Using the DM3 Direct
Interface

for Windows NT

Copyright © 1998 Dialogic Corporation

PRINTED ON RECYCLED PAPER

05-0987-001

COPYRIGHT NOTICE

Copyright 1998 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment
on the part of Diaogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot
guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. No
warranties of any nature are extended by the information contained in these copyrighted materials.
Use or implementation of any one of the concepts, applications, or ideas described this document or
on Web pages maintained by Dialogic-may infringe one or more patents or other intellectual property
rights owned by third parties. Dial ogic does not condone or encourage such infringement. Dialogic
makes no warranty with respect to such infringement, nor does Dialogic waive any of itsown
intellectual property rights which may cover systems implementing one or more of the ideas contained
herein. Procurement of appropriate intellectual property rights and licensesis solely the responsibility
of the system implementer. The software referred to in this document is provided under a Software
License Agreement. Refer to the Software License Agreement for complete details governing the use
of the software.

All names, products, and services mentioned herein are the trademarks or registered trademarks of
their respective organizations and are the sole property of their respective owners. DIALOGIC
(including the Dialogic logo and Signal Computing System Architecture (SCSA) are registered
trademarks of Diaogic Corporation. The following are also trademarks of Dialogic Corporation:
GlobalCall, SChus, SCxbus, SCxbus Adapter, SCSA, Signal Computing System Architecture.

Publication Date: April, 1998
Part Number: 05-0987-001

Diaogic Corporation
1515 Route 10
Parsippany NJ 07054

Technical Support
Phone: 973-993-1443
Fax: 973-993-8387
BBS: 973-993-0864
Email: CustEng@dialogic.com

For Sales Offices and other contact information, visit our website at http://www.dialogic.com

Table of Contents

I I 1 o U T f o o ISR 1
1.1, Information in ThiS GUIAE........ccveeririeire e 2
1.2, HOW tO USE ThiS GUITEcueiiiieteriereete sttt sttt 4
1.2.1. Typeface CONVENLIONSccccovereerieriesiesieee e e se et sre e 4
1.2.2. Other Relevant Guides and References...........ccccoeveverinenencnencienns 6
1.3. Overview: DM3 Family Of PrOdUCES.........cccceieeieiiesie e seeniens 6
1.4. Key DM3 Architecture CONCEPLSceevveeieeierie e s siee e eee e see e nae e 7
2. Understanding the Direct Interfaceccoccvvvvveeveeii e 9
AN T o (o= o Y7 = TSRS 9
2.1.1. DM3 Direct Interface Host Library ... 10
2.1.2. DM3 DEVICEDIIVErS......eiueieeeeeeeie ettt 11
A B 1Y BN o = T PSR 11
2.3. DM3 FiIMWEIC.....oiiiieieieieieetieeeeese sttt e e st st sne e e neenaenes 12
2.4. Understanding Data COMMUNICALION.c.coireeririeirerieeseseeesie e 12
2.4.1. Understanding MeSSagiNg..........coueereereeererieerienieesieseeeseeseeessessesesees 13
2.4.2. Understanding Data SErEaMS.........cccvereiririeenirieesieseeesie e 15
2.4.3. Understanding Eventing and Run-Time Control...........c.cccvvirinnenens 15
3. Windows NT Programming MOdelSccooveiririinirieeereeere e 17
3.1. Choosing aProgramming MOdelcccoeveeiiiie i 18
3.2. Asynchronous Multithreaded Modelcccocovvieii e 19
3.2.1. Asynchronous Multithreaded Model Trade-offs..........cccccvevvvvecinnnne 19
3.2.2. Asynchronous Multithreaded Programming Notes..........c..ccccovevennens 20
3.3. Asynchronous Single-threaded Model.............cccovvieiiciecececceeeeee 21
3.3.1. Asynchronous Single-threaded Model Trade-offs........cccccvvvevvriennns 21
3.3.2. Asynchronous Single-threaded Programming NOtes...........ccccovecvenns 21
3.4. Synchronous Multithreaded Modelcccocoviiiiicci i 22
3.4.1. Synchronous Multithreaded Model Trade-offs.........cccccvvevvciccieenene, 22
3.4.2. Synchronous Multithreaded Model Programming Notes..................... 23
3.5. Synchronous Single-threaded Modelccooeoviieii e, 23
3.6. MuUlti-process APPliCALIONS.........ccciereriene e 23
4. Calling Direct Interface FUNCLIONS.........ccviiiiiiiiieeeeee e 25
4.1. Calling Functions ASynChronOUSLYc..ccverrirennineieseese e 26
4.1.1. OVERLAPPED SIUCIUIE......cceeitieiieeeiesieeiesieesieese e siee e e seeeseesneens 26
4.1.2. 1/O CoMPIEtioN POIS......c.oiviiriieirieereneeesee e 27
4.1.3. Handling Asynchronous FUnction RELUMNS...........ccoeerrennennenieiennns 30

ifi

Using the DM3 Direct Interface for Windows NT

4.2. Calling Functions SynchronOUSIYccoccerernineienenneeeseee e 33
4.2.1. Handling Synchronous FUNCtion RELUINS...........cccoereinienenennesieeeee 33
5. DM 3B DEVICES ..ottt bbb 37
5.1, DEVICE NAIMES.....ccvciiireeieiirerieie st 37
5.1.1. Message Paths (MPath)........cccoeierieieiesesese e 38
5.1.2. Stream Paths (SIrmM)cocee e 40
5.1.3. BOard NUMDEY ..o 40
5.2. Obtaining Device Name StHNGS.....c.cooveveiee it 43
5.2.1. Avoiding Sharing ViolalionSccccveceeeeneeieseese e 43
5.3. Obtaining File Handles to Communicate with DM3 Devices....................... 44
6. USINGMESSAJEScoeeeiiireierinrereeie ettt et 45
6.1. Requesting an Mpath Device Nameccoiveirinieinieeneee s 46
6.2. Creating a Handle to the Mpath Device...........ccoeovinennineisceese e 46
6.3. Allocating aMultiple Message Block (MMB)cccveiiinninnennceee 47
6.4. Fllingin MMB Fields......c.cooiiiiiiinere e 47
6.4.1. MaChing CritEria......cerveeerieieereeereeeie ettt b e seere e 49
6.5. SendiNg the MESSAgEc.coveiiiirece e e 51
6.5.1. Sending Asynchronously or Synchronously..........cccceeeerenenenerenennen. 51
6.5.2. Example: Sending and Receiving a Simple Message.........ccoeevveenene. 52
6.5.3. Example: Sending aFixed-Size Message.........cccoevrerreneenieesieennene 53
6.5.4. Example: Sending a Variable Payload Message.........cccoevvenneneneneas 54
6.5.5. Example: Sending aVariable List MESSage.ccovveereenenenienerieene. 55
6.5.6. Example: Sending a KV Set MESSAgE......c.coveeririeerienireneese e 56
6.6. Retrieving aReply MESSA0E.......c.coiiiireirieiee e 57
6.7. Handling UNnsolicited MESSAgES.........cceerieeriieririeesieee e 59
6.8. Canceling Pending MESSAgES.........coveireererene et 60
6.9. Example: Sending a Message and Receiving aReplycccovevrinnincenne 60
6.10. Using Attributesto Find @ Componentcccoeveverenerenneneesesese e 65
6.10.1. Standard COmMPONENt TYPES....c.eeerueerierirrerieerieeere e 66
7. USING DAt SEFEAMS ...ttt e s 67
7.1, WIiting SEream Dala........cccueoueieieiieriee e 69
7.1.1. Example: Writing Stream Data.........cccooeverenene e 71
7.1.2. FIOW CONIOL ...ttt 76
7.1.3. Setting Stream Flags........ooeeeiieireeeeeee e e 76
7.1.4. Canceling Stream WILEScc.oieii e 77
7.2. Reading SIream Data........cccoereeiierierieie e 7
7.2.1. Example: Reading Stream Data........c.ccoeveveenenie e 79
7.2.2. Protocol Driver BUFFEriNg.......ccoieierineninireneneeeeeeee e 84

Table of Contents

7.2.3. Specifying Read Buffer SIZes........oocveveiviniiecseesees 85
7.2.4. Canceling Stream REAASccoiieeiiieee et 85
8. USING ClIUSLEN ...ttt et s 87
8.1. Host Application Cluster CONtrolcccevveveeveeieesereerese e e 87
8.1.1. FiNdiNG @ CIUSENcc.cceiecieece e 89
8.1.2. Adding Componentsto CIUSLErS........ccceveeiiereereee e e 89
8.1.3. Assigning an SChus Timeslot to an SCbhus Resource..........cccocvecvenes 91
8.1.4. TalKEr ProtOCOlcccoueiieieiiesie ettt 91
8.1.5. Changing the Default Cluster Configuration............ccceceevvveeevvseenenne. 94
8.1.6. Finding Cluster ASSIGNMENT..........ccceevieiereerie e 96
8.1.7. Connecting Ports onthe Same Boardccccoccvvevvevievce e, 96
9. EXit NOUITICALIONccviiiieiiieieeeeee e 97
9.1. Setting up Board-level Exit NOtifiCationccccoeevinnceneineeceenee 97
9.2. Setting up Application Exit NOtifiCationcoceveeerennineinersiee s 97
10. Error Handlingoccvieiiiieiiciici 99
10.1. Retrieving Errorsfromthe HOStcccoeovieeiicie e, 99
10.2. Retrieving Error Codes from the Embedded System.........ccccceevvevveevneenen. 99
10.2.1. Synchronous Platform Function Calls..........cccccevievieiiencnseseecienns 99
10.2.2. Asynchronous Platform Function Calls.........c.cccvvieieeienceieeseenne 99
11. Direct Interface Application GUIdeliNES.........cccceveevevceevecse e, 101
11.1. DeSign & DeVEIOPMENLc.covieieiieirieireieeseeees e 101
11.2. PerfOrmanCe ISSUES........cceeieieeeieieree ettt ere e 101
11.2.1. Pending /O REQUESES........c.ccouiirierieirieieese e 102
12. Compiling and Linking an Applicationc.ccoceoveininnieneiencnnenieens 103
G T I T o U T o 1 Vo PR 105
L1310 TTBOING ettt ettt ettt skttt et bt b e e b e sa e e b neenens 105
13.2. Protocol DrVEr TraC LOg ...c.cvveervirieerieiriiieesieesie e 105
13.3. Cleaning Up after EXits and Crashes.........cccooveeerenneneieneneseseee e 106
14. ToOISAN ULHTIES.....eieieieeie e 107
3 T | 411 (0 (< 108
I O 1 111 o = TSRS 108
o o (o] TSP PR 109
I T U L= o (= ST 109
R o - 111] o 1= TSRS 109
G T 1= 0 11= V=, 110
T I oz 111 o 1= TSRS 110

Using the DM3 Direct Interface for Windows NT

T4.4, MEICMON ..ot e s 111
TAAL USBOE ..ottt ettt sttt sttt bbbt bbb 111
TA.5. MPAITBCE.e ettt ettt et se e ene e 117
TA5.1. USAOE ettt sttt bbbttt 117
14.5.2. EXAMPIES... .ottt st 117
T4.6. OMAUMP ...ttt sttt eb bbb e bt b e b b se b b e e ebesae e 118
TA.6.1. USAOE....iiciiitiieie ettt sttt sttt st sttt 118
14.6.2. EXAMPIES... oottt 118
TA.7. SIMSLELooiveerictiee e e e s 119
TA.7.0. USAOE ..ottt sttt sttt sttt 119
14.8. EXAMPIES ..ottt sttt sttt st s ene e 120
1 g To = TSP SR U TSR UTSVR P 121

vi

List of Tables

Table1l. Choosing aProgramming MOdE]cceiieininnineineee e 18
Table2. MatChing Critefialccovreireirieeere s 50
Table 3. Host Cluster Control Tasksceeiceeeeeiieeeeee et 88
Table 4. Filenames Of Libraries.......cocovieieeeeieiiiecee et 103
Table 5. Class DIVEr COUNLErS........ccoeeiveeireeeeeeiteeeteesteeesseesreesaeessessreessneesens 111
Table 6. ProtoCol Driver COUNENS........ccouieieeeceeireeeeeecteeesreeeeeeseeeteesreeesee e 112

vii

Using the DM3 Direct Interface for Windows NT

vili

List of Figures

Figurel. The DM3 Direct Interface in a System.........ccoceovereininnineenenceenes 2
Figure 2. DM3 Direct Interface COMPONENESccorereererenereeesieese e 10
Figure 3. MMB SHUCKIUEoeeeiiiirteeee et 14
Figure4. Calling Functions From Y our Application...........coccveeeneeniecenenennenes 26
Figure 5. Handling Asynchronous Function RELUMNS...........c.ccccveevinninncnienene 31
Figure 6. Handling Synchronous Function RELUINS...........cccoeerenieiniecncnineenes 34
Figure 7. Direct Interface Stream FIOWccccoiveiiiinienceseee e 69
Figure 8. Default Cluster Connections Example...........coooveveveinennenieiencnecenene 90
Figure 9. SChus ResOUrCe TalKiNGcccoerererieiriereee et 92
Figure 10. Default Cluster Connections Example...........cccoevvinneneinieieneeennenes 95
Figure 11. Reconfigured CIUSLEN..........ooiireiriiieenieerie e 96

ix

Using the DM3 Direct Interface for Windows NT

1. Introduction

This guide presents the methods you can use for devel oping applications based on
DM3 products. Use this guide in conjunction with the DM3 Direct Interface
Function Reference for Windows NT and other guides.

The Direct Interface provides host devel opers with the lowest level of control over
the DM 3 embedded system and offers a great degree of flexibility. Use the Direct
Interface either to build your applications or to build afunctional software layer to
emulate other application programming interfaces (APIs).

To help you implement common features and routine functions, Dialogic offers
Application Foundation Code with many DM3 products. See the document
entitled DM3 Application Foundation Code for Windows NT.

Asshown inFigure 1. The DM3 Direct Interfacein a System, the Direct Interface
(DI) isthe interface between an application and the embedded system. The Dl isa
host library which offers access to the device drivers and is the only way to get
driver-level access. For details, see Chapter 2. Understanding the Direct
Interface.

Note that while the Direct Interface can be used across al DM 3 products under
Windows NT, the functionality of aDM3 product is provided by firmware-based
resources (which are downloaded to the DM 3 hardware). Different DM3 products
may have unique capabilities including some capabilities added by third-party
developers.

Using the DM3 Direct Interface for Windows NT

Win32 Application

A

Direct v
Interface \ DM3 Host Library \

!

\ Win32 AP
I Accessible

v Inaccessible

‘ Class Driver ‘

A

otocol Driver ‘
’y Host

M o Embedded

-
=5

Figure 1. The DM3 Direct Interface in a System

1.1. Information in This Guide

This guide is arranged into the following chapters:

e Chapter 1: Introduction provides a brief introduction to the Direct Interface
and offers a broad context for understanding its function with the DM3
Architecture.

e Chapter 2: Understanding the Direct | nterface explains the concepts you
need to understand before you begin programming.

e Chapter 3: Windows NT Programming M odels describes the pros and
cons of different programming models.

* Chapter 4: Calling Direct I nterface Functions briefly discusses some
issues you need to consider when calling functions using the Direct Interface
Host Library.

1. Introduction

Chapter 5: DM 3 Devices provides details about the device types used to
support messaging and bulk data transfers.

Chapter 6: Using M essages shows how to build, access, format, send,
receive, and cancel messaging operations.

Chapter 7: Using Data Streams shows how to write, read, and cancel bulk
data transfers.

Chapter 8: Using Clusters shows how a host application can control clusters
on the DM 3 embedded system.

Chapter 9: Exit Notification shows how to enable your application to
respond to system failures

Chapter 10: Error Handling discusses how to retrieve errors from the host
and from the embedded system.

Chapter 11: Direct I nterface Programming Guidelines provides several
helpful tips to use when using Direct Interface function calls.

Chapter 12: Compiling and Linking an Application provides some
necessary tips to use when compiling and linking.

Chapter 13: Debugging lists some facts about debugging.

Chapter 14: Toolsand Utilities contains instructions on how to use the
utilities supplied with a DM 3 product.

Index

Using the DM3 Direct Interface for Windows NT

1.2. How to use This Guide

This guide shows how to use the DM3 Direct Interface for Windows NT to build
programs. The low-level and flexible nature of the Direct Interface allows you
build either of the following programs on your host processor:

» applications based on DM 3 embedded firmware resources

» application programming interfaces

1.2.1. Typeface Conventions

The following conventions are used throughout DM 3 software:

« Function Names begin with a lowercase “mnt” followed by one or more
words describing the function. Each word within the function name begins
with a capital letter, there are no separator characters, and the name ends with
a set of parentheses; for examphet CompFind(). Function hames are
always presented in boldface type.

e Macro Names are shown in one of two ways, depending on the macro type.
Macros used to access DM3 messages and Multiple Message Blocks (MMBSs)
are shown in non-bold uppercase type, such as MNT_GET_CMD_QMSG.
Macros used to access DM3 structures are shown in nhon-bold mixed case
type, such as QResultError_get.

- Data Type Names (typedef) begin with an uppercase “Q” followed by one
or more words describing the data type. Each word within the data type name
begins with a capital letter, and there are no separator characters; for
example, QStatus. This convention may sometimes be overruled by the
conventions of the operating system.

* Congtant Definitions (#define) are shown in non-bold uppercase type, such
as MNTI_STATE_PRE_INIT and MNTI_STATE_INITIALIZED.
Underscore separators between words aid readability. Related constant
definitions share the same first word.

1. Introduction

e Parameter Names begin with alowercase letter; words within the name
begin with a capital |etter. Pointer parameters begin with the letters “Ip”.
Examples includenode, thel nstance, andlpCount. The function parameters
are ordered with inputs appearing before outputs. Parameters are always
shown in boldface type.

¢ Message Names begin with the name of the component (or sometimes an
abbreviation of the name) to which it pertains, an underscore, and then the
lettersMsg. Some examples aRtayer MsgStop andRecorder_ MsgStop.
There are also standard messages (which many components support) that
begin withSd_Msg (for example3d_MsgError) . Message names are
presented in italic type

« Field Namesused in data structures are presented in boldface type.
* FileNames are lowercase and shown in italic type. Examgiders.h

¢ Code ExamplesandCommand Line Input are shown in a small constant-
width font. For example:

typedef struct {
u

nt8 user Type;
QIStreanype stream
unt8 i nst ance;
} Qortld;

* Variables within a command line are shown in italics.
For exampleedit nyfile

NOTE: Typographic conventions are not used within a code example.

Using the DM3 Direct Interface for Windows NT

1.2.2. Other Relevant Guides and References

Use the information in this guide in conjunction with these other sources of
information:

« DM3Direct Interface Function Reference for Windows NT

* DM3 Mediastream Architecture Overview Guide

e DM3 Standard Component Interface Message Reference

1.3. Overview: DM3 Family of Products

Dialogic’s DM3 product family now includes a full range of voice, fax, speech,
network interface and internet telephony technologies. DM3 is the industry’s
broadest and most scaleable product line, enabling developers to create more
powerful computer telephony applications.

The entire Dialogic DM3-based family of products is available in the following
hardware form factors:

¢ PCI (Peripheral Component Interconnect)

¢ CompactPCI (compact Peripheral Component Interconnect)

« VME (Versa Module Europa)

These new technologies build upon the industry’s most scalable CT component
product line, enabling developers to create powerful DM3-based solutions:

* Voice Processing - Dialogic PCI products scale up to 120 channels of both
voice processing and network interface per card with the DM3-based
QuadSpan Series.

e Fax Processing - Dialogic’s PCI fax line is scalable up to 24 or 30 channels of
fax with the DM3 Fax series, the highest density fax resource on the market
today.

« Network Interface - Dialogic network interfaces include the QuadSpan DTI
Series for PCl and CompactPCl, designed to provide a powerful set of

1. Introduction

advanced call processing features that devel opers can use to create cost-
efficient, high channel density switching systems.

Internet Telephony - The Dialogic DM 3 IPLink family of PCI and

CompactPCI Internet telephony platformsis fully compatible with leading
H.323 client applications such as Microsoft NetMeeting, Intel Internet Video
Phone and Vocal Tec Internet Phone. DM3 IPLink-based servers enable
individuals to communicate directly over the data network—from phone to
phone, fax to fax, PC to phone, phone to PC and Web browser to phone.

1.4. Key DM3 Architecture Concepts

This section offers a brief explanation of the concepts that you must be familiar
with before you begin working with DM3 products. For more information about
these concepts, see th&3 Mediastream Architecture Overview Guide.

DM 3 is an architecture on which a set of Dialogic products are built. The
DM3 architecture is open, layered, and flexible, encompassing hardware as
well as software components.

A DM 3resource is a conceptual entity implemented in firmware that runs on
DM3 hardware. A resource contains a well defined interface or message set,
which the host application uses when accessing the resource. The message set
for each resource is described iD®3 Resource User's Guide

Resource firmware consists of multiple components that run on the DM3 core
platform software. The DM 3 Global Call resource is an example of such a
resource, providing all of the features and functionality necessary for
handling calls.

A component is an entity that comprisesa DM3 resource. A component runs
on aDM3 control processor or signal processor depending on its function.
Certain components handle configuration and management issues, while
others process stream data.

To access the features of aresource, the host exchanges messages and stream
data with certain components of that resource. During runtime, components
inside a resource communicate (via messages) with other components of that
resource, as well as with components of other resources.

A component instanceisalogica entity that represents a single thread of
control for the operations associated with a DM 3 component. DM3

Using the DM3 Direct Interface for Windows NT

components generally support multiple instances so that a single component
on asingle processor can be used to process multiple streams or channels.
Instances are addressable units and DM 3 messages may be sent to individual
instances of a component.

A DM3 messageisaformatted block of data exchanged between the host and
component instances, between component instances and the core platform
software, as well as between the DM 3 component instances themselves.

The DM3 architecture implements different kinds of messages, based on the
functionality of the message sender and recipient. Messages can initiate
actions, handle configuration, affect operating states, and indicate that events
have occurred.

* A cluster isacollection of DM3 component instances that share specific
timeslots on the network interface or the Time Division Multiplexed (TDM)
bus, and which therefore operate on the same data stream. The cluster concept
in the DM3 architecture corresponds generally to the concept of a “group” in
S.100, or to a “channel” in conventional Dialogic architectural terminology.
Component instances are bound to a particular cluster and its assigned
timeslots in an allocation operation.

* Aportis a logical entity that represents the point at which Pulse Code
Modulated (PCM) data can flow between component instances in a cluster.
Ports are classified and designated in terms of data flow direction and the
type of component instance that provides the port.

2. Understanding the Direct Interface

Concepts you need to understand before you begin programming are discussed in
this section. Reading through this section will help explain some of the aspects of
the Direct Interface for Windows NT. See the DM3 Mediastream Architecture
Overview Guide for amore compl ete discussion.

The architecture of any DM 3-based system consists of the following items:
e host software
e firmware modules

¢ hardware

2.1. Host Software

The DM3 Direct Interface is alow-level message-based interface. By sending and
receiving messages, the Direct Interface provides access to the DM 3-based
embedded system, and shields you from device driver specifics. Y ou can use the
Direct Interface as the foundation from which you can build a higher-level API.
Win32 file- and resource-management services are available to you when using
the Direct Interface.

The term “Direct Interface” is applied to the library that offers the lowest-level
access to the DM3 embedded system, regardless of the way it is implemented
under a certain operating system. For Windows NT, the DM3 Host Library
accesses DM3 Device Drivers (a Class Driver and a Protocol Driver).
Applications communicate only with the host library; the device drivers are not
accessed directly.

Figure 2 illustrates the host and embedded portions of a generic DM3-based
system.

Using the DM3 Direct Interface for Windows NT

Win32 Application

A

v

mnti.dl | DM3 Host Library |

!

\ Win32 AP \
I Accessible

v Inaccessible

. Mpath & S
dlgcmcd.ws‘ Class Driver Hrﬁ Devices
v
. Board
dlgcmpd.ws‘ Protocol Driver(s) DDe\(,)ii;(s)
< 0s

v o Embedded

T
Hardware
Firmware
Component Instances

Figure 2. DM3 Direct Interface Components

2.1.1. DM3 Direct Interface Host Library

The DM3 Direct Interface host library (mnti.lib) is the lowest-level interface for
accessing DM3 devices. Use the library in conjunction with the Win32 APl to
produce native Windows NT applications. The DM 3 Direct Interface provides
configuration management, message all ocation, messaging, cluster and time slot
management, and data stream services.

All device handles used with the Direct Interface are native Win32 handles and
are passed directly to Win32 event functions. The host library protects internal
shared data structures from being overwritten when they are used by multiple
threads.

An application built with the Direct Interface for Windows NT uses the M ultiple
M essage Block (MM B) asthe primary data structure. The MMB is used to send

10

2. Understanding the Direct Interface

messages to and receive messages from the DM 3 embedded system. See the
section entitled Multiple Message Blocks (MMBs) for more information.

2.1.2. DM3 Device Drivers

DM3 device drivers include the Dialogic Class Driver and Dialogic Protocol
Driver. Application developers do not need to access these drivers directly; the
Host Library is used to communicate with these drivers.

The Dialogic Class Driver (digcmed.sys) is the highest-level driver that interacts
with the Dialogic Protocol Driver. The Class Driver recognizes DM 3 device
names (Mpath for messages and Strm for streams) and supports all Win32 APl 1/O
function callsthat perform bulk data transfers, including ReadFile(), and
WriteFile().

The Dialogic Protocol Driver (digcmpd.sys) isthe lowest-level driver that handles
al 1/O operations between a DM 3 embedded system and the host machine. The
Protocol Driver communicates through shared memory (Shared RAM) that is
mapped to the system address space. For PCI devices, this mapping takes place
when the Protocol Driver loads and initializes. (More precisely, the PCI
configuration process is handled by Windows NT at boot time and later, the
Protocol Driver discovers and claimsthe DM 3 boards.) The Protocol Driver
supports both PIO (Programmed Input/Output) and DMA (Direct Memory
Access).

2.2. DM3 Hardware

The hardware used in a DM 3 embedded system is a modular and scaleable
implementation of the DM 3 architecture. A DM 3 product consists of one
baseboard (PCI, CompactPCl, or VME), up to three signal-processing
daughterboards, and other hardware components. For details on the DM 3
hardware architecture, see the DM3 Mediastream Architecture Overview Guide.

A configured hardware assembly isinstalled in a chassis. For details about

installing a particular board assembly, refer to the Quick Install Card packaged
with the product.

11

Using the DM3 Direct Interface for Windows NT

2.3. DM3 Firmware

At system startup, binary code is downloaded to the DM 3 board assembly. The
firmware on the assembly is the ultimate target of al 1/0O operations. It includes
components, kernels, and service managers.

For more information about the DM 3 software architecture, see the DM3
Mediastream Architecture Overview Guide.

2.4. Understanding Data Communication

The DM 3 architecture uses messages and bulk data streams as its two major
communication mechanisms. Messages primarily pass commands, results, and
other events between the host application and the embedded system. Data streams
primarily pass large amounts of data, such as audio or fax data, between the host
and the embedded system.

For more information on the DM 3 devices used for input and output, see Chapter
5. DM3 Devices.

12

2. Understanding the Direct Interface

2.4.1. Understanding Messaging

Messages are passed between the host and the embedded system via a structure
called the Multiple Message Block (MMB). Host applications should not access
the MMB structure directly. Instead, use the macros provided with the Direct
Interface that resolve the endian-type issues.

Macros exist to handle these five types of messages:

e Simple Messages
M essages that contain no payload data, only status information, such as an
operation completion message.

e Fixed-size M essages
M essages that contain a pre-defined payload of a known size.

e Variable Payload M essages
M essages containing an array payload information of a size that varies based
on the commands that were sent.

e« VariableList Messages
These contain alist of different types of arrays of various payloads.

e KVSet Messages
Messages with Key/V aue sets containing attribute information for board(s),
component(s), etc.

Multiple Message Blocks (MMBS)

An application built using the Direct Interface host library uses the Multiple
Message Block (MMB) as the primary data structure. The MMB is used to send
messages to and receive messages from the DM 3 embedded system.

A Multiple Message Block (MMB) must be allocated for passing messages. The
memory block is made up of the following sections:

e MMB Header

e Command Message Fixed Header

e Command Message Payload

13

Using the DM3 Direct Interface for Windows NT

* Reply Message Fixed Header (optional)
* Reply Message Payload (optional)

The MMB contains space for one MM B Header and Command M essage section
and for any number of reply messages, each with its own header and payload, as
shown in Figure 3. MMB Structure.

MMB Header

Command QMsg

Command Payload

First Reply QMsg

First Reply Payload

nth Reply QMsg

nth Reply Payload

Figure 3. MMB Structure
The header and payload information in an MMB isin a processor-specific format,

based on the processor’s endian-type. Although the MMB structure is defined in
an include file, it should be treated opaquely and not accessed directly.

14

2. Understanding the Direct Interface

2.4.2. Understanding Data Streams

Streams are the method by which large amounts of data are sent between the host
and a component on any processor and between a component on a processor and
the TDM Bus. Streams are based on a point-to-point unidirectional pipe-like
model.

Conceptualy, aparticular stream is opened at each end and has a single reader
and asingle writer. The basic I/0O method provides an unstructured word stream
regardless of the underlying physical stream implementation. Data buffering is
doneinvisibly.

2.4.3. Understanding Eventing and Run-Time Control

The Direct Interface uses Win32 API function calls to process messages coming

from the DM 3 embedded system. Sometimes, a change in state in the embedded

system may cause an “unsolicited” message to be sent from the embedded system
to the host application.

The following types of messages may be sent to the application:
« reply messages (in response to a command message sent from the application)

e unsolicited messages (the host must be set up to receive these types of
messages)

The recommended method for recognizing and processing reply and unsolicited
messages is throughO Completion Ports (IOCP). See the Win32 SDK
documentation for more information.

For each message expected from the DM3 embedded system, you must set up an
MMB data structure. When a message is received, the MMB will be populated
with relevant message parameters. If you're using an asynchronous multithreaded
model, you should assign a specific I/O completion key ar@vanlapped

pointer to the specific message type.

If an application might receive asynchronous unsolicited messages from the
embedded system, it must set up an empty MMB data structure. This is the only

15

Using the DM3 Direct Interface for Windows NT

way to guarantee that unsolicited messages will be received. For more
information, see Section 6. Using Messages.

16

3. Windows NT Programming Models

Choosing a programming model may be the most important decision you make
about the design of your application. Deciding your approach now can increase
your program'’s efficiency or decrease the amount of time you might spend
developing an application.

It is important to understand the following terms as they apply to application
design:

e Single-threaded
Your application contains only one thread which controls one or more
devices. The following pseudo-code shows a typical form for a single-

threaded program:
voi d nai n() /1 The main routine is the single thread

for (i=0;i<NunThreads;i++)

nyThread();
}
}
e Multithreaded
Your application contains more than one thread, each of which can control
one or more devices. The following pseudo-code shows a typical form for a
multithreaded program:
void nain()

for (i=0;i<NunThreads;i++)
{

}
/It for all threads to Stop

QeateThread(..., nyThread,---)

}

e Synchronous
In synchronous programming, each function blocks thread execution until the
function completes. This includes callback models supported by the Win32
API.

e Asynchronous
In asynchronous programming, the calling thread or process performs further
operations while a called function completes. When the function completes,
the application receives an event notification.

17

Using the DM3 Direct Interface for Windows NT

Based on the goals and complexity of your program, you may decide to follow
one of these models:

* Asynchronous Multithreaded or Asynchronous Single-threaded
* Synchronous Multithreaded or Synchronous Single-threaded

3.1. Choosing a Programming Model

The following chart shows the various decision points which will lead you to favor
one model over the other:

Table 1. Choosing a Programming Model

IF... THEN choose...

O Your program flow is complicated An asynchronous

0 Actions between devices are closely coupled model

O Your application must be efficient

O Your application supports alarge number of devices

O Your program requires a state machine

O Your program must wait for multiple deviceson a
single thread

O You plan to integrate DM 3 devices with other Asynchronous
devices (such as a database) Multithreaded

O Your application will not integrate DM 3 devices Asynchronous
with other devices Single-threaded

O Your program flow issimple Synchronous

0 Actions between devices are loosely coupled Multithreaded

0 Eachthread controls only one device

O Your program services only one device at atime Synchronous

Single-threaded

The remainder of this section discusses the advantages, disadvantages, and some
programming notes for each model.

18

3. Windows NT Programming Models

3.2. Asynchronous Multithreaded Model

Due to the high number of devicesthat DM 3 alows you to control, Dialogic
recommends using the asynchronous multithreaded model. In asynchronous
multithreaded application programming, you create multiple threads, each of
which controls one or more devices. In such an application, each thread hasits
own specific state machine for the devices that it controls. For example, you can
have one grouping of devices that provides fax services and another grouping that
provides Interactive Voice Response (IVR) services, while both share the same
processing space and database resources.

An asynchronous multithreaded program does not block execution while waiting
for afunction to complete; this would interfere with the processing requirements
of other devices also being managed by the thread. An asynchronous model alows
you to create an event-driven state machine for each device. Each function returns
immediately and allows thread processing to continue. Subsequently, when an
event is returned (signifying the completion of an operation), state machine
processing can continue.

Using the asynchronous multithreaded model requires afamiliarity with 1/0
Completion Ports (see Section 4.1.1. OVERLAPPED Structure). After issuing an
asynchronous function, your application should use the
GetQueuedCompletionStatus() function to wait for events on Dialogic devices.
Y ou may use either of the available Win32 Synchronization objects to achieve the
asynchronous behavior you require (such as WaitFor SingleObject() and
WaitFor MultipleObjects()).

3.2.1. Asynchronous Multithreaded Model Trade-offs

Asynchronous programming offers the following advantages:

* Requires fewer system resources than the synchronous model because the you
use only afew threads for alarge number of devices.

* Provides better control of DM 3 applications that have high channel density.
¢ Reduces system overhead by minimizing thread context switching.

« Simplifies the coordination of events from many devices.

19

Using the DM3 Direct Interface for Windows NT

« Allowsyou to run entire portions of the application with asingle thread in an
application controlling many devices (including non-Dial ogic devices).
Asynchronous programming offers the following disadvantages:

* Thismodel istypically the most complex to develop due to the thread
synchronization and coordination required.

The asynchronous multithreaded model requires the development of a state
machine.

3.2.2. Asynchronous Multithreaded Programming Notes

« If you use I/O Completion Ports, use GetQueuedCompletionStatus() to find
the status of the operation.

After the event is processed, your application must determine what
asynchronous function should be issued next depending on what event has
occurred and the last state of the device when the event occurred.

» Do not use any DM3 device in more than one grouping. Otherwise, itis
impossible to determine which thread receives the event.

20

3. Windows NT Programming Models

3.3. Asynchronous Single-threaded Model

If you choose to avoid managing the complexities of multiple threads, then
asynchronous single-threaded programming is recommended for applications that
have large numbers of devices. However, as the total number of devicesin the
thread increases, your application may reach a point where the latency in servicing
events and devices becomes intolerable. This may cause your application to
perform poorly and responsiveness may suffer.

3.3.1. Asynchronous Single-threaded Model Trade-offs

Asynchronous single-threaded programming offers the following advantages:

* Requires aconsiderably less complex model than an asynchronous
multithreaded model.

» Achievesahigh level of resource management by combining multiple devices
in asingle thread.

* Simplifies the coordination of events from many devices.

* Requires fewer system resources than any synchronous model because any
asynchronous model can use one thread for many devices.

Asynchronous single-threaded programming offers the following disadvantages:
* May require the development of a state machine.

» Asynchronous applications are typically more complex to develop than a
synchronous application.

3.3.2. Asynchronous Single-threaded Programming Notes

« After an event is processed, your application must determine what
asynchronous function should be issued next depending on what event has
occurred and the last state of the device when the event occurred.

21

Using the DM3 Direct Interface for Windows NT

3.4. Synchronous Multithreaded Model

In a synchronous multithreaded model, the operating system can put individual

device threads to sleep while allowing threads that control other devicesto

continue their actions without interruption. When a function compl etes, the

operating system wakes up the function’s thread so that processing continues. For
example, if the application is playing a file as a result of a certain function call, the
calling thread does not continue execution until the function call has completed
and the function has terminated.

Typically, you can use this model to write code and create a thread for each
device that needs to run this code. You do not need event-driven state machine
processing because each function runs uninterrupted to completion.

Choose the synchronous multithreaded model when you are programming an
application that has:

e Only a few devices.

« Simple and straight flow control with only one action per device occurring at
any time.

3.4.1. Synchronous Multithreaded Model Trade-offs

Synchronous multithreaded programming offers the following advantages:

e The synchronous multithreaded model is the easiest to program and maintain,
therefore it allows quicker application development than asynchronous
models. The synchronous model is the least complex programming model that
allows realistic usage of DM3 products.

Synchronous multithreaded programming offers the following disadvantages:

« Because the main thread creates a separate thread for each device, this model
requires a high level of system resources. This can limit the maximum device
density.

« Because a synchronous operation blocks thread execution, the thread cannot
perform any other processing.

* Unsolicited events are not processed until the thread calls a specific function.

22

3. Windows NT Programming Models

3.4.2. Synchronous Multithreaded Model Programming Notes

e You should use the synchronous multithreaded model only for simple and
straight flow control with only one action per device occurring at any time.

¢ Because each function in the synchronous multithreaded model blocks
execution in its thread, your application’s main thread must create a separate
thread for each device.

3.5. Synchronous Single-threaded Model

Using a synchronous single-threaded model is not recommended for production-
level DM3 applications. Use this model only for proof-of-concept testing or quick
programming exercises. With a synchronous single-threaded model, you can only
service one device at a time. Due to the high-density nature of DM3, using a
synchronous single-threaded programming model is not practical.

As an example, if an application is waiting for an inbound call on one channel and
playing a file on another channel, the “WaitForCall” function could block
indefinitely. However, the “PlayFile” call needs real-time servicing (for actions
such as transferring data down to the hardware). Using this model would lead to
intolerable latencies incurred during the play of the file and translate into a poor

quality play.

3.6. Multi-process Applications

Developing a multi-process application, where the application essentially spawns
a copy of itself, is not a recommended approach for Dialogic’'s DM3-based
products under Windows NT. Forking a process is not recommended as there
would be a substantial performance degradation.

23

4. Calling Direct Interface Functions

Some issues you may need to consider when using the Direct Interface in your
application are discussed in this chapter. It isimportant to understand the
difference between calling functions synchronously and asynchronously, what
happens when you call certain types of functions.

NOTE: For acomplete discussion of each function, data structure, and error
code, see the DM3 Direct Interface Function Reference for Windows NT.
Also, to help you implement common features and routine functions,
Dialogic offers Application Foundation Code with many DM3 products.
See the document entitled DM3 Application Foundation Code for
Windows NT.

Some Direct Interface functions execute only on the host computer and others
execute on the DM3 embedded system. By setting the IpOver lapped parameter, a
function can be called either synchronously (when IpOverlapped is set to NULL)
or asynchronously (when IpOverlapped is set to non-NULL) depending on
whether you want your thread to block.

Asshown in Figure 4. Calling Functions From Your Application, functions that

execute on the host are synchronous, while those that execute on the board are
asynchronous, even if you call them synchronously.

25

Using the DM3 Direct Interface for Windows NT

Win32 Application

A

v

ﬁ DM3 Host Library |

Some host library K 4

calls execute on the -
host. These calls are ‘ Win32 AP'
v I

synchronous.
Class Driver
A

w
[0
[e)]
A4 &D
Protocol Driver ‘ é’,’

: : | Host |
M Other calﬂls execute Embedded

on the embedded

system via messages.
1| These calls can be

made synchronously

or asynchronously.

———T

Figure 4. Calling Functions From Your Application

4.1. Calling Functions Asynchronously

All Direct Interface host library functions that accept the IpOverlapped parameter
can operate in either asynchronous or synchronous mode. If the |pOverlapped
parameter is non-NULL, the call isin an asynchronous (overlapped) 1/0 mode and
the function returns immediately before the actual 1/0 completes.

If you choose to set the IpOverlapped parameter to NULL, the call is considered
synchronous and your thread will block until the function completes.

4.1.1. OVERLAPPED Structure

The OVERLAPPED structure isaWin32 APl asynchronous 1/0O data structure.
An application normally allocates and initializes this structure, then passesit to the

26

4. Calling Direct Interface Functions

Win32 API functions, such as ReadFile() and WriteFile(). An application can
specify the hEvent field in the OVERLAPPED structure to the Win32 APl wait-
for-object functions, such as WaitFor SingleObject().

The application is responsible for managing the OVERLAPPED structure. If
multiple requests are outstanding on the same device, each request must be
associated with aunique OVERLAPPED structure.

If the message path handle, which is specified through the hDevice parameter, has
been opened with the FILE_FLAG_OVERLAPPED flag set in the
dwFlagsAndAttributes parameter in the CreateFile() function call, the
application can passavalid |pOverlapped parameter with the request. The calling
thread can use any wait function to wait for the event object, a member of the
OVERLAPPED structure, to be signaled, then call the GetOverlappedResult()
function to determine the operation’s results.

If the specified message path has been opened without the
FILE_FLAG_OVERLAPPED flag, th&§pOverlapped parameter should be set to
NULL. The function either completes the operation or times out. If the function
returns TRUE, it has completed successfully. Otherwise, it has failed or timed out,
and the calling thread calls tetL astError () function to retrieve the error.

4.1.2. 1/0 Completion Ports

An 1/O completion port is a Windows NT scheduling construct. It is tied directly
to a device handle and any I/O requests made to it. Using I/O completion ports is
recommended if you want the notifications to match the 1/0 completions and you
want to minimize context switches among your worker threads.

Use the Win32 API function calreatel oCompletionPort(), to create and set
the parameters for an I/O Completion Port or to add handles to existing 1/0
Completion Ports.

1
Using I/O completion portsis fully documented in Win32 documentation. For a thorough discussion,
see Jeffrey Richteradvanced Windows, 3rd ed. Redmond, Wash: Microsoft Press.

27

Using the DM3 Direct Interface for Windows NT

Createl oCompletionPort() returns the handle of the I/O completion port and
takes the following arguments:

Parameter Description

HFileHandle File handle of device (in this case, the
DM3 Mpath or Strm device, see
Chapter 5. DM3 Devices) to associate
with the I/O Completion Port

HExistingCompletionPort Handle of 1/0 Completion Port if
already created

DwCompletionK ey The key value associated with the
device

DwNumber Of ConcurrentThreads Maximum number of concurrent threads
you will allow to be running to process
1/0O completions

The following list shows additional items to remember:

» Notethat the sequential order of notificationsis not necessarily the same
sequential order of 1/0O completions.

e While /O completions can feed into scheduling algorithms, they are entirely
asynchronous in nature. For example, by the time a thread is scheduled to run
again, there may be any number of MM Bs that may have completed.

* You must create the file handle of the DM3 device (an Mpath or Strm
Device) withthe FILE FLAG setto FILE_ FLAG_OVERLAPPED. This
allows data movement of the specified device to “overlap” in time with other
processing.

¢ Once an I/O completion port has been created, and DM3 devices are
associated it, use the Win32 function ¢adtQueuedCompletionStatus() to
report the completion of the asynchronous 1/O.

« Associate multiple handles with the I/O Completion Port by calling
Createl OCompletionPort() additional times. You can either assign a
completion key during each association (that is, one key per handle), or
associate the same key for many handles.

28

4. Calling Direct Interface Functions

The following sample code shows how a programmer might set up a C function
using the items discussed previously:
PHILTE LT T]

/1 NAME : DnBConpSet AsyncPar ans()
/1 DESCRPTION: Provides Async paraneters to be used while sending
/1 and recei ving nessages in async node
/1 INPUT ;| pConp - the conponent instance
/1 hl QP - the io conpletion port to use
/1 dw ocpKey - The key to be associated with the MPath
/1 used by the gi ven conponent instance
I QJTPUT : None
11 RETURNS : DVBSUCCESS or DVBFAI L
/1 CAUTIONS : Wse GetlastError() to get error info
/1 The application shoul d renenber the key passed into this
/1 function. Wen this key is returned in the main | oop by
/1 Get QueuedConpl eti onStatus(), the application should call
/1 DnBConpPr ocl oConpl etion() , to enable this conponent to
/1 di spat ch nessages to the user of this object.
TEEEEEEEEEEEEEEEEE LT ninginggg
DVBSTATUS DnBConpSet AsyncPar ans(LPDVBCOWP | pConp,

HANDLE hl P,

DANCRD dwl ocpKey)

if (IpConp == (LPDVBCOMP) NULL)
{

Set Last Err or (ERRCR_| N\VALI D PARAMETER);
return DVBFAI L;

}
if (h1OP !'= I N\VALI D HANDLE VALUE)
{
| pConp- >f SyncMbde = FALSE;
| pConp- >hl OCP = hl O,
| pConp- >dwl ocpKey = dwl ocpKey;
/*
* Associate the MPath with the given | O Conpl etion port
*/
if (Oeatel oConpl eti onPort (1 pConp- >hMpat h,
hl GCP
dwl ocpKey,
0)
I'= hl OP)
{
return DVBFAI L;
}
/*
* V¢ have successfully associated the MPath with the given
* 10 Conpl etion port
*/
return DVBSUCCESS;
el se
Set Last Error (ERRCR_| N\VALI D_PARAMETER) ;
return DVBFAIL;
}

}

29

Using the DM3 Direct Interface for Windows NT

Use GetQueuedCompletionStatus() to return the number of bytes transferred,
the completion key, and the address of the OVERLAPPED structure. Within
Win32, the OVERLAPPED structure is used during asynchronous data movement
and its pointer is also used as an anchor for DM 3-specific message data structures.
For a complete description of the GetQueuedCompletionStatus() Win32 AP
call and the Win32 OVERLAPPED structure please refer to Win32
documentation.

4.1.3. Handling Asynchronous Function Returns

The operations detailed below and the flow chart in Figure 5 describe the stepsto
follow when afunction is called asynchronously.

1

30

A Direct Interface function will always return FAL SE when called
asynchronously. Call the Win32 GetLastError () function to retrieve an
error code. The error code may be one of three types. Windows NT (defined
inwinerror.h), DM3 Direct Interface (defined in dilmnti.h), or DM3 Kernel
(defined in gkernerr.h).

If GetLastError() returns ERROR_IO_PENDING, it indicates the operation
has not completed. Wait for function completion using the Win32 wait-for-
object functions WaitFor SingleObject(), WaitFor MultipleObjects(), or
GetQueuedCompletionStatus().

Upon function completion, call the GetOverlappedResult() function.
Call the MNT_GET_REPLY_QMSG() macro to find the reply message.

Usethe QMSG_GET_MSGTY PE() macro on the reply message to
determine the reply message type.

If the message type is QResultError, call the QResultError_get() macro and
process the kernel error (defined in gkernerr.h).

If the message type is not QResultError, the function has completed
successfully and the result message contents may be processed.

4. Calling Direct Interface Functions

Call
Remote Function
Asynchronously

Return=
FALSE

GetlLastError()==
ERROR_ I0_PENDING

Wait for Process MNTI or
Completion WindowsNT error

GetOverlappedResult()

call
MNT_GET_REPLY_QMSG() Process MNTI or
macro WindowsNT error

QMSG_GET_MSGTYPE(
==QResultError

)

Call Done; process
QResultError_get() successful result
macro message
Process
Kernel Error

Figure 5. Handling Asynchronous Function Returns

31

Using the DM3 Direct Interface for Windows NT

This code fragment provides a general example of handling a function return
asynchronously.

i f (mt SendMessage(DevHandl e, | pMVB, &Overl apped) == FALSE){
/] Call GetLastError to get the error code
ErrorCode = GetLastError();
if (ErrorCode == ERRCOR | O PENDI NG {
/1 Now wait for operation to conplete
if ((WitForSingl ethject(DevHandl e, INFINTE)) ==
WA T_FAILED) {
/] performerror handling

return(FALSE) ;
}
i f (GetOverl appedResul t (DevHandl e, &Over | apped,
&RecvByt eCount ,
FALSE) == FALSE){

[/l Call GetLastError to get the error code
ErrorCode = GetLastError();

/1 performerror handling

return(FALSE) ;

}

/* If send message is successful, retrieve results */
MNT_GET_REPLY_QVBQ | pMB, 1, &pMsg);

/* Check for firnware error */

QVBG _GET_MBGTYPE(pMsg, &Repl yType) ;

if (ReplyType == (ResultError) {
[* BError, print error code */
ResultError_t qgr;

(Resul t Error_get (pMsg, &qr, Ofset);

printf("Error %\n", gr.errorCode);
got o cl eanup;

32

4. Calling Direct Interface Functions

4.2. Calling Functions Synchronously

Some Direct Interface host library functions, such asmntAllocateM M B(), work
only in synchronous mode. As stated earlier, most functions can operate either
asynchronously or synchronously depending on thelpOverlapped parameter.

4.2.1. Handling Synchronous Function Returns

The operations detailed below and the flow chart in Figure 6 describe the stepsto
follow when afunction is called synchronoudly.

If the function return value is TRUE, it indicates that the driver successfully
processed the arguments. Any expected function outputs will have valid
contents. For example, if the mntCompFind() functioniscalledin
synchronous mode and valid arguments are sent and returned, when the
TRUE return message is received, the variable pointed to by the Iplnstance
argument will contain the returned component descriptor.

If the function return value is FAL SE, the function call has failed.

Call the Win32 GetL astError () function to retrieve an error code. The error
code may be one of three types. Windows NT (defined in winerror.h), DM3
Direct Interface (defined in diimnti.h), or DM3 Kernel (defined in
gkernerr.h).

Logically AND the mask constant ERROR_MNT _BA SE with the value
returned from GetL astError () to determineif the error is Windows NT or
Direct Interface.

If GetLastError() returns ERROR_MNT_MERCURY_KERNEL, it
indicatesaDM3 Kernel error has occurred.

Call the mntGetTL Smmb() function, which returns a pointer to the reply
message contained in the thread-local-storage MMB.

Usethe QMSG_GET_MSGTY PE() macro on the reply message to
determine the reply message type.

If the message type is QResultError, call the QResultError_get() macro and
process the kernel error (defined in gkernerr.h).

If the message type is not QResultError, the error is undefined.

33

Using the DM3 Direct Interface for Windows NT

Return=
FALSE

Return=
TRUE

Call MNTI Function
Synchronously

Done ErrorCode=
Arguments are valid GetLastError()

ErrorCode==

ERROR_MNT_MERCURY_KRNL No

Yes

Call
Process MNTI or
mntGetTLSmmb() WindowsNT error
to get MMB

QMSG_GET_MSGTYPE()
==QResultError

Call

QResultError_get() Undefined error
macro

Process Kernel error

Figure 6. Handling Synchronous Function Returns

34

4. Calling Direct Interface Functions

This code fragment provides a general example of handling a function return
synchronously.

/* Issue the conmand */
if (nmtQ usterConplnfo(hMD,
mt TransGen(),
&cl ust er Addr,
&count ,
conpDlescs,
DEF_TI MEQUT,
NULL,
NULL) == FALSE) {
printf("mtd usterConplnfo failed %", GetLastError());
/* If send nmessage is successful, retrieve results */
mt Get TLSwb(& pMVB, NULL, &pMsg);

/* Check for firnware error */

QVBG_GET_MBGTYPE(pMsg, &Repl yType) ;

if (ReplyType == (ResultError) {
[* Error, print error code */
ResultError_t qr;

(Resul tError_get (pMsg, &qr, Ofset);
printf("Error %\n", gr.errorCode);
got o cl eanup;

return(l);

}

/* Success! conp desc array is filled in by
mmt d ust er Conpl nfo() */
printf("mtd uster Conpl nfo successful count = %\ n", count);

35

5. DM3 Devices

The Direct Interface islike other custom APIs that adhere to the Win32 modd!; it
requires a kernel-mode device driver which it can talk to (in this case, the Class
Driver). For custom operations, such as the messaging 1/0, the Class Driver

supports a full array of specialized functions (by using the Win32’s IOCTL
function) which make the Direct Interface completely compliant with the Win32
API.

When the Class Driver initializes, it creates a number of device names that end up
in NT’s object namespace, specifically under\tidevi ce path. It also creates
corresponding symbolic links under thBosDevi ces root which the

application uses in th@reateFile() call. Without the handle returned from this

call, no I/O is possible. The semantics of these device names are important.

The two types of DM3 1/O are differentiated primarily by size and the application
protocol with the resource:
e messages are used for small transfers (as in command/reply messages)

« streamsare used for bulk data transfers.

5.1. Device Names

You can use two different device types in your Direct Interface-based application:

e Mpath
Mpath is a message type device type to support messaging I/0O operations
between the host and the embedded system. It allows the application to
establish a logical connection to the driver.

e Strm
Strm is a stream device type to support I/O operations for bulk data. It allows
the application to establish a logical connection to a DM3 component on the
embedded system.

NOTE: These are logical devices whose sole purpose is to serve as the bridge
between the user space applications and the kernel space (that is, the
Class Driver).

37

Using the DM3 Direct Interface for Windows NT

The Class Driver (DLGCMCD) implements both the Mpath and Strm devices and
assigns names for each device sequentially (for example, MercM pathi,

MercM path2, MercM path3, through MercM pathn, and MercStrm1, MercStrm2,
MercStrm3, through MercStrmn).

5.1.1. Message Paths (Mpath)

A message path (M path) device is ageneric conduit for communicating with DM3
component instances.” Because it is not bound permanently to its destination
endpoint, you can use an Mpath device to communicate with any valid destination
instance address by loading the handle of the device in the mntSendM essage()
function call. Since Mpath devices are not board-specific, you can use them to
communicate with any DM3 board assembly.

The source address of an Mpath device is assigned at its creation time by the Class

Driver, and it cannot be changed. In fact, much as with a client TCP port number

(an “ephemeral” port), you should not generally be concerned about the source
address. In most cases, the application only needs to know the destination address.

NOTE: There are instances when your host application would need to know
about the source address (QCompDesc) of an Mpath device. For
example, if your application must be notified of an asynchronous
message from the firmware, the application must provide its own source
address in the MMB.

Therefore, you can use a single Mpath device to communicate with any number of
component instances. This approach can be feasible for one-time initializations.
However, you would employ multiple Mpath devices if you need to communicate
concurrently (asynchronously) with multiple destinations. In such a case, you can
use multiple Win32 API handles with associated OVERLAPPED structures using
the default source address matching.

2 More specifically, ahandle to an Mpath device is aticket to the Class Driver space. Since the Class
Driver created the device in the first place, once a handle is assigned to it, it is entirely up to NT's
1/0 Manager to maintain the link. For each handle returned to the user space, there is a
corresponding file object in the kernel space which happens to be a waitable object. This is the base
support for the various wait synchronization calls in Win32. Thus, it's possible to wait-synch upon
handles directly or event objects of your own.

38

5. DM3 Devices

The question of how many M path devicesto use boils down to this:

* If youwish to depend on the default source address matching and would like
to do overlapped /0O in different threads, then you need multiple Mpath
devices to correspond to each thread.

* If you arewilling to use MMBs with proper matching criteria (the minimum
being the source address), then you could open the same Mpath multiple
times and bind the resulting handles to the same I/O completion port. Thisis
convenient since you can use the key as a pointer to your 1/O context
information. But going further, it should be possible to use just asingle
handle to asingle Mpath and rely upon a super, customized OVERLAPPED
structure that would contain the context aswell. (Note that if you open the
Win32 handle with FILE_FLAG_OVERLAPPED, you can use this handle
for asynchronous operations only.)

Thereis, however, one caveat to this strategy and that pertains to exit
notification (see Section 9. Exit Notification).

Using Mpath Devices in a Multithreaded Application

Always use multitasking and multithreading judiciously. Since they all share the
same address space (as well as resources such as device handles), they incur
overhead. Threads within a process incur less context-switch overhead than that
among processes.

Although using threadsis relatively straightforward, designing and implementing
proper synchronization between them can become complex. Attempt to abide by
the following guidelines:

e minimize the number of threads employed

» absolutely minimize the need for interactions such as sharing common device
handles.

If you must share an Mpath handle across processes, then use DuplicateHandle()
to passit viaan Inter-Process Communication (IPC) mechanism such as shared
memory. Further, make sure that MMBs are qualified with proper matching
criteriato ensure proper 1/O notifications when using the same Mpath (see Section
6.4.1. Matching Criteria).

39

Using the DM3 Direct Interface for Windows NT

If you wish to employ multiple threads in multiple processes and freely use both
synchronous and asynchronous function calls, it's safest to use unique Mpath
devices (thus, unigue DM3 source addresses). Otherwise, you must be careful to
use MMBs that are qualified with proper matching criteria. This avoids erroneous
completion notifications.

The cost of an Mpath device is a small amount of hon-paged pool space which
poses only a minimal impact to the application design (if any). However, since
there is a finite number of Mpath devices (specified either via a Registry
parameter or the Class Driver default), you should not automatically allocate them
on a permanent basis unless they are required to receive truly asynchronous
messages.

Also, when you close the device handle and there are no more references to it (that
is, you're performing the last close), the associated Mpath device name is freed
and available for subsequent requests.

5.1.2. Stream Paths (Strm)

Unlike an Mpath device, a stream device is not a generic conduit. A stream device
is a Win32 API vehicle for getting to a particular DM3 stream on a specific
platform. Make this association by calling thatAttachM er cStream() function

and specifying the target board number and the stream number (if known).

A stream is unidirectional; it performs either read or write operations. You cannot
write to a read stream or read from a write stream. Any attempt to do so results in
an error. The direction of the stream is specified imthéAttachM ercStream()
function call, by setting theode parameter to as either
MNT_STREAM_FLAG_READ or MNT_STREAM_FLAG_WRITE.

A stream number of zero (0) has a special meaning; it indicates that an unallocated
stream of specified size and direction should be created and opened.

5.1.3. Board Number
As a Direct Interface programmer, it is up to you to locate or discover the DM3

components with which you must communicate. Essential to both messaging and
stream I/O is the address of the component instance, which contains the logical

40

5. DM3 Devices

board number. (NOTE: It is called the “logical” board number since it does not
have to be equal to the physical number assigned by the Protocol Driver on its
initialization.) In the Windows NT Registry, after a successful installation and
configuration of the DM3 boards (assigned by the Dialogic Configuration
Manager software), there are entries describing physical board instance numbers
and associated logical attributes, one of which is the logical board number.

You can determine the board number by calimgGetBoar dsByAttr () with
the desired qualifying attributes.

This board number must be properly filled into the destination DM3 address field
of an Multiple Message Block (MMB).

Example: Finding Boards in a DM3 System

The following sample code shows how to find all the boards in a DM3 system by
using themntGetBoar dByAttr () function.

#incl ude <stdio. h>
#incl ude <errno. h>

#i ncl ude <signal.h>
#include <Wndows. h>

#include <Ghostlib.h>

#i ncl ude <l uster. h>

#include <nercdefs. h>

#include <stddefs. h>

#define DEF_TIMEQJT 60/* Default timeout for MNTI functions */
#define MAX_NO OF BOARES 4

void nmain()

int n;

Qual ueAttr val Attr[2];

ULONG MaxBoar dAttrs = MAX_NO CF BOARDSHL;
(BoardAttr boar dAt t r [MAX_NO CF BOARDSH1] ;
ULONG boar dsFound=0x0;

ULONG maxBoar ds=1;

DWRD error Code;

UCHAR boar d\Num

/1 Initilize nemory

ZeroMenory(val Attr, 2*sizeof (Qval ueAttr));
Zer oMenor y(boar dAt t r, MaxBoar dAt t r s*si zeof ((BoardAttr));

/1 Fill out valAttr structure to | ocate Dn8 boards

strcpy(val Attr[0]. Val ueNane, "Qurrent State");

41

Using the DM3 Direct Interface for Windows NT

strcpy(val Attr[0]. Val ue, "Running");
val Attr[0]. Val ueType = REG SZ;
val Attr[0]. Val ueFl ag

0; 7* match on ‘Value' field */

/1 Call mmtGet BoardsByAttr function to search registry
/1 to find boards with the nmatching attributes

if (rmtGetBoardsByAttr(val Attr, MaxBoardAttrs,

boardAttr,
&nmaxBoar ds,
&boar dsFound) == FALSE)
{
errorCode = GetlLastError();
printf("Can't get boards attributes (0x%)\n",
error Code) ;
exit(0);
}

printf("Nunber of Dn8 boards found: %l \n", (int)boardsFound);
for (n=0; n<(int) boardsFound; n++)

printf("Board Num %l \n", boardAttr[n].BoardNo);

42

5. DM3 Devices

5.2. Obtaining Device Name Strings

When coding your application, you create a handle for a device by passing the
device name strings to the CreateFile() function (see 5.3. Obtaining File
Handles to Communicate with DM3 Devices). Y ou can obtain the device name
strings by calling the mntEnumM pathDevice() function for message devices or
the mntEnumStrmDevice() function for stream devices.

The sample codein section 5.3. Obtaining File Handles to Communicate with
DM3 Devices shows the syntax of themntEnum...Device()function.

5.2.1. Avoiding Sharing Violations

Thereis one potential pitfall when obtaining device name strings. If you try to get
device names simultaneously in multiple threads, and make a subsequent
CreateFile() function call, it can fail with an ERROR_SHARING_VIOLATION
due to contention. In other words, each mntEnumMpathDevice() or
mntEnumStrmDevice() function call simply returns the next available,
unopened device. Therefore, the thread that reaches the Class Driver first, wins.

In threads under your control, you can protect al callsto the
mntEnumMpathDevice(), mntEnumStrmDevice(), and CreateFile()
functions as atomic operations. Simple retries, with or without delays, can work as
well. Alternatively, you can stagger the start of the threads in your application.

43

Using the DM3 Direct Interface for Windows NT

5.3. Obtaining File Handles to Communicate with DM3
Devices

Once the device name is used to define a handle, you can open the device by
assigning the handle to the CreateFile() function.

The following sample code shows how to use the Direct Interface to create a

utility function to create a message path.

LEEEEEEEEEEEEE i i i i i i g rr g

11 NAME : DnBCreat eMPat h()

/1 DESCRPTION: UWility function to create a Dn8 Message path

I INPUT : None.

I QUTPUT @ None.

/1 RETURNS : Handl e to the nessage path

/1 CAUTIONS : The nessage path is al ways opened with FlI LE FLAG OVERLAPPED

THELEEEEEEEEEE i i i i i i r g

HANDLE DnBQr eat eMPat h()

{
UONG ul DevSt at us
UONG ul Mpat hDevNaneS ze
HANDLE hMPath

0;
0;
I NVALI D HANDLE VALUE;

CHAR szMat hDevi ceNane[MNTI _VAX_DEVI CE_NAME S| ZE] ;

do
{
/*
* Get first available Math device
*
/

if (!mnt Enumvpat hDevi ce(MNT_FI RST_AVAI LABLE,
szMat hDevi ceNane,
&ul Mpat hDevNaneS ze,
&l DevSt at us))

return | NVALI D HANDLE VALUE,

/*

* Qpen Mat h devi ce handl e
*

/

hMPath = O eateFi | e(szMat hDevi ceNane,
GNER C WR TE | GENER C_READ,
0,
NULL,
CPEN_EXI STING
FI LE_FLAG OVERLAPPED,
NULL) ;

}
whil e (hMPath == | NVALI D HANDLE VALUE);

return hMPat h;

44

6. Using Messages

This section describes how to build, send, and receive DM 3 messages. To perform
messaging |/O operations, you need afilled-in MMB (see the section entitled
Multiple Message Blocks (MMBs))and a handle to an M path device (see Section
5.1.1. Message Paths (Mpath)). The Direct Interface provides macrosto fill in the
fields of an MMB structure. After you have aWin32 API handle to the Mpath
device, you can call mntSendM essage().

Messaging can be divided into several distinct parts:

Creating an 1/0 Completion Port (see Section 4.1.2. 1/0 Completion Ports)
Requesting an M path device name

Creating a handle to the Mpath Device

Allocating an MMB

Fillingin MMB fields

Sending the message

Retrieving the Reply

Extracting Payload Data (if any)

© N o g &~ w NP

There are many way's to retrieve message data after the Win32 system aerts the
application to an 1/0 completion. When building your application, Dialogic
recommends using 1/O Completion Ports because this method is both efficient and
easily scaled. Once the application has the MMB pointer, the complete received
message may be accessed. See Section 4.1.2. 1/0 Completion Ports.

45

Using the DM3 Direct Interface for Windows NT

6.1. Requesting an Mpath Device Name

Enumerate a DM 3 Mpath device by using the following Direct Interface function
call:

e mntEnumM pathDevice()

This function returns an available Mpath device that matches the specified criteria
M path devices are used for communicating with any DM 3 component on any
DM3 board in a system. The source address of the Mpath device is determined at
creation time, but the desired destination address must be loaded into the MMB
before sending a message. A message path to any component on any board can be
established by loading its address as the destination address of an Mpath. The

M path device type supports messaging /O operations.

6.2. Creating a Handle to the Mpath Device

Open the device using the following Win32 API function call:
e CreateFile()

When the device is created/opened, you must set a File_Flag argument. By setting
theflagto FILE_ FLAG_OVERLAPPED, you indicate that this device may
operate either synchronously or asynchronoudly. This function returns a Win32
device handle for the DeviceName that was previously specified in the
mntEnumM pathDevice() call.

Call mntCompFind() or mntCompFindAll() to get the destination address of

the device. These function calls are presented in the DM3 Direct Interface
Function Reference for Windows NT.

46

6. Using Messages

6.3. Allocating a Multiple Message Block (MMB)

Allocate and initialize an MMB with the following Direct Interface function:
mntAllocateMMB()

Y ou must allocate system memory for both the data that will comprise the
message to be sent, and the expected reply message. The nReplyM axSize
parameter indicates the maximum size in bytes of all repliesthat might be
received by the host.

NOTE: Thereisno MMB structure associated with stream devices. Instead, a
stream has defined components at both ends to source and synchronize
data

6.4. Filling in MMB Fields

This section discusses how to format a message. DM 3 messages are sent through a
system in a packed-byte format. Pre-built message access macros are provided
which transparently deal with the Endian issues of packing and unpacking
message data.

DM 3 message macros are defined in a set of resource-specific host-side header
files and in the standard message header (stddefs.h).

The following types of macros are provided:

* MMB Control Header Macros
These macros are available to access the MMB header. Examples of these
macrosare MNT_PUT_MMB_CMD_SIZE and
MNT_PUT_MMB_EXPECTED REPLY_COUNT.

« DM3Message Macros
There are three types of DM 3 Message Macros.
— DM3 Message Pointer macros
— DM3 Message Header macros
— DM3 Message Payload macros

47

Using the DM3 Direct Interface for Windows NT

For details on specific macros, consult the DM3 Direct Interface Function
Reference for Windows NT.

Use the DM 3 message macros to get the pointer to the command or reply
messages, to access command or reply message headers, and to extract command
or reply message payloads. MNT_GET_CMD_QMSG(),
QMSG_SET_MSGTYPE(), and QComponentResult_get() are examples of
message pointer, message header, and message payload macros. Command and
reply message headers are of the type QM sg.

48

6. Using Messages

6.4.1. Matching Criteria

Setting flags on the MMB allows the driver to match reply messages from the
firmware to the command message sent from the host. Before sending an MMB,
you can set the matching criteriain the Flags field. The driver uses these to match
incoming replies and declare the I/O requests to be completed. Table 2 liststhe
criteria on which you can match.

It isimportant to do proper matching, otherwise your application may never
receive messages intended for it. Matching is an AND operation (not an OR
operation), the matched reply must meet all matching criteria.

The broadest coverage is provided by the MATCH_ON_SRC_ADDR flag, which
isthe default. It matches all replies destined for a host-side DM 3 address.

Adding any or al of the optional completion option flags lets you tighten the
matching reguirements as follows:

* Addtheoptional MATCH_ON_DEST_ADDR flag if you wish to receive
reply messages only from the same component instance specified in the
MMB.

e Addtheoptional MATCH_ON_TRANSACTION_ID flag if you expect reply
messages returned with the same transaction ID as in the message sent.

e Addtheoptiona MATCH_ON_MSG_TYPE flag if you expect reply
messages returned with the same message type as in the message sent. Use
this flag in conjunction with an empty message to receive asynchronous
messages such as alarms or events.

Use different matching criteriafor expected replies and unsolicited messages:

» For expected replies, use the MATCH_ON_TRANSACTION_ID flag, and
avoid using MATCH_ON_MSG_TY PE (since most commands can have
either successful or unsuccessful reply messages).

* For unsolicited messages, use the MATCH_ON_MSG_TY PE flag (because
you are setting up an MMB to receive a specific type of message, such as
Sd_MsgEvtDetected), and avoid using MATCH_ON_TRANSACTION_ID.

49

Using the DM3 Direct Interface for Windows NT

NOTE: Although the Direct Interface automatically setsthe
MATCH_ON_SRC_ADDR, other flags are optional. Therefore,
although you don't need to set this flag yourself, you cause no harm by

doing so.
Table 2. Matching Criteria
Matching Criteria Required | thematch is between:
or
Optional
MATCH_ON_SRC_ADDR Required| destination address of the
and set by] incoming message and thg
default. source address of the
command message in the
MMB.
MATCH_ON_DEST_ADDR Optional | source address of the

incoming message and the
destination address of the
command message in the
MMB.

MATCH_ON_TRANSACTION_ID Optional | transaction ID of the
incoming message and the
transaction ID of the
command message in the
MMB.

MATCH_ON_MSG_TYPE Optional | message type of the
incoming message and the
message type of the
command message in the
MMB.

50

6. Using Messages

6.5. Sending the Message

Once the MMB has been alocated and filled in, you can send it and begin waiting
for the reply. Send the message using the following Direct Interface function call:
mntSendMessage()

Make sure you include
» thecorrect Mpath device

« the MMB pointer to reference the correct message data for sending of the
data and to place expected replies

» theoverlapped pointer (for Win32 to use) during asynchronous data
movement.

Wait for the reply using one of the following Win32 functions:

* WaitFor SingleObject()

* WaitForMultipleObjects()

e GetQueuedCompletionStatus()

NOTE: Using GetQueuedCompletionStatus() is possible only if an 1/0
completion port has been created and the DM 3 device has been
associated with the IOCP (see Section 4.1.2. 1/0 Completion Ports).

6.5.1. Sending Asynchronously or Synchronously

Functions that can operate asynchronously or synchronously accept the
IpOverlapped parameter. Specify the mode by setting the [pOver lapped
parameter to either NULL (for synchronous) or non-NULL (for asynchronous or
overlapped). When asynchronous, the function returns immediately before the
actual 1/0 completes.

For asynchronous, set the IpOverlapped parameter to the OVERLAPPED

pointer. The OVERLAPPED structure is an asynchronous 1/0 data structure from
the Win32 API.

51

Using the DM3 Direct Interface for Windows NT

If you're using a synchronous model, the call will block until either an error or a
reply is received. Then, the application must look at the reply portion of the MMB
and extract the reply message.

6.5.2. Example: Sending and Receiving a Simple Message

The following example shows an example function called
Dm3CompProcloCompletion(). This sends a simple message (with no payload)
to a component. If synchronous mode is set, this returns the reply message.
Otherwise, callback is called whenever a message is received.

#def i ne DVBOOMP_SEND_SI MPLE_ MBJ | pConp, MsgType)
{

LPWB | pMVB = NULL;
QwgRef | pMsg = NULL;
ULONG ulQuiS ze = 0;

ul S ze = sizeof (QWbg) + MsgType#t# S ze;

| pMMB = mmt Al | ocat eMB(ul QS ze,
(I pGonp) - >ucExpect edRepl yCount ,
(1 pGonp) - >ul MaxRepl ySi ze) ;

it (IpMB != (LPMB)NULL)
{ MNT_GET_CVD QVBE | pMVB, & pMsg) ;

QVBG SET_MSGTYPE(| pMsg, MsgType) ;
Dn8ConpSendAndRecvMsg(| pConp, | pMVB) ;

e e e —

52

6.5.3. Example: Sending a Fixed-Size Message

6. Using Messages

This following macro shows the code to send a message with a fixed size payload.

#def i ne DVBOOMP_SEND FI XED S| ZE_ MSE | pConp,

{

LPMVB | pMVB = NULL;
QwgRef | pMsg = NULL;
U NT unCffset = 0;

ULONG ul QS ze= 0;

MsgType, | pDat a)

ul S ze = sizeof (QWbg) + MsgType## S ze;

| pMMB = mt Al | ocat eMB(ul QS ze,
(1 pGonp) - >ucExpect edRepl yCount ,
(1 pGonp) - >ul MaxRepl ySi ze) ;

i (1 pMB ! = (LPMB) NULL)
{

MNT_CET_CMD QvBQ | pMB, & pMsg) ;
QVBG_SET_MSGIYPE(| pMsg, MsgType) ;
MsgType##_put (1 pMsg, | pData, unCfset);

Dn8ConpSendAndRecvMsg(| pConp,

| pM\B) ;

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

53

Using the DM3 Direct Interface for Windows NT

6.5.4. Example: Sending a Variable Payload Message

The following example shows a macro that sends a message with afixed and a
variable sized payload. If syncronous mode is enabled, it returns with the reply
message. This macro is used to append an array of data structures to the end of
fixed portion of the payload. The payload’s fixed portion typically includes a
count for the variable payload.

#def i ne DVBOOMP_SEND VAR Sl ZED MSE | pConp,

MsgType,
| pDat a,
Var Count ,
Var Fi el dDef ,
| pVar Dat a)
{

LPMVB | pMVB = NULL;

QwsgRef | pMsg = NULL;

U NT unCfset = 0;

ULONG ul QS ze= 0;
I NT nCounter = O;

ul S ze = sizeof (QWQg) +
MsgType## S ze +
(si zeof (VarFi el dDef## t) * VarCount);

| pMMB = mmt Al | ocat eMVB(ul OndS ze,
(1 pGonp) - >ucExpect edRepl yCount ,
(1 pGonp) - >ul MaxRepl ySi ze) ;
if (IpMB != (LPMVB) NULL)
{
MNT_CET_CMD QvBQ | pMVB, & pMsg) ;
QVBG_SET_MBGTYPE(| pMsg, MsgType) ;
MsgType##_put (1 pMsg, | pData, unGfset);

unCr f set = MsgTypet##_varStart;
for (nCounter = 0; nCounter < (INT)(VarGount); ++nCounter)

gMsgVar Fi el dPut (1 pMsg, 1, &unCffset,
Var Fi el dDef, &1 pVar Dat a[nCounter]));

}
Dn8ConpSendAndRecviMsg(| pGonp, | pMB) ;

o e o e e e e e —

54

6. Using Messages

6.5.5. Example: Sending a Variable List Message

This example shows how to send a message that contains alist of elements at the
end of the fixed portion of the payload.

#defi ne DVBOOMP_SEND LI ST_MSQ | pConp,

MsgType,
| pDat a,
Var Count ,
| pVar Dat a)
{
LPMWB | pMVB = NULL;
QwsgRef | pMsg = NULL;
U NT unCffset = 0;
ULONG ul QS ze= 0;
I NT nCounter = O;

ul S ze = sizeof (QWQg) +
MsgType## S ze +
(si zeof (MsgType###_List_t) * VarCQount);

| pMMB = mmt Al | ocat eMVB(ul OndS ze,
(1 pGonp) - >ucExpect edRepl yCount ,
(1 pGonp) - >ul MaxRepl ySi ze) ;

if (IpMMB != (LPMVB) NLLL)

{
MNT_GET_QOVD QvBQ | pMB, &l pMsg) ;
QVBG_SET_MBGTYPE(| pMsg, MsgType) ;
MsgType##_put (1 pMsg, | pData, unGfset);

unCr fset = MsgTypet##_var Start;
for (nCounter = 0; nCounter < (INT)(VarCount); ++nCounter)

o e e e e —

MsgType###_Li st _put (1 pMsg, & | pVar Dat a[nCounter]), unCf fset); \
Dn8ConpSendAndRecvMsg(| pGonp, | pMB) ;

——

55

Using the DM3 Direct Interface for Windows NT

6.5.6. Example: Sending a KVSet Message

This example shows a macro that prepares a message that has supplementary KV
set data.

#def i ne DMBOOMP_PREP_KVS MBQ | pConp, | pMVB, MsgType, |pData, KvS ze)

{ QwsgRef | pMsg

U NT unCr f set
ULONG ul QS ze= 0;

ul S ze = si zeof (QWg) + MsgType## S ze + KvS ze;

(1 pGonp) - >ucExpect edRepl yCount ,
(1 pGonp) - >ul MaxRepl ySi ze) ;
if(lpMB != (LPMVB) NULL)
{

MNT_GET_QOVD QvBQ | pMVB, &l pMsQ) ;
QVBG_SET_MBGTYPE(| pMsg, MsgType) ;

/
/
/
/
/
/
/
/
(I pMB) = mmt Al | ocat eMVB(ul QmSi ze, /
/
/
/
/
/
> | /
MsgType##_put (1 pMsg, | pData, unCfset); /

/

56

6. Using Messages

6.6. Retrieving a Reply Message

Extract the reply from the MMB using the message macros. Once the application
receives an event, the type of message received will determine the routine to be
executed. Message macros are used to get the MMB pointer and to extract the
data from the MMB.

Thistechnique is the sole method for capturing events from the DM 3 embedded
system. Various methods are available for the Win32 subsystem to inform the
application that a message has been received. When using the IOCP, a device key
and overlapped pointer are furnished by the Win32 function call
GetQueuedCompletionStatus(). Use that data to resolve the MMB pointer.

Since every asynchronous message or stream device must have aunique
overlapped pointer, use the value of the overlapped pointer for a user-defined
structure. By type casting this overlapped pointer to this user-defined structure,
the overlapped pointer then serves two purposes:

« theintended use of the overlapped pointer for the Win32 subsystem

« asthe pointer to the user defined structure.
This structure will contain at least the MMB pointer and the device handle.

Once you're done using an MMB, you will want to free up the memory by using
mntFreeMMB().

57

Using the DM3 Direct Interface for Windows NT

6.6.1. Retrieving Messages from the Completion Port

If you are building an application that uses DM 3 boards and other Dialogic
boards, you'll need to parse the returned message to determine which card the

message is from. Here’s an example shown in pseudo-code:

switch (Conpl etionkey) {

case SRL_KEY:

Parse SRL event

case | PT_KEY:

Parse | PT event

1. Use the Win32 functio®BetQueuedCompletionStatus() to retrieve the

OVERLAPPED structure on which 1/0 was successful.

2. Retrieve the MMB associated with this overlapped structure when you sent
the message.

3. Use the Direct Interface macros to retrieve the reply mesage header and
payload (if any) of this MMB.

4. Retrieve the reply message type. The message may indicate a successful
completion or an error.

5. Process the reply accordingly.

The following example is from DM3 Application Foundation Code:

/1 Check for event on | O Conpl etion port.

bCk = Get QueuedConpl eti onSt at us(hl ocp,
&dwByt eCount ,
&dwDnBKey,
& pOver | apped,
1000) ;

/1 Get the Last Error.

dwLast Error = GetLastError();

if (!bCk)
if (dwLastError == WA T_TI MEQJT)
return TRUE

}

/1 Process | O Conpl etion Event.
swi t ch(dwDnBKey)
{

case DVB_COWP_KEY:
Dn8ConpPr ocl oConpl et i on(l pOver| apped, dwLastError);
br eak;

case DVB_STREAM KEY:

58

6. Using Messages

Dn8St r nProcl oConpl eti on(l pOverl apped, dwLastError);
br eak;

case DVB_FI LE KEY:
Dn8Fi | eProcl oConpl eti on(l pOverl apped, dwLastError);
br eak;

defaul t:
printf("Recei ved unknown Dn8Key\n");
return FALSE
br eak;

}
return TRE

6.7. Handling Unsolicited Messages

Some messages are sent by the DM 3 firmware or drivers, but they are not sent in
response to a command message from the application. These are called
unsolicited messages.

To specify an unsolicited message MMB, use the
MNT_SET_MMB_EMPTY_MSG() macro. This macro posts an empty message
MMB that has no command message to send, but has room for a specified number
of replies. Set the destination instance address in the MMB (even though no
message is actually being sent).

When an unsolicited message arrives, the device driver must match it to one of the
pending MMBs using the destination address. Unless a single thread is dedicated
for fielding all messages from the DM 3 board, an empty MMB should specify
more qualified matching criteria such as the destination address or the message
type, and/or the transaction ID.

6.7.1. Waiting for an Event

The application will wait for any asynchronous 1/0 to complete using the
following Win32 function call:

e GetQueuedCompletionStatus()

NOTE: Thisfunction call will block until some activity completes or the
specified timeout occurs.

59

Using the DM3 Direct Interface for Windows NT

6.8. Canceling Pending Messages

To cancel a specific message that has already been sent, call the following Win32
function:

e Cancdlo()

If the message is canceled, your application will be notified viaan 1/0 Completion
Port with an error code of ERROR_10_ABORTED.

6.9. Example: Sending a Message and Receiving a Reply

The following code segment shows the typical stepsin sending a
Std_MsgSetParm message and receiving a Std_MsgSetParmCmplt reply. These
steps include:

1. Enumerating for an Mpath device name.

Obtaining a handle to the device.

Finding a DM 3 board that matches your requirements.
Getting a destination address on the target board.

g » »w DN

Allocating an MMB for the command and reply messages, then initializing
the MMB.

Sending the message and waiting for areply.

7. Extracting the reply from the MMB, then processing it after the reply is
received.

NOTE: For details on DM 3 messages and related macros, please see the specific
component interface specifications in the guide entitled DM3 Sandard
Component Interface Messages.

/1 Exanpl e: Sending a Message and Receiving a Reply

#incl ude <stdio. h>
#incl ude <errno. h>
#i ncl ude <signal.h>
#include <Wndows. h>

#include <Ghostlib.h>
#i ncl ude <l uster. h>
#include <nercdefs. h>
#include <stddefs. h>

60

/1 QS resource header files
#i ncl ude <t scdefs. h>
#define DEF_TIMEQJT 60 /* Default tinmeout for MNTI functions */
#def i ne MAX_NO GF BOARDS 4
/1 Prototypes
BOOL sendMsg();
/1 Main Routine
void main()
if (sendMsg()!=TRUE) printf("Error in sendMsg \n");
/1 Code segnent showi ng how to send a Std MsgSet Parm
/1 message using MTI

BOOL sendMsg()
{

QusgRef phsg;

LPMWB | pMVB,;

QConpDesc I nst Desc;

QConpAt tr Atr[2];

CHAR Devi ceNane[MNTI _VAX_DEVI CE_NAME S| ZF] ;
ULONG Devi ceNaneS ze;
DWRD Devi ceSt at us;
HANDLE hihpat h, hMsgEvent ;
DWRD Er r or Code;

UCHAR boar dNUn¥0;

DWRD ConmandSi ze;
DWCRD Repl yGount ;

DWNCRD Repl yMaxSi ze;
DWRD of f set =0;
Std_MsgSet Parmt Parm

Qlrans Transl D

DWORD RecvByt eCount ;
DICRD Repl yType;
OVERLAPPED Qver | apped;

/1 Find an Math device nane

i f (rmt Enumvpat hDevi ce(MNT_FI RST_AVAI LABLE,
Devi ceNane,
&Devi ceNaneS ze,
&Devi ceStatus) == FALSE)

{ /] Call GetLastError to get the error code

ErrorCode = GetLastEror();

/1 performerror handling

printf("Error %l in mt Enundpat hDevi ce \n", Error Code) ;
) return(FALSE) ;

6. Using Messages

61

Using the DM3 Direct Interface for Windows NT

/1 Qpen the device file and get a handl e

if ((hMpath = O eat eFi | e(Devi ceNane,
GENER CREAD | GENERC WR TE,
FI LE SHARE READ | FILE_SHARE WR TE,
NULL,
CPEN_EXI STING
FI LE_FLAG OVERLAPPED,

NULL)) == I NVALI D HANDLE VALUE)
/] Call GetLastError to get the error code
ErrorCode = GetLastError();
/1 performerror handling
printf("Error %l in GeateFile \n", ErrorCode);
) return(FALSE) ;

/1 Find the TSC i nstance

A tr[0]. key=St d_Conponent Type;

At tr[0].val ue=TSC Std_Conponent Type;
Attr[1]. key=QATTR_NULL;

Attr[1].val ue=0xf b;

| nst Desc. node =0;
| nst Desc. boar d =0;
I nst Desc. processor = QCOMP_P_NL;
| nst Desc. conponent = QCOMP_C N L;

I nst Desc. i nstance = 1;

if (nrmt ConpFi nd(hMpat h, mt TransGen(),
& nst Desc, At tr, DEF_TI MEQUT,
NULL, NULL) == FALSE)

{
/] Call GetLastError to get the error code
ErrorCode = GetLastError();
printf("Error %l in mtConp \n", Error Code) ;
return (FALSE);

el se

printf("TSC QConpDesc: (%l: %l: %l: %l: %) \n",
(I'nst Desc. node)
(I'nst Desc. board)
(I nst Desc. processor) ,
(I nst Desc. conponent) ,
(I'nstDesc.instance));

/1 Alocate an MB for our purpose

GommandSi ze = si zeof (QWg) + Std_MsgSet Parm S ze;

Repl yCount = 1;

Repl yMaxSi ze = si zeof (Qwbg) + Std_MsgSet ParnOnpl t _Si ze;

if ((IpMB = mtA | ocat eMB(ConmandSi ze, Repl yCount, Repl yMaxSi ze))== NULL)
{

ErrorCode = GetLastEror();

/1 performerror handling

printf("Error %l in mtA | ocateMB \ n", Error Code) ;
return(FALSE);

62

6. Using Messages

}

/] Get the start of command Qg
MNT_GET_OMD QVBQ(| pMVB, &phbg) ;
/1 Fill in message header

QVBG_SET_MBGTYPE(pMsg, Std_MsgSet Parn);
QVBG_SET_DESTADDR(pMsg, & nst Desc);

/1 Shoul d keep the Transaction ID unique for each nessage

TransI D = mnt TransGen() ;

QVBG SET_TRANS(pMsg, TranslD);
/1 set the paraneter for the nessage body

Par m Num
Parm Val

TSC Par nEncodi ng;
TSC _Par nEncodi ng_Mil aw;

/1 Copy nessage body to MB

St d_MsgSet Par m put (pMsg, &Parm of fset);

/1 MMB Ready to ship. Setup overlapped for async nessage sendi ng
ZeroMenory((PVA D) &Overl apped, si zeof (OVERLAPPED)) ;

hMsgEvent = Oreat eBvent (NULL, FALSE, FALSE, NULL);
Over | apped. | nt er nal =0;

Over | apped. I nternal H gh = 0;
Over | apped. O f set =0;
Overl apped. OGfsetHgh = 0;
Over | apped. hEvent = hMsgEvent ;

printf("Ready to send Msg \n");
/1 Now send the nessage to the board

if (it SendMessage(hMpat h, | pMB, &Qrer| apped) == FALSE)
/] Call GetLastError to get the error code
ErrorCode = GetlLastError();
if (ErorCode == ERRCR | O PENDI NG
{
/1 Nowwait for operation to conplete
if ((WitForS ngle(ject((Overlapped. hEvent),
INFINTE)) == WA T_FA LED
{
/1 performerror handling
printf("VaitForS ngl ethject Failed \n");
return(FALSE) ;
}
if (GetCQverl appedResul t (hMat h, &ver | apped,

{

&RecvByt eCount , FALSE) == FALSE)

[l Call GetLastError to get the error code
ErrorCode = GetlLastError();
printf("Eror %l in GetOverl appedResult \n",

Error Code) ;

/1 performerror handling
return(FALSE);

63

Using the DM3 Direct Interface for Windows NT

}

el se
printf("Eror %l in nt SendMessage \n", Error Code) ;

/1 At this point, the reply message is in the MMB reply section

MNT_GET_REPLY_QVBE | pMVB, 1, &pMsg) ;
QVBG GET_MBGIYPE(pMsg, &Repl yType) ;

/1 Now process according to reply type

printf("Recei ved MsgType: %l Expected Type: %l \n",
Repl yType, Std_MsgSet Par mOnpl t) ;

return TRUE

64

6. Using Messages

6.10. Using Attributes to Find a Component

When selecting a component that you want to use, pass the criteria of your

selection to afunction call. Do this by passing specific attributes of the

component. Attributes describe a component’s characteristics, for example, an
Automatic Speech Recognition (ASR) component may have attributes that allow
you to select it based on certain exclusive features (such as discrete recognition,
word spotting, or the technology developed by a particular vendor).

To select a component, pass an array of keys and values to either
mntCluster ByCompFind(), mntCompFind() or mntCompFindAll(). Note
that when you’re developing this array, you must end the list of attributes by
defining the key as QATTR_NULL.

The names of attributes and their values are defined in the resource’s
documentation and header file. The header files are found in the inc directory
which contains a number efesource>defs.h files (for exampleplaydefs.h,
recdefs.h).

The following code example shows an array (ClusterAttrs) that can be passed into
a ...CompFind() function:

QConpAtL tr QusterAttrs[3];

QusterAttr[0]. key = Std_Conponent Type;
QusterAttr[0].value = TSC

QusterAttr[1].key = TSC AttrProtocol Base;
QusterAttr[1].val ue = TSC Par nPr ot ocol Base_H323;
QusterAttr[2].key = QATTR NULL;

65

Using the DM3 Direct Interface for Windows NT

6.10.1. Standard Component Types

Diaogic has defined the following standard component types. These are defined

as constants in header files included with the components available on the board.

If the DM3 system you’re working with uses these technologies, you can use these
by making the statemekey = St d_Conponent Type, followed with a

val ue set to one of the following:

For this standard component type...

Audio Decoder

Audio Encoder

Cal Analysis

Channel Associated Signaling (CAS)
Common Channel Signaling (CCS)
Channel Protocol (CHP)

Line Control

NetTSC

Package Version

Player

Recorder

SCBus

Signal Event Buffer

Signal Event Detector

Springware

Tone Generator

Telephony Services Component (TSC)
Waveform Generator

66

set the value to...
ADec_Std_ComponentType
AEnc_Std ComponentType
CA_Std_ComponentType
CAS _Std_ComponentType
CCS_Std_ComponentType
CHP_Std ComponentType
LCON_Std ComponentType
NetTSC_Std ComponentType
PkgVersion_Std ComponentType
Player Std ComponentType
Recorder_Std ComponentType
QSCRES _Std Component_Type
SB_Std ComponentType
SD_Std ComponentType
Spng_Std ComponentType
Tgen_Std_ComponentType
TSC_Std ComponentType
WGen_Std_ComponentType

7. Using Data Streams

The DM 3 device driver uses data blocks to pass data streams between the host and
the DM 3 embedded system. These blocks also carry attribute information that you
can use to control data transfer. To set attribute information properly, the host
application needs to be aware of this block-oriented data transfer.

Writing streams (bulk data) is similar to writing messages because the stream 1/0
operations complete as soon as the driver writes them to the Shared RAM on the
embedded system. However, the completion of this type of 1/0 operation indicates
only that the stream data was delivered to the on-board memory, not that it was
properly picked up and delivered to its destination instance. It is the responsibility
of the application and resource protocol whether such an acknowledgment is
expected or not.

Figure 7 shows an overview of stream flow.

Because the message and stream data travel through independent queues, you
cannot assume afirst-sent/first-received sequence between the messages and
stream data; there is no guarantee that sent messages and stream data are received
by the component instance in the same sequence. To address this issue, some
resource-specific streams have header flags associated with each transferred data
block. The Direct Interface provides the following predefined flags:

e EOD (end of data)
e EOT (end of transmission)
+ EOF (end of file)

Depending on the resource, you may or may not need to use the header flags. For
more information on these flags, see Section 7.1.3. Setting Sream Flags.

There are five additional bits that you can use for defining other stream header
flags. Specific meanings and their usage protocols are entirely determined by the
application and its counterpart on the embedded system.

For reguests made by ReadFile() function calls, the device driver matches these

header flags against those in the incoming data block. If the device driver finds
matching flags, the I/O request completes successfully. Although you can examine

67

Using the DM3 Direct Interface for Windows NT

the flags by calling the mntGetStreamHeader () function, you need not do so
unless the requested transfer count differs from the actual count. In any case, if the
ReadFile() function returns TRUE, the returned transfer count is correct
regardless of whether the 1/O operation was synchronous or asynchronous.

NOTE: You can also specify MNT_STREAM_FLAG_IGNORE_HEADER in
the mntAttachMercStream() call in order to instruct the device driver
to ignore the header portion of the SRAM data block, in effect, defeating
the processing of the above flags.

Streams are uni-directional, with one end opened to read and the other opened to
write. If the read stream has been closed by the sending end, al pending read
requests compl ete prematurely, and COMPLETE_ON_EOF is set in the bufFlags
field, and STREAM_CLOSED is set in the sysFlags field. If the read stream has
not been closed by the sending end, the read operation completes when either the
specified number of bytes have been received or the time out value expires
(ERR_SEM_TIMEOQOUT).

Process: Stream Flow

Stream flow generally occurs according to a process similar to the following
outline. This discussion correspondsto Figure 7. Direct Interface Stream Flow:

1. Theapplication calls mntEnumStrmDevice(), receives a Strm device, and
calls CreateFile() for aWin32 handle.

2. Then, the application calls mntAttachMer cStream() to open astreamin
either the read or write direction (by setting the nM odeFlags parameter to
either MNT_STREAM_FLAG_READ or MNT_STREAM_FLAG_WRITE).

3. Theapplication can issue multiple reads or writes to the Strm device using
Win32 overlapped /O (and await completion via Win32 synchronization
calls), or block for synchronous execution.

4. The Class Driver and Protocol Driver handle internal mappings and stream
management functions.

5. Thefirmware on the embedded system transfers stream data between the host
and the board.

68

7. Using Data Streams

(1) W
(2]
\ DM3 H:;st Library \

I

\ Win32 AP
I Accessible

v Inaccessible

‘ Class Driver ‘

. O
otocol Driver ‘
A

- BC

-
=5

Figure 7. Direct Interface Stream Flow

7.1. Writing Stream Data

Writing stream data means transmitting data from the host application to the DM3
embedded system. For sample code, see Section 7.1.1. Example: Writing Stream
Data.

Procedure

To program write streams, use the following procedure. Please note that
enumerating a stream device name and creating afile handle must be atomic
functions (see Section 5.2.1. Avoiding Sharing Violations for more information).

1. Enumerate a stream device by using the following Direct Interface Function
call:

69

Using the DM3 Direct Interface for Windows NT

e mntEnumStrmDevice()

A Strmdeviceis used to move large amounts of data between the host and the
DM3 card; a Srmis created to be either aread or write stream. Srm devices
are for streaming 1/O operations.

2. Open the device handle by using the following Win32 API function call:
e CreateFile()

Passthe GENERIC_WRITE and FILE FLAG_OVERLAPPED flagsin this
function. Setting the flag to FILE_FLAG_OVERLAPPED indicates that
asynchronous data movement will be done for this device. This function
returns a Win32 device handle for the specified DeviceName; the same
DeviceName that was previously specified in themntEnumStrmDevice()
Direct Interface function call.

3. Get aunique stream ID using the following Direct Interface function call:
¢ mntAttachMercStream()

4. Passthe hDevice, nBoardNumber, nM odeFlags, IpM ercStreami D,
nStreamSize, and nTimeout parameters to the mntAttachM er cStream()
function. The Win32 device handle returned by the CreateFile() function
call is passed to this function. This function attaches a stream ID to the
specified Stream device. Pass an OVERLAPPED structure to this function if
you want the command message to go to the firmware asynchronously; pass
NULL if synchronously. The mode flag should specify
MNT_STREAM_FLAG WRITE.

5. If theresource on the DM 3 embedded system requires header flags, specify
thefieldsin the STRM_HDR structure by calling the following function:

mntSetStreamHeader ()
Pass the bufFlags fields to the function.

6. Set up the datato be transferred by setting up an OVERLAPPED structure
and passing it to the WriteFile() function to send the data.

7. Repeat step 6 until al data blocks, except the last, have been sent to the DM3
board.

8. If theresource on the DM 3 embedded system requires header flags when the
last data block has been sent, set the appropriate flag in the bufFlags field of

70

7. Using Data Streams

STRM_HDR structure (such as MNT_EOT, MNT_EQOS, or MNT_EOD).
Then, pass the bufFlags parameter to the mntSetStreamHeader () function.

9. Cadl the WriteFile() function to send the last data block.

10. If necessary, call the mntDetachM ercStream() function to close the stream
device.

7.1.1. Example: Writing Stream Data

The following code segment shows the typical stepsin setting up and sending data
to a stream. Please note that thisis a synchronous example. These stepsinclude:

Enumerating a stream device name.

Opening the device file and obtaining the Win32 handle.
Getting the destination address of a Player instance.
Attaching a stream to the stream device.

Writing data to the stream.

grwONPE

/1 Exanple: Witing Stream Data
#i ncl ude <stdio. h>

#i ncl ude <w ndows. h>

#i ncl ude <ghostlib. h>

#i ncl ude <tscdefs. h>
#i ncl ude <pl aydefs. h>
#i ncl ude <coders. h>
#define DEF_TI MEQUT 60
BOOL witeStrnbDat a(HANDLE hFil e);
void main()
HANDLE hFi | e;
/* Qpen data file */
if ((hFile = GeateFile("nercury.rvx",
GENER C_READ,
0,
NULL,
CPEN_EXI STING
FI LE_ATTR BUTE_NCRVAL,
NULL
)) == INVALI D HANDLE VALUE)

printf("Can't get a handle to nmercury.rvx \n");
exit(0);

71

Using the DM3 Direct Interface for Windows NT

/1 Qpen data file
SetFilePointer(hFile, 0, NULL, FILE BEAN);

/1 Gl "witeStrnData" to send data to pl ayer

printf("Calling witeStrnbata \n");
if (witeStrnData(hFile) !=TRUE) printf("Error inwiteStrnbata \n");
}
11
/1 Code segnent show ng how to setup and
/1l wite to a streamassigned to a player instance
11
#define BUFF_SI ZE 4032

BOCL wri teStrniat a(HANDLE hFi |)

{
ULONG boar dNun¥0;
int tines ot=1;
HANDLE hihpath, hStrm
CHAR Devi ceNane[MNTI _MAX_DEM CE_NAME Sl ZF] ;
ULONG Devi ceNaneS ze;
DWRD Devi ceSt at us;
DWRD Error Code;
UCHAR Qut Buf f er [BUFF_SI ZF] ;
int i nst ance;
DWRD byt esRead, byt esXf er;
QConpDesc primaryPort;
QConpAt tr attrs[4];
QConpDesc thed uster;
QConpDesc theP ayer;
ULONG streamiD = 0, strnS ze = MNT_STREAVBI ZE NCRVAL;
ULONG rnType;
QwsgRef rtr;
int done, cnt ;

P ayer_MsgStart _t playerStart;

/1 Find an Math device nane
/I we'll use this device to send/receive messages
4

if (mntEnumMpathDevice(MNT_FIRST_AVAILABLE, DeviceName,
&DeviceNameSize, &DeviceStatus) == FALSE)

I Call GetLastError to get the error code
ErrorCode = GetLastError();
/I perform error handling
retumn(FALSE);

/I Use Win32 API function CreateFile to associate a native handle
/I'to Mpath device

if ((hMpath = CreateFile(DeviceName,
GENERIC_WRITE,
FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,

72

7. Using Data Streams

FI LE_FLAG O/ER_APPED,
NULL)) == I NVALI D HANDLE VALUE)

/1 Call GetLastError to get the error code
ErrorCode = GetLastError();
/1 performerror handling

return(FALSE) ;
}
/1 Find the TSC (front end) conponent
pri maryPort . boar d = (UCHAR) boar d\Num
primaryPort. processor = QOOMP_P_CP;
primaryPort. conponent = QOOMP_C N L;

primaryPort.instance = tineS ot;

attrs[0].key = Std_Conponent Type;
attrs[0].val ue = TSC St d_Conponent Type;
attrs[1].key = QATTR NULL;
attrs[1].val ue = Oxfb;

i f (mmt ConpFi nd(hMpath, mnt TransGen(), &prinaryPort, attrs,
DEF_TI MEQUT, NULL, NULL) == FALSH)

printf("mt ConpFind failed %", GetLastError());
/1 performerror handling
return(FALSE) ;

/] Get the cluster associated with our TSC conponent
if (mt A usterByConp(hhMpath, mt TransGen(), prinaryPort,

& hed uster,
DEF TI MEQUT, NULL, NULL) == FALSH

{
/1 performerror handling
printf("mtd usterByConp failed %", GetLastError());
return(FALSE) ;

}

/1 Find the player allocated to the cluster

theM ayer . board = (UHAR) boar d\um

theP ayer. processor = QOOWP_P_CP,

theP ayer. conponent = QQOMP_C N L;

theM ayer.instance = QOOWP_|_NL;

attrs[0].key = Std_Conponent Type;
attrs[0].val ue = Pl ayer_Std_Conponent Type;
attrs[1].key = QATTR NULL;

attrs[1].val ue = Oxfb;

if (mtQ usterConpByAttr(hMath, mt TransGen(), theQ uster,
attrs, & heP ayer,
DEF_TI MEQUT, NULL, NULL) == FALSE)

/1 performerror handling
printf("mtQuster ConpByAttr failed %", GetLastError());
return(FALSE) ;

/1

73

Using the DM3 Direct Interface for Windows NT

/1 Get first avail abl e Stream device
/I we'll use this for writing stream data
I

if (mntEnumStrmDevice(MNT_FIRST_AVAILABLE, DeviceName,
&DeviceNameSize,
&DeviceStatus) == FALSE)

/I Call GetLastError to get the error code
ErrorCode = GetLastError();
/I perform error handling
retum(FALSE);

/I Open Stream device handle

if (nStrm = CreateFile(DeviceName, GENERIC_WRITE,FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
NULL)) == INVALID_HANDLE_VALUE)

/I Call GetLastError to get the error code
ErrorCode = GetLastError();
/I perform error handling
printf("Error %d in CreateFile for stream \n",ErrorCode);
retum(FALSE);
}

/I Attach (open) a stream to our Stream device

if ((mntAttachMercStream(hStrm,
boardNum, /I BoardNumber
MNT_STREAM_FLAG_WRITE, // ModeFlags
&streamiD, /I MercStreamiD,
&strmSize, Il StreamSize,
DEF_TIMEOUT,
NULL)) == FALSE)

I/ Call GetLastError to get the error code
ErrorCode = GetLastError();
I perform error handling
printf("%d: mntAttachMercStream failed: error = %d, strm# %ld\n",
instance, ErrorCode, streamiD);
retum(FALSE);
}

/I At this point, the streamiD is set to the retured value
II'by the driver and we need to notify the player to read
/lfrom the stream

playerStart.StreamID = streamlID;

playerStart.Decoding = MULAWG4D;

playerStart. StartMode = Player_MsgStart_StartMode_NORMAL;
playerStart.StartPos =0;

if (mntSendMessageWait(hMpath, Player_MsgStart, NORMAL_MSG,
sizeof(Player_MsgStart_f),

)
&playerStart, 1, &thePlayer, NULL, NULL) == FALSE)
ErrorCode = GetLastErmor();

printf("Error %d in mntSendMessageWait \n",ErrorCode);
retum(FALSE);

74

7. Using Data Streams

11

/1 Now we can begin witing to the streamin a | oop by:
/1 reading froma disk file then

/1l witing it out to the stream

11
done=0;
cnt =0;
whi | e (done==0)
{
/1 Read data from disk
if (ReadFile(hFile, (LPvAD QutBuffer, BUFF_SIZE
&byt esRead, NULL) == FALSE)
/1 performerror handling
printf("ReadFile on file failed %\ n", GetLastEror());
return(FALSE) ;
}
/1 Check if last block
if (bytesRead < BUFF_SI ZE)
{
/1 1f last, set EGS flag to signify end of play
STRV HDR Strntdr;
ZeroMenor y(&StrntHdr, sizeof (Strnidr));
St rnidr. buf Fl ags = MNT_ECS;
mnt Set Streanteader (hStrm &Strnidr, 0);
done=1;
}
printf("Witing %l block to stream\n", cnt++);
/!l Wite data to stream
if (WiteFile(hStrm (LPVA D) QutBuffer, bytesRead,
&bytesXfer, NUL) == FALSE)
/1 performerror handling
printf("WiteFile failed %I\n", GetLastEror());
return(FALSE) ;
}
}

/1 Wit for play stopped nessage fromthe player

if (rmt SendMessageVdi t (hMpat h, Pl ayer _MsgSt opped, EMPTY_MSG O,
NULL, 1, & heM ayer, & niype, & nPtr) == FALSE)

/1 performerror handling

ErrorCode = GetLastEror();

printf("%l: Unable to send stop-play nessage. Last error = (%)h\n",
i nstance, ErrorCode);

return(FALSE) ;

return TRUE

75

Using the DM3 Direct Interface for Windows NT

7.1.2. Flow Control

Programming write streams is much simpler than programming read streams:

« Fird, after preparing the buffer, you can call the WriteFile() function; not
much can go wrong except for a possible time out.

e Second, aslong asthereisroom in the Shared RAM, the Driver simply
pumps data out as soon and as fast as possible. The Class Driver monitors the
flow control messages and properly paces the output so asto not overwhelm
the DM3 embedded system.

Thisflow control applies only in the host-to-board direction. The DM3 embedded
system regulates the flow through the Can_Take messages that are specific to the
streams.

The stream flow control is generally transparent to the Direct Interface
programmer. However, you must never in any single call, write more data than
the stream size without first notifying the receiving instance to begin consuming
the data. For example, in writing to a 16-kb stream assigned to a player instance,
you must not write more than 16 kb before sending the start-play message.

7.1.3. Setting Stream Flags

Y ou can use stream flags to convey application-specific meanings to counterpart
components that must understand and comply with the protocol.

Before issuing write requests, you need to set the stream flags by calling the
mntSetStreamHeader () function. The driver transmits the latest stream flag
settings along with the data blocks. Therefore, before you ater the stream header
flags, you need to make sure that all preceding writes have completed
successfully.

Here’s an example showing how to play several files that have different decoding
formats:

1. Usethe MNT_EOT flag to indicate the separate format demarcations in the
stream. For a Dialogic standard Player component, the MNT_EOT flag must
accompany the last data block; otherwise, it is discarded and an error message
is returned.

76

7. Using Data Streams

2. After thelast block has been sent, reset the MNT_EOT flag, then send the
next set of data blocks.

3. After dl files have completed playing, set the MNT_EOS flag in the header
and make the last write request. Of course, if appropriate, you can also call
the mntDetachM er cStream() function to close the stream.

For alist of Read/Write errors, see the DM3 Direct I nterface Function Reference
for Windows NT.

7.1.4. Canceling Stream Writes

To cancel a specific stream write that isin progress, calling the following Win32
function will cancel al I/O for that handle:

e« Cancello()

If the stream wrrite is canceled, your application will be notified viaan 1/0
Completion Port with an error code of ERROR_10_ABORTED.

7.2. Reading Stream Data

Reading stream data means the host application is receiving data from the DM 3
embedded system. For sample code, see 7.2.1. Example: Reading Sream Data.
To program read streams, use the following procedure:

1. Find an available stream device, then obtain its stream device name by calling
the following function:

e mntEnumStrmDevice()

2. Obtain the stream device handle by passing the stream device name to the
following Win32 function:

e CreateFile()

Pass the GENERIC_READ, FILE_SHARE_READ, and
FILE_ FLAG_OVERLAPPED flagsin this function.

3. Attach astream ID to the specified Stream device by calling the following
Direct Interface function:

77

Using the DM3 Direct Interface for Windows NT

78

* mntAttachMercStream()

Pass the hDevice, nBoardNumber, nM odeFlags, [pM er cStream| D,
nStreamSize, and nTimeout parameters to the function. The mode flag
should specify MNT_STREAM_FLAG_READ.

Set up the memory location to store the read data and set up an
OVERLAPPED structure.

Specify the ReadCompletionMask. Pass these parameters to the following
function:

mntSetStreamHeader ()
Call the Win32 function ReadFile(). Then, set up the following condition:
e Ifitreturns FALSE, call the GetLastError() function.

e IfitsLastError parameter contains ERROR_10_PENDING, call the
WaitFor SingleObject() and GetOverlappedResult() functions to get
the results.

If the actual bytesread is equal to the bytes requested, repeat step 6 to post
another read.

NOTE: If the actual bytesread is not equal to the bytes requested, retrieve
the stream header by calling the mntGetStreamHeader (') function.
Check if either the requested completion flag is set, such as
MNT_EOD:; or if the stream has been closed by the sending
component, indicated by the STREAM_CLOSED sysFlags of the
header. If so, break out of the read |oop. Otherwise, an error has
occurred, and you must analyze it.

If necessary, call the mntDetachM ercStream() function to close the stream
device.

Use CloseHandle() per Win32 conventions.

7. Using Data Streams

7.2.1. Example: Reading Stream Data

The following code segment shows the typical steps receiving data from a stream.
Please note that the example shows a synchronous operation. These steps include:

Enumerating a stream device name.

Opening the device file and obtaining the Win32 handle.
Getting the destination address of a Recorder instance.
Attaching a stream to the Stream device.

Reading data from the stream.

grwpnpE

/1 Exanpl e: Reading Stream Data
#i ncl ude <stdio. h>
#i ncl ude <wi ndows. h>
#i ncl ude <ghostlib. h>
#i ncl ude <t scdefs. h>
#i ncl ude <recdefs. h>
#i ncl ude <coders. h>
#defi ne DEF_TI MEQUT 60
BOCOL readSt rnDat a(HANDLE hFil e);
void nmain()
HANDLE hFi | g;
/* Qpen data file */

if ((hFile = QeateFile("readTest.dat",

GENER C WR TE,
0,

NULL,

CREATE_ALWAYS,

FI LE_ATTR BUTE_NCRMVAL,

NULL

)) == | NVALI D HANDLE VALLE)

printf("Can't get a handle to readTest.dat \n");
exit(0);
/1 Qpen data file
SetFilePointer(hFile, 0, NULL, FILE BEGN);
/] Call routine "readStrnData" to get data fromrecorder
if (readStrnbData(hFile)!=TRUE) printf("Eror inreadStrnbata \n");
}

/1 Code segnent showing howto Setup and read froma stream

79

Using the DM3 Direct Interface for Windows NT

#define BUFF_SI ZE 4032

BOCOL readSt rnDat a(HANDLE hFi | e)

{
CHAR Devi ceNane[MNTI _VAX_DEVI CE_NAME S| ZE] ;
ULONG Devi ceNaneS ze;
DWRD Devi ceSt at us;
HANDLE hipat h;
DWRD Er r or Code;
ULONG boar dNUn¥0;
UCHAR I nBuf f er [BUFF_SI ZF] ;
int i nst ance;
QConpDesc primaryPort;
QonpAt tr attrs[4];
QConpDesc thed uster;
QConpDesc t heRecor der ;
int tineSot =1;
ULONG done = 0;
HANDLE hStrm
ULONG streamiD = 0;
UONG strnS ze = MNT_STREAVBI ZE NCRVAL;
STRM HOR header ; /* Retrieved stream header */
ULONG duration = 6; // record duration in sec
Recorder_MsgStart_t recorderStart;
Std_MsgSet Parm t set Parm
ULONG rnType;
QwgRef rtr;
DWRD byt esRead;

/1 Find an Math device nane
/I we'll use this device to send/receive messages
I

if (mntEnumMpathDevice(MNT_FIRST_AVAILABLE,
DeviceName, &DeviceNameSize,
&DeviceStatus) == FALSE)

{
I/ Call GetLastError to get the error code
ErrorCode = GetLastErmor();
/I perform error handling
printf("Error %d in mntEnumMpathDevice \n");
retum(FALSE);
}

if ((hMpath = CreateFile(DeviceName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
NULL))== INVALID_HANDLE_VALUE)

{
I Call GetLastError to get the error code
ErrorCode = GetLastError();
/I perform error handling
printf("Error %d in CreateFile for mpath \n",ErrorCode);
retum(FALSE);
}

/I Find the TSC (front end) component

80

7. Using Data Streams

pri maryPort . boar d = (UCHAR) boar dNum
primaryPort. processor = QOOMP_P_CP;
primaryPort. conponent = QOOMP_C N L;
primaryPort.instance =tineSot;

attrs[0].key = Std_Conponent Type;
attrs[0].val ue = TSC St d_Conponent Type;
attrs[1].key = QATTR NULL;
attrs[1].val ue = Oxfb;

i f (rmt ConpFi nd(hMpath, mnt TransGen(), &prinaryPort, attrs,
DEF_TI MEQUT, NULL, NULL) == FALSH
{

/1 performerror handling

printf("mtConpFind failed %", GetLastError());
return(FALSE) ;

/

-

Get the cluster associated with our TSC conponent

—

 TIMEQUT, NULL, NULL) == FALSE)

/1 performerror handling
printf("mtQusterByConp failed %", GetLastError());
return(FALSE) ;

}

/1 Find the allocated recorder to the cluster

(UCHAR) boar dNum
QAW _P_C>;
QCO\/P_C_N L
QOWP_| _|

St d_Conponent Type;

Recor der _St d_Conponent Type;
QATTR_NULL;

Oxf b;

t heRecor der . boar d

t heRecor der . processor
t heRecor der . conponent
t heRecor der . i nst ance

attrs[O0].
attrs[0].
attrs[1].
attrs[1].

key
val ue
key
val ue

if (nmtQd uster ConpByAttr(hMpat h, mt TransGen(), theQd uster,

attrs, & heRecorder,
DEF_TI MEQUT, NULL, NULL) == FALSE)

/1 performerror handling

printf("mtQusterConpByAttr failed %", GetLastEror());
return(FALSE) ;

/1 Get first avail abl e Stream device

/I we'll use this for writing stream data

4

if (mntEnumStrmDevice(MNT_FIRST_AVAILABLE, DeviceName,

{

&DeviceNameSize, &DeviceStatus) == FALSE)

/I Call GetLastError to get the error code

ErrorCode = GetLastError();

/I perform error handling

printf("Error %d in mntEnumStrmDevice \n",ErrorCode);
retum(FALSE);

(mt A ust er ByO)np(hMJat h, mt TransGen(), pri rraryPort, & hed uster,

81

Using the DM3 Direct Interface for Windows NT

/1 Qpen Stream devi ce handl e

if ((hStrm= QeateFile(DeviceNane, GENER C READ,
FI LE_SHARE READ, NULL,
CPEN EXI STING FI LE_ATTR BUTE_NCRVAL,

NULL)) == | NVALI D_HANDLE VALUE)
{
/1 Call GetLastError to get the error code
ErrorCode = GetLastError();
/1 performerror handling
printf("Error % in Oeate File for streamdevice \n", ErorCode);
return(FALSE) ;
}

/1 Attach (open) a streamto our Stream device

if ((nmtAttachMercStrean{hStrm

boar d\Num // Boar d\unber
M\T_STREAM FLAG READ, /1 ModeFl ags
&stream D, /1 MercStream D,
&strns ze, /1 StreanS ze,
DEF_TI MEQUT,
NULL)) == FALSE)
{
/1 Call GetLastError to get the error code
ErrorCode = GetLastError();
/1 performerror handling
printf("Error %l in mtAtachMercStream\n", Error Code) ;
return(FALSE) ;
}

/1 A this point, the streaniDis set to the returned val ue
/1 by the driver and we need to notify the Recorder to record
/1 for so many seconds

11

set Par m Num = Recor der _Par nbur at i on;
set Parm Val = 1000*dur ati on;

/1 Send the message to the board
if (rmt SendMessageVdi t (hMpat h, Std_MsgSet Parm NCRVAL_MSG

si zeof (Std_MsgSet Parm t),
&etParm 1, & heRecorder, NUL, NULL) == FALSE)

{
ErrorCode = GetLastEror();
/1 performerror handling
printf("%l: Unable to send set-parmnessage. Last error = %l\n",
instance, ErrorCode);
return(FALSE) ;
}

/] Set up the start-record nessage and
/1 send it to the recorder

11
recorderStart. StreamD = streani D
recorderStart. Encoding = K 32E

recorderStart. Start Mode = Recorder _MsgStart_Start Mbde_TI MED,

if (mt SendMessageWdi t (hhpat h, Recorder_MsgStart, NCRVAL_MSG

82

7. Using Data Streams

si zeof (Recorder _MsgStart _t), & ecorder Start,
1, & heRecorder, & nType, & nPtr) == FALSE)

{
ErrorCode = GetLastError();
/1 Performerror handling
printf("\n%l: Whable to send start-record nessage. Last error = %",
instance, ErrorCode);
if (ErrorCode == ERROR_ MNT_MERCLRY_STD MG
printf("\n%l: Merc errs: 9%, %\n",
instance, rnPtr->type, rnPtr->nsgsize);
return(FALSE) ;
}

11
/I now we're ready to read the record stream
/I clearing all read-completion mask allows EOS to complete the read
I
mntSetStreamHeader(hStrm, NULL, 0);

done=0;
while (done==0)

/I Read data from driver
if (ReadFile(hStrm, (LPVOID)InBuffer,
BUFF_SIZE, &bytesRead, NULL) == FALSE)

/I perform error handling
printf("%d: ReadFile failed %d; read=%d\n", instance,
GetLastErmor(), bytesRead);
retum(FALSE);

else
printf("Read %d bytes from DM3 stream \n" bytesRead);
if (oytesRead = BUFF_SIZE)

mntGetStreamHeader(hStrm, &header);
if (header.bufFlags & MNT_EOD
|| header.sysFlags & STREAM_CLOSED) done =1;

' Write the buffer just read to a disk file

if (WriteFile(hFile, (LPVOID)InBuffer,
BUFF_SIZE, &bytesRead, NULL) == FALSE)

{
printf("WriteFile failed %d\n", GetLastError());
exit(Q);

}
/I Wait for record complete
if (mntSendMessageWait(hMpath, Recorder_MsgStopped EMPTY_MSG,0,
NULL, 1, &heRecorder, &mType, &mPtr) == FALSE)

{
ErrorCode = GetLastError();
I/ perform error handling
printf("Unable to receive stopped message. Last error = %d\n",
ErrorCode);
retum(FALSE);

return TRUE;

83

Using the DM3 Direct Interface for Windows NT

7.2.2. Protocol Driver Buffering

When the Protocol Driver reads the incoming data blocks and attempts to find a
pending read request, it might not find any, especially under a heavy system load.
In this case, the Protocol Driver buffers the blocks into an orphan buffer until a
request is made. To avoid this costly extra copying, make sure that you post read
requests promptly. If non-paged system buffers are available, the Protocol Driver
can buffer all overflows and service the subsegquent read requests. However, under
extreme conditions (or if the application simply goes away), the orphan buffer can
fill up and bein an overrun condition (STATUS DATA_OVERRUN or
ERROR_IO_DEVICE). The stream headesysFlags field is set to
STREAM_OVERRUN.

NOTE: The orphan buffer can contain residue from a previous 1/O operation. If
you want to ensure there’s a “clean pipe” before you start to read from a
stream, you need to first read and discard the residue in the orphan
buffer. ThemntCheck StreamOr phans() host library function returns
the number of orphaned bytes, if any. When a particular stream is opened
in write mode, the Protocol Driver automatically frees up orphans for a
previous read stream.

The Protocol Driver buffers overflow messages also, but while there is one buffer
for each stream (that is, multiple buffers per board), there is only one orphan
message buffer per board. As long as requests for a message read make it down to
the Protocol Driver in time, no messages will be lost. You should always attempt

to avoid creating orphans.

84

7. Using Data Streams

7.2.3. Specifying Read Buffer Sizes

When you call the ReadFile() function, you must specify a buffer and its size.
Determining the optimum size of the buffer can be challenging.

Most developers who perform intensive 1/O operations find an optimum buffer
size through experimenting with different sizes. It helpsif you understand how the
underlying driver moves the data. Typica buffer sizes tend to be 16 Kb, 32 Kb, or
64 Kb. However, buffer size depends on device capability. For example, you
would probably not specify a 64-Kb buffer size for a dial-up PPP connection,
athough 64 Kb might be fine for an ATM or NIC card.

NOTE: When you make read calls, Windows NT locks down your provided
buffersin the working set of your process. Therefore, there may be a
practical limit to the number of asynchronous 1/0O operations that you can
post.

7.2.4. Canceling Stream Reads

To cancel a specific stream read that isin progress, call the following Win32
function:

e« Cancello()

If the read is canceled, your application will be notified viaan 1/0 Completion
Port with an error code of ERROR_IO_ABORTED.

85

8. Using Clusters

NOTE: WITH CURRENT QUADSPAN AND IPLINK RELEASES, CLUSTERS ARE PRE-
BUILT BY DIALOGIC AND SHOULD NOT BE MODIFIED BY APPLICATION
DEVELOPERS.

8.1. Host Application Cluster Control

This section deals with the mechanics of how a host application controls clusters,
how it uses them to exchange TDM data on the SCbus, and how it directs
component instances to exchange TDM data on the network front end. A host
application using the DM 3 embedded system controls clusters by performing the
following:

1. Findacluster.

2. Add component instances to a cluster.

3. Add SChus resources with input or output portsto a cluster.
Assign SChus timeslots to SCbus resources.

Remove SChus resources from a cluster.

o o &

Maintain Talker protocol for SCbus output ports.

Advanced Tasks:
Change default cluster connections.

8. Connect clusters on the same board together.

Table 3 givesasummary of the host library functions used to accomplish each
task.

87

Using the DM3 Direct Interface for Windows NT

Table 3. Host Cluster Control Tasks

To Do This...

Use Host Library Function(s)...

Find a cluster

mntClusterFind()
mntClusterByComp()

Add components to the cluster*

mntCompAllocate()

Add SCbus resources with input
and output ports to clusters*

mntCompAllocate()

Assign SCbus timeslots to SCbus
resources

mntClusterTSAssign()

Remove SChus resources from
cluster*

mntCompFree()

Manage Talker protocol for
SChus output ports

Full Talker Functions:
mntClusterActivate()
mntClusterDeactivate()

For Advanced Tasks...

Use Host Library Function(s)...

Change default cluster
configuration*

mntClusterDisconnect()
mntClusterConnect()

Connect cluster portsin different
clusters on the same board *

mntClusterConnect()

* Thistask isnot applicable for this release.

88

8. Using Clusters

8.1.1. Finding a Cluster

Existing clusters may have component instances added to them. If a TSP
component exists on the board, most applications will allocate componentsinto a
TSP’s pre-existing cluster. To add instances to an existing cluster, first find a
cluster with the necessary attributes.

To find clusters, two functions are used:
mntCompFind() Finds a component with the specified set of attributes
mntClusterByComp() Finds the cluster that a specified component belongs to

For example, to find the TSP cluster controlling T-1 timeslot 6, use the
mntCompFind() function specifying a TSP component with timeslot 6. After the
component is found, retrieve the TSP’s cluster by calling the

mntCluster ByComp() function using the found component address.

8.1.2. Adding Components to Clusters

DM3 component instances are added to clusters during component allocation.
When a host application allocates a component witimtit€CompAllocate()
function, it must specify the cluster to which it belongs.

When component instances are added to a cluster, a set of default connections are
automatically established. The kernel maps central ports to valid non-central

ports, that is, IN-ports are connected to OUT-ports. A TSP component instance
always has a pair of central ports, therefore, whenever a TSP component instance
is in a cluster, it will be connected to any instances added to that cluster.

Occasionally, SCbus resources are configured as central ports, typically if the
cluster does not contain a TSP instance.

Figure 8 is an example of the default connection map created when a cluster

contains a TSP, player, recorder, tone generator, and signal detector. The TSP
component instance is shaded to indicate that it is the central instance with two

89

Using the DM3 Direct Interface for Windows NT

central ports. For most applications, it is not necessary to configure clusters
differently than the default configuration.

______ —[Cluster J_____________"

Signal

Recorder Detector

Tone

Generator

Figure 8. Default Cluster Connections Example

90

8. Using Clusters

8.1.3. Assigning an SCbus Timeslot to an SChus Resource

When an SCbus resource is created, it does not have a specific SCbus timeslot
assigned to it. The SChus IN-ports are used to transmit TDM data into a specific
SChbus timeslot and the SCbhus OUT-ports are used to receive data from a specific
SCbus timeslot.

To assign atimeslot, an application uses the mntCluster T SAssign() function call
specifying the:

e cluster
e SChus resource component address
e SChus resource port identity

¢ SCbustimeslot number

NOTE: For thisrelease, mntCluster TSAssign() isonly valid for SCbus OUT-
ports.

To stop data from being transmitted over the SCbus, mntCluster T SUnassign()
can be called to clear any timeslot assignments from the SCbus port.

8.1.4. Talker Protocol

When an SCbus resource with an Sg port is part of acluster, DM3 talker protocol
must be followed. The host application has several choices:

* Follow full DM3 talker protocol.
* Follow asimple DM3 talker protocol.

* Providethe address of a component that follows full DM 3 Talker protocol.

91

Using the DM3 Direct Interface for Windows NT

Simple Talker Protocol

Simple Talker protocol provides the means for a host application to add SCbus
resources that “talk” (transmit TDM data) with minimal application talker
protocol overhead. This is accomplished by usingriheCluster Activate() and
mntCluster Deactivate() host library function calls.

ThemntCluster Activate() call is used to activate the connections from the
SCbus OUT-port to the IN-ports inside the cluster. For example, in the figure
below, when the SCbhus OUT-port is made active by the host application, the
network IN-port is accepting TDM data from the SChus and the Tone generator
and the Player connections are not active.

Once the connection is active, what happens when the Player wants to generate
TDM data? This is dependent on hamtCluster Activate() was used.

C { Cluster J _______________

Signal
Detector

SCbus
Resource

Tone
Generator

Figure 9. SCbus Resource Talking

92

8. Using Clusters

When the function is called, one of two default talker protocol response optionsis
supplied. The default response informs the kernel how to handle the situation.
Valid options are defined in mercdefs.h. They are:

QCLUST_AutoReject

QCLUST_AutoAccept

Data from the SChus cannot be interrupted by any other
OUT-port resource in the cluster. The connection
between the Sy port and al the input portsit connects
to will remain active until the host application explicitly
deactivates the connection with a

mntCluster Deactivate() function call.

Data from the SCbus can be interrupted by any other
OUT-port resource in the cluster. The connection
between the Sy port and cluster input ports can be
temporarily suspended and re-established after the
interrupting resource has finished. No notification will
take placeif this occurs.

93

Using the DM3 Direct Interface for Windows NT

Full Talker Protocol

A host application can act as a proxy for aresource that outputs data on the SCbus
and transmits data into the S, port of acluster.

A resource that outputs data must be able to send a set of commands to request to
talk, and must be able to reply to kernel requests for interruptions with a specific
set of messages. These messages are summarized below:

M essage Name Action Response M essage

QCluster Suspend kernel request to stop QCluster SuspendResult
output of data

QClusterResume kernel request to resume QCluster ResumeResullt
output of data

QClusterActivate component request to QCluster ActivateComplete
output data
QClusterDeactivate | component informing QCluster DectivateComplete

kernel that it has stopped
outputting data

8.1.5. Changing the Default Cluster Configuration
NOTE: Thisfunctionality is not implemented for this release.

Thisis considered an advanced task since the default cluster configuration should
handle most situations.

Reconfiguring a cluster means that the host application will connect portsinside a
cluster to each other in a configuration that is different than the default behavior.
The figure below is adefault cluster connection map that resultswhen a TSPisin
acluster with a player instance and an SChus resource.

94

8. Using Clusters

——————— (Cluster J———————————————|

SCbus
Resource

Figure 10. Default Cluster Connections Example

It may be desirable to configure the player resource to output to the S, port as well
asthe N, port temporarily in adrop and insert situation. To establish a connection
between the Rp and S, ports, call mntCluster Connect() specifying the cluster, S
port, and R port. Thisresultsin anew connection map as shown in Figure 11.

To return to the original connection map, call mntCluster Disconnect()
specifying the cluster, S port and Ro port.

95

Using the DM3 Direct Interface for Windows NT

8.1.6. Finding Cluster Assignment

To find the cluster that a component instance is part of, call:

mntCluster byComp() Given an instance descriptor, finds the cluster to
which it is allocated.

——————— (Cluster J———————————————|

SCbus
Resource

Figure 11. Reconfigured Cluster

8.1.7. Connecting Ports on the Same Board

Clusters on the same board can sometimes be connected without using SCbus
timeslots. To connect two clusters together, use the mntCluster Connect()
function. If the cluster ports specified can be connected without SCbus timeslots,
the function will succeed. If they cannot, the connection will fail.

96

9. Exit Notification

Direct Interface functionality called exit notification allows you to be notified
when a host application or specific component instance terminates. There are two
types of exit notification and each must be explicitly enabled in your application.

» Board-level exit notification
If a component instance exits and/or fails, the host application is notified by
the DM 3 Kernel viaa QFailureNotify message.

* Application exit notification
If ahost application exits and/or fails, the driver notifiesthe DM3 Kernel via
a QExitNotify message when the Mpath device is closed. The driver does not
distinguish an abnormal termination from anormal exit; it blindly exercises
the exit notification logic upon the last close of the Mpath device.

Dueto itsimpact on performance, the exit notification feature is typicaly used
only during application development. Production applications should be designed
to exit gracefully by closing opened streams and rel easing allocated instances.

9.1. Setting up Board-level Exit Notification

To enable board-level exit notification, an application issues an
mntNotifyRegister () call. The DM3 Kernel records the sender’s address. If a
component fails, the application is notified vi@&ailureNotify message. Note
that the application enabling notification must queue a request to receive this
message. To disable component exit notification, the application issues an
mntNotifyUnregister () call on the same source address (Mpath).

9.2. Setting up Application Exit Notification

There are two steps needed to set up application exit notification to the embedded
system. First, the host application must callrtireSetExitNotify() function on

the Mpath to enable the sending of @exitNotify exit notification message.

When enabled, whether the handle is closed implicitly (via crash or failure) or
explicitly (via CloseHandle()), aQExitNotify message is sent for that Mpath, that

is, for that application/Mpath’s source address. Note, if the application exits

97

Using the DM3 Direct Interface for Windows NT

gracefully, to avoid undue overhead it should disable the notification using the
mntSetExitNotify() function.

Next the application must register with the DM3 Kernel the fact that it is “using”
certain component instances by calling i CompUse() function. When the

handle associated with the source address is closed@iax thlotify message is

sent, the DM3 Kernel will send ttigExitNotify to each component instance

identified as “used.” However, if a particular component instance is also being
“used” by another application, the kernel only removes that address from the used
list and does not ser@ExitNotify. At that point, the component instance will

know to stop any active operations and clean up any resources. Similarly, the
mntCompAllocate() function causes a sort of implicit “use” as a side effect

where the calling application address is added to the user list.

Call themntCompUnuse() function to disable exit notification by the DM3
Kernel to the component instances listed in the payload, that is, to remove the
caller from the “used” list.

Application exit notification applies to clusters as well. When an application calls
mntCluster Create() or mntCluster Allocate(), the cluster is considered “used”

by the application. If the DM3 Kernel receiveQBxitNotify message for that

source address, then one of two things may happen. If the cluster was locked by a
call tomntCluster ConfigL ock(), then the cluster is freed, assuming no other
application are “using” it. If the cluster was not locked and no more applications
are “using” it, then th@ExitNotify message is forwarded to all component

instances within the cluster. After all the component instances have responded,
then the cluster is freed and destroyed.

98

10. Error Handling

10.1. Retrieving Errors from the Host

Use the Win32 API function call GetLastError() to retrieve error information
from the host machine. See Section 4.1.3. Handling Asynchronous Function
Returns.

10.2. Retrieving Error Codes from the Embedded System

You will retrieve errors much differently depending on whether you called the
function synchronously or asynchronously.

10.2.1. Synchronous Platform Function Calls

If a synchronous function returns TRUE, it has completed successfully; no further
action is necessary. If it returns FALSE, it hasfailed; you must call the
GetLastError () function to get the error code. See Section 4.2.1. Handling
Synchronous Function Returns.

10.2.2. Asynchronous Platform Function Calls
The application is responsible for managing the OVERLAPPED structure.

If multiple requests are outstanding on the same device, each request must be
associated with a unique OVERLAPPED structure. If the message path, whichis
specified through the hDevice parameter, has been opened with the
FILE_FLAG_OVERLAPPED flag set in the dwFlagsAndAttributes parameter
in the CreateFile() function cal, the application must pass avalid IpOverlapped
parameter with the request.

The calling thread can use any wait function to wait for the event object, a

member of the OVERLAPPED structure, to be signaled, then call the
GetOverlappedResult() function to determine the operation’s results.

99

11. Direct Interface Application
Guidelines

Here’s a list of things to remember when using the Direct Interface.

11.1. Design & Development

Here’s a few general guidelines for when you're designing and developing your
application:

Your program must be robust enough to clean up after itself. Specifically, any
allocated component instances should be freed and any open streams should
be closed.

Use the WInNT Structured Exception Handling (SEH) feature to run your
cleanup code and cause the system to notify your application when certain
situations occur.

Use the WinNTSetConsoleCtrIHandler () function to catch CTRL-C and
BREAK entries from the keyboard.

11.2. Performance Issues

The following list shows how to avoid certain performance issues:

Avoid orphans messages and streams of any kind (that is, data copies). Use
asynchronous /O to avoid this situation.

Use the MercMon and PerfMon tools to watch 1/O traffic as well as to get
information about orphan messages, streams, and timeouts.

Avoid page faults by using Pview and PerfMon to understand the details of
the activity on the board.

101

Using the DM3 Direct Interface for Windows NT

11.2.1. Pending I/O Requests

To avoid orphan messages or streams, you will typically need to post more than
one request. The number of requests you post depends on your application and the
load you expect it to handle under a particular system configuration.

For the unsolicited messages that you need to field throughout the life of the

application (for example, alarms or errors), you should allocate permanent MMBs

and use the mntRegister AsyncM essages() function call. During devel opment

and testing, use the MercMon utility (see Section 14.4. MercMon) to seeif any

orphan messages are created. Please note, however, that MercMon’s counter of
orphan messages shows the total cumulative number of orphaned messages, not
the current orphan count.

If the orphan message volume does not drop back to zero, your application is not
reading them. Use tremdump tool (seeSection 14.6. Omdump) to examine the
orphan messages and take appropriate action.

In terms of performance impact, remember that when the Protocol Driver receives
a message, it has to search through all pending MMBs for a potential match.
Therefore, it's best to optimize by posting just enough MMBs to avoid orphans.
This applies to reading streams as well.

Simply because of the required buffering needed, orphan streams are likely to
have greater impact on performance. Be sure to use MercMon to monitor orphan
streams while running your application. If you see any, you should increase the
number of posted reads. For convenience husRegister AsyncStreams() to

post multiple read buffers. Keep in mind that for each read posted, its buffer is
mapped to system space and its physical pages are locked. Thus, there is a
practical limit to how many reads you can post before you begin to impact other
areas of the system.

102

12. Compiling and Linking an
Application

How you compile and link is partially afunction of your C or C++ environment.
However, there afew things to keep in mind as you perform these functions:

* Therearetwo versions of the Direct Interface library: one containing debug
functions (that enables logging information), and another without debug

functions.
Table 4. Filenames of Libraries

If you're using... and you want a link this file:
library...

Microsoft Visua C++ with debug functionality | mntid.lib
without debug mnti.lib
functionality

Borland C++ with debug functionality | mntid_b.lib
without debug mnti_b.lib
functionality

103

13. Debugging

Because the Direct Interface program is a communications application that has
strict requirements for performance and robustness, debugging might consist of
not only logging API calls, and but also capturing and recording the actual 1/0
traffic. For this reason, the Direct I nterface provides two debugging facilities,
tracing and the Protocol Driver trace log.

During your development and testing phases, you should use the debug version of
the Direct Interface (mntid.lib) that supports debug tracing. When you no longer
need debug functionality, link in the non-debug version of the library (mnti.lib).

13.1. Tracing

When tracing is enabled, all Direct Interface functions output the tracing to a disk
file that you can examine after the program has run. This can be especially helpful
if you run several processes and/or threads. In the non-debug version of the Direct
Interface, al tracing calls are null operations and present no overhead.

13.2. Protocol Driver Trace Log

The Protocol Driver provides logging services that capture both inbound and
outbound messages and streams. Only the system administrator can enable
Protocol Driver tracing. Enabled traced events are written to the mpd_dbug.dat
fileinthe %8y st enRoot % syst enB2\ dri ver s directory. Because Protocol
Driver tracing impacts system performance, you should useit only if absolutely
necessary, and only during testing.

Caution

Enabling Protocol Driver tracing can add further confusion during
debugging because it might subtly alter real time application behavior.
Use thisfeature only as alast resort.

105

Using the DM3 Direct Interface for Windows NT

13.3. Cleaning Up after Exits and Crashes

One facet of writing areliable and robust Direct Interface application programis
to properly release DM 3 resources each time the program terminates, whether
normally or abnormally. Specifically, you must release al alocated component
instances and close all open streams. Otherwise, you will eventually lose these
critical resources and be unable to access the DM 3 embedded system.

For the development phase of your application, the Direct Interface provides exit
notification functionality (described in 9. Exit Notification) to help you clean up
at program termination. Once your application is headed into its production phase
however, Y ou should not use or depend on these functions.

For your production application, you should use Windows NT structured
exception handling to clean up properly at program exit. For Windows NT
console programs, you need to provide your own Ctrl+C and Ctrl+Break handlers
that properly close al open streams through mntDetachM er cStream() function
callsand free all component instances through mntCompFree() function calls.

106

14. Tools and Utilities

This chapter contains instructions for a number of tools and utilities that are
packaged with the Direct Interface. Use these tools for avariety of tasks during
your development cycle:

o dm3stderr
This utility actslike avirtual "tip" or serial port session to the DM 3 board.

* Mercmon
Thistool logs and reports any issues raised from the DM 3 embedded system.

e Mpdtrace
This program can enable or disable driver debugging, and retrieve the driver
debug buffer.

e qgerror
This utility displays a string associated with the error code returned in a
QResultError message from the board.

e Omdump
This utility can be used to dump Orphaned Messagesto afile.

e strmstat
This utility displays a stream’s current state.

107

Using the DM3 Direct Interface for Windows NT

14.1. dm3stderr

This utility actslike avirtual "tip" or serial port session to the DM 3 board. All

DM3 boards send “printfs” to both the serial port and to the host. This program
polls the board and displays those “printfs” from the resources and kernel to the
screen.

ThednBst der r utility takes the following parameters:

Parameter M eaning

-b board number The number of the board in the system. This is
required.

-d debug level Sets the debug level.

-f filename The name of the file in which you want to capture fhe
output.

-h Displays a help screen.

-V Displays the version nhumber of the software.

14.1.1. Example

dnBstderr -bl -f output.txt

This will grab the printf data from board 1 and display it to the screen and save it
to file "output.txt".

108

14. Tools and Utilities

14.2. gerror

This utility displays a string associated with the error code returned in a
QResultError message from the board. This codeis generated with a PERL script
directly from the header files, so it is as accurate as the comments in the header
filesare.

The source to this code is arranged so that the "get error string” function can be
pulled out and used in any application.

14.2.1. Usage
Enter gerror on the command line in the following manner:
gerror [option_list] ERRORCODE

Theqger r or utility takes the following options:

Parameter M eaning

-b number Base of the input number. Use 10 for decimal or 16
for hexadecimal. 16 is the default.

-d debug level Set the debug level inarangefrom 0 to 5. O isthe
default.

-h Displays a help screen.

-V Displays the version number of the software.

14.2.2. Example
gerror 28008
ERROR==> 0x28008 (163848)
Kernel Error:
Cl uster does not exist or cannot be found

109

Using the DM3 Direct Interface for Windows NT

14.3. kernelver

This utility will query the kernel on any processor for its version number. Usethe
-1 option to "ping" the board if you just want to generate message traffic or asa
good test to seeif the kernel is running.

Theker nel ver command takes the following parameters:

Parameter M eaning

-b board number The number of the board in the system. Thisis
required.

-d debug level Set the debug level inarangefrom 0 to 5. O isthe
default.

-p processor number The number of the processor on the board. Thisis
always required.

-l loop Number of times to grab version.

-h Displays a help screen.

-V Displays the version number of the software.

14.3.1. Example

e kernelver -b0 -p2
Getsthe version of the kernel running on processor 2.

110

14. Tools and Utilities

14.4. MercMon

Both the Class Driver and the Protocol Driver maintain various counters that can
aid in monitoring system activities and interpreting certain behaviors. Since
MercMon is aread-only application, permissions are granted to all users.

14.4.1. Usage

The Mer cMon utility takes the following parameters:

Parameter M eaning

/t milliseconds The timer period in milliseconds. Default is 1000.
/I seconds Thelog period in seconds. Default is 600.

Table 5 lists the Class Driver counters. Table 6 lists the Protocol Driver counters.

You can also use NT’'s PerfMon utility to monitor the DM3 boards. Select either
“MCD Device” (for the Class Driver) or “MPD Device” (for the Protocol Driver)
object and add specific counters of interest.

Table 5. Class Driver Counters

Class Driver Description
Counter

CanTakes number of Can_Take messages received. The DM3 board can
send Can_Take messages to control the flow from the host

CloseStrmErrs| number of stream close request errors.

FailMpathFind | number of times that the Class Driver has failed to find an
Mpath device.

FailStrmFind number of times that the Class Driver has failed to find a Sfream
device.

OpenedStrms number of currently opened streams.

111

Using the DM3 Direct Interface for Windows NT

Class Driver Description

Counter

OpenStrmErrs | number of stream open request errors.

Reads number, in kilobytes, of read requests successfully compl eted.

ReadTimeouts | number of stream read requests that have timed out.

SendTimeouts | number of message write requests that have timed out.

SplitWrites number of split writes that the Class Driver has made. For each
large write request, the Class Driver splitsit into multiple
partial transfers.

StrmCloses number of stream close requests received

StrmOpens number of stream open requests received

TotalReads number of stream read requests received

Total Sends number of message send requests received

TotalWrites number of stream write requests received

Writes number, in kilobytes, of write requests successfully completed.

WriteTimeouts | number of stream write requests that have timed out.

Table 6. Protocol Driver Counters

Protocol Driver Description

Counters

AsyncMsgQ number of asych message read requests received
AsyncMsgQDone number of message read requests compl eted.
BadSramOffset number of invalid values that the Protocol Driver

has found in the control structuresin the DM3-
board-resident SRAM. These control structures
consist of circular buffers and a chained list of free
data blocks. This count should always be 0.

112

14. Tools and Utilities

Protocol Driver Description

Counters

BigMsgsRevd number of big messages received from the DM 3
board through data blocks. The Protocol Driver uses
adata block for each message larger than 24 bytes.

BigMsgsSent number of big messages sent

Boguslnterrupts number of times that the Protocol Driver received
interrupts from the DM 3 board while its status
register contained 0.

Dmal nterrupts because the Protocol Driver does not support DMA,
this value should always be 0.

DpcOverruns number of times that the Protocol Driver could not
gueue its DPC processing in response to interrupts.
If this counter isincreasing persistently, it indicates
an overloaded system. In other words, the system
cannot keep up with itsincoming interrupts. Y ou
need to make some hardware upgrades.

IrpsCanceled number of canceled 1/0 requests.

MsglnQ number of message read requests received

MsginQDone number of message read requests completed

MsgInSram the cumulative total of messages read from the
SRAM.

MsgOutQ number of message send requests received

MsgOutQDone number of message send requests completed

MsgOutSram number of messages written to the SRAM.

MsgOverruns number of times that the Protocol Driver could not

buffer incoming message data. If this counter is
increasing persistently, you need to increase the
value in the orphanageM sgLen parameter.

113

Using the DM3 Direct Interface for Windows NT

Protocol Driver
Counters

Description

M sgsl nPerSramSession

number of messages that the Protocol Driver has
read from the SRAM during any inbound session.
This counter fluctuates between 0 and integer values
that vary according to DM 3-board-generated traffic.

M sgsOutPerSramSession

number of messages that the Protocol Driver has
written to the SRAM during any outbound session.
This counter fluctuates between 0 and integer values
that vary according to application-generated traffic.

MsgTimeouts

number of message read and send requests that have
timed out

NolnDataDpclsr

number of times that the Protocol Driver received
interrupts from the DM 3 board and attempted to

read the SRAM buffers, but there were nothing to be
read. This can happen if the Protocol Driver’s tim
routine has already emptied the buffers. This timg
routine runs at the interval specified in the
sramOutTimer parameter.

OrphanStrms

number of times that the Protocol Driver had to
buffer streams. This indicates that read requests
not getting to the Protocol Driver quickly enough.
Unless there are also overruns and timeouts, this
counter can be increasing without indicating a mg
problem.

-

are

jor

OrphanStrmVol

aggregate number, in bytes, of all orphan buffers
there are orphan streams, you should see this co
fluctuate up and down, hopefully down to O.

f
unter

OrphMsgMatches

number of message read requests satisfied by t
message orphan buffer.

he

OrphMsgs

number of orphan messages received. Please n
that this is the total count of orphan messages, n(
the current count.

Dte

—

114

14. Tools and Utilities

Protocol Driver Description

Counters

OrphMsgVolume current size, in bytes, of the message orphanage.

OrphStrmMatches number of stream read requests satisfied by an
orphan buffer.

SramDataFull number of times that the Protocol Driver found the

SRAM data queue full, and could not writeto it.. If
this count is not 0, you might need to increase the
value in the maxHostDataXfer parameter.

SramGrantl nterrupts

number of grant interrupts received by the Protocol
Driver. The Protocol Driver must obtain permission
before it can access the DM 3 board-resident SRAM.
Unless such permission has already been granted,
the Protocol Driver must wait for agrant interrupt.
This number should increase, but much more slowly
than the number in the Sraml nterrupts counter.

SramGrantL ost

number of SRAM grants that the Protocol Driver
could not find. Each time the Protocol Driver finds
aninvalid valuein the SRAM control structures, it
triesto find agrant in the SRAM grant status
register. This count should always be 0.

Sraminterrupts

number of DM 3 board interrupts that indicated that
messages and/or data were ready to be read.

SramMsgFull number of times that the Protocol Driver found the
SRAM message queue full, and could not write to it.

StrminQ number of stream read requests received by the
Protocol Driver. For example, these can be
ReadFile() function calls.

StrminSram number of stream blocks read from the SRAM.

StrminQDone number of stream read requests completed

StrmOutQ number of stream send requests received

115

Using the DM3 Direct Interface for Windows NT

Protocol Driver
Counters

Description

StrmOutQDone

number of stream send requests compl eted

StrmOutSram

number of stream blocks written to the SRAM.

StrmOverruns

number of times that the Protocol Driver could not
buffer incoming stream data. Any non-zero value
here dictates that you need to take remedial action.
Y ou might need to adjust the application. Y ou might
need to provide more physical memory. Clearly, if
this counter isincreasing persistently, it indicates a
serious problem that you must address.

StrmslnPerSramSession

number of stream blocks that the Protocol Driver has
read from the SRAM during any inbound session.
This counter fluctuates between 0 and integer values
that vary according to DM 3-board-generated traffic.
If this count is consistently low, you can increase the
value in the hwintinterval parameter.

StrmsOutPerSramSession

number of stream blocks that the Protocol Driver has
written to the SRAM during any outbound session.
This counter fluctuates between 0 and integer values
that vary according to application-generated traffic.

StrmTimeouts

number of times that read requests have timed out.
Although thisis not as serious as stream overruns,
this counter should not be increasing constantly.

Unknownlinterrupts

number of times that the Protocol Driver received
interrupts from the DM 3 board, and could not
determine the reasons. This value should always be
0.

116

14. Tools and Utilities

14.5. Mpdtrace

This program can enable or disable driver debugging, and retrieve the driver
debug buffer. The driver debug buffer is enabled and retrieved on a per board
basis.

14.5.1. Usage

The npdt r ace command takes the following parameters:

Parameter M eaning
/b board number Board number. Thisis required.
/tr tracing enable/disable 0/1 enables or disables tracing.

/mi message in enable/disable 0/1 enables or disables message in.

/mo message out enable/disable | 0/1 enables or disables message out.

/s stream in enable/disable 0/1 enables or disables streamin.

/so stream out enable/disable 0/1 enables or disables stream out.

14.5.2. Examples

e npdtrace /b3 /tr0
Enables driver tracing on board 3

e npdtrace /b3 /trl
Disables driver tracing on board 3

117

Using the DM3 Direct Interface for Windows NT

14.6. Omdump

The omdump utility dumps orphan messages and places them in afile. An orphan
message is defined as an MMB that was posted but there were no receive buffers
for it.

14.6.1. Usage

The ondunp command takes the following parameters:

Parameter M eaning

/b board number Board number. Thisis required.
/f filename The name of the output file.

/? Displays a help screen.

14.6.2. Examples

The following shows the command line and the output file:

e ondunp /b O /f orphan.dnp
This command dumps the messages in the orphan buffer to afile called

orphan.dmp. The output isin the following format:
Qurrent Time: Fri Feb 13 11:35:06 1998

#0
status: alive with longevity=11
flag: 80
xi d: 0x00000001, 1
type: 0x00000020, 32
srcDesc: 0:0:1:15:1
dst Desc: 0:0:0:2:51
nsgS ze: 24
nsg# 0: 0x00000001
nsg# 1. 0x0000123a
nsg# 2: 0x0013283c
nsg# 3: 0x00030001
nsg# 4. 0x0000000a
nsg# 5. 0x0000000c

#1
status: alive with longevity=11
flag: 80
xi d: 0x00000001, 1

118

14. Tools and Utilities

type: 0x00000020, 32

srcDesc: 0:0:1:15:1
dst Desc: 0:0:0: 2: 62
nsgS ze: 24

nsg# 0: 0x00000001
nsg# 1: 0x0000123a
nmsg# 2: 0x0013283c
nsg# 3: 0x00030001
nmsg# 4: 0x0000000a
nmsg# 5: 0x0000000c

14.7. strmstat

This utility displays the current state of the stream(s) specified.

States shown include:

e« Closing

e Closed

* Closefailed

* Opening

e Opened for write

e Opened for read

e Openfaled

14.7.1. Usage

Thest rnst at command takes the following parameters:
Parameter M eaning

/i number of streams The number of stream on which to report.
/b board number Board number. Thisis required.
/s start stream Thefirst stream to report.

? Displays a help screen.

119

Using the DM3 Direct Interface for Windows NT

14.8. Examples

The following shows the command line and the output file:

e strnstat /b O /i 16
This command displays the stream state for stream IDs 1 to 16 on board 0.
The output is simliar to the following example:

Stream Status for Board = 0

Stream | D State Additional Info
1 d osed
2 d osed
3 d osed
4 d osed
5 d osed
6 d osed
7 d osed
8 pened Wite
9 pened Wite
10 pened Wite
11 Qpened Wite
12 Qpened Wite
13 pened Wite
14 Qpened Wite
15 Qpened Wite
16 Qpened Wite
TOTALS
d osed = Qpened = 9 Qosing =0 Qoening = 0

doseErr =0 penErr = 0 Unknown

120

Index

A

address space, 39
application cleanup, 106

application development models
Asynchronous, 19
Synchronous, 22

application exit notification, 97

Architecture, DM3
definition, 7

asynchronous functions, 26
OVERLAPPED structure, 26

Asynchronous model, 19

asynchronous models
Asynchronous, 19

asynchronous programming, 19, 21
attributes, 41, 65, 89

B
Board Number, 40

buffering
protocol driver, 84

C
callback programming model, 17
Can_Take, 76
Cancello(), 60, 77, 85
Class Driver, 11
initialization, 37
cleanup, 106

Component

definition, 7
component exit notification, 97
cPCl, 6
CreateFile(), 37, 43, 44
Createl oCompletionPort(), 27

D

debugging
logging, 105
tracing, 105

debugging your program, 105

device types
DM3, 37
Mpath, 38
Stream, 40

Devices
names, 43
opening, 44

Dialogic Class Driver, 11
Diaogic Protocol Driver, 11

Direct Interface
debugging, 105

DLGCMCD, 11
DLGCMPD, 11

DM3 architecture
key concepts, 7

DM3 device types, 37

DM3 Direct Interface host library, 10
DM3 embedded system, 11

DM3 firmware, 12

121

Using the DM3 Direct Interface for Windows NT

DM3 Hardware, 11
DM3 host library, 10
DMA, 11
DuplicateHandle(), 39

E

EOD (end of data), 67

EOF (end of file), 67

EOT (end of transmission), 67
ERROR_SHARING_VIOLATION, 43
Eventing, 15

exit notification
component, 97

F
FILE_FLAG, 28

flow control
write streams, 76

functions
asynchronous, 26

G

GetQueuedCompl etionStatus(), 28, 30,
51

H

Hardware, 11

I

1/0 Completion Option Flags, 50
I/O completion ports 15, 27

Introduction to DM 3 architecture
definition, 7

122

L
logging services, 105

logical board number, 41
M

Macros
MMB Header, 47
QMsgg structure, 48

MercMon, 111
Message Block, Multiple, 13
Message Paths (M path), 38
Messages
asynchronous, 59
canceling, 60
definition, 8
empty, 59

reply, 15
unsolicited, 15, 49, 59, 102

MMB, 13, 40
mntAttachMercStream(), 40
mntDetachMercStream(), 71
mntEnumM pathDevice(), 43
mntEnumStrmDevice(), 43, 70
mntFreeMMB(), 57
mntGetBoardsByAttr(), 41

Models
programming, 17

Mpath, 37
handle
sharing across processes, 39

M path device type, 38

M path devices
number of, 39

MPD buffering, 84
Multiple Message Block, 13
Multitasking, 39

Multithreaded applications
Mpath devicesin, 39

@)
overhead, 39
Overlapped, 15

P
PCl, 6
PIO, 11

programming fundamentals
asynchronous programming, 19, 21
synchronous programming, 22

Programming Models, 17
callback, 17

Protocol Driver, 11
protocol driver buffering, 84

protocol driver trace log, 105

Q

QMsg
structure macros, 48

R

read buffer size
specifying, 85

read streams
programming, 77

ReadFile(), 11
reply messages, 15
Resource

Index

definition, 7

Run-Time Control, 15

S

Sharing Violations
avoiding, 43

state machine, 20

stream
number, 40

stream data
reading, 77
writing, 69

Stream device type, 40
Stream Paths (Strm), 40

streams
flags, 76
1/O operations, 67
programming, 67
reading, 77
writing, 69

Strm, 37
Strm device type, 40
synchronization, 39

Synchronous model
choosing, 22
defined, 22

synchronous programming, 22

T
TCP port number, 38

threads
synchronization, 39

tracing, 105

tuning considerations

123

Using the DM3 Direct Interface for Windows NT

MercMon, 111

U
unsolicited messages, 15, 49, 59, 102

W

WaitForMultipleObjects(), 51
WaitForSingleObject(), 51
Win32, 37

write streams
flow control, 76
programming, 69

WriteFile(), 11

124

Index

125

Using the DM3 Direct Interface for Windows NT

126

NOTES

NOTES

NOTES

DOCUMENTATION FEEDBACK FORM

Document Title:

Publication Date: April, 1998

Using the DM 3 Direct Interface for Windows NT

Part Number: 05-0987-001

1. Please rate this document in the following areas:

Excellent

Good

Adequate Fair

1:
S

N/A

Accuracy

O

Clarity

Ease of Use
Relevanceto Job
Code Examples
Organization
Completeness
Figures/lllustrations

Appearance

OoO0Ooo0oo0ooooQgood

Overall Satisfaction

O

O0O0o0oo0ooooQgogod

O

OO0Oo0oo0ooooQogogod
OO0 o0oo0oooQogoogod
OO0 o0oo0ooQoooogd

[[[[|

2. How can we improve this document?
O Improve the index

O Improve the organization

O Improve overviews and introductions
O Include moreillustrations and figures
0 Add more/better quick reference aids
0 Add more troubleshooting information

0 Add more step-by-step procedures and tutorials

O Makeit more concise

O Add more detail

0 Add more/better code examples
O Makeit less technical

O Makeit more technical

3. Please include any other comments on an additional sheet.

4. FAX thisform to DIALOGIC DOCUMENTATION MANAGER at (973) 993-5916.

NAME:

PHONE:

COMPANY:

ADDRESS:

