn dti BLT30 4812567
dxxxBl7Q npa_an_io 1 101

[ejeojlofoloefoolojofololofofolojololoolofolojoloNol oo o)

Figure 9. Outbound (gcout_anis.cfg) Configuration Sample File

This configuration file is for analog calls only

voi ce protocol anal og net wor k phone
channel (1=yes, 0=no) (optional) nunber
dxxxBLCL na_an_io 1 11
dxxxBl2 na_an_io 1 12
dxxxB1C3 na_an_io 1 13
dxxxBlGA na_an_io 1 14

Figure 10. Analog (gcanalog.cfg) Technology Configuration Sample
File

265

GlobalCall™ API Software Reference for UNIX and Windows NT

7.1.4. Running the UNIX Demo Program

Start either of the demo programs by typing the program name at the command
ling, followed by the appropriate switch(es). The structure of the demo command
is:

inbound -n<numlines> -f<filename.cfg> -d<numddi>

outbound -n<numlines> -f<filename.cfg>
where;

-n<numlines> Number of connected lines to use for demo
calling (default = 60)

-f<filename> name of configuration file used (e.g., gcin.cfg,
gcout.cfg, gcanalog.cfg, etc.) to setup
demo calls.

-d<numddi> DDI (Direct Dialing In) number threshold for call
rejection. Incoming calls with a number of DDI
digits greater than the number specified will be
rejected.

Note that switch “d” is invalid for outbound calls.

NOTE: A protocol package must be installed on the system prior to running the
demo programs. The configuration file must specify an installed
protocol. Refer to the GlobalCall Technology User’s Gufde your
technology for information on installing protocols.

NOTE: A protocol must be installed on the system. Before running a demo
program that uses a T-1 robbed bit protocol, disable the DTI Wait Call
function in theicapi.cfgfile. Seetheicapi.cfg File paragraphin the
GlobalCall E-1/T-1 Technology User's Guitt# details.

266

For example:

For example:

For example:

For example:

7. GlobalCall Demo Programs

inbound -n42 -d6 -fgcin_r2is.cfg <Enter>

is the command you would type on the command line to
handle 42 inbound digital network calls with a maximum of 6
DDI digits on the first 42 E-1 channels defined in the
configuration file shown in Figure 8. Inbound

(gcin_r2is.cfg) Configuration Sample File.

outbound -n31 -fgcout_anis.cfg <Enter>

is the command you would type on the command line to
handle 30 outbound digital network calls on the first 30 E-1
channels defined in the configuration file shown in Figure 9.
Outbound (gcout_anis.cfg) Configuration Sample File and 1
outbound analog network call on the 4 anal og channels of
virtual board 17.

inbound -n4 -fgcanalog.cfg <Enter>

is the command you would type on the command lineto
handle 4 inbound analog network calls on the four analog
channels defined in the configuration file shown in Figure 10.
Analog (gcanalog.cfg) Technology Configuration Sample
File.

outbound -n4 -fgcanalog.cfg <Enter>

is the command you would type on the command line to
handle 4 outbound analog network calls on the four analog
channels defined in the configuration file shown in Figure 10.
Analog (gcanalog.cfg) Technology Configuration Sample
File.

7.2. Demo Programs for Windows NT

The following paragraphs describe multithreaded asynchronous (gcmulti) and
synchronous (gcmtsync_cui) demonstration programs for handling inbound and
outbound calls on a Windows NT platform.

The demonstration programs include complete source code in the installation
directories. Y ou may modify and rebuild a demo program using the Microsoft
nmake utility or the Visual C++ version 4.x project workspace files. All the
application files areincluded in the following directories:

267

GlobalCall™ API Software Reference for UNIX and Windows NT

» for the gcmulti asynchronous demo:
* \Program Files\Dialogic\Samples\gc_demos\gcmulti
» for the gcmtsync_cui synchronous demo:

* \Program Files\Dialogic\Samples\gc_demos\gcmtsync_cui

(NOTE: The \Program Files\Dialogic\ directory is the default directory. When
installing Dialogic system software, adifferent directory can be specified.)

7.2.1. Multithreaded Asynchronous Demo Overview for Windows NT

The Global Call multithreaded asynchronous demonstration program (gcmulti)
demonstrates handling inbound calls and outbound calls in asynchronous mode in
aWindows NT environment. This demonstration program sets up all channelsto
either accept inbound calls or to make outbound calls.

When the accept-inbound calls mode is selected, the demo program looks at the

last digit of the incoming DDI digits. When thislast digit is an even number, the

demo program simulates a “the time is” applet by playing a “the time is 9:30 a.m.
voice file and then disconnecting (hangs up). When this last digit is an odd
number, the demo program runs a menu driven voice/facsimile application that,
seeFigure 11. Multithreaded Asynchronous Demo, Call Processing:

e plays an introductory voice file listing the menu selections and then

e gets the DDI digit entered in response to the voice menu.

The demo application responds to the DDI digit entered as described below and
then disconnects:

268

7. GlobalCall Demo Programs

Digit Description

1 records the caller's message

2 plays the last message recorded

3 sends a fax if the demo platform includes a GammalLink fax product
(currently unsupported)

4 receives and stores a fax if the demo platform includes a GammalLink
fax product (currently unsupported)

5 plays a “good-bye” voice file

269

GlobalCall™ API Software Reference for UNIX and Windows NT

INBOUND CALL

Play Menu
(intro,vox)

Play Time
(time.vox)

A 4

Get DDI
Digit

Figure 11. Multithreaded Asynchronous Demo, Call Processing

270

7. GlobalCall Demo Programs

When the make-outbound calls mode is selected, al lines are used to place

outbound calls. When the remote end answers, the demo program uses “the time
is” applet to play a “the time is 9:30 a.m.” voice file and then disconnects (hangs
up) An outbound call is placed each time a channel changes to the IDLE state.

To run the demo program, sparagraphs 7.2.3. Physical Connections for the
Windows NT Demo, 7.2.4. Before Running the Windows NT Demo Programs,
and7.2.5. Running the Asynchronous Windows NT Demo Program.

7.2.2. Multithreaded Synchronous Demo Overview for Windows NT

The GlobalCall multithreaded synchronous demonstration progs&{Sync)
demonstrates handling inbound calls and outbound calls in synchronous mode in a
Windows NT environment. The demonstration program implements a double
layer state machine based on the GlobalCall API. The first layer deals with the
GlobalCall call establishment and termination processes;igaee 12.

Synchronous Demo, Call Establishment Process. This layer includes the

following call states:

Inbound Call States Outbound Call States
GCST_NULL GCST_NULL
GCST_IDLE GCST_IDLE
GCST_OFFERED GCST_DIALING
GCST_ACCEPTED GCST_ALERTING
GCST_CONNECTED GCST_CONNECTED
GCST_DISCONNECTED GCST_DISCONNECTED

The second layer deals with the application states that can occur while the demo
program handles the conversation portion of the callFepee 13. Synchronous
Demo, Application Sate Call Processing, and includes the following call states:

Inbound Call States Outbound Call States
APP_BLOCKED APP_BLOCKED
APP_UNBLOCKED APP_UNBLOCKED
APP_NULL APP_NULL
APP_CONNECTED APP_CONNECTED

271

GlobalCall™ API Software Reference for UNIX and Windows NT

Inbound Call States Outbound Call States
APP_WELCOME APP_DIALING
APP_RECORD APP_PLAYBACK
APP_GETDIGIT APP_DISCONNECTED
APP_PLAYBACK APP_IDLE
APP_INVALID

APP_GOODBYE
APP_DISCONNECTED
APP_IDLE

Start the Global Call demo programs from the command line. Select the
parameters and options you wish to use by typing the parameter value or option
details after the appropriate option switch (see Section 7.2.5. Running the
Asynchronous Windows NT Demo Program or Section 7.2.6. Running the
Synchronous Windows NT Demo Program).

Figure 12. Synchronous Demo, Call Establishment Process illustrates the call
states associated with handling inbound calls or setting up outbound callsin
synchronous mode. All calls start from a GCST_NULL state.

For inbound calls and after receiving the GCEV_UNBOCKED event, the demo
programissuesagc_WaitCall() function in the GCST_NULL state to indicate
readiness to accept an inbound call request. When the inbound call is received,
the call state changesto GCST_OFFERED. Inthe GCST_OFFERED state, the
call may be accepted by the demo program. From the GCST_OFFERED state,
the call state changesto either the GCST_CONNECTED state or the
GCST_ACCEPTED state. When the call isto be directly connected to avoice
resource, agc_Answer Call() function isissued to make the final connection.
When the gc_Answer Call() function completes, the call changes to the
GCST_CONNECTED state. If the demo program is not ready to answer the call,
agc_AcceptCall() function isissued to indicate to the remote end that the call
was received but not yet answered. When thegc_AcceptCall() function
completes, the call changesto the GCST_ACCEPTED state. To complete the
connection, agc_Answer Call() function isissued to make the final connection.

272

7. GlobalCall Demo Programs

When the call completes, the demo program issues agc_DropCall() function that
changes the call stateto GCST_IDLE. A gc_ReleaseCall() function isthen
issued to change the call state to GCST_NULL which establishesinitial conditions
for accepting the next inbound call or for making an outbound call. If a
GCEV_DISCONNECTED event isreceived whilethe call isin the
GCST_OFFERED, GCST_ACCEPTED or GCST_CONNECTED state, the demo
program then issues agc_ReleaseCall() function, hangs up the ongoing call and
then waits for the next call.

To make an outbound call and after receiving a GCEV_UNBLOCKED event, the
demo program issuesagc_MakeCall() function that requests that a call be made
on a specific channel. The call entersthe GCST_DIALING state and dialing
information is sent to and acknowledged by the network. When the call is
answered at the remote end, the gc_MakeCall() function completes and the call
changesto the GCST_CONNECTED state. If aGCEV_ALERTING eventis
received from the network indicating that the remote end has received the call but
not yet answered the call, the call state changesto GCST_ALERTING. When the
call isanswered at the remote end, the gc_MakeCall() function completes and
the call changesto the GCST_CONNECTED state.

When the call disconnects, the demo program issuesagc_DropCall(') function
that changes the call stateto GCST_IDLE. A gc_ReleaseCall() function isthen
issued to change the call state to GCST_NULL which establishesinitial conditions
for making the next outbound call or for accepting inbound cals. If a
GCEV_DISCONNECTED event isreceived while the call isin the
GCST_DIALING, GCST_ALERTING or GCST_CONNECTED state, the state
changesto GCST_IDLE and the demo program then issuesagc_ReleaseCall()
function to return to the GCST_NULL state.

Figure 13. Synchronous Demo, Application State Call Processing illustrates
demo application call states for processing inbound or outbound callsin the
synchronous mode. If aGCEV_BLOCKED event is received during any
application state, the application will halt its call processing activities and wait for
aGCEV_UNBLOCKED event before continuing. When the demo application
receives a GCEV_DISCONNECTED event while processing an inbound or an
outbound call, the demo application issuesa gc_DropCall() function to change
the call stateto GCST_IDLE. The demo program then issuesa gc_ReleaseCall()
function to return to the GCST_NULL state.

273

GlobalCall™ API Software Reference for UNIX and Windows NT

INBOUND CALL OUTBOUND CALL

gc_WaitCall() gc_MakeCall()

initiated

|ReleaseCall()

gc_DropCall() gc_DropcCall()

Legend:

* GCEV_DISCONNECTED

Figure 12. Synchronous Demo, Call Establishment Process

274

7. GlobalCall Demo Programs

INBOUND CALL OUTBOUND CALL

BLOCKED

GCEV_UNBLOCKED

UNBLOCKED

gc_WaitCall()
gc_AcceptCall()
gc_AnswerCall(

RECORD @
PLAYBACK @ @

gc_ReleaseCall()
gc_DropcCall()

IDLE

gc_MakeCall()

gc_DropCall()

Figure 13. Synchronous Demo, Application State Call Processing

275

GlobalCall™ API Software Reference for UNIX and Windows NT

7.2.3. Physical Connections for the Windows NT Demo

To run the Global Call Demo programs, you need one of the following:
e aconnection to the network (E-1 CAS/T-1 robbed bit or ISDN)
e anE-1, T-1and/or ISDN simulator

Y ou may make this connection either before or after installing the Global Call
software.

7.2.4. Before Running the Windows NT Demo Programs

The demonstration programs include complete source code in the installation
directories. You may modify and rebuild a demo program using the Microsoft
nmake utility or the Visual C++ version 4.x project workspace files. All the
application files are included in the following directories:

« for the gcmulti asynchronous demo:
¢ \Program Files\Dial ogic\Samples\gc_demos\gcmulti
« for the gcmtsync_cui synchronous demo:
¢ \Program Files\Dial ogic\Samples\gc_demos\gcmtsync_culi

(NOTE: The \Program Files\Dialogic\ directory is the default directory. When
installing Dialogic system software, a different directory can be specified.)

The demo program can be compiled using either of the following methods:

¢ Tousethe Microsoft nmake utility, type:

nmake -f <filename.mak>

e TouseVisua C++ version 4.x, open a project workspace file
<filename.mdp> from inside Visual C++ Integrated Devel opment
Environment and select:

build/rebuild all
NOTE: Both ICAPI and ISDN call control libraries must be installed.

276

7. GlobalCall Demo Programs

NOTE: A protocol must beinstalled on the system. Before running a demo
program that uses a T-1 robbed bit protocol, disable the DTl Wait Call
function in the icapi.cfg file. Seetheicapi.cfg File paragraph in the
GlobalCall E-1/T-1 Technology User’s Guidefor details.

7.2.5. Running the Asynchronous Windows NT Demo Program

Start the asynchronous (gcmulti) demo program by typing the program name at the
command line prompt, followed by the appropriate switch(es). The structure of
the demo command is:

gcmulti -p<boardno><protocol> -n<#> -m<thread> -c<direction>
[-f<disablefun>] -v<verbosity>

where;
-p<boardno><protocol> boardno = board nhumber (optional;
default = 1)
protocol = name of selected protocol
(default = isdn)
-n<#> # = number of connected lines/channels

(default = 60, rangeis 1 to 60)
-m<thread> m = multithreaded; s = single threaded (optional)

(default = 9)
-c<direction> i =inbound call; o = outbound call (default = i)
-f<disablefun> (optional) disable function, where disablefun
values are;
ANI to disable gc_GetANI ()

CALLACK todisablegc_CallAck()
SETCALLNUM to disable gc_SetCallingNum()

-v<verbosity> 1= display error messages plus call setup and call
tear down messages such as generated during a
make call, drop call, answer call and accept call
activity. (default = 1)

2 =1+ display al initialization messages
generated during application start up and all
closing messages generated when the
application exits.

277

GlobalCall™ API Software Reference for UNIX and Windows NT

3 =2+ display all messages generated in
conjunction with function calls and all events
received including termination events and
unexpected events.

-f<disablefun>, disables function calls that are coded into the demo program but
are not supported by the protocol being run. Seethe Limitations paragraph in the
GlobalCall Country Dependent Parameters (CDP) Reference for the protocol
installed. Separate -f<disablefun> switches must be entered for each function to
be disabled.All information displayed on the screen can be rerouted to alog file
by appending a >filename parameter to the end of the gcmulti command line;
(e.g., gcmulti -plisdn -n30 -ci -v2 >demo.log) and then pressing the Enter key.
Note that ALL information will be sent to the file specified and the display will
remain blank until you press the Esc key to close the demo program.
For example: gcmulti -plisdn -n30 -ci -v2 <Enter>
is the command you would type on the command line to run
the single-threaded asynchronous demonstration program on

board 1 using ISDN inbound protocol and 30 channelswith a
verbosity level of 2.

Pressing the Esc key closes the demo program. When the demo program closes,
call information for each channel, see Figure 14. Demo Call Information
Example, total errors and the total calls handled are calculated and displayed. The
calls per channel are displayed in the format:

. #HCdlgH

where: #) = the channel number (e.g., 1, 2, etc.) and [#] = the total number of calls
completed by that channel during the time the demo program ran.

The[SYS] Total errors = value is the total number of errorsthat occurred during
the time the demo program ran.

The[SYS] Total calls=vaueisthe total number of calls completed by all

channels during the time the demo program ran. That is, the summation: # Calls
on Channel 1 + # Calls on Channel 2 + ... + # Calls on Channel n.

278

Call Information

7. GlobalCall Demo Programs

1Calg10] 2)Callg10] 3)Calg10] 4)Callg10]
5)Callq10] 6)Callg10] 7)Calg10] 8)Callg10]
9)Callg10] 10)Calg10] 11)Calg10] 12)Callg[10]
13)Callg[10] 14)Calls[10] 15)Calls[10] 16)Calls[10]
17)Callq[10] 18)Calls[10] 19)Calls[10] 20)Calls[10]
21)Calg10] 22)Callg[10] 23)Calg10] 24)Calg10]
25)Cdllq[10] 26)Callg[10] 27)Calg[10] 28)Callg[10]
29)Call§[10] 30)Callg[10]

[SYS] Tota errors=0

[SYS] Tota cals=300

Figure 14. Demo Call Information Example

7.2.6. Running the Synchronous Windows NT Demo Program

Start the synchronous (gcmtsync_cui) demo program by typing the program name
at the command line prompt, followed by the appropriate switch(es). The structure

of the demo command is:

gcmtsync_cui -n<numlines> -p<brdnum><protocol> -I<loglevel> -[i|o]

where:

-n<numlines>

Number of connected lines/channels (default = 60,
rangeis 1 to 60)

-p<brdnum><protocol> Selected protocol on selected board

-I<loglevel>

number “brdnum?”, where “brdnum” must be
setto 1 or 2 (for a single board, set to 1).
Each board to be used by the demo program
must be opened by including a separate
-p<brdnum><protocol> switch to open that
board.

specifies the logging level where “loglevel” is

set to: 1 = logs high priority error messages,

2 =logs medium & high priority error messages or
3 =logs all error messages.

If this parameter is not specified, the default is

no logging

279

GlobalCall™ API Software Reference for UNIX and Windows NT

-[i/o]

For example:

280

i = inbound call; o = outbound call; avalue
must be specified.

gcmtsync_cui -n30 -plbr_r2 i -i -13 <Enter>

is the command you would type on the command line to run
the synchronous demonstration program on 30 channels using
the inbound Brazil protocol for inbound calls with logging set
to the highest logging level.

The following command would be entered on the command
line to run the synchronous demonstration program on 60
channels using the inbound Brazil protocol with logging set
to the highest logging level:

gcmtsync_cui -n60 -plbr_r2 i -p2br r2 i -13 -i

Appendix A

Summary of GlobalCall Functions and Events

Table 37. Summary of GlobalCall Functions

Function

Description

gc_AcceptCall()

optional response to an incoming call request;
used to indicate “ringing” to the remote end

gc_Answer Call()

response to an incoming call (equivalent to
conventional “set hook off” function)

gc_Attach()

logically connects a voice resource to a line devj

ice

gc_CallAck()

enables user to control the response to an incon
call request by retrieving call information from th
network.

For ISDN PRI applicationgyc_CallAck()

function is used in overlap receiving operation.

ning
e

gc _CallProgress()

notifies the network that the connection request
in progress.

is

gc CCLibIDToName()

converts call control library identification code tq
library name.

gc CCLibNameTolD()

converts call control library name to library
identification code

gc CCLibStatus()

retrieves status of the call control library specifig

gc_CCLibStatusAll()

retrieves status information for all call control
libraries

gc Close()

closes a previously opened device and removeg
channel from service

the

281

GlobalCall™ API Software Reference for UNIX and Windows NT

Function

Description

gc_ CRN2LineDev()

acquires the line device ID associated with a given
CRN

gc Detach()

logically detaches a voice resource from the
associated line device

gc DropCall()

disconnects a call; equivalent to a “hang-up”

gc ErrorValue()

returns the error value/failure reason related to the

last GlobalCall function call. To process an errq
this function must be called immediately after a
GlobalCall function failed.

gc_GetANI()

returns caller identification information

gc_GetBilling()

gets the charge information for the call, after
GCEV_DISCONNECTED event is received or
gc_DropCall() function is terminated

gc_GetCalllnfo()

gets information for the call

gc_GetCallState()

acquires the state of the call associated with thg
CRN

r

gc_GetCRN() gets the CRN associated with a recently arrived
event (such as GCEV_OFFERED)
gc_GetDNIS() gets the DNIS (DDl digits) associated with a

specific CRN

gc_GetLineDev()

gets the line device ID associated with a recentl
arrived event

gc_GetLinedevState()

retrieves the status of the specified line device

gc_GetMetaEvent()

transforms a call control library event (or any SH

L

event) into a GlobalCall metaevent

282

Appendix A - Summary of GlobalCall Functions and Events

Function Description

gc_GetMetaEventEx() (Windows NT extended asynchronous mode only)
transforms a call control library event (or any SRL
event) into a Global Call metaevent. Passesthe
SRL event handle to the application so that
multithreaded applications can be implemented.

gc_GetNetworkH() returns network device handle associated with the
specified line device

gc_GetParm() retrieves the parameter value specified for aline
device

gc_GetUsrAttr() retrieves the attribute established using
gc_SetUsrAttr () function

gc_GetVer() returns the version number of the specified
software component

gc_GetVoiceH() returns the voice device handle associated with the
specified call control line device

gc_LoadDxParm() Sets voice parameters associated with aline device

gc_MakeCall() makes an outgoing call

gc_Open() opens a Global Call device and returns a unique

line device handle to identify the physical
device(s) that carry the call

gc_OpenEx() opens a GlobalCall device, sets auser defined
attribute and returns a unique line device handle to
identify the physical device(s) that carry the call.
This function can be used in place of the
gc_Open() function followed by a
gc_SetUsrAttr() function.

gc_ReleaseCall() releases all internal resources for the specified call

283

GlobalCall™ API Software Reference for UNIX and Windows NT

Function

Description

gc_RegANI()

returns the caller’s identification, normally
included in the ISDN setup message and ANI-o0
Demand requests

gc_ResetLineDev()

disconnects any active calls on the line device;
aborts all calls being setup

gc ResultMsg()

retrieves an ASCII string describing the result cq

pde

gc_ResultValue()

returns the cause of an event

gc_SetBilling()

for protocols that support this feature, sets billin
information for the call

gc_SetCallingNum()

sets the default calling party number on a specific

line device; the calling party number thus defing
will be used on all subsequent outbound calls

d

gc_SetChanState()

sets a channel to the “in-service,
or “in-maintenance” state

out-of-service

gc_SetEvtMsk()

sets the event mask associated with the specifie
line device

rd

gc_SetInfoElem()

enables setting an additional information elemet
in the next outbound ISDN call

nt

gc_SetParm()

sets the default value of parameters used in call
setup process

gc_SetUsrAttr()

sets an attribute defined by the user

gc_SndMsg() sends non-call state-related ISDN message to
network over the D channel while a call exists
gc Start() starts all configured, call control libraries

For UNIX applications, non-stub libraries are
started.

gc StartTrace()

starts trace and places results in shared RAM

gc_Stop()

stops all configured call control libraries started

284

Appendix A - Summary of GlobalCall Functions and Events

Function Description
gc_StopTrace() stops the trace and closes the file
gc WaitCall() sets up conditions for processing incoming calls

Table 38. GlobalCall Event Summary

Event Terminates Ref | Description

GCEV_ACCEPT gc_AcceptCall() CRN Call received at
remote end, but not
yet answered

GCEV_ACKCALL gc_CallAck() CRN | Indicates
termination of

gc_CallAck() and
that the DDI string
may be retrieved by
using
gc_GetDNIS()

GCEV_ALERTING Unsolicited (enabled | CRN | Destination party
by default) has answered call.

GCEV_ANSWERED gc_AnswerCall() CRN Call established and
enters Connected
state

GCEV_BLOCKED Unsolicited (enabled | LDID | Lineisblocked and
by default) application cannot
issue call-related
function calls.
Retrieve reason for
line blockage using
gc_ResultValueg().

GCEV_CALLINFO Unsolicited CRN | Generated when
an incoming
information
messageis
received.

285

GlobalCall™ API Software Reference for UNIX and Windows NT

Event

Terminates

Ref

Description

GCEV_CALLSTATUS

Unsolicited

CRN

Indicates that a
timeout or ano
answer (call control
library dependent)
condition was
returned while the
gc_MakeCall()
function is active

GCEV_CONGESTION

Unsolicited

CRN

Generated when
an incoming
congestion
messageis
received.

GCEV_CONNECTED

gc MakeCall()

CRN

Call is connected

GCEV_D_CHAN_
STATUS

Unsolicited

LDID

Generated when
the status of the
D channel
changes.

GCEV_DISCONNECTED

Unsolicited

CRN

Call disconnected by
remote end.

Any request or message
rejected by network or
that has timed-out

Either
CRN
or
LDID

The error detected
prevents further call
processing on this
cal.

GCEV_DIVERTED

Unsolicited

CRN

Received request to
call forward using
DPNSS protocol .

GCEV_DROPCALL

gc_DropCall()

CRN

Call is disconnected
and call entersidle
state

GCEV_FACILITY

Unsolicited

LDID

Generated when
an incoming
facility messageis
received.

286

Appendix A - Summary of GlobalCall Functions and Events

Event

Terminates

Ref

Description

GCEV_FACILITY_AC
K

Unsolicited

LDID

Generated when
an incoming
facility ACK
messageis
received.

GCEV_FACILITY_REJ

Unsolicited

LDID

Generated when
an incoming
facility reject
messageis
received.

GCEV_HOLDACK

gc_HoldCall()

CRN

Generated when
an
acknowledgement
issent in response
to ahold call
message.

GCEV_HOLDCALL

Unsolicited

CRN

Generated when a
hold current call
messageis
received.

GCEV_HOLDREJ

gc_HoldCall()

CRN

Generated when a
hold call request is
rejected and the
hold call reject
message is sent to
remote end.

GCEV_ISDNMSG

Unsolicited

CRN

Generated when
an incoming
unrecognized
ISDN messageis
received.

GCEV_L2BFFRFULL

Unsolicited

CRN

Generated when
the incoming layer

287

GlobalCall™ API Software Reference for UNIX and Windows NT

Event

Terminates

Ref

Description

2 access message
buffer isfull.
(reserved for
future use)

GCEV_L2FRAME

Unsolicited

CRN

Generated when
anincoming layer
2 access message
isreceived.

GCEV_L2NOBFFR

Unsolicited

CRN

Generated when
no free spaceis
available for an
incoming layer 2
access message.

GCEV_NOTIFY

Unsolicited

CRN

Generated when
an incoming notify
messageis
received.

GCEV_NSI

Unsolicited

CRN

Generated when a
Network Specific
Information (NSI)
messageis
received using
DPNSS protocol.

GCEV_OFFERED

Unsolicited

CRN

Inbound call arrived;
call enters Offered
state.

GCEV_PROCEEDING

Unsolicited (enabled
by default)

CRN

Generated when
an incoming
proceeding
messageis
received.

GCEV_PROGRESSING

Unsolicited (enabled
by default)

CRN

Generated when
an incoming
progress message

288

Appendix A - Summary of GlobalCall Functions and Events

Event

Terminates

Ref

Description

isreceived.

GCEV_REQANI

gc_ReqANI()

CRN

Generated when
ANI informationis
received from
network.

GCEV_RESETLINEDEV

gc_ResetLineDev()

LDID

Disconnects any
active callson the
line device.

GCEV_RETRIEVEACK

gc_RetrieveCall()

CRN

Generated when
an
acknowledgement
issent in response
to aretrieve hold
call message.

GCEV_RETRIEVECAL
L

Unsolicited

CRN

Generated when a
retrieve hold call
message is
received.

GCEV_RETRIEVEREJ

gc_RetrieveCall()

CRN

Generated when a
rejection message
issent in response
to arequest to
retrieve held call.

GCEV_SETBILLING

gc_SetBilling()

CRN

Generated when
billing information
forthecal is
acknowledged by
the network.

GCEV_SETCHANSTA
TE

gc_SetChanState()
or unsolicited

CRN

Sets operating
state of channel.
Orif an
unsolicited event,
generated when
the status of the

289

GlobalCall™ API Software Reference for UNIX and Windows NT

Event

Terminates

Ref

Description

B channel changes
or amaintenance
messageis
received from the
network.

GCEV_SETUP_ACK

Unsolicited (disabled
by default)

CRN

Generated when
an incoming setup
ACK messageis
received.

GCEV_TASKFAIL

Unsolicited

Either
CRN
or
LDID

An unsolicited error
event occurred
during the execution
of afunction.

GCEV_TRANSFERAC
K

Unsolicited

CRN

Generated when
an
acknowledgement
issent in response
to atransfer call to
another destination
message using
DPNSS protocol.

GCEV_TRANSFERCA
LL

Unsolicited

CRN

Generated when a
transfer call to
another destination
messageis
received.

GCEV_TRANSFERREJ

Unsolicited

CRN

Generated when a
rejection message
issent in response
to arequest to
transfer call to
another destination
using DPNSS
protocol.

290

Appendix A - Summary of GlobalCall Functions and Events

Event Terminates Ref | Description

GCEV_TRANSIT Unsolicited CRN | Generated when a
messageis sent via
acall transferring
party tothe
destination party
after atransfer call
connection is
completed using
DPNSS protocol.

GCEV_UNBLOCKED Unsolicited (enabled | LDID | Lineisunblocked.
by default) Application may
issue call-related
commands to this
line device.

GCEV_USRINFO Unsolicited CRN | Generated when
an incoming User-
to-User
Information (UUI)
message is
received.

291

GlobalCall™ API Software Reference for UNIX and Windows NT

292

Appendix B

GlobalCall Error Code & Result Value Summary

Table 39. GlobalCall Error Code Summary

Error Code Returned

Description

EGC_ALARM

Function interrupted by alarm

EGC_ALARMDBINIT

Alarm database failed to initialize

EGC_ATTACHED

Specified resource already attached

EGC_BADFCN

Wrong function code (TSR)

EGC_BUSY

Lineisbusy

EGC_CCLIBSPECIFIC

Error specific to call control library

EGC_CCLIBSTART

At least one call control library failed to start

EGC_CEPT

Operator intercept detected

EGC_COMPATIBILITY

Incompatible components

EGC_CPERROR

SIT detection error

EGC_DEVICE

Invalid device handle

EGC_DIALTONE

No dia tone detected

EGC_DRIVER

Driver error

EGC_DTOPEN

dt_open() function failed

EGC_DUPENTRY

Duplicate entry inserted into Global Call
database

EGC_FILEOPEN

Error opening file

EGC_FILEREAD

Error reading file

293

GlobalCall™ API Software Reference for UNIX and Windows NT

Error Code Returned

Description

EGC_FILEWRITE

Error writing file

EGC_FUNC_NOT _
DEFINED

Protocol function not defined

EGC_GC_STARTED

Globa Call library is already started

EGC_GCDBERR

GlobalCall database error

EGC_GCNOTSTARTED

GlobalCall not started

EGC_ILLSTATE

Function is not supported in the current state

EGC_INTERR

Internal Globa Call Error

EGC_INVCRN

Invalid call reference number

EGC_INVDEVNAME

Invalid device name

EGC_INVLINEDEV

Invalid line device passed

EGC_INVMETAEVENT

Invalid metaevent

EGC_INVPARM

Invalid parameter (argument)

EGC_INVPROTOCOL

Invalid protocol name

EGC_INVSTATE

Invalid state

EGC_LINERELATED

Error isrelated to line device

EGC_MAXDEVICES

Exceeded maximum devices limit

EGC_NAMENOTFOUND

Trunk device name not found

EGC_NDEVICE

Too many devices opened

EGC_NOANSWER

Rang called party, called party did not answer

EGC_NOCALL No call was made or transferred
EGC_NOERR No error
EGC_NOMEM Out of memory

294

Appendix B - GlobalCall Error Code & Result Value Summary

Error Code Returned

Description

EGC_NORB

No ringback detected

EGC_NOT_INSERVICE

Called number is not in-service

EGC_NOVOICE

Call needs voiceresource, use gc_Attach()
function

EGC_NPROTOCOL

Too many protocols opened

EGC_OPENH

Error opening voice channel

EGC_PFILE

Error opening parameter file

EGC_PROTOCOL

Protocol error

EGC_PUTEVT

Error queuing event

EGC_SETALRM

Set alarm mode failed

EGC_SRL SRL failure

EGC_STOPD Call progress stopped

EGC _SYNC Set mode flag to EV_ASYNC instead of
EV_SYNC

EGC_SYSTEM System error

EGC_TASKABORTED Task aborted

EGC_TIMEOUT

Function time out

EGC_TIMER

Error starting timer

EGC_TSRNOTACTIVE

cclib not active (TSR)

EGC_UNSUPPORTED

Function is not supported by this technology

EGC_USER

Function interrupted by user

EGC_USRATTRNOTSET

User attribute for this line device was not set

EGC_VOICE

No voice resource attached

295

GlobalCall™ API Software Reference for UNIX and Windows NT

Error Code Returned

Description

EGC_VOXERR

Error from voice software

EGC_XMITALRM

Send alarm failed

Table 40. GlobalCall Result Value Summary

Result Value Description
GCRV_ALARM Event caused by alarm
GCRV_B8zsD Bipolar eight zero substitution detected

GCRV_B8ZSDOK

Bipolar eight zero substitution detected
recovered

GCRV_BPVS Bipolar violation count saturation
GCRV_BPVSOK Bipolar violation count saturation recovered
GCRV_BUSY Lineisbusy

GCRV_CCLIBSPECIFIC

Event caused by specific call control library
failure

GCRV_CECS CRCA4 error count saturation
GCRV_CECSOK CRCH4 error count saturation recovered
GCRV_CEPT Operator intercept detected

GCRV_CPERROR

SIT detection error

GCRV_DIALTONE

No dia tone detected

GCRV_DPM Driver performance monitor failure
GCRV_DPMOK Driver performance monitor failure recovered
GCRV_ECS Error count saturation

GCRV_ECSOK Error count saturation recovered

296

Appendix B - GlobalCall Error Code & Result Value Summary

Result Value

Description

GCRV_FERR

Frame bit error

GCRV_FERROK

Frame bit error recovered

GCRV_FSERR

Frame sync error

GCRV_FSERROK

Frame sync error recovered

GCRV_INTERNAL

Event caused internal failure

GCRV_LOS

Initial loss of signal detection

GCRV_LOSOK

Initial 1oss of signal detection recovered

GCRV_MFSERR

Received multi frame sync error

GCRV_MFSERROK

Received multi frame sync error recovered

GCRV_NOANSWER

Event caused by no answer

GCRV_NORB

No ringback detected

GCRV_NORMAL

Normal completion

GCRV_NOT_INSERVICE

Called number is not in-service

GCRV_NOVOICE

Call needs voiceresource, use gc_Attach()
function

GCRV_OOF

Out of frame error, count saturation

GCRV_OOFOK

Out of frame error, count saturation recovered

GCRV_PROTOCOL

Event caused by protocol error

GCRV_RBL Received blue alarm
GCRV_RBLOK Received blue alarm recovered
GCRV_RCL Received carrier loss
GCRV_RCLOK Received carrier loss recovered
GCRV_RDMA Received distant multi-frame alarm

297

GlobalCall™ API Software Reference for UNIX and Windows NT

Result Value

Description

GCRV_RDMAOK

Received distant multi-frame alarm recovered

GCRV_RED Got ared alarm condition
GCRV_REDOK Got ared alarm condition recovered
GCRV_RLOS Received loss of sync
GCRV_RLOSOK Received loss of sync recovered
GCRV_RRA Remote alarm

GCRV_RRAOK Remote alarm recovered
GCRV_RSA1 Received signaling al 1s
GCRV_RSA10K Received signaling all 1srecovered
GCRV_RUA1 Received unframed all 1s

GCRV_RUA10OK

Received unframed all 1s recovered

GCRV_RYEL

Received yellow alarm

GCRV_RYELOK

Received yellow alarm recovered

GCRV_SIGNALLING

Signaling change

GCRV_STOPD

Call progress stopped

GCRV_TIMEOUT

Event caused by time-out

298

Appendix C

GlobalCall Header Files

The Global Call header files, gclib.h and geerr.h, listed in this appendix are for
both Windows NT and UNIX. These header files apply to all technologies.

gclib.h Header File

[Kk ok Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok k ok ko k kK

C Header : gclib.h

I nst ance: dnj 25

Description: Qobal Call header file for application use
%reated by: wienerc %

%late_created: Tue Feb 10 15:59:54 1998 %

* Ok ok ok %k ok

***************'k**/
/**************'k***
* Qopyright (©Q 1996-1998 D al ogi ¢ Corp.

Al Rghts Reserved

*

*

* THS 1S UNPUBLI SHED PRCPR ETARY SOURCE QCCE CF Dial ogi ¢ Corp.
* The copyright notice above does not evidence any actual or

*

intended publication of such source code.
**/

#i fndef GLIB H
#define GLIB H

#i fndef 1int

static char * dnj25 gclib_h = "@#) %ilespec: gclib.h-22.1.3 % (%ull _fil espec:
gclib.h-22.1.3:incl:dnj25 %*";

#endi f [* tlint */

#i f ndef DCB
#i ncl ude <stdio. h>
#endi f /* 1D0B */

#i fdef _ cpl uspl us
extern "C' { // C++ func bindings to enable funcs to be called fromC++
#endi f /* __cplusplus */

#ifdef _WN32
#pragma pack(1)
#endi f /* _WN32 */

/*

* --- Rel Type: 0=Prod, 1=Beta, 2=Al pha, 3=Exp
* | ----- Maj or Nunber

* |1 ----- M nor Nunber

* 1] ----- Bet a Nunber

* 11 ----- A pha Nunber

* [

* VW V V V

*/

299

GlobalCall™ API Software Reference for UNIX and Windows NT

#i fdef unix

#define GC VERSIAON (long int)0x11030100
#else /* lunix */

f defined(_WN32) && defined(_M | X86)
#define GC VERSIAON (I ong i nt)0x01000000
#else /* 1 _WN32 && ! _MIX86 */

#if defined(_WN32) && defined(_M ALPHA)
#define GC VERSIAON (long i nt)0x21000001
#endi f /* _WN32 & _MALPHA */

#endif /* _WN32 && _MIX86 */

#endi f /* unix */

#def i ne METAEVENT_NAG ONO OxBADO12FBL

/*
* This file will be exported to application
*/
/*
* Typedefs used throughout Q obal Call software, and application.
*/
#define GOLIB DEBUG FILE NAME "gcl i b. dbg" /* control s where debug file
list is kept */
#def i ne MAX_BOARD NAME LENGTH 100 /* Not including the trailing
NULL */
#define MAX_ OOLI B NAME LENGIH 10 /* Not including the trailing
NULL */
#define LIBID GC 0 /* QobalCall lib'sid */
#define GC_MAX_CR\S_PER LI NEDEV 20
[*gcl*/
#def i ne LI NEDEV | ong
[*gc2*/
#define CRN | ong
/*
-- bit mask for gc_Get OLi bl nfo
*/
#define GC_QOCLIB AL ox1
#define GC_OCLI B OONFI GURED 0x2
#define GC_ OLI B FAl LED Ox4
#define GC_QOCLI B_STUB 0x8
/*
-- defines for gc_GetCalllnfo()
*/
[*#def i ne CALLED SUBS 0x5*/ /* In | SDN header files */
[*#define UIES 0x10*/ /* In | SDN header files */
#define CATEGIRY DA T 0x100 /* Get category digit */
#def i ne CONNECT_TYPE 0x101 /* get callp connect type */
#defi ne CALLNAME 0x102 /* get caller nane call ID*/
#define CALLTI ME 0x103 /* get caller tine call ID*/
/*
-- Defines for the connect types
*/

#define GOCT_NA

#defi ne GOCT_CAD
#define GOCT_LPC
#defi ne GOCT_PVD

/* call progress is not available */

/* connect due to cadence */

/* connect due to loop current */

/* connect due to positive voice detection */

WN RO

300

#defi ne GOCT_PAD 4

#define GOCT_FAX 5

[*ge3/
/*

Appendix C - GlobalCall Header Files

/* connect due to positive answering nachi ne

det

ection */

/* connect due to FAX */

-- Note: this structure is intended to be used in the future
-- by gc_Start(), but is not yet inplenented

*/
typedef struct {
int rfu;

t ypgdef struct {

int numavl libraries;

int num configuredlibraries;
int numfailedibraries;

int num st ubl i brari es;

/*

-- these are an array of

strings, each string ternminated with a NULL

-- e.g. avl_libraries[0] ="ICAPI"
-- avl _libraries[1] ="ISDN'
-- avl _libraries[2] = "ANAPI"
*/

char **avllibraries;

char **configuredlibraries;
char **failedibraries;

char **stublibraries;

} GC_OOLIB_STATUS, *GC OCLI B STATUSP,

typedef struct {

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

of poll units before gc_GetEvent */
shoul d return */

-l =nolimt */

0is the sane as 1 */

NB - Only 1 or forever is currently */
i npl enented */

inthe future, poll_units nay be */
either cycles or time */

reserved for future use */

reserved for future use */

BLOCKED UNBLOKED codes

| ong pol | _units;
int rful;
int rfuz;
} CGETEVENT;
/*
-- for gc_Qpen() successful "termination event"
-- need to distinguish from nornal
*/

#def i ne GOEV_CPEN_UNBLOOKED

/*
* Data structure types
*/

#def i ne GOME_UNKNOWY_STRUCT_TYPE
#defi ne GOME_EVTBLK_STRUCT_TYPE
#def i ne GOME_EVTDATA _STRUCT TYPE

/*
/*

-1L /* result of open being successful */

a - nunber so not to conflict with */
DIl LI B codes */

301

GlobalCall™ API Software Reference for UNIX and Windows NT

/*

* Defines for obal Call APl event codes

*/

#i fndef DOB

#define DI_GC 0x800

#el se /* DCB */

#define DI_QC 0x2000

#endi f /* 1DCB */

#i fdef DOS

#define DV_GCAPl (DT_GC| 100) /* DV_ICAPl is 100 */

#endi f /* DCB */

[*gcax/

#def i ne GOEV_TASKFAI L (Dr_QC | 0x01) /* Abnormal condition; state unchanged
*/

#def i ne GCEV_ANSWERED (DT_QC | 0x02) /* Call answered and connected */

#define GCEV_CALLPROGRESS (DT_GC | 0x03)

#def i ne GCEV_ACCEPT (DT_GC | 0x04) /* Call is accepted */

#def i ne GCEV_DRCPCALL (DT_QGC | 0x05) /* gc_DropCall is conpleted */

#def i ne GCEV_RESETLINEDEV (DT_GC | 0x06) /* Restart event */

#def i ne GCEV_CALLI NFO (DT_QC | 0x07) /* Info message received */

#def i ne GCEV_REQAN (DT_GC | 0x08) /* gc_RegANI () is conpleted */

#def i ne GCEV_SETCHANSTATE (DT_QGC | 0x09) /* gc_SetChanState() is conpleted */

#define GCEV_FAQ LITY_ ACK (DI_GC | Ox0A)

#define GCEV_FAQ LITY_RE] (DI_GC| Ox0B)

#def i ne GCEV_MOREDIAQ TS (DT_QC | 0x0Q /* cc_noredigits() is conpleted*/

#def i ne GCEV_SETBI LLI NG (DT_GQC | OxOE) /* gc_SetBilling() is conpleted */

#def i ne GCEV_ALERTI NG (DT_QGC | 0x21) /* The destination tel ephone terninal
* equi prent has recei ved connection
* request (in |SDN accepted the
* connection request. This event is
* an unsolicited event
*
/

#def i ne GCEV_CONNECTED (DI_QC | 0x22) /* Destination answered the request */

#def i ne GCEV_ERRCR (DT_QGC | 0x23) /* unexpected error event */

#def i ne GCBEV_CFFERED (DT_GC | 0x24) /* A connection request has been nade
*
/

#define GOEV_D SOONNECTED (DT_GC | 0x26) /* Renote end di sconnected */

#def i ne GCEV_PROCEED NG (DT_QC | 0x27) /* The call state has been changed to
*

the proceeding state */
#define GOEV_PROGRESSING (DI_GC | 0x28) /* A call progress nessage has been
* recei ved */
#def i ne GCEV_USR NFO (DT_GC | 0x29) /* A user to user information event is
* coming */
#define GCEV_FAQLITYREQ (DI_GC| Ox2A) /* Afacility request is made by QO */
/* NB: | SDN equivalent value is */
/* CCEV_FAQ LITY */

#def i ne GOEV_CONGESTI ON (DI_QC | 0x2B) /* Renote end is not ready to accept
* incomng user information */
#define GCEV_FAQ LI TY (Dr_&C | 0x2Q /* Facility info. available */
#define GOEV_D CHAN STATUS (DT_GC | Ox2E) /* Report D-channel status to the user */
#define GOEV_NOUSR NFCBLF (DT_GC | 0x30) /* UWser infornmation el ement buffer is
* not ready */
#define GOEV_NCFAQ LI TYBUF (DT_GC | 0x31) /* Facility buffer is not ready */
#def i ne GOEV_BLOKED (DT_GC | 0x32) /* Line device is blocked */
#def i ne GCEV_UNBLOCKED (DI_GC | 0x33) /* Line device is no |onger bl ocked */
#def i ne GOEV_| SDNVBG (DT_GC | 0x34)
#def i ne GCEV_NOTI FY (DT_QGC | 0x35) /* Notify nessage received */
#def i ne GCEV_L2FRAME (DT_GC | 0x36)
#define GOEV_L2BFFRFUL (DT_QC| 0x37)

302

#def i ne GCEV_L2NCBFFR (Dr_&C |
#def i ne GCEV_SETUP_ACK (DIr_&C |
#def i ne GCEV_CALLSTATUS (DI_&C |
#i fdef _WN32

[*gc5*/

/* these events only apply to those
#defi ne GCEV_D VERTED (Dr_&C
#def i ne GCEV_HOLDACK
#def i ne GOEV_HOLDCALL
#def i ne GCEV_HOLDRE)
#defi ne GCEV_RETR EVEACK
#defi ne GCEV_RETR EVECALL
#defi ne GCEV_RETR EVEREJ
#def i ne GCEV_NSI

#def i ne GCEV_TRANSFERACK
#def i ne GCEV_TRANSFERRE]
#define GCEV_TRANSI T

8999999559
8888REEREE

/* end of | SDN DPNSS specific */
#endi f [* _WN32 */

#def i ne GOEV ACKCALL (DT_cC |

| *

0x38)
0x39)

0x34) /*

Appendix C - GlobalCall Header Files

call status, e.g. busy */

sites using | SDN DPNSS */

0x40)
0x41)
0x42)
0x43)
0x44)
0x45)
0x46)
0x47)
0x48)
0x49)
0x4A)

0X50) /*

*/

Termination event for gc_Cal | AGK()

* MASK defines which nay be nodified by gc_Set Evt Msk().
* These nasks are used to mask or unmask their correspondi ng events,

* QEV_XXXX.
*
/

#def i ne GOVBK_ALERTI NG 0x01
#def i ne GOVBK_PROCEED NG 0x02
#def i ne GOVBK_PROGRESS 0x04
#def i ne GOVBK_NCFAQ LI TYBUF 0x08
#def i ne GOVBK_NOUER NFO 0x10
#def i ne GOVBK_BLOXKED 0x20
#def i ne GOVBK_UNBLOXKED 0x40
#def i ne GOVBK_PROC_SEND 0x80
#def i ne GOVBK_SETUP_ACK 0x100

/*

* BEvent Mask Action val ues

*

*/
#def i ne GCACT_SETMBK 0x01
#def i ne GCACT_ADDVBK 0x02
#def i ne GCACT_SUBVBK 0x03
/*

* BUFFER si zes

*/
#define GC BILLSI ZE 0x60
#def i ne GC_ADDRSI ZE 0x30

* %k

*

/*
/*

Enabl e notification of events
specified in bitmask and di sabl e
notification of previously set
events */

Enabl e notification of events
specified in bitmask in addition
to previously set events. */

D sabl e notification of events
specified in bitmask. */

For storing billing info */
For storing AN or DNS digits. */

303

GlobalCall™ API Software Reference for UNIX and Windows NT

/*
* Conponent s supported for gc_Get Ver ()
*/

#define GOGV_LIB 0 /* Qobal Call library */

#define | GGV_LIB 1 /* 1CAPl library */

#define 1SGV/_LIB 2 /* ISDN library */

#define ANGV_LIB 3 /* ANAPI library */

/*

* Cause definitions for dropping a call

*/

#def i ne GC_UNASSI G\ED_ NUMBER 0x01 /* Nunber unassigned / unallocated */

#def i ne GC_NCRVAL_CLEAR NG 0x10 /* Call dropped under normal conditions*/

#defi ne GC_CHANNEL_UNACCEPTABLE 0x06

#def i ne GC_USER BUSY 0x11 /* End user is busy */

#def i ne GC_CALL_REJECTED 0x15 /* Call was rejected */

#def i ne GC_DEST_QUT_CF_CRDER 0x19 /* Destination is out of order */

#defi ne GC_NETWIRK_CONGESTI ON Ox2a

#define GC REQ CHANNEL_NOT_AVAIL O0x2c /* Requested channel is not avail abl e
*/

#define GC SEND SIT 0x300 /* send Special Info. Tone (SIT) */

/*

* RATE types for gc_SetBilling()

*/

#def i ne GCR_ CHARGE 0x0000 /* Charge call (default) */

#def i ne GCR_NOCHARCGE 0x0100 /* Do not charge call */

/*

* Defines for "parm paraneter of gc_SetParn{) and gc_Get Parn()

* gcé

*/ gc

#def i ne GOPR_ALARM 1 /* Enabl e or disable alarmhandling */

#define GOPR WA TI DLE 2 /* Change wait for idle tine-out */

#def i ne GOPR_LOADTCNES 4 /* Enabl e or disable |oading tone */

#defi ne GOPR_R NGBACKI D 5 /* GIDid for ring back tone */

#def i ne GOPR_OJTAUARD 6 /* maximumtine for call progress */

#define PR MND A TS 7 /* mn # of digits */

#def i ne GOPR_CALLI NGPARTY 0x4001 /* set or get terminal phone nunber */

#def i ne GOPR_CATEGCRY 0x104 /* request caller category */

#def i ne GOPV_ENABLE 1 /* enable feature */

#def i ne GOPV_D SABLE 0 /* disable feature */

/*

* Gl Sates

*/

#define GCST_NULL 0x00

#def i ne GCST_ACCEPTED 0x01

#def i ne GCST_ALERTI NG 0x02

#def i ne GCST_CONNECTED 0x04

#def i ne GCST_CFFERED 0x08

#define GCST_D ALI NG 0x10

#define GCST_I DLE 0x20

#def i ne GCST_Dl SOONNECTED 0x40

/*

304

Appendix C - GlobalCall Header Files

* Channel states which may be set using gc_Set ChanSt at e()

*/
#def i ne GOLS | NSERVI CE 0 /* Set channel to in service */
#defi ne GOLS_MA NTENANCE 1 /* Set channel to maintenance state */
#define GOLS OJT_COF_SERVI CE 2 /* Set channel to out of service */
/*
* Defines for gc_Call ACK() when getting nore digits.
*/
#define GO F_DD 1 /* get additional DD digits */
[*gc7*/
#def i ne GCDG COMPLETE 0x0000 /* No nore digits after that */
#def i ne GODG_PARTI AL 0x0100 /* Maybe nore digits after that */
#define GDGND QAT Ox00FF /* Get infinite string of digits */
#define DG MDA T 0x00E /* maxi num# of DO digits which can
be col l ected */
/*
-- Defines for gc_GetLinedevState
*/
#def i ne GOALS BCHANNEL 0x0 /* B channel (1SDN */
#def i ne GOALS DCHANNEL 0x1 /* D channel (1SDN */
#def i ne GC_MAXNFAONETWIRKI D 251 /* NMaxi mumnon-facility network 1D */
typedef struct {
/*
-- Note: structure is ordered with | ongest fields 1st
-- to inprove access tine with some conpilers
*/
| ong nagi cno; /* for internal validity check */
/* application calls gc_GetMetaEvent() to fill in these fields */
unsigned long flags; /* flags field */
/* - possibly event data structure type
*/
/* i.e. evtdata_ struct_type */
voi d *evt dat ap; /* pointer to the event data bl ock */
/* DOB will be of type EVIBLK for
| CAPI, | SDN */
/* other libraries to be determned */
/* UNXwll be sr_getevtdatap() */
| ong evtlen; /* event length */
/* DOB - initially sizeof (EVIBLK) */
/* N X sr_getevtlen */
#i fdef DOS
| ong devt ype; /* Specifies the product generating event */
| ong evt code; /* Bvent Code identifying the event */
| ong evt dat a; /* Data relevant to the event */
| ong devchan; /* Device Channel : Channel Nunber on which
event occoured */
| ong boar d; /* Board Nunber: For non voice events

speci fies board Nunber */

#el se [* 1DCB */
| ong evt dev; /* UINX - sr_getevtdev */
| ong evttype; /* Event type */

#endi f /* D08 */

305

GlobalCall™ API Software Reference for UNIX and Windows NT

/* linedev & crn are only valid for Qobal Call events */

LI NEDEV | i nedev; /* linedevice */

RN crn; /* crn - if Othen no crn for this event */

| ong rfu2; /* for future use only */

voi d *usrattr; /* user attribute */

int cclibid; /* IDof QLib that event is associated
with */

/* + = Qib I D nunber */
/* -1 = unknown */

#i fdef DOS

int evt_data_struct_type; /* event data structure type */
#el se /* 1DCB */

int rful; /* for future use only */

#endi f /* DCB */
} METAEVENT, *METAEVENTP;

/* define(s) for flags field within METAEVENT structure */

#def i ne GOME_GC_EVENT 0x1 /* Bvent is a Qobal Call event */
[*gc8*/
#def i ne MAXPHONENUM 32

/* this structure is for future use */
typedef struct {

| ong flags;

| ong connect t ype;
} GLI B_MAKECALL_BLK;

typedef struct {
QCLI B_MAKECALL_BLK *gclib; /* Qobal Call specific portion */
voi d *cclib; /* cclib specific portion */

} GC_MAKECALL_BLK, *GC MAKECALL BLKP;

typedef union {
struct {
long cents;
} ATT, *ATT_PTR
} GCRATE U *GC RATE U PTR

typedef struct {
| ong fl ags;
| ong rfu;

} GLIB_ WA TCALL_BLK;

typedef struct {
QCLI B WA TCALL_BLK *gclib; /* Qobal Call specific portion */
voi d *cclib;

/* cclib specific portion */

} GCCWATCALL_BLK, *GC WAI TCALL_BLKP;

/* define(s) for type field within GC_ CALLACK BLK structure */
#define GCAK SERMCEDNS Ox1
#define GCACK SERVICE ISDN 0x2

typedef struct {

unsi gned | ong type; /* type of a structure inside follow ng union */
long rfu; /* will be used for common functionality */

306

Appendix C - GlobalCall Header Files

uni on {
struct {
int accept;
} dnis;
struct {
int accept ance;
/* 0x0000 proceding with the sane B chan */
/* 0x0001 proceding with the new B chan */
/* 0x0002 setup ACK */
LI NEDEV | i nedev;
} isdn;
struct {
long gc_private[4];
} gc_private;
} service; /* what kind of service is requested */
/* related to type field */
} GC CALLAXK BLK, *QC CALLAXK BLK PTR

typedef union {

short short val ue;
| ong | ongval ue;
int i ntval ue;
char charval ue;
char *paddr ess;
voi d *pstruct;

} GC PARM

/* structure for gc_Get Devi ceNanel nfo */
typedef struct {

int cclibid;

| ong rfu;
} GC DEVI CENAME | NFQ *GC DEV CENAME | NFCP;

/*

-- structures for gc_Sndvsg
-- This structure is an rfu
*/

typedef struct {

| ong fl ags;
| ong rfu;
} GLIBIEBLK *GlLIB | E BLKP,

typedef struct {
QLI B | E BLK *gcl i b; /* Qobal Call specific portion */
voi d *cclib; /* cclib specific portion */

} GCIEBLK *CCI|E BLKP;

/*

-- structures for gc_SndFrame
-- This structure is an rfu
*/

typedef struct {

| ong flags;
| ong rfu;
} GIB L2 BLK *Q0LIB L2 _BLKP;

typedef struct {

307

GlobalCall™ API Software Reference for UNIX and Windows NT

QCLIB L2 BLK *gclib; /* Qobal Call specific portion */
voi d *cclib; /* cclib specific portion */
} GQC L2 BLK *GC L2 BLKP,

/*

* @ obal Call Function Prototypes

* Note: New functions will need to be addeded tw ce: once for

* MBC VER ... & once for not

*/

#if (defined (_MBC VER) || defined (__STDC) || defined (__cplusplus))

#i f defined (__cplusplus)
extern "C' {
#endi f /* __cplusplus */
int gc_AcceptCall (CRN crn, int rings, unsigned | ong node);
int gc_AnswerCall (CRN crn, int rings, unsigned | ong node);
int gc_Attach(LINEDEV |inedev, int voiceh, unsigned | ong node);
int gc_Call Ack(GRN crn, GC CALLACK BLK *cal | ack_bl kp, unsi gned | ong node) ;
int gc_CallProgress(CRN crn, int indicator);
int gc_QCLi bl DToNane(int cclibid, char **Iib_nane);
int gc_QOCLi bNaneTol O(char *lib_name, int *cclibidp);
int gc_QOCLibSatus(char *cclib_name, int *cclib_infop);
int gc_QOCLibStatusA | (GC QLI B_STATUS *cclib_status);
int gc_d ose(LI NEDEV | i nedev);
int gc_CRN\2Li neDev(CORN crn, LINEDEV *Iinedevp);
int gc_Detach(LINEDEV |inedev, int voiceh, unsigned | ong node);
int gc_DropCall (CRNcrn, int cause, unsigned | ong node);
int gc_ErorValue(int *gc_errorp, int *cclibidp, long *cclib_errorp);
int gc_ExtensionFunction(int cclibid, LINEDEV |inedev, CRN crn, void *datap);
int gc_GetAN (CRN crn, char * anibuf);
int gc_GetBilling(CRN crn, char *billing_buf);
int gc_GetQGllInfo(ONcrn,int info_id, char *val uep);
int gc_GetCallState(CRNcrn, int *state ptr);
int gc_Get CRN(CRN *crn_ptr, METAEVENT *net aeventp);
int gc_Get Devi ceNanel nf o(char *Devi ceNane, GC_DEVI CENAME | NFCP devi cenane_i nf op) ;
int gc_GetD gerrVal ue(LINEDEV |inedev, int *dlgerrp);
int gc_GetDN S(CGRN crn, char *dnis);
#i fdef DOS
int gc_Get Event (GETEVENT *get event p, METAEVENT *net aeventp);
#endi f /* D08 */
#ifdef _WN32
int gc_GetFrame(LI NEDEV |inedev, GC L2 BLK *I2_bl kp);
#endi f /* _WN32 */
int gc_GetLi neDev(LI NEDEV *| i nedevp, METAEVENT *net aeventp);
int gc_GetLinedevState(LI NEDEV linedev, int type, int *state buf);
fndef DOB
int gc_Get Met aBEvent (METAEVENT *net aevent p) ;
#i fdef _WN32
int gc_Get Met aBEvent Ex(METAEVENT *net aevent p, unsigned |ong evt_handl e);
#endi f /* _WN32 */
#endi f [* 1DCB */
int gc_Get Networ KH LI NEDEV | i nedev, int *networkhp);
int gc_GetParn{LINEDEV |inedev, int parmid, GC PARM *val uep);
int gc_GetUsrAttr(LINEDEV linedev, void **usr_attrp);
int gc_GetVer(LINEDEV |inedev, unsigned int *rel easenunp,
unsi gned int *intnunp, |ong conponent);
int gc_GetVoi ceH LI NEDEV |inedev, int * voicehp);
#i fdef _WN32
int gc_HoldCall (CRN crn, unsigned | ong node);
int gc_Hol dCal | ACK(GRN crn);
int gc_HoldCall Rej (ORN crn, int cause);

308

Appendix C - GlobalCall Header Files

int gc_Liblnit(void);
#endi f [* _WN32 */
int gc_LoadDxPar n{LI NEDEV | inedev, char *pathp, char *errnsgp, int err_length);
int gc_MkeCal | (LINEDEV |inedev, ORN *crnp, char *nunberstr,
QGC MAKECALL_BLK *nakecal I p, int timeout, unsigned | ong node);
int gc_Qpen(LI NEDEV *|inedevp, char *devicenane, int rfu);
int gc_QpenEx(LINEDEV *1inedevp, char *devicenane, int rfu, void *usrattr);

int gc_Rel easeCall (ORN crn);

int gc_RegAN (CRN crn, char *anibuf, int req_type, unsigned | ong node);

int gc_ResetLi neDev(LI NEDEV |inedev, unsigned | ong node);

int gc_ResultMsg(int cclibid, long result_code, char **nsg);

int gc_Resul t Val ue(METAEVENT *netaeventp, int *gc_result, int *cclibidp,

long *cclib_resultp);

#ifdef _WN32

int gc_RetrieveCall (CRN crn, unsigned | ong node);

int gc_RetrieveCal | Ack(GRN crn);

int gc_RetrieveCallRej (RN crn, int cause);

#endi f [* _WN32 */

int gc_SetBilling(CRNcrn,int rate_type, GC RATE U *ratep, unsigned | ong node);

int gc_SetCallingNun{LI NEDEV |inedev, char *calling_num;

int gc_SetChanState(LI NEDEV |inedev, int chanstate, unsigned |ong node);

int gc_SetD gerrVal ue(LI NEDEV |inedev, int dligerr);

int gc_Set Bvt Msk(LI NEDEV |inedev, unsigned |ong mask, int action);

int gc_SetlnfoH en(LINEDEV |inedev, GC|E BLK *iep);

int gc_SetParn{LI NEDEV |inedev, int parmid, GC PARMval ue);

int gc_SetUsrAttr(LINEDEV |inedev, void *usr_attr);

#ifdef _WN32

int gc_SndFrane(LI NEDEV |inedev, GC L2 BLK* |2 bl kp);

#endi f /* _WN32 */

int gc_Sndwsg(LINEDEV linedev, CRN crn, int nsg_type, GC |E BLK *sndnsgptr);

int gc_Start(GC START_STRUCT *startp);

int gc_StartTrace(LI NEDEV |inedev, char *tracefil enane);

int gc_Stop(void);

int gc_StopTrace(Ll NEDEV |inedev);

int gc_WitCall(LINEDEV |inedev, ORN *crnp, GC WAl TCALL BLK *wai tcal | p,
int tineout, unsigned | ong node);

#i f defined (__cplusplus)

}
#endi f /* __cplusplus */

#el se /*1_MBCVER && ! __STDC _ && ! _ cplusplus */
int gc_AcceptCall();

int gc_AnswerCall();

int gc_Attach();

int gc_CallAck();

int gc_CallProgress();
int gc_QCLi bl DToNane() ;
int gc_QCLi bNameTol)) ;
int gc_QCLibStatus();
int gc_QCLibStatusAl();
int gc_CRN\2Li neDev();
int gc_Qose();

int gc_Detach();

int gc_DropCall();

int gc_ErrorVal ue();

int gc_Extensi onFunction();
int gc_GetAN();

int gc_GetBilling();

int gc_GetCalllnfo();
int gc_GetCall State();
int gc_GetCR\));

309

GlobalCall™ API Software Reference for UNIX and Windows NT

int gc_GetDevi ceNanel nfo();
int gc_GetD gerrVal ue();
int gc_GetDN ();

#i fdef DOS

int gc_GetEvent();

#endi f /* DCB */

#ifdef _WN32

int gc_GetFrane();

#endi f [* _WN32 */

int gc_GetLineDev();

int gc_GetLinedevSate();
#i fndef DCB

int gc_Get MetaBEvent();
#ifdef _WN32

int gc_Get Met aBvent Ex();
#endi f [* _WN32 */
#endi f /* 1DCB */
int gc_GetNetworkH);
int gc_GetParn();

int gc_GetWsrAttr();
int gc_GetVer();

int gc_GetVoiceH);
#ifdef _WN32

int gc_HoldGll();

int gc_Hol dCal | ACK();
int gc_HoldCallRej();
int gc_Liblnit();
#endi f [* _WN32 */
int gc_LoadDxParn();
int gc_MkeCall();

int gc_Qpen();

int gc_QpenEx();

int gc_ReleaseCall();
int gc_RegAN ();

int gc_ResetLineDev();
int gc_Resul tMsg();
int gc_ResultVal ue();
#ifdef _WN32

int gc_RetrieveCall();
int gc_RetrieveCall Ack
int gc_RetrieveCall Rej
#endi f /* _WN32 */
int gc_SetBilling();
int gc_SetCallingNun();

int gc_SetChanState();

int gc_SetD gerrVal ue();

int gc_Set Bvt Msk();

int gc_SetlnfoH en();

int gc_SetParn();

int gc_SetUsrAttr();

#i fdef _WN32

int gc_SndFrane();

#endi f /* _WN32 */

int gc_SndMsg();

int gc_Start();

int gc_StartTrace();

int gc_Stop();

int gc_StopTrace();

int gc_ WitCall();

#endi f /* MBCVER || _SIDC || __cplusplus */

()
0

#ifdef WNB2

310

#pragma pack()
#endi f [* _WN32 */

#i fdef _ cpl uspl us

}

#endi f /* __cplusplus */
#endi f /* _GOLIBH*/

gcerr.h Header File

[Kk ok Kok ok ok ok ok ok ok ok ok ok ok ok ok ok kR ko ok ok k ok ko k kK

C Header : gcerr.h

I nst ance: dnj 25
Description: @ obal Call
%reated by: wienerc %

* Ok ok ok %k ok

error header file for application use

Appendix C - GlobalCall Header Files

%late_created: Mon Feb 9 13:09:58 1998 %

ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ok ok kok ko ko ok ok ok kk Rk ok ok k ok k ok ok k ok k ok k ok ok k ok ok ok

[Kk ok kok ok k ok ok kok ok ok ko k ok ok ko k ok k ok ok k ok ko k

Al

EEE Y

Copyright (©Q 1996-1998 D al ogi ¢ Corp.
R ghts Reserved

TH S IS UNPUBLI SHED PRCPR ETARY SOURCE OCDE CF Di al ogi ¢ Cor p.
The copyright notice above does not evidence any actual or
i ntended publication of such source code.

ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ko ok ok ok kR ok k kK k ok ko kk ok ok k ok kk ok ok k ok ok [

#ifndef GOERRH_
#define _GOERR H_
#ifndef int

static char
gcerr.h-11:incl:dnj25 %";

#endi f

[* Rk Kk ok ok ok ok ok ok ok k ok k [

/* Error val ues */
/****************/

*_dnj 25 _gcerr_h = "@#%#) %ilespec: gcerr.h-11 % (%ull _fil espec:

[*gcl*/
/* Note: when adding error codes, recall that |CAPl error codes for the

nost part may not excede Ox7F - cf. r2 updateline() */
#define GCC ERROR -1
#def i ne EGC_ NCERR 0 /* No error */
#def i ne GC_SUOCCESS EGQC NCERR /* synonym of EGC NCERR */
#def i ne EGC_NOCALL 1 /* No call was nade or transfered */
#def i ne EGC_ ALARM 2 /* Function interrupt by alarm */
#def i ne EGC_ATTACHED 3 /* specified resource already attached */
#def i ne EGC DEVI CE 4 /* Bad devi ce handl e */
#def i ne EGC | N\VPROTOOCL 5 /* lvalid protocol nane */
#def i ne EGC_PROTOOCL 7 /* Protocol error */
#defi ne EGC_SYNC 8 /* The node flag nust be EV.ASYNC */
#defi ne EGC_TI MEQUT 9 /* function tine out */
#def i ne EGC_UNSUPPCRTED OxA /* Function is not supported */
#defi ne EGC_USER 0xB /* Function interrupted by user */
#define EGC VA CE Ooxc /* Nb voice resource attached */
#def i ne EGC_NDEM CE Oxd /* Too many devi ces opened */
#def i ne EGC_NPROTQOCL Oxe /* Too many protocol s opened */

311

GlobalCall™ API Software Reference for UNIX and Windows NT

#def i ne EGC_BADFCN oxf /* Bad function code (TSR */
#def i ne EGC_TSRNOTACTI VE 0x10 /* QCQLIB not active (TSR */
#def i ne EGC_COWPATI Bl LI TY 0x11 /* inconpatibl e conponents */
[*gc2*/
[*gc3*/
#def i ne EGC EVIERR 0x13 /* Internal D alogic use only */
[*gedx/
#def i ne EGC_PUTEVT 0x14 /* Error queuing event */
#def i ne EGC_MAXDEVI CES 0x15 /* Exceeded Maxi numdevices limt */
#def i ne EGC_CPENH 0x16 /* Error opening voi ce channel */
[*gc5*/
#def i ne EGC | NTERR 0x18 /* Internal Qobal Call Eror */
#def i ne EGC_NOVEM 0x19 /* Qut of nenory */
#defi ne EGC PFI LE Ox1A /* Error opening paraneter file */
#def i ne EGC TI MER 0x1B /* Error starting tiner */
#define EGC FILEWR TE 0x1C /* BError witing file */
#def i ne EGC_SYSTEM 0x1D /* Systemerror */
[*gc6*/
#def i ne EGC VOERR Ox1E /* Internal D alogic use only */
#def i ne EGC DIl ERR 0x32 /* Internal D alogic use only */
[*gc7*/
#def i ne EGC ERR 0x39 /* Internal D alogic use only */
/*gc8*/
#def i ne EGC LI NERELATED 0x40 /* Error is related to line device */
#def i ne EGC | N\VSTATE 0x41 /* Invalid state */
#def i ne EGC | N\VCRN 0x42 /* Invalid call reference nunber */
#def i ne EGC | NVLI NEDEV 0x43 /* Invalid |line device passed */
#def i ne EGC | N\VPARM 0x44 /* Invalid paraneter(argunent) */
#define EGC SRL 0x45 /* SR failure */
[*gco*/
#def i ne EGC_OTHERERRCRS 0x80 /* Internal D alogic use only */
#def i ne EGC_USRATTRNOTSET 0x81 [* WsrAttr was not set for this |dev*/
#def i ne EGC | NVMETAEVENT 0x82 /* Invalid netaevent */
#def i ne EGC_GIDBERR 0x83 /* dobal Call database error */
#def i ne EGC_NAMENOTFOUND 0x84 /* trunk devi ce name nane not found */
#def i ne EGC DR VER 0x85 [* driver error */
#def i ne EGC Fl LEREAD 0x86 /* File read */
#def i ne EGC FI LECPEN 0x87 /* file open */
#def i ne EGC_TASKABCRTED 0x88 /* task aborted */
#define EGC_ OOLIBSPEQ F C 0x89 /* cclib specific - a catchall */
#def i ne EGC XM TALRM 0x8A /* Send alarmfailed */
#def i ne EGC_SETALRM 0x8B /* Set alarmnode failed */
#def i ne EGC_OCLI BSTART 0x8C /* At least one cclib failed to start*/
#define EGC ALARVDBIN T 0x8D /* Aarmdatabase failed to init */
#defi ne EGC_| N\VDEVNAME 0x8E /* Invalid device nane */
#def i ne EGC_DTCPEN 0x8F /* dt open failed */
#def i ne EGC_GONOTSTARTED 0x90 /* Qobal Call not started */
#def i ne EGC_DUPENTRY 0x91 /* inserting a duplicate entry into
the dat abase */
#defi ne EGC | LLSTATE 0x92 /* Function is not supported in the

current state */
#defi ne EGC_FUNC NOT_DEFI NED 0x93 /* Low | evel function is not defined */

#def i ne EGC_GC _STARTED 0x94 /* QobalCall is already started */
#def i ne EGC_BUSY 0x95 /* Line is busy */
#def i ne EGC_NOANSWER 0x96 /* Rng, no answer */
#def i ne EGC_NOT_| NSERVI CE 0x97 /* Nunber not in service */
#def i ne EGC_ NOVQ CE 0x98 /* No voi ce */
#def i ne EGC_NCRB 0x99 /* no ringback */
#def i ne EGC_CEPT 0x100 /* operator intercept */
#def i ne EGC_STCPD 0x101 /* call progress stopped */
#defi ne EGC_CPERRCR 0x102 /* ST detection error */
#defi ne EGC_ D ALTONE 0x103 /* no dial tone detected */

312

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

/* Note:

[* Kk ko k ok ok ok ok ok kK ok [

/* result values */
/*****************/

/*gc9*/
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

EGC ROUTEFAI L 0x104 /* routing failed */
EGC DTUNLI STEN 0x105 /* dt_unlisten failed */
EGC DXUNLI STEN 0x106 /* dx_unlisten failed */
EGQC_AGUNLI STEN 0x107 /* ag_unlisten failed */
EGC DTGETXM TSLOT 0x108 [* dt_getxnmitslot failed */
EGC_DXGETXM TSLOT 0x109 /* dx_getxnmitslot failed */
EGC_AGCETXM TSLOT 0x10A /* ag_getxnmitslot failed */
EGC DTLI STEN 0x10B [* dt_listen failed */
EGC DXLI STEN 0x10C /* dx_listen failed */
EGQC AQI STEN 0x10D /* ag_listen failed */
when adding error codes, recall that | CAPl error codes for the

nost part may not excede Ox7F - cf. r2_ updateline() */
QRV_RESULT 0x500
GCRV_NCRVAL (GRV_RESULT | 0) /* nornmal conpl etion */
QRV_ALARM (CRV_RESULT | 1) /* event caused by alarm */
GCRV_TI MEQUT (CRV_RESULT | 2) /* event caused by timeout */
ARV _PROTC0L (GRV_RESULT | 3) /* event caused by protocol error*/
QRV_NOANSVWER (GRV_RESULT | 4) /* event caused by no answer */
QRV_INTERNAL (GRV_RESULT | 5) /* event caused internal failure */
QORV_OOLIBSPEA FIC (GCRV_RESULT | 6) /* event caused by cclib specific

failure */

QCRV_NOva CE (CRV_RESUT | 7) /* Call needs voice, use ic_attach()

#def i ne

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

/*

GRV_SI GNALLI NG (GORV_RESULT | 8)

Appendix C - GlobalCall Header Files

*/

/* Signaling change */
*

QCRV_BUSY (GRV_RESULT | 9) /* Line is busy */

GORV_NOT_I NSERVI CE (GORV_RESULT | 0x40) /* Nunber not in service *
GORV_NCRB (GORV_RESULT | 0x41) /* no ringback */
QRV_CEPT (GORV_RESULT | 0x42) /* operator intercept */
QCRV_STCPD (GORV_RESWLT | 0x43) /* call progress stopped */
ARV_CPERRCR (GORV_RESULT | 0x44) /* call progress error */
ARV D ALTONE (GRV_RESULT | 0x45) /* no dial tone */

-- alarmval ues

-- initialized such that nmatches val ues (well

-- in DIT1l_xxx and DTEL_xxx (as of 4/8/96).
-- Also, doesn't differentiate between T1 & E1 when the sane val ue
-- is used for both with a different neaning. The sare val ue

be returned here (albeit fromdifferent rmeunonics)

-- Wser is expected to knowif the board is T1 or El1
-- A the present tinme (4/8/96) D alogic software does not tell
-- the difference at the library level.

--wll

-- gc_Resul tMsg() will

*/
#def i ne

#def i ne
#def i ne

#def i ne

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

ARV _OF (GRV_RESULT |
ERV LGB (GRV_RESULT |
GR/DPM (GORV_RESULT |
@RV BPVS (GORV_RESULT |
@ERV_ECS (GRV_RESULT |
GR/RYEL (GORV RESULT |
GR/RRA &RV RYE

ERV RL (GRV_RESULT |
GRVFERR (GORV_RESULT |
QRV FSERR &RV FERR

0x10)

0x11)
0x12)

0x13)

0x14)
0x15)

0x16)
0x17)

use the El vocabul ary.

/* out of franme error, count saturation
*/
/* Initial loss of signal detection */

/
/

actual |y +0x10)

/* Error count saturation */
/* Received yel |l ow al arm*/

/* Received renote alarm*/

/* Received carrier |oss */

/* Frame bit error */

/* Received frane sync error */

/

/* Driver performance nonitor failure
*

/* Bipolar violation count saturation
*

313

GlobalCall™ API Software Reference for UNIX and Windows NT

#define QORV_B8ZSD (QORV_RESULT |
#defi ne GORV_RBL (QRV_RESULT |
#def i ne GORV_RUAL QRV_RBL

#defi ne QORV_RLCB (QRV_RESULT |
#defi ne QORV_RED (QRV_RESULT |
#define QORV_MFSERR (QORV_RESULT |
#def i ne QORV_RSAL (QRV_RESULT |
#defi ne GORV_ROMVA (QRV_RESULT |
#defi ne QORV_CECS (QRV_RESULT |
/* -- recovered series -- */
#define QRV_OOFCK (QORV_RESULT |
#define QRV_LOBXK (QORV_RESULT |
#define QORV_DPMX (QORV_RESULT |
#define QORV_BPVSCK (QORV_RESULT |
#define QRV_ECSCK (QORV_RESULT |
#define QORV_RYELAK (QORV_RESULT |
#defi ne QRV_RRACK QORV_RYELXK
#define QRV_ROLAK (QRV_RESULT |
#define QORV_FERRXK (QRV_RESULT |
#def i ne QORV_FSERRCK QORV_FERRXK
#def i ne QORV_BBZSDCK (QORV_RESULT |
#define QRV_RBLAK (QORV_RESULT |
#defi ne QORV_RUALCK QORV_RBLXK
#define QRV_RLOBXK (QORV_RESULT |
#define QRV_REDXK (QORV_RESULT |
#def i ne

#def i ne
#def i ne

#def i ne

#endi f

314

0x18)
0x19)
O0x1A)
0x1B)
0x10
0x1D)
0x1E)

0x1F)

0x20)
0x21)
0x22)
0x23)

0x24)
0x25)

0x26)
0x27)
0x28)
0x29)

| *

| *
| *
| *
| *
| *
| *
| *

*/

| *

| *
| *
| *
| *
| *
| *
*/
| *

/*
/*

*/

Bi pol ar eight zero substitution
detect */

Recei ved bl ue al arm*/

Recei ved unfraned all 1s */

Recei ved | oss of sync */

Gt a read alarmcondition */

Recei ved multi frame sync error */
Received signalling all 1s */

Recei ved distant nulti-frane alarm

CRC4 error count saturation */

out of frane error, count saturation
recovered */

Initial loss of signal
recovered */

Driver performance nonitor failure
recovered */

Bi pol ar violation count saturation
recovered */

Error count saturation recovered */
Recei ved yel | ow al armrecovered */

Recei ved renote al armrecovered */

Recei ved carrier |oss recovered */

Frane bit error recovered */

Recei ved frane sync error recovered

det ecti on

Bi pol ar eight zero substitution dtct
recovered */

Recei ved bl ue al armrecovered */
Recei ved unfraned all 1s recovered

0x2A) /* Received | oss of sync recovered */
0x2B) /* Got a read al armcondition recovered

*/

QRV_MFSERRXK (QCRV_RESULT | 0x2Q) /* Received multi frane sync error

recovered */

QRV_RSAICK (QORV_RESULT | 0x2D) /* Received signalling all 1s recovered
*/

QRV_ROVAWX (GORV_RESULT | Ox2E) /* Received distant multi-frame alarm

recovered */

QRV_CECSXK (QRV_RESULT | Ox2F) /* CRCGA error count saturation

/* _GOERRH */

recovered */

Appendix D

Related Publications

This appendix lists publications you should refer to for additional information on
Diaogic products or communications technology.

Dialogic Hardware References

Quick Installation Card for your boards

Dialogic Software References

GlobalCall Analog Technology User’'s Guide for UNIX anlindows NT

GlobalCall E-1/T-1 Technology User’s Guide for UNIX and
Windows NT

GlobalCall Country Dependent Parameters (CDP) Reference
GlobalCall ISDN Technology User’'s Guide for UNIX antindows NT
System Software Release documentationr later for UNIX

System Release documentation for your operating system

SCbus Routing Guide

SCbus Routing Function Reference for UNIX

SCbus Routing Function Reference for Windows NT

Voice Software Reference and Standard Runtime Library Programmer’s
Guide for UNIX

Voice Software Reference for Windows NT and Standard Runtime
Library Programmer’s Guide for Windows NT

315

GlobalCall™ API Software Reference for UNIX and Windows NT

Communications Technology References

* Edgar, Bob, PC Based Voice Processing, New Y ork: Flatiron Publishing Inc.
2nd edition, 1994, ISBN 0-936648-47-7

* Newton, Harry, Newton’s Telecom Dictionarfi2th edition), Flatiron
Publishing, Inc. 1997, ISBN 1-57820-008-3

R2 MF Signaling References

» Specifications of Signaling Systems R1 andIRt2rnational Telegraph and
Telephone Consultative Committee (CCITT), Blue Book Vol. VI, Fascicle
V1.4, ISBN 92-61-03481-0

* General Recommendations on Telephone Switching and Signaling
International Telegraph and Telephone Consultative Committee (CCITT),
Blue Book Vol. VI, Fascicle VI.1, ISBN 92-61-03451-9

ISDN Signaling References

* CCITT. CCITT Recommendation Digital Subscriber Signalling System No.
1 (DSS 1), Network Layer, User-Network Management, Vol. VI - Fascicle

VI.11, Rec. Q.930 - Q.94@Geneva: CCITT, 1989.

e Stallings, William. ISDN: An Introduction New Y ork: Macmillan
Publishing Company, 1992.

T-1 Robbed Bit Signaling References

» Belamy, John, Digital Telephony2nd ed. New Y ork: John wiley & Sons,
1991

* Fike, John L., and George Friend, Understanding Telephone Electronjcs
Indiana: Howard W. Sams & Company, 1988

« Flanagan, William A., The Guide to T-1 Networkingth ed. New Y ork,
Telecom Library Inc., 1990

« LATA Switching Systems Generic Requirements (LS8@élRjore Technical
Reference TR-TSY -000064, Issue 2, July 1987, and modules, Bellcore

316

Glossary

analog: 1. Refersto the telephone line interface that receives analog voice
and telephony signaling information from the telephone network. 2.
Refers to applications that use loop start signaling instead of digital
signaling. 3. A method of telephony transmission in which the
information from the source (for example, speech in a human
conversation) is converted into an electrical signal that varies
continuously over arange of amplitude values. 4. Telephone
transmissions or switching that is not digital. See also ground start,
loop start.

analog interface: seeanalog, loop start.
analog loop start: see analog, loop start.
analog voice: see analog, loop start.

ANl-on-Demand: A feature of AT&T ISDN service whereby the user can
automatically request caller ID from the network even when caller ID
does not exist.

ANI: Automatic Number Identification. A service that identifies the phone
number of the calling party.

asynchronous function: A function that returnsimmediately to the
application and returns a completion/termination at some future time.
An asynchronous function allows the current thread to continue
processing while the function is running.

asynchronous mode: Classification for functions that operate without
blocking other functions.

atomic synchronous function: typically terminatesimmediately, returns
control to the application and does not cause a call state transition.

available library: A call control library configured to be recognized by the
GlobalCall API and successfully started by the GlobalCall gc_Start()
function.

317

GlobalCall™ API Software Reference for UNIX and Windows NT

B channel: A “bearer” channel used in ISDN interfaces. This circuit-
switched, digital channel can carry voice or data at 64,000 bits/sec in
either direction

blind dialing: Dialing without waiting for dial tone detection.

bonding: Bandwidth ON Demand INteroperability Group - an inverse-
multiplexing method used to combine multiple channels into a single,
coherent channel.

BRI: Basic Rate Interface - interface for connecting data terminal and
voice telephones to an ISDN switch. The BRI includes two 64 Kbps
B channels and one 16 Kbps D channel.

call analysis: a process used to automatically determine what happened
after an outbound call is dialed. Call analysis monitors the progress of
an outbound call after dialing and provides information to allow the
application to process the call based on the status of the call. Call
analysis can determine 1) if the line is answered and, in many cases,
how the line is answered, 2) if the line rings but is not answered, 3) if
the line is busy or 4) the problem in completing the call. Also referred
to as call progress.

call control: the process of setting up a call and call tear-down.

Call control library: A collection of routines that interact directly with a
network interface. These libraries are used by the GlobalCall functions
to implement network specific commands and communications.

call progress tone: a tone sent from the PTT to tell the calling party the
progress of the call, (e.g., a dial tone, busy tone, ringback tone, etc.).
The PTT's can provide additional tones, such as a confirmation tone,
splash tone or a reminder tone, to indicate a feature in use.

Call Reference Number (CRN): A number assigned by the GlobalCall
library to identify a call on a specific line device.

call states: Call processing stages in the application.

CAS: Channel Associated Signaling. Signaling protocols in which the
signaling bits for each time slot are in a fixed location with respect to
the framing. In E-1 systems, time slot 16 is dedicated to signaling for
all 30 voice channels (time slots). The time slot the signaling
corresponds to is determined by the frame number within the

318

Appendix D Related Publications

multiframe and whether it's the high or low nibble of time slot 16.

In T-1 systems, the signaling is also referred to as robbed-bit signaling,
where the least significant bit of each time slot is used for the signaling
bits during specific frames.

CEPT: Conference des Adminstrations Europeenes des Postes et
Telecommunications. A collection of groups that set European
telecommunications standards.

compelled signaling: Transmission of next signal is held until
acknowledgment of the receipt of the previous signal is received at the
transmitting end.

configured library: A call control library supported by the GlobalCall
API.

congestion: Flow of user-to-user data
CRN - see Call Reference Number.

D channel: The data channel in an ISDN interface that carries control
signals and customer call data in packets.

data structure: Programming term for a data element consisting of fields,
where each field may have a different definition and length. A group of
data structure elements usually share a common purpose or
functionality.

device handle: numerical reference to a device, obtained when a device is
opened. This handle is used for all operations on that deS#ssal so
Call Reference Number.

DDI string: string of Direct Dialing In digits that identifies a called
number.

DLL (Dynamically Linked Library) (Windows NT) a sequence of
instructions, dynamically linked at runtime and loaded into memory
when they are needed. These libraries can be shared by several
processes.

device: Any computer peripheral or component that is controlled through
a software device driver.

device channel: A Dialogic data path that processes one incoming or
outgoing call at a time. Compdiene slot.

319

GlobalCall™ API Software Reference for UNIX and Windows NT

digital channel: Designates a bi-directional transfer of datafor asingle
time slot of aT-1 or an E-1 digital frame between a T-1/E-1 device that
connects to the digital service and the SCbus. Digitized information
from the T-1/E-1 deviceis sent to the SCbus over the digital transmit
channel. The responseto thiscal is sent from the SCbus to the T-1/E-1
device over the digital receive (listen) channel.

driver: A software module that provides a defined interface between a
program and the hardware.

DNIS Dialed Number Identification Service. A feature of 800 lines that
allows a system with multiple 800 lines in its queue to access the 800
number the caller dialed. Also provides caller party number
information.

DPNSS Digital Private Network Signaling System. An E-1 primary rate
protocol used in Europe to pass calls transparently between PBXs.

E-1 CAS: E-1lineusing Channel Associated Signaling. In CAS, one of the
32 channels (time slot 16) is dedicated to signaling for all of the 30
voice channels.

E-1: Another name given to the CEPT digital telephony format devised by
the CCITT that carries data at the rate of 2.048 Mbps (DS-1 level).

E&M: Inan analog environment, an electrical circuit containing separate
signaling leadsin addition to the leads for receiving and transmitting
audio. There can be a total of 4 or 6 wires, referred to as “four wire
E&M” and “six wire E&M”. In addition to the audio pairs, a pair of
dedicated signaling leads called “Ear” and “Mouth” exist. See also
analog, loop start.

event An unsolicited communication from a hardware device to an
operating system, application, or driver. Events are generally attention-
getting messages, allowing a process to know when a task is complete
or when an external event occurs.

extended asynchronous: For Windows NT environments, the extended
asynchronous (multithread asynchronous) model extends the features of
the asynchronous model with the extended functengyaitEvtEX()
andgc_GetMetaEventEx(). These extended functions allow an
application to run different threads, wherein each thread handles the
events from a different device.

320

Appendix D Related Publications

failed library: A non-stub call control library configured to be recognized
by the GlobalCall API and which did not successfully start when the
GlobalCall gc_Start() function was issued.

glare: when aninbound call arrives while an outbound call isin the
process of being setup, a “glare” condition occurs. Unless the protocol
specifies otherwise, the incoming call takes precedence over the
outbound call.

ground start: In an analog environment, an electrical circuit consisting of
2 wires (or leads) called tip and ring, which are the 2 conductors of a
telephone cable pair. The CO provides voltage (called “talk battery” or
just “battery”) to power the line. Although this sounds like loop start,
the difference is in the way the phone line is “siezed,” or how the
originator of the call signals the CO. When using Dialogic equipment,
an application cannot originate a call on a ground start line. However,
Dialogic equipment can receive and process calls (transfer, for
example) on ground start lines. See alsalog, loop start.

ICAPI: The Dialogic Interface Control Application Programming Interface,
which provides a device specific telephony and signaling interface for
the GlobalCall API to control Dialogic network interface boards using
T-1 robbed bit or E-1 CAS signaling schemes. Also the name of a call
control library configured for GlobalCall.

Information Element (IE): Used by the ISDN (Integrated Services Digital
Network) protocol to transfer information. Each IE transfers
information in a standard format defined by CCITT standard Q.931.

ISDN: Integrated Services Digital Network. An internationally accepted
standard for voice, data, and signaling that provides users with
integrated services using digital encoding at the user-network interface.
Also the name of a call control library configured for GlobalCall.

Line Device Identifier: (LDID) A unique number that is assigned to a
specific device or device group by GlobalCall.

loop start: In an analog environment, an electrical circuit consisting of 2
wires (or leads) called tip and ring, which are the 2 conductors of a
telephone cable pair. The CO provides voltage (called “talk battery” or
just “battery”) to power the line. When the circuit is complete, this
voltage produces a current called loop current. The circuit provides a
method of starting (seizing) a telephone line or trunk by sending a

321

GlobalCall™ API Software Reference for UNIX and Windows NT

supervisory signal (going off-hook) to the CO. See also analog, ground
Start.

main thread: seethread.

multitasking functions: Functionsthat allow the software to perform
concurrent operations. After being initiated, multitasking functions
return control to the application so that during the time it takes the
function to complete, the application program can perform other
operations, such as servicing acall on another line device. When using
the MS-DOS operating system, Global Call multitasking functions
operate in the same manner as asynchronous functions.

multithread asynchronous: see extended asynchronous.

network handle: SRL device handle associated with a network interface
board or time dlot; equivalent to the device handle returned from the
network library’sdt_open() function.

network resource: Any device or group of devices that interface with the
telephone network. Network resources include analog (loop start,
ground start, etc.) and digital (E-1 CAS, T-1 robbed bit, and ISDN)
network interface devices. Network resources are assigned to telephone
lines (i.e., calls) on a dedicated or a shared resource basis. Network
resources control the signal handling required to manage incoming calls
from the network and the outgoing calls to the network.

NFAS: Network Facility Associated Signal - allows multiple spans to be
controlled by a single D channel subaddressing.

NSI: Network Specific Information message.

NT1: Network Terminator - the connector at either end of an ISDN link
that converts the two-wire ISDN circuit interface to four wires.

null: A state in which no call is assigned to the device (line or time slot).

overlap viewing: a condition of waiting for additional information about
the called party number (destination number).

preemptive multitasking: a form of multitasking wherein the execution of
one thread or process can be suspended by the operating system to
allow another thread to execute. UNIX and Windows NT use
preemptive multitasking to support multiple simultaneous processes.

322

Appendix D Related Publications

PRI: Primary Rate Interface - interface at the ends of high-volume trunks
linking CO fecilitiesand ISDN network switches to each other. A T-1
ISDN PRI transmits 23 B channels and one D channel, each at 64 Kbps.
An E-11SDN PRI transmits 30 B channels, one D channel and one
framing channel, each at 64 Kbps.

primary thread: seethread.

process (UNIX): theexecution of aprogram. In UNIX, process
incorporates the concept of an execution environment that includes the
contents of memory, register values, name of the current directory,
status of files and various other information. Each processis adistinct
entity, able to execute and terminate independent of all other processes.
A process can be forked/split into a parent process and a child process
with separate but initially identical, parent’s permissions, working
directory, root directory, open files, text, data, stack segments, etc.
Each child process executes independently of its parent process,
although the parent process may explicitly wait for the termination of
one or more child processes.

process (Windows NT): (1) an executing application comprising a private

virtual address space, code, data and other operating system resources,
such as files, pipes and synchronization objects that are visible to the
process. A process contains one or more threads that run in the context
of the process. (2) is the address space where the sequence of
executable instructions is loaded. A process in Windows NT consists
of blocks of code in memory loaded from executables and dynamically
linked libraries (DLL). Each process has its own 4 GB address space
and owns resources such as threads, files and dynamically allocated
memory. Code in the address space for a process is executed by a
thread. Each process comprises at least one thread which is the
component that Windows NT actually schedules for execution. When
an application is launched, Windows NT starts a process and a primary
thread.
Windows NT processes:

1. are implemented as objects and accessed using object services;

2. can have multiple threads executing in their address space;

3. have build-in synchronization for both process objects and thread
objects.
In contrast to UNIX, Windows NT does not use a parent/child
relationship with the processes it creates.

323

GlobalCall™ API Software Reference for UNIX and Windows NT

Process or System Scheduler for UNIX: controls the execution of each
process or program. This Scheduler enables processes to spawn
(create) child processes that are necessary for the operation of the
parent process. By default, the Scheduler uses atime-sharing policy
that adjusts process priorities dynamically to provide good response
time for interactive processes and good throughput for CPU intensive
processes. The Scheduler also enables an application to specify the
exact order in which processes run. The Scheduler maintains process
priorities based on configuration parameters, process behavior and user
reguests. See also synchronization objects for Windows NT.

R2 MFC: Aninternational signaling system that is used in Europe, South
Americaand the Far East to permit the transmission of numerical and
other information relating to the called and calling subscribers’ lines.

receive: Accepting or taking digitized information transmitted by another
device.

result value: Describes the reason for an event.
rfu: Reserved for future use.

SCbus: Signa Computing bus. Third generation TDM (Time Division
Multiplexed) resource sharing bus that allows information to be
transmitted and received among resources over multiple datalines. A
hardwired connection between Switch Handlers (SC2000 chips) on
SChus-based products for transmitting information over 1024 time slots
to all devices connected to the SChus.

SCSA: Signal Computing System Architecture. An open-hardware and
software standard architecture that incorporates virtually every other
standard in PC-based switching. SCSA describes the components and
specifiesthe interfaces for asignal processing system. SCSA describes
al elements of the system architecture from the electrical
characteristics of the SCbus and SCxbus to the high level device
programming interfaces. All signaling isout of band. In addition,
SCSA offerstime slot bundling and allows for scalability.

SIT - Specia Information Tone
Special Information Tone (SIT)

SpringBoard: A Dialogic expansion board using digital signal processing
to emulate the functions of other products.

324

Appendix D Related Publications

SRL (Standard Runtime Library): A Dialogic library that contains C
functions common to all Dialogic devices, a data structure to support
application devel opment and a common interface for event handling.

stub library: A library with aminimal set of internal functions that
represents a call control library that is not required for a particular
application. Thisstub library isentered into the list of configured call
control libraries recognized by the Globa Call API but is not capable of
being started. (Used only to avoid link errors.)

synchronous function: Synchronous functions block an application or
process until the required task is successfully completed or a
failed/error message is returned.

synchronization objects: Windows NT executive objects used to
synchronize the execution of one or more threads. These objects allow
one thread to wait for the completion of another thread and enable the
completed thread to signal its completion to any waiting thread(s).
Threads in Windows NT are scheduled according to their priority level
(31 levels are available) and run until one of the following occurs: 1)
its maximum allocated execution time is exceeded, 2) a higher priority
thread marked as waiting becomes waiting or 3) the running thread
decides to wait for an event or an object. See also Process Scheduler
for UNIX.

synchronous mode: programming characterized by functions that run
uninterrupted to completion. Synchronous functions block an
application or process until the required task is successfully completed
or afailed/error message is returned.

T-1: A digital line transmitting at 1.544 Mbps over 2 pairs of twisted
wires. Designed to handle a minimum of 24 voice conversations or
channels, each conversation digitized at 64 Kbps. T-1isadigital
transmission standard in North America

T-1robbed bit: A T-1digital line using robbed bit signaling. In T-1
robbed hit signaling systems, typically the least significant bit in every
sixth frame of each of the 24 time slotsis used for carrying dialing and
control information. The signaling combinations are typically limited
to ringing, hang up, wink and pulse digit dialing.

termination events: GlobalCall events returned to the application to
terminate function calls.

325

GlobalCall™ API Software Reference for UNIX and Windows NT

thread (Windows NT): The executable instructions stored in the address
space of a process that the operating system actually executes. All
processes have at least one thread, but no thread belongs to more than
one process. A multithreaded process has more than one thread that are
executed seemingly simultaneously. When the last thread finishesits
task, then the process terminates. The main thread is also referred to as
aprimary thread; both main and primary thread refer to the first thread
started in aprocess. A thread of execution isjust a synonym for thread.

time slot: Inadigita telephony environment, a normally continuous and
individual communication (for example, someone speaking on a
telephone) is (1) digitized, (2) broken up into pieces consisting of a
fixed number of bits, (3) combined with pieces of other individual
communications in aregularly repeating, timed sequence (multiplexed),
and (4) transmitted serialy over asingle telephone line. The process
happens at such afast rate that, once the pieces are sorted out and put
back together again at the receiving end, the speech is normal and
continuous. Each individual pieced-together communicationis called a
time slot.

tone resource: Same as a voice resource except that atone resource
cannot perform voice store and forward functions.

transmit: Sending or broadcasting of digitized information by a device.

TSR: Transmit and Stay Resident. Loading a program into memory in a
MS-DOS operating system so that the program is always ready to run.

unsolicited event: an event that occurs without prompting (e.g.,
GCEV_BLOCKED, GCEV_UNBLOCKED, €tc.).

UUI: User-to-User Information. Proprietary messages sent to remote
system during call establishment.

voice channel: Designates a bi-directional transfer of datafor asingle call
between a voice device processing that call and the SChus. Digitized
voice from the analog or T-1/E-1 interface device is transmitted over
the SChus to the voice receive (listen) channel for processing by the
voice device. The voice device sends the response to the call over the
voice transmit channel to an SCbus time slot that transmits this response
tothe analog or T-1/E-1 interface device.

326

Appendix D Related Publications

voice handle: SRL device handle associated with a voice channel;
equivalent to the device handle returned from the voice library’s
dx_open() function.

voice resource: same as a voice channel.

327

GlobalCall™ API Software Reference for UNIX and Windows NT

328

Index

.cdp file, 166
.prmfile, 245

.vepfile
parsing error, 164

A

Accepted state, 27, 28, 36, 37, 57, 59,
113
transition, 28

access message, 51, 272

access message buffer
ISDN, 51, 272

alarm, 43
alarm database, 277

alarm event, 45
unsolicited event, 45

alarm mode, 278

alarm recovery, 46
GCEV_UNBLOCKED, 45

Alerting message, 29, 38
Alerting state, 29, 170

analog, 313
demonstration, 241

analog protocol, 247

analog bidirectional protocol
demonstration program, 247

analog interface, 313

analog loop start, 3, 6, 13, 38, 161, 167,
244, 313, 319

Analog Loop Start Alarm, 46
analog network, 7, 246, 247, 252
Analog technology, 236

anal og technology configuration file,
247

analog voice, 313

ANAPI
library, 7,9, 57, 59, 62, 63, 64, 157,
244

ANAPI stub library, 9
ancountry.c, 62
ANGV_LIB, 157

ANI, 37
Automatic Number |dentification,
313

ANI information, 37, 117

ANI string length, 117

ani_buf buffer, 117, 196
ANI-on-Demand, 73, 196, 269, 313

AP
Application Programming Interface,
13

Application Programming Interface, 1,
13

application-handler thread
Windows NT, 20

ASCII string, 119, 130, 219
error code, 55

329

GlobalCall™ API Software Reference for UNIX and Windows NT

error description, 55
library, 10

asynchronous call termination, 33

asynchronous callback model
UNIX, 15

asynchronous demonstration
Windows NT, 252, 253

asynchronous function, 56
defined, 14, 17

asynchronous internal-thread callback
model
event handler, 175

asynchronous mode, 14, 17, 23, 26, 58,
313
Windows NT, 18, 176

asynchronous model
UNIX, 15
Windows NT, 18

Asynchronous models
defined, 58

asynchronous non-signal callback model
UNIX, 45

asynchronous polled model
UNIX, 15

asynchronous programming, 58

asynchronous programming model
Windows NT, 15, 18

asynchronous signal callback model, 45
asynchronous with SRL callback, 20

asynchronous with SRL callback model
Windows NT, 18, 19, 20

asynchronous with SRL callback
programming
Windows NT, 18

330

asynchronous with SRL callback thread,
16, 17
unsolicited event, 17

asynchronous with Win32
synchronization
Windows NT, 18

asynchronous with Win32
synchronization model, 21

asynchronous with Windows callback
Windows NT, 18

asynchronous with windows callback
model
Windows NT, 20

asynchronous worker-thread callback
model
event handler, 175

AT&T ISDN, 196, 313

atomic
synchronous, 34

atomic synchronous function, 34, 313
attribute, 70, 71, 268, 269

Automatic Number Identification, 313
availablelibrary, 9, 227, 314

B
B channel, 52, 135, 224, 273, 274, 314

backward compatibility
gc_GetLineDev(), 133

Bandwidth ON Demand
INteroperability Group
bonding, 314

Basic Functions
GlobalCall, 67

basic Globa Call functions, 67

Basic Rate Interface, 314
BC_INFO_MODE, 219
BC_XFER_CAP, 219
BC_XFER_MODE, 219
BC_XFER_RATE, 219
bearer channel, 219, 314
Beta, 156

billing information, 120
gc_GetBilling(), 33, 41

billing_buf buffer, 120

Bipolar eight zero substitution detected,
47

Bipolar violation count saturation, 46,
a7

bitmask, 212

bitmask values, 212
blind dialing, 314
blocking condition, 44
blue alarm, 279
bonding, 314

Brazil R2 protocol, 65

BRI
Basic Rate Interface, 314

bus configurations, 4

C

call
dropped, 26
inbound, 24, 26, 36
network originated, 26
outbound, 24
termination, 31, 39

Index

call control, 314
library, 7

cal control library, 6, 7, 10, 59, 70, 79,
99, 201, 203, 226, 244, 261,
268, 277, 314, 315, 317
error, 115

cal control library ID, 10

call control library name, 97

call control library time-out, 115
call disconnect, 31, 39

call establishment, 13, 26, 241, 256
cal event, 47

call forward
ISDN, 50, 271

Call handling, 4

call information
retrieve, 27, 37

call notification event, 236
call oriented, 4, 13
call progress tone, 94

Call Reference Number, 5, 117, 315
assigned, 4, 13
CRN, 79
released, 26

cal related event, 44

call request, 68, 267

call scenarios, 28

call setup, 71, 269

call setup information, 28, 37

call state, 23, 46, 125
summary, 24

call state transition, 34

331

GlobalCall™ API Software Reference for UNIX and Windows NT

call states, 315
summary, 31, 39

call teardown, 13, 31

call terminated, 56

call termination, 33, 41, 241, 256
call transition, 23
CALL_PROCEEDING, 76
CALL_SETUP_ACK, 76

callback
UNIX, 15

CALLED_NUM_PLAN, 219
CALLED_NUM_TYPE, 219
CALLED_SUBS, 122

caler ID, 28

caller identification, 68, 267
caler party number, 316

caller’s identification
ISDN setup message, 269

calling party, 207

calling party number, 68, 269
CALLING_NUM_PLAN, 220
CALLING_NUM_TYPE, 219
CALLING_PRESENTATION, 220
CALLING_SCREENING, 220
CALLNAME, 122

CALLTIME, 122

carrier loss, 279

CAS, 317
Channel Associated Signaling, 315
GCEV_ALERTING event, 29, 38

332

CAS Interface, 72
CAS signaling, 318
Category digit, 122
CATEGORY_DIGIT, 122
cc_an_d.dll, 64
cc_an_d.o, 63
cc_an_ffff_d.o, 63
cc_an_ffff_io.dll, 64
cc_tt_d.dll, 64
cc_tt d.o, 63
cc_tt_ffff_d.dll, 64
cc_tt ffff_d.o, 63
cclib, 77, 78
cclib_errorp, 115
CEPT, 315

Channel Associated Signaling, 315
CAS, 317

charges, call, 26

coding example, 82

compelled signaling, 7, 13, 88, 315
completion message, 34
component:, 157

configuration file, 65
demonstration program, 245
user-modifiable, 241

configuration file setting, 65
configured library, 9, 64, 71, 269, 315
congestion, 315

congestion message, 49, 270, 271

CONNECT_TYPE, 122

Connected state, 23, 27, 28, 29, 36, 38,
48, 170, 270
transition, 28, 170

CONNECts a voice resource, 72, 267
convenience function, 138, 146
country.c, 62

CRCA4 error count saturation, 46

CRN, 47, 56, 58, 70, 107, 113, 169,
237, 267, 268, 315

assigned, 6, 38

call established, 29

Call Reference Number, 4, 5, 79,
117, 315

gc_DropCall(), 33

gc_ReleaseCall(), 30

lifespan, 6

Offered state, 27

CRN assigned
released, 36

crnp, 236

D
D channel, 94, 216

D channel, 49, 73, 135, 234, 269, 271,
315

D/160SC-LS, 4
D/240PCI-T1, 4
D/240SC, 4
D/240SC-T1, 4
D/300PCI-E1, 4
D/300SC-EL, 4
D/300SC-E1, 65
D/320SC, 4

Index

D/41ESC, 4
D/480SC-2T1, 4
D/600SC-2E1, 4

data structure, 75, 315
metaevent, 43, 138, 146

DATA_LINK_DOWN, 135
DATA_LINK_UP, 135

DDI
Direct Dialing In, 316

DDl digit, 37, 91, 130
demonstration program, 253

DDl digits, 27, 28, 37, 68, 75, 76, 91,
130, 220, 251, 268

DDl string, 48, 270
debugging, 115
default value, 71, 269

demo program
running, 251, 262, 264
structure, 242

demonstration, 241

demonstration program, 244
inbound and outbound, 241
recompile, 244
UNIX, 241

device, 316
device channel, 316

device descriptor
non Global Call events, 43

devicedriver, 15, 18
device handle, 42, 56, 58
device thread, 16

device, line, 4, 13

333

GlobalCall™ API Software Reference for UNIX and Windows NT

devicename components
gc_Open(), 178

Dialed Number Identification Service,
316

Dialing state, 29

Dialogic Configuration Manager utility
Windows NT, 65

digital channel, 316
Direct Dialing In, 316
disconnect/failure event, 47

Disconnected state, 23, 46
transition, 33, 41

disconnection, 31, 39

DLL, 316
dynamically linked library, 320

DNIS, 34, 37, 68, 268
cal information, 27
Dialed Number Identification
Service, 316

dnis service structure, 75
DNIS string, 130
dnis_buf buffer, 130

DPNSS
Digital Private Network Signaling
System, 316

DPNSS protocol
ISDN, 50, 51, 52, 53, 271, 272,
274, 275

driver, 14, 16, 316

Driver performance monitor failure, 46,
47

drop and insert configuration, 95

dt_getevt(), 16

334

dt_open(), 277, 319
dt_setevtmsk(), 57, 59
dt_settssig(), 57, 59
DTI1/240SC, 4
DTI1/241SC, 4
DTI/300SC, 4
DTI/301SC, 4

DTMF dialing, 88
DX_CAP data structure, 164
DX _CAP structure, 164
dx_getevt(), 16
dx_open(), 56, 59, 324
dx_play(), 56, 59, 159
dx_setparm(), 164, 165
dxchan.vep, 161

Dynamically Linked Library
DLL, 316, 320

dynamically loaded
Windows NT, 64

E

E&M, 317

E-1, 317

E-1 ISDN interface, 13
E-1 Alarm, 46

E-1CAS, 3,6, 7, 28, 37,57, 59, 113,
205, 317
interface, 3, 319

E-1CAS, 236
E-1 CAS Parameters, 219

E-1 CAS protocol, 64

E-1/T-1
demonstration, 241

EGC_ALARMDBINIT, 229
EGC_BUSY, 172
EGC_CCLIBSTART, 228
EGC_NOANSWER, 172
EGC_PROTOCOL, 172
EGC_TASKABORTED, 278

EGC_TIMEOQOUT, 36, 115, 172, 236,
237,278

EGC_UNSUPPORTED, 84, 89, 92, 95,
110, 117, 120, 123, 130, 136,
149, 159, 167, 196, 205, 208,
216, 224, 230, 234, 278

environment, application development,
5

environment, application or thread
(Windows NT only)
development, 13

errno variable, 178

error code, 55, 115
geerr.h header file, 55
summary, 277

Error count saturation, 46, 47

error event
GCEV_TASKFAIL, 55

error message, 64

error message string
msglength, 165, 167

error returns from gc_Open(), 178

error value, 70, 267
cal control library, 56

Index

EV_ASYNC, 82
EV_SYNC, 82

event, 5, 45, 47, 317
CRN, 43
disable, 43
enable, 43
masked, 26
termination, 23
unsolicited, 23

event bitmask, 212

event data
metaevent, 43

event data block
EVTBLK, 79

event data pointer
non Global Call events, 43

event handler, 15, 17, 19, 44, 45, 175,
184
UNIX, 44, 176
unsolicited event, 17
Windows NT, 19, 45, 175, 176

event handler thread, 20, 21

event handling thread
Windows NT, 176

event logger, 64

event mask, 38, 71

event notification, 17
event processing, 19

event processing thread, 17
event queue, 56, 176

event retrieved, 43

event type
non Global Call events, 43

exiting an application, 57, 59

335

GlobalCall™ API Software Reference for UNIX and Windows NT

extended asynchronous, 317

extended asynchronous mode
Windows NT, 70, 268

extended asynchronous model
Windows NT, 22

extended asynchronous programming
Windows NT, 18

extended asynchronous programming
model
Windows NT, 15, 21

F
facility ACK message, 50, 271
facility message, 50, 271

facility reject message, 50, 271
failed library, 9, 317

failure, function, 31, 39

filepathp parameter, 161
firmware, 14, 16

forced release, 28, 37, 57, 59, 113
Frame bit error, 47

function
fail, 55

function call
return value, 55

function call return
state change, 23

function fail, 55

function prototypes
gclib.hfile, 67

Function reference, 81

function return, 55

336

function return value
mneumonic GC_SUCCESS, 82

G

gc_AcceptCall(), 27, 28, 36, 37, 48, 57,
59, 68, 83, 84, 88, 94, 113, 257,
267, 270

GC_ADDRSIZE, 130, 196

gc_AnswerCall(), 27, 28, 36, 37, 48,
68, 85, 86, 94, 195, 257, 258,
267, 270

gc_Attach(), 42, 72, 88, 89, 107, 109,
111, 190, 267, 278, 279

GC_CALL_REJECTED, 112

gc_CallAck(), 3, 27, 28, 37, 48, 68, 75,
76, 91, 92, 130, 132, 262, 267,
270
GC_CALLACK_BLK, 75

GC_CALLACK_BLK, 91
data structure, 75

gc_CallProgress(), 73, 94, 267
GC_CCLIB_AVL, 101
GC_CCLIB_CONFIGURED, 101
GC_CCLIB_FAILED, 101
GC_CCLIB_STATUS structure, 103
GC_CCLIB_STUB, 101

gc_CCLibIDToName(), 10, 68, 97,
100, 267

gc_CCLibNameTolD(), 10, 68, 98, 99,
267

gc_CCLibStatus(), 10, 68, 100, 105,
267

gc_CCLibStatusAll(), 10, 68, 102, 103,
227, 229, 267

GC_CHANNEL_UNACCEPTABLE,
112

gc_Close(), 5, 6, 57, 59, 70, 90, 105,
106, 109, 111, 161, 190, 226,
230, 267

gc_CRN2LineDev(), 70, 107, 267
GC_DEST_OUT_OF ORDER, 112

gc_Detach(), 72, 90, 106, 107, 109,
110, 190, 267

gc_DropCall(), 27, 28, 33, 37, 41, 44,
49, 57, 59, 60, 68, 84, 88, 96,
112, 113, 170, 171, 173, 174,
193, 195, 236, 237, 239, 258,
259, 267, 268, 271

gc_errorp, 115

gc_ErrorValue(), 55, 56, 70, 84, 85, 87,
89, 90, 92, 94, 95, 96, 98, 100,
102, 105, 107, 108, 110, 111,
114, 115, 117, 119, 120, 121,
123, 124, 127, 129, 130, 132,
134, 136, 138, 145, 148, 149,
150, 152, 155, 158, 159, 160,
167, 168, 171, 174, 178, 189,
195, 197, 198, 200, 201, 202,
204, 205, 207, 208, 209, 211,
215, 216, 217, 221, 223, 224,
226, 228, 230, 231, 233, 234,
235, 239, 267

error code, 55

gc_GetANI(), 28, 37, 68, 117, 132,
198, 262, 267

gc_GetBilling(), 33, 41, 68, 119, 267
gc_GetCallinfo(), 73, 121, 268
gc_GetCallState(), 70, 124, 125, 268

gc_GetCRN(), 70, 79, 127, 134, 145,
148, 268

Index

gc_GetDNIS(), 28, 34, 37, 48, 68, 91,
94, 130, 268, 270

gc_GetLineDev(), 70, 79, 129, 132,
133, 145, 148, 268
backward compatibility, 133

gc_GetLinedevState(), 68, 135, 268

gc_GetMetaEvent(), 5, 15, 16, 18, 19,
20, 21, 43, 70, 127, 128, 129,
133, 134, 138, 139, 148, 203,
268

gc_GetMetaEventEx(), 5, 22, 43, 70,
127, 128, 129, 133, 134, 145,
146, 147, 203, 268, 317
Windows NT, 60

gc_GetMetEvent(), 138
gc_GetMetEventEx(), 146

gc_GetNetworkH(), 42, 56, 59, 70, 90,
148, 161, 190, 268

gc_GetParm(), 70, 79, 151, 165, 220,
221, 268

gc_GetUsrAttr(), 70, 79, 153, 193, 222,
223, 268

gc_GetVer(), 68, 155, 268

gc_GetVoiceH(), 42, 56, 59, 72, 150,
159, 190, 268

gc_HoldCdll(), 50, 271, 272

gc_LoadDxParm(), 72, 90, 161, 164,
165, 174, 190, 268

gc_MakeCall(), 3, 6, 23, 29, 30, 38, 39,
48, 68, 77, 78, 114, 129, 161,
164, 168, 169, 170, 195, 209,
239, 258, 268, 270, 271
GC_MAKECALL_BLK, 77
inbound call conflict, 30

GC_MAKECALL_BLK

337

GlobalCall™ API Software Reference for UNIX and Windows NT

data structure, 75
gc_MakeCall(), 77

GC_MAKECALL_BLK structure, 169,
170

GC_NETWORK_CONGESTION, 112
GC_NORMAL_CLEARING, 112

gc_Open(), 5, 6, 26, 28, 37, 42, 45, 70,
89, 90, 107, 108, 111, 161, 165,
168, 175, 176, 178, 184, 190,
191, 193, 268

gc_Open() or gc_OpenEXx(), 5, 6, 26,
28, 37, 42, 89, 111, 165

gc_OpenEx(), 5, 6, 26, 28, 37, 42, 45,
70, 89, 90, 107, 108, 111, 153,
155, 161, 165, 168, 190, 191,
223, 268

GC_PARM
data structure, 75

GC_PARM structure, 79, 219
gc_RevPkt(), 77

gc_ReleaseCall(), 6, 23, 27, 30, 33, 34,
37,41, 44, 57, 59, 68, 108, 112,
113, 114, 170, 171, 174, 193,
194, 236, 237, 239, 258, 259,
268

GC_REQ_CHANNEL_NOT_AVAIL,
112

gc_RegANI(), 51, 73, 119, 196, 269,
273

gc_ResetLineDev(), 26, 36, 49, 70,
198, 237, 239, 269, 273

gc_ResultMsg(), 44, 55, 70, 85, 87, 90,
94, 96, 98, 100, 102, 105, 107,
108, 111, 114, 116, 119, 121,
124, 127, 129, 132, 134, 138,
145, 148, 150, 152, 155, 158,

338

160, 168, 171, 174, 178, 189,
195, 198, 200, 201, 202, 204,
207, 209, 211, 215, 217, 221,
223, 226, 228, 231, 233, 235,
239, 269

error code, 55

gc_ResultValue(), 44, 46, 54, 56, 71,
85, 87, 94, 96, 114, 145, 148,
171, 174, 198, 200, 201, 202,
203, 211, 239, 269, 270

gc_RetrieveCall(), 51, 52, 273
GC_SEND _SIT, 112

gc_SetBilling(), 52, 68, 205, 269, 273
gc_SetCallingNum(), 68, 207, 262, 269

gc_SetChanState(), 52, 54, 69, 138,
209, 269, 273

gc_SetEvtMsk(), 30, 38, 43, 47, 71,
212, 213, 269

gc_SetinfoElem(), 73, 77, 216, 269

gc_SetParm(), 71, 79, 151, 152, 165,
207, 215, 218, 220, 269

gc_SetUsrAttr(), 70, 71, 153, 155, 176,
190, 191, 193, 221, 268, 269

gc_SndMsg(), 73, 77, 224, 269
gc_SndPkt(), 77

gc_Start(), 6, 9, 64, 71, 102, 105, 226,
227, 228, 232, 233, 269, 314,
317

gc_StartTrace(), 73, 229, 235, 269
gc_Stop(), 6, 71, 227, 229, 232, 269

gc_StopTrace(), 73, 229, 230, 231,
234, 269

GC_SUCCESS, 82
GC_UNASSIGNED_NUMBER, 112

GC_USER_BUSY, 112

gc WaitCall(), 26, 27, 28, 36, 37, 46,
68, 80, 83, 85, 88, 91, 94, 97,
114, 119, 129, 132, 195, 198,
199, 200, 211, 220, 235, 236,
237, 257, 269
GC_WAITCALL_BLK, 80
GCEV_UNBLOCKED, 46

GC_WAITCALL_BLK
data structure, 75
gc_WaitCall(), 80

GCACT_ADDMSK, 212
GCACT_SETMSK, 212
GCACT_SUBMSK, 212

gcanalog.cfg
anal og technology configuration
file, 247
configuration file, 241

gcerr.h, 82
header file, 62, 64

geerr.hfile, 281
gcerr.h header, 56

geerr.h header file
error code, 55

GCEV_ACCEPT, 27, 28, 48, 83, 86,
270

GCEV_ACKCALL, 28, 48, 92, 270

GCEV_ALERTING, 29, 30, 38, 48,
170, 213, 270
maskable, 29
signal handler, 38

GCEV_ANSWERED, 23, 27, 28, 48,
86, 270

GCEV_BLOCKED, 38, 45, 46, 54, 56,
57, 58, 59, 176, 213, 258, 270

Index

signal handler, 38
UNIX, 176
Windows NT, 175

GCEV_CALLINFQ, 49, 270

GCEV_CALLSTATUS, 48, 171, 174,
270

GCEV_CONGESTION, 49, 270

GCEV_CONNECTED, 29, 30, 48, 170,
172,271

GCEV_D_CHAN_STATUS, 49, 271

GCEV_DISCONNECTED, 23, 28, 29,
30, 33, 37, 39, 41, 46, 49, 56,
57, 58, 59, 68, 84, 86, 92, 112,
113, 171, 172, 174, 196, 258,
267,271
signal handler, 39

GCEV_DIVERTED, 50, 271
GCEV_DROPCALL, 33,49, 112, 271
GCEV_FACILITY, 50, 271
GCEV_FACILITY_ACK, 271
GCEV_FACILITY_REJ, 271
GCEV_HOLDACK, 50, 271
GCEV_HOLDCALL, 50, 272
GCEV_HOLDREJ, 50, 272
GCEV_ISDNMSG, 50, 272
GCEV_L2BFFRFULL, 51, 272
GCEV_L2FRAME, 51, 272
GCEV_L2NOBRFR, 51, 272
GCEV_NOFACILITYBUF, 122
GCEV_NOTIFY, 51, 272
GCEV_NOUSRINFOBUF, 122

339

GlobalCall™ API Software Reference for UNIX and Windows NT

GCEV_NS, 51, 272

GCEV_OFFERED, 27, 28, 48, 70, 83,
86, 91, 94, 236, 237, 268, 273

GCEV_PROCEEDING, 51, 213, 273
GCEV_PROGRESS, 213
GCEV_PROGRESSING, 51, 273
GCEV_REQANI, 51, 196, 273

GCEV_RESETLINEDEV, 49, 198,
199, 273

GCEV_RETRIEVEACK, 51, 273
GCEV_RETRIEVECALL, 52, 273
GCEV_RETRIEVERE], 52, 273
GCEV_SETBILLING, 52, 205, 273

GCEV_SETCHANSTATE, 52, 54, 210,

273
GCEV_SETUP_ACK, 52, 274

GCEV_TASKFAIL, 29, 30, 54, 56,
168, 171, 174, 274
error event, 55
signal handler, 39

GCEV_TRANSFERACK, 52, 274
GCEV_TRANSFERCALL, 53, 274
GCEV_TRANSFERRE], 53, 274
GCEV_TRANSIT, 53, 274

GCEV_UNBLOCKED, 38, 45, 46, 54,

57,58, 59, 175, 176, 178, 184,
213, 258, 275

alarm recovery, 45

gc_WaitCall(), 46

signal handler, 38

UNIX, 176

Windows NT, 175

GCEV_UNLOCKED, 257

340

GCEV_USRINFOQ, 53, 275
GCGLS_BCHANNEL, 135
GCGLS_DCHANNEL, 135
GCGV_LIB, 157

gcin.cfg
configuration file, 241

gclib, 77, 78

gclib.h
header file, 62, 64

gclib.hfile, 75, 81, 281
function prototypes, 67

GCLS_INSERVICE, 135, 210

GCLS MAINTENANCE, 135, 210
GCLS OUT_OF_SERVICE, 135, 210
GCME_GC_EVENT bit, 139, 146
GCMSK_ALERTING, 213
GCMSK_BLOCKED, 213
GCMSK_PROC_SEND, 213
GCMSK_PROCEEDING, 213
GCMSK_PROGRESS, 213
GCMSK_SETUP_ACK, 213
GCMSK_UNBLOCKED, 213

gcmtsync_culi
demonstration program, 252, 264

gemulti
demonstration program, 252, 262

geout.cfg
configuration file, 241

GCPR_CALLINGPARTY, 219
GCPR_LOADTONES, 219

GCPR_MINDIGITS, 220
GCRV_BUSY, 172
GCRV_NOANSWER, 172
GCRV_PROTOCOL, 172
GCRV_TIMEOUT, 172
GCST_ACCEPTED, 125, 257, 258
GCST_ALERTING, 125
GCST_CONNECTED, 125, 257, 258
GCST_DIALING, 125
GCST_DISCONNECTED, 125
GCST_IDLE, 125, 258
GCST_NULL, 125
GCST_OFFERED, 125, 257, 258
glare, 30, 171, 317

global variable, 175

GlobalCall
Features, 4

GlobalCall Basic Functions, 67
GlobalCall cal states, 23
GlobalCall error code, 115
GlobalCall error information, 178

GlobalCall event, 43, 47
METAEVENT structure, 43

GlobalCall flag, 79

GlobalCall functions
basic, 67
interface specific, 67
optional, 67
summary, 267
system controls and tools, 67

GlobalCall handle, 58

Index

GlobalCal library, 5, 6, 7, 9, 57, 59, 64,
277,315

GlobalCdll line device, 58
Got aread alarm condition, 47
ground start, 317

H
handler, 58

hang up
signaling, 323

Hardware Compatibility, 4
hardware platform, 5

header file, 62, 64
gcerr.h, 82

header files, 281
gcerr.h, 281
gclih.h, 281

hold call message
ISDN, 50, 271, 272

hold call reject message
ISDN, 50, 272

hold call request rejected
ISDN, 50, 272

hread execution, 16

ICAPI, 318
call control library, 244, 261
call control library name, 97, 99,
100, 103
library, 7, 9, 157

ICAPI library, 57, 59, 62, 63
ICAPI protocol, 64
ICAPI stub library, 9

341

GlobalCall™ API Software Reference for UNIX and Windows NT

ICGV_LIB, 157

ID number
library, 10

identifying acall, 5

Idle state, 41, 49, 271
transition, 33

IE, 122
iep
information element pointer, 216
in service, 209
in-band tone, 95

inbound
demonstration program, 245

inbound call, 26, 28, 30, 36, 37, 48,
112, 237, 273

demonstration program, 241, 253,
256

example, 28, 37

glare, 171

in progress, 39

pending, 30

processed, 27

inbound call event, 47

inbound configuration file
demonstration program, 246

inbound demonstration, 241

inbound protocol
demonstration program, 247

info_id Paramete, 122
Information Element, 122, 216
Information Element (IE), 318

information element pointer
iep, 216

information message, 49, 270

342

information retrieval
metaevent, 43, 138, 146

Initial loss of signal detection, 46, 47
in-maintenance, 69

in-service, 69

installation directory, 244, 245

Integrated Services Digital Network
ISDN, 318

interactive voice response, 21
interface, 3

Interface Control Application
Programming Interface
ICAPI, 318

Interface Specific Functions, 67

interface specific GlobalCall functions,
67

internal SRL event handler thread, 19

ISDN, 3, 6, 7, 68, 94, 196, 205, 216,
229, 267, 318

call control library, 244, 261

cal control library name, 97, 99,
100, 103

GCEV_ALERTING event, 29, 38

Integrated Services Digital Network,
318

interface, 3, 319

library, 7, 9, 157

ISDN application, 236

ISDN call control library, 214
ISDN CTRA4 protocol, 65
ISDN interface, 73

ISDN library, 57, 59, 63
ISDN message, 7, 269

ISDN Parameters, 219

ISDN protocol, 64
demonstration program, 247

ISDN setup message, 269
ISDN time-out, 115

isdn.h
header file, 62

ISDN_BN, 196
ISDN_BN_PREF, 196
ISDN_CA_TSC, 196
ISDN_CPN, 196
ISDN_CPN_PREF, 196
ISGV_LIB, 157

IVR
interactive voice response, 21

L

LAPD protocol, 224
late event, 44

Layer 1, 219

layer 2, 135

layer 2 access message
ISDN, 51, 272

layer 2 access message buffer
ISDN, 51, 272

LDID, 5, 13, 47, 161
information, 43
Line Device |dentifier, 5, 318

libanalog.afile, 63
libanapi.afile, 63
libatlib.afile, 63

Index

libdti.a, 57
libdti.afile, 62, 63
libdtimt.lib file, 64
libdxxmt.lib file, 64
libdxxx.afile, 62, 63
libgc.afile, 62, 63

libgc.lib
Windows NT, 64

libgc.lib file, 64
libgcis.afile, 63
libgcis.dll, 64
libger2.dil, 64
libgncf.a, 57
libgncf.afile, 63
libicapi.afile, 63
libisdn.afile, 63
libr2lib.afile, 63

library, 6,7, 9, 71, 269
ASCII string, 10
available, 9
cal control, 7
configured, 71, 269
failed, 9
GlobalCal, 3,7
ID number, 10
non-stub, 9
stub, 9

library file, 62, 64

library function, 10

library identification code, 99
library, interface specific, 6

libsrl.afile, 62, 63

343

GlobalCall™ API Software Reference for UNIX and Windows NT

libsrimt.lib file, 64

Line Device, 5, 56, 58

line device ID, 70, 267, 268
Line Device Identifier, 5, 13, 318
line device mask, 214

line related event, 57, 59
LINEBAG data structure, 244
linedevp, 175

linked to the application, 63
linking library file, 57

loop start, 318

loop start signaling, 313

loop timed, 65

loss of sync, 280

M

main process
UNIX, 45

main thread, 318

maintenance message, 52, 273, 274
makecallp, 169

makefile, 245

mask
event, 38
line device, 214

maskable
GCEV_ALERTING, 29

maskable event, 28, 30, 34, 37
master clock, 65

memory problem, 44, 237

344

message/eventing
Windows NT, 18

metaevent, 43, 70, 127, 138, 146, 203,
236, 268
data structure, 75, 78, 133

METAEVENT data structure, 18, 22,
60, 79, 139, 146

METAEVENT structure, 5, 128, 133,
140, 143

metaeventp crn field, 127
Microsoft Visual C+, 65

mode, 82
asynchronous, 14, 17
operating, 14, 15, 23

model

asynchronous. See mode,
asynchronous. See mode,
asynchronous. See mode,
asynchronous. See mode,
asynchronous

extended asynchronous. See mode,
extended asynchronous

synchronous. See mode,
synchronous. See mode,
synchronous. See mode,
synchronous. See mode,
synchronous

synchronous with SRL callback. See

mode, synchronous
msgbufferp parameter, 167, 168

msglength
error message string, 167

multi-frame alarm, 279, 280
multiline application, 14

multiple thread, 6
Windows NT, 22, 60

multitasking
synchronous, 34

multitasking function, 319
multitasking synchronous function, 34
multithread asynchronous, 317, 319

multithreaded
Windows NT, 70, 184, 268

multithreaded asynchronous and
synchronous demonstration
program
Windows NT, 252

multithreaded asynchronous
demonstration program
Windows NT, 253

multithreaded synchronous
demonstration program
Windows NT, 256

N

naming convention
analog protocol, 63
ICAPI protocol, 63, 64

Network Facility Associated Signal
NFAS, 319

network handle, 56, 59, 149, 319
network interface, 4

network library function, 59
network resource, 319

Network Specific Facility |E, 122

Network Specific Information (NSI)

message
ISDN, 51, 272

Network Terminator, 319
network time slot, 42

Index

network_device_name, 176, 177
NFAS, 319

non-signal callback model
UNIX, 45

non-signal mode
UNIX asynchronous callback
model, 15

non-stub library, 9

North America analog protocol, 247
notify message, 51, 272

nr_scroute(), 56, 59, 149

NSl
Network Specific Information
(ISDN), 51, 272

NT1, 319
null, 319

Null state, 24, 26, 29, 33, 34, 36, 41,
106, 198, 210, 236, 237
transition, 33, 34, 41

numberstr, 169

@]
object file, 63

Offered state, 27, 28, 36, 37, 48, 273
transition, 28

open line device, 57, 59

Optional Call Handling and Features
Functions, 67

optional GlobalCall call handling
functions, 67

Out of frame error, count saturation, 47
out of memory, 278

outbound

345

GlobalCall™ API Software Reference for UNIX and Windows NT

demonstration program, 245

outbound call, 29, 30, 38, 39, 47, 48, 56
demonstration program, 255

outbound calls, 68, 69, 269
demonstration program, 241, 253,
256

outbound configuration file
demonstration program, 247

outbound demonstration, 241
out-of-service, 69
overlap receiving, 68, 267

overlap viewing, 319

P

parmno parameter, 176
sr_setparm(), 17

parsing error
.vepfile, 164

physical port, 6

polled
UNIX, 15

polled model, 15

porting
application, 7

preemptive multitasking, 319

PRI
Primary Rate Interface, 320

Primary Rate Interface, 320

primary thread, 6, 320

PRITRACE utility program, 229
proceeding message, 51, 76, 213, 273
process (UNIX), 320

346

process (Windows NT), 320
process latency time, 125
processes, 6

Production, 156

Products
listing of, 1

Programming conventions, 82

programming model
UNIX asynchronous, 13
UNIX synchronous, 13

progress message, 51, 273
protocol, 3, 6, 261, 278
protocol file, 64

protocol handler, 43
protocol module, 63, 64
protocol operation, 56
protocol package, 245
protocol_name, 176, 177

pulse digit dialing
signaling, 323

Q

Q931
CCITT standard, 318

R

R2 MFC, 3, 5, 321
reason code, 44

receive, 321

Received blue alarm, 47
Received carrier loss, 47

Received distant multi-frame alarm, 46

Received frame sync error, 46
Received loss of sync, 46, 47
Received multi frame sync error, 46
Received remote alarm, 46
Received signaling all 1's, 46
Received unframed all 1's, 46
Received yellow alarm, 47

recompile
demonstration program, 244

recovery, 198
red alarm, 280

rejection message
ISDN, 52, 53, 273, 274

release
system resources, 41

release number, 155
release type, 155

releases, system software, 3
remote alarm, 280

reply message, 34

request to transfer call
ISDN, 53, 274

result code, 44

result value, 29, 46, 278, 321
summary, 277

retrieve event information, 138, 146

retrieve held call
ISDN, 52, 273

retrieve hold call
ISDN, 51, 52, 273

retrieve hold call message

Index

ISDN, 52, 273

return value
function call, 55

returned caller ID, 196
returned value, 55
rfu, 321

ring
signaling, 323

ring detected, 27
ringback, 26, 29
ringing, 68, 267
rings parameter, 166

Robbed Bit, 4
T-1, 318

robbed bit signaling, 7
robbed bit, 323

robbed-bit signaling, 13
T-1, 315

routing, 42, 110

S

SCbus
Signal Computing bus, 321

SCSA
Signal Computing System
Architecture, 322

seizing, 318
send alarm, 278

service state of line, 209

setting up a call, 24, 31, 34, 39, 77, 314

setup ACK message, 52, 274

347

GlobalCall™ API Software Reference for UNIX and Windows NT

Setup Acknowledge message, 76
setup message, 73
SETUP_ACK, 52, 76, 213, 274
SIGMODE, 58

Signa Computing bus, 321

Signal Computing System Architecture,
322

signal handler, 38, 39, 45

signal mode
UNIX, 176, 178
UNIX asynchronous callback
model, 15

signaling interfaces, 6
signaling mode, 58

Signaling References
ISDN, 310
R2 MF, 310
T-1 Robbed Bit, 310

signaling system, 4, 5

SIT, 322
Special Information Tone, 94

Special Information Tone, 94, 112, 322
SpringBoard, 322

sr_enbhdlr(), 19, 20, 22
sr_getevtdatap(), 79

sr_getevtdev(), 79

sr_getevtlen(), 79

sr_getevttype(), 79

sr_hold(), 176

SR_MODELTYPE, 20

348

SR_MODELTY PE value, 17, 19, 20,
21,22

SR_MTASYNC, 20
SR_MTASYNC,, 17
sr_NotifyEvt(), 21
sr_release(), 176
sr_setparm(), 17, 19, 176

SR_STASYNC, 19, 20, 21, 22
SR_MODELTY PE value, 176

s waitevt(), 15, 17, 18, 19, 20, 21, 22,
45, 140

s waitevtEx(), 22, 146, 317

SRL, 14, 17, 44, 45, 58
Standard Runtime Library, 322
Windows NT, 45

SRL callback thread, 16

SRL device handle, 88, 109, 148, 319,
324

SRL event, 138, 146

SRL event handle
Windows NT, 70

SRL event handler thread
Windows NT, 22

SRL handler thread, 19, 20
Windows NT, 19, 20

Standard Runtime Library
SRL, 322

start trace, 73
starts trace, 269

state
accepted, 26
aerting, 26
cal, 23

Index

connected, 26 T-1Alarm, 47
current, 23 .
dialing, 26 T-11SDN interface, 13
_disconnected, 26 T-1robbed bit, 3, 7
idle, 26 interface, 6, 38, 64, 65, 236, 244,
null, 26 261, 318, 319, 323
offered, 26]
T-1 robbed bit
state machine, 18, 256 interface, 3
statebuf, 135 T-1 robbed bit protocol, 64
states, call establishment, 24, 34 T-1 robbed bit, 323
stop trace, 73, 269 Technology User’s Guides, 7
structure terminate a call, 33, 41

METAEVENT, 43 o
termination event, 14, 15, 16, 18, 23,

stub library, 9, 62, 63, 227, 322 28, 43, 47, 323
Switch Handler termination scenario, 33, 41
SC2000 chip, 321
thread
synchronization object, 322 Windows NT, 16, 323
synchronous time out, 278
atomic, 34 .
time slot, 323
synchronous demonstration . . .
Windows NT, 252, 256 time slot level line device, 214
synchronous function, 14 timed-out, 49, 271
synchronous mode, 14, 16, 34, 57, 322, timeout, 170, 236
323,324 time-out, 36, 115, 280

Windows NT, 175
] time-out error, 115, 170
synchronous programming model

Windows NT, 15, 16 timeout parameter, 36
synchronous thread, 17 tone resource, 42, 324
System Controls and Tools Functions, trace, 269
67 transfer call message
System Scheduler for UNIX, 321 ISDN, 53, 274
T transfer call message acknowledgement

ISDN, 52, 53, 274

T-1,323 transmit, 324

349

GlobalCall™ API Software Reference for UNIX and Windows NT

Transmit and Stay Resident
TSR, 324

troubleshooting, 115

trunk error
recovery, 198

TSR
Transmit and Stay Resident, 324

U
U_IES, 122

UNIX
demonstration program, 241

UNIX application
porting to Windows NT, 20

UNIX event handler, 44
UNIX in signal mode, 176
UNIX signal mode, 178
unpredictable results, 6
unrouting, 110

unsolicited event, 16, 17, 33, 39, 41, 43,
47,58
alarm event, 45
synchronous mode, 38

unsolicited event handler, 17

user attributes, 176

user-modifiable configuration file, 241
user-specified application window, 21
user-specified message, 21

User-to-User Information, 53, 122, 216,
275, 324

USR_RATE, 219
usrattr, 191, 221, 222

350

usrattr parameter, 190

USRINFO_LAYER1 PROTOCOL,
219

uul
User-to-User Information, 53, 122,
275, 324

Vv

variable data
non GlobalCall events, 43

variable length data
non Global Call events, 43

Vari-Bill service, 205

vep file
voice channel parameter, 161

verbosity, 262

version number, 68, 155, 268
VFX/40ESC, 4

VFX/40ESC plus, 4
VFX/40SC, 4

Visual C++, 261

voice channel, 42, 324

voice channel parameter
vcp, 161

voice device handle, 42

voicefile
demonstration program, 253

voice handle, 56, 59, 324
voice parameter, 72, 268
voice parameter file, 161, 163

voice resource, 4, 5, 72, 88, 106, 109,
159, 178, 219, 267, 278, 279,
324

voice_device_name, 176, 177
voiceh, 88

w
wildcard handler, 58

Windows NT
synchronous programming model,
16

Windows NT application, 9
Windows NT environment, 15

Windows NT
programming models, 15

Windows NT message handling, 20

wink
signaling, 323

Y
yellow alarm, 280

Index

351

NOTES

NOTES

NOTES

