
Using the DM3 Direct
Interface

for Windows NT

Copyright © 1998 Dialogic Corporation

PRINTED ON RECYCLED PAPER

05-0987-001

COPYRIGHT NOTICE

Copyright 1998 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment
on the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot
guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. No
warranties of any nature are extended by the information contained in these copyrighted materials.
Use or implementation of any one of the concepts, applications, or ideas described this document or
on Web pages maintained by Dialogic-may infringe one or more patents or other intellectual property
rights owned by third parties. Dialogic does not condone or encourage such infringement. Dialogic
makes no warranty with respect to such infringement, nor does Dialogic waive any of its own
intellectual property rights which may cover systems implementing one or more of the ideas contained
herein. Procurement of appropriate intellectual property rights and licenses is solely the responsibility
of the system implementer. The software referred to in this document is provided under a Software
License Agreement. Refer to the Software License Agreement for complete details governing the use
of the software.

All names, products, and services mentioned herein are the trademarks or registered trademarks of
their respective organizations and are the sole property of their respective owners. DIALOGIC
(including the Dialogic logo and Signal Computing System Architecture (SCSA) are registered
trademarks of Dialogic Corporation. The following are also trademarks of Dialogic Corporation:
GlobalCall, SCbus, SCxbus, SCxbus Adapter, SCSA, Signal Computing System Architecture.

Publication Date: April, 1998

Part Number: 05-0987-001

Dialogic Corporation
1515 Route 10
Parsippany NJ 07054

Technical Support
Phone: 973-993-1443
Fax: 973-993-8387
BBS: 973-993-0864
Email: CustEng@dialogic.com

For Sales Offices and other contact information, visit our website at http://www.dialogic.com

iii

Table of Contents

1. Introduction ... 1
1.1. Information in This Guide .. 2
1.2. How to use This Guide ... 4

1.2.1. Typeface Conventions ... 4
1.2.2. Other Relevant Guides and References.. 6

1.3. Overview: DM3 Family of Products.. 6
1.4. Key DM3 Architecture Concepts ... 7

2. Understanding the Direct Interface ... 9
2.1. Host Software ... 9

2.1.1. DM3 Direct Interface Host Library ... 10
2.1.2. DM3 Device Drivers.. 11

2.2. DM3 Hardware... 11
2.3. DM3 Firmware ... 12
2.4. Understanding Data Communication.. 12

2.4.1. Understanding Messaging.. 13
2.4.2. Understanding Data Streams.. 15
2.4.3. Understanding Eventing and Run-Time Control.................................. 15

3. Windows NT Programming Models .. 17
3.1. Choosing a Programming Model.. 18
3.2. Asynchronous Multithreaded Model .. 19

3.2.1. Asynchronous Multithreaded Model Trade-offs.................................. 19
3.2.2. Asynchronous Multithreaded Programming Notes 20

3.3. Asynchronous Single-threaded Model.. 21
3.3.1. Asynchronous Single-threaded Model Trade-offs 21
3.3.2. Asynchronous Single-threaded Programming Notes............................ 21

3.4. Synchronous Multithreaded Model .. 22
3.4.1. Synchronous Multithreaded Model Trade-offs 22
3.4.2. Synchronous Multithreaded Model Programming Notes..................... 23

3.5. Synchronous Single-threaded Model.. 23
3.6. Multi-process Applications... 23

4. Calling Direct Interface Functions... 25
4.1. Calling Functions Asynchronously... 26

4.1.1. OVERLAPPED Structure.. 26
4.1.2. I/O Completion Ports ... 27
4.1.3. Handling Asynchronous Function Returns .. 30

Using the DM3 Direct Interface for Windows NT

iv

4.2. Calling Functions Synchronously... 33
4.2.1. Handling Synchronous Function Returns... 33

5. DM3 Devices .. 37
5.1. Device Names... 37

5.1.1. Message Paths (Mpath).. 38
5.1.2. Stream Paths (Strm) ... 40
5.1.3. Board Number ... 40

5.2. Obtaining Device Name Strings ... 43
5.2.1. Avoiding Sharing Violations ... 43

5.3. Obtaining File Handles to Communicate with DM3 Devices....................... 44

6. Using Messages .. 45
6.1. Requesting an Mpath Device Name ... 46
6.2. Creating a Handle to the Mpath Device.. 46
6.3. Allocating a Multiple Message Block (MMB) ... 47
6.4. Filling in MMB Fields.. 47

6.4.1. Matching Criteria... 49
6.5. Sending the Message .. 51

6.5.1. Sending Asynchronously or Synchronously... 51
6.5.2. Example: Sending and Receiving a Simple Message........................... 52
6.5.3. Example: Sending a Fixed-Size Message .. 53
6.5.4. Example: Sending a Variable Payload Message 54
6.5.5. Example: Sending a Variable List Message... 55
6.5.6. Example: Sending a KVSet Message... 56

6.6. Retrieving a Reply Message ... 57
6.7. Handling Unsolicited Messages.. 59
6.8. Canceling Pending Messages.. 60
6.9. Example: Sending a Message and Receiving a Reply 60
6.10. Using Attributes to Find a Component ... 65

6.10.1. Standard Component Types ... 66

7. Using Data Streams ... 67
7.1. Writing Stream Data... 69

7.1.1. Example: Writing Stream Data .. 71
7.1.2. Flow Control.. 76
7.1.3. Setting Stream Flags .. 76
7.1.4. Canceling Stream Writes ... 77

7.2. Reading Stream Data .. 77
7.2.1. Example: Reading Stream Data ... 79
7.2.2. Protocol Driver Buffering .. 84

Table of Contents

v

7.2.3. Specifying Read Buffer Sizes .. 85
7.2.4. Canceling Stream Reads .. 85

8. Using Clusters .. 87
8.1. Host Application Cluster Control ... 87

8.1.1. Finding a Cluster.. 89
8.1.2. Adding Components to Clusters .. 89
8.1.3. Assigning an SCbus Timeslot to an SCbus Resource 91
8.1.4. Talker Protocol .. 91
8.1.5. Changing the Default Cluster Configuration.. 94
8.1.6. Finding Cluster Assignment... 96
8.1.7. Connecting Ports on the Same Board .. 96

9. Exit Notification... 97
9.1. Setting up Board-level Exit Notification .. 97
9.2. Setting up Application Exit Notification .. 97

10. Error Handling .. 99
10.1. Retrieving Errors from the Host ... 99
10.2. Retrieving Error Codes from the Embedded System.................................. 99

10.2.1. Synchronous Platform Function Calls.. 99
10.2.2. Asynchronous Platform Function Calls ... 99

11. Direct Interface Application Guidelines .. 101
11.1. Design & Development .. 101
11.2. Performance Issues ... 101

11.2.1. Pending I/O Requests... 102

12. Compiling and Linking an Application ... 103

13. Debugging .. 105
13.1. Tracing ... 105
13.2. Protocol Driver Trace Log ... 105
13.3. Cleaning Up after Exits and Crashes .. 106

14. Tools and Utilities .. 107
14.1. dm3stderr.. 108

14.1.1. Example ... 108
14.2. qerror ... 109

14.2.1. Usage ... 109
14.2.2. Example ... 109

14.3. kernelver... 110
14.3.1. Example ... 110

Using the DM3 Direct Interface for Windows NT

vi

 14.4. MercMon... 111
14.4.1. Usage ... 111

14.5. Mpdtrace... 117
14.5.1. Usage ... 117
14.5.2. Examples.. 117

14.6. Omdump... 118
14.6.1. Usage ... 118
14.6.2. Examples.. 118

14.7. strmstat ... 119
14.7.1. Usage ... 119

14.8. Examples ... 120

Index .. 121

vii

List of Tables

Table 1. Choosing a Programming Model.. 18
Table 2. Matching Criteria .. 50
Table 3. Host Cluster Control Tasks ... 88
Table 4. Filenames of Libraries... 103
Table 5. Class Driver Counters.. 111
Table 6. Protocol Driver Counters... 112

Using the DM3 Direct Interface for Windows NT

viii

ix

List of Figures

Figure 1. The DM3 Direct Interface in a System... 2
Figure 2. DM3 Direct Interface Components .. 10
Figure 3. MMB Structure .. 14
Figure 4. Calling Functions From Your Application ... 26
Figure 5. Handling Asynchronous Function Returns... 31
Figure 6. Handling Synchronous Function Returns... 34
Figure 7. Direct Interface Stream Flow ... 69
Figure 8. Default Cluster Connections Example.. 90
Figure 9. SCbus Resource Talking .. 92
Figure 10. Default Cluster Connections Example.. 95
Figure 11. Reconfigured Cluster.. 96

Using the DM3 Direct Interface for Windows NT

x

1

1. Introduction

This guide presents the methods you can use for developing applications based on
DM3 products. Use this guide in conjunction with the DM3 Direct Interface
Function Reference for Windows NT and other guides.

The Direct Interface provides host developers with the lowest level of control over
the DM3 embedded system and offers a great degree of flexibility. Use the Direct
Interface either to build your applications or to build a functional software layer to
emulate other application programming interfaces (APIs).

To help you implement common features and routine functions, Dialogic offers
Application Foundation Code with many DM3 products. See the document
entitled DM3 Application Foundation Code for Windows NT .

As shown in Figure 1. The DM3 Direct Interface in a System, the Direct Interface
(DI) is the interface between an application and the embedded system. The DI is a
host library which offers access to the device drivers and is the only way to get
driver-level access. For details, see Chapter 2. Understanding the Direct
Interface.

Note that while the Direct Interface can be used across all DM3 products under
Windows NT, the functionality of a DM3 product is provided by firmware-based
resources (which are downloaded to the DM3 hardware). Different DM3 products
may have unique capabilities including some capabilities added by third-party
developers.

Using the DM3 Direct Interface for Windows NT

2

Direct
Interface

Protocol Driver

Class Driver

Win32 API

Win32 Application

Host

Embedded

DM3 Host Library

Accessible

Inaccessible

Figure 1. The DM3 Direct Interface in a System

1.1. Information in This Guide

This guide is arranged into the following chapters:

• Chapter 1: Introduction provides a brief introduction to the Direct Interface
and offers a broad context for understanding its function with the DM3
Architecture.

• Chapter 2: Understanding the Direct Interface explains the concepts you
need to understand before you begin programming.

• Chapter 3: Windows NT Programming Models describes the pros and
cons of different programming models.

• Chapter 4: Calling Direct Interface Functions briefly discusses some
issues you need to consider when calling functions using the Direct Interface
Host Library.

1. Introduction

3

• Chapter 5: DM3 Devices provides details about the device types used to
support messaging and bulk data transfers.

• Chapter 6: Using Messages shows how to build, access, format, send,
receive, and cancel messaging operations.

• Chapter 7: Using Data Streams shows how to write, read, and cancel bulk
data transfers.

• Chapter 8: Using Clusters shows how a host application can control clusters
on the DM3 embedded system.

• Chapter 9: Exit Notification shows how to enable your application to
respond to system failures

• Chapter 10: Error Handling discusses how to retrieve errors from the host
and from the embedded system.

• Chapter 11: Direct Interface Programming Guidelines provides several
helpful tips to use when using Direct Interface function calls.

• Chapter 12: Compiling and Linking an Application provides some
necessary tips to use when compiling and linking.

• Chapter 13: Debugging lists some facts about debugging.

• Chapter 14: Tools and Utilities contains instructions on how to use the
utilities supplied with a DM3 product.

• Index

Using the DM3 Direct Interface for Windows NT

4

1.2. How to use This Guide

This guide shows how to use the DM3 Direct Interface for Windows NT to build
programs. The low-level and flexible nature of the Direct Interface allows you
build either of the following programs on your host processor:

• applications based on DM3 embedded firmware resources

• application programming interfaces

1.2.1. Typeface Conventions

The following conventions are used throughout DM3 software:

• Function Names begin with a lowercase “mnt” followed by one or more
words describing the function. Each word within the function name begins
with a capital letter, there are no separator characters, and the name ends with
a set of parentheses; for example, mntCompFind(). Function names are
always presented in boldface type.

• Macro Names are shown in one of two ways, depending on the macro type.
Macros used to access DM3 messages and Multiple Message Blocks (MMBs)
are shown in non-bold uppercase type, such as MNT_GET_CMD_QMSG.
Macros used to access DM3 structures are shown in non-bold mixed case
type, such as QResultError_get.

• Data Type Names (typedef) begin with an uppercase “Q” followed by one
or more words describing the data type. Each word within the data type name
begins with a capital letter, and there are no separator characters; for
example, QStatus. This convention may sometimes be overruled by the
conventions of the operating system.

• Constant Definitions (#define) are shown in non-bold uppercase type, such
as MNTI_STATE_PRE_INIT and MNTI_STATE_INITIALIZED.
Underscore separators between words aid readability. Related constant
definitions share the same first word.

1. Introduction

5

• Parameter Names begin with a lowercase letter; words within the name
begin with a capital letter. Pointer parameters begin with the letters “lp”.
Examples include mode, theInstance, and lpCount. The function parameters
are ordered with inputs appearing before outputs. Parameters are always
shown in boldface type.

• Message Names begin with the name of the component (or sometimes an
abbreviation of the name) to which it pertains, an underscore, and then the
letters Msg. Some examples are Player_MsgStop and Recorder_MsgStop.
There are also standard messages (which many components support) that
begin with Std_Msg (for example, Std_MsgError) . Message names are
presented in italic type.

• Field Names used in data structures are presented in boldface type.

• File Names are lowercase and shown in italic type. Example: coders.h

• Code Examples and Command Line Input are shown in a small constant-
width font. For example:

typedef struct {
UInt8 userType;
QTStreamType stream;
UInt8 instance;

} QPortId;

• Variables within a command line are shown in italics.
For example: edit myfile

NOTE: Typographic conventions are not used within a code example.

Using the DM3 Direct Interface for Windows NT

6

1.2.2. Other Relevant Guides and References

Use the information in this guide in conjunction with these other sources of
information:

• DM3 Direct Interface Function Reference for Windows NT

• DM3 Mediastream Architecture Overview Guide

• DM3 Standard Component Interface Message Reference

1.3. Overview: DM3 Family of Products

Dialogic’s DM3 product family now includes a full range of voice, fax, speech,
network interface and internet telephony technologies. DM3 is the industry’s
broadest and most scaleable product line, enabling developers to create more
powerful computer telephony applications.

The entire Dialogic DM3-based family of products is available in the following
hardware form factors:

• PCI (Peripheral Component Interconnect)

• CompactPCI (compact Peripheral Component Interconnect)

• VME (Versa Module Europa)

These new technologies build upon the industry’s most scalable CT component
product line, enabling developers to create powerful DM3-based solutions:

• Voice Processing - Dialogic PCI products scale up to 120 channels of both
voice processing and network interface per card with the DM3-based
QuadSpan Series.

• Fax Processing - Dialogic’s PCI fax line is scalable up to 24 or 30 channels of
fax with the DM3 Fax series, the highest density fax resource on the market
today.

• Network Interface - Dialogic network interfaces include the QuadSpan DTI
Series for PCI and CompactPCI, designed to provide a powerful set of

1. Introduction

7

advanced call processing features that developers can use to create cost-
efficient, high channel density switching systems.

• Internet Telephony - The Dialogic DM3 IPLink family of PCI and
CompactPCI Internet telephony platforms is fully compatible with leading
H.323 client applications such as Microsoft NetMeeting, Intel Internet Video
Phone and VocalTec Internet Phone. DM3 IPLink-based servers enable
individuals to communicate directly over the data network—from phone to
phone, fax to fax, PC to phone, phone to PC and Web browser to phone.

1.4. Key DM3 Architecture Concepts

This section offers a brief explanation of the concepts that you must be familiar
with before you begin working with DM3 products. For more information about
these concepts, see the DM3 Mediastream Architecture Overview Guide.

• DM3 is an architecture on which a set of Dialogic products are built. The
DM3 architecture is open, layered, and flexible, encompassing hardware as
well as software components.

• A DM3 resource is a conceptual entity implemented in firmware that runs on
DM3 hardware. A resource contains a well defined interface or message set,
which the host application uses when accessing the resource. The message set
for each resource is described in a DM3 Resource User’s Guide.

Resource firmware consists of multiple components that run on the DM3 core
platform software. The DM3 GlobalCall resource is an example of such a
resource, providing all of the features and functionality necessary for
handling calls.

• A component is an entity that comprises a DM3 resource. A component runs
on a DM3 control processor or signal processor depending on its function.
Certain components handle configuration and management issues, while
others process stream data.

To access the features of a resource, the host exchanges messages and stream
data with certain components of that resource. During runtime, components
inside a resource communicate (via messages) with other components of that
resource, as well as with components of other resources.

• A component instance is a logical entity that represents a single thread of
control for the operations associated with a DM3 component. DM3

Using the DM3 Direct Interface for Windows NT

8

components generally support multiple instances so that a single component
on a single processor can be used to process multiple streams or channels.
Instances are addressable units and DM3 messages may be sent to individual
instances of a component.

• A DM3 message is a formatted block of data exchanged between the host and
component instances, between component instances and the core platform
software, as well as between the DM3 component instances themselves.

The DM3 architecture implements different kinds of messages, based on the
functionality of the message sender and recipient. Messages can initiate
actions, handle configuration, affect operating states, and indicate that events
have occurred.

• A cluster is a collection of DM3 component instances that share specific
timeslots on the network interface or the Time Division Multiplexed (TDM)
bus, and which therefore operate on the same data stream. The cluster concept
in the DM3 architecture corresponds generally to the concept of a “group” in
S.100, or to a “channel” in conventional Dialogic architectural terminology.
Component instances are bound to a particular cluster and its assigned
timeslots in an allocation operation.

• A port is a logical entity that represents the point at which Pulse Code
Modulated (PCM) data can flow between component instances in a cluster.
Ports are classified and designated in terms of data flow direction and the
type of component instance that provides the port.

9

2. Understanding the Direct Interface

Concepts you need to understand before you begin programming are discussed in
this section. Reading through this section will help explain some of the aspects of
the Direct Interface for Windows NT. See the DM3 Mediastream Architecture
Overview Guide for a more complete discussion.

The architecture of any DM3-based system consists of the following items:

• host software

• firmware modules

• hardware

2.1. Host Software

The DM3 Direct Interface is a low-level message-based interface. By sending and
receiving messages, the Direct Interface provides access to the DM3-based
embedded system, and shields you from device driver specifics. You can use the
Direct Interface as the foundation from which you can build a higher-level API.
Win32 file- and resource-management services are available to you when using
the Direct Interface.

The term “Direct Interface” is applied to the library that offers the lowest-level
access to the DM3 embedded system, regardless of the way it is implemented
under a certain operating system. For Windows NT, the DM3 Host Library
accesses DM3 Device Drivers (a Class Driver and a Protocol Driver).
Applications communicate only with the host library; the device drivers are not
accessed directly.

Figure 2 illustrates the host and embedded portions of a generic DM3-based
system.

Using the DM3 Direct Interface for Windows NT

10

Protocol Driver(s)

Class Driver

Win32 API

Win32 Application

Host

Embedded

DM3 Host Librarymnti.dll

dlgcmcd.sys

dlgcmpd.sys

Hardware
Firmware

Component Instances

Mpath & Strm
Devices

Board
Device(s)

Accessible

Inaccessible

Figure 2. DM3 Direct Interface Components

2.1.1. DM3 Direct Interface Host Library

The DM3 Direct Interface host library (mnti.lib) is the lowest-level interface for
accessing DM3 devices. Use the library in conjunction with the Win32 API to
produce native Windows NT applications. The DM3 Direct Interface provides
configuration management, message allocation, messaging, cluster and time slot
management, and data stream services.

All device handles used with the Direct Interface are native Win32 handles and
are passed directly to Win32 event functions. The host library protects internal
shared data structures from being overwritten when they are used by multiple
threads.

An application built with the Direct Interface for Windows NT uses the Multiple
Message Block (MMB) as the primary data structure. The MMB is used to send

2. Understanding the Direct Interface

11

messages to and receive messages from the DM3 embedded system. See the
section entitled Multiple Message Blocks (MMBs) for more information.

2.1.2. DM3 Device Drivers

DM3 device drivers include the Dialogic Class Driver and Dialogic Protocol
Driver. Application developers do not need to access these drivers directly; the
Host Library is used to communicate with these drivers.

The Dialogic Class Driver (dlgcmcd.sys) is the highest-level driver that interacts
with the Dialogic Protocol Driver. The Class Driver recognizes DM3 device
names (Mpath for messages and Strm for streams) and supports all Win32 API I/O
function calls that perform bulk data transfers, including ReadFile(), and
WriteFile().

The Dialogic Protocol Driver (dlgcmpd.sys) is the lowest-level driver that handles
all I/O operations between a DM3 embedded system and the host machine. The
Protocol Driver communicates through shared memory (Shared RAM) that is
mapped to the system address space. For PCI devices, this mapping takes place
when the Protocol Driver loads and initializes. (More precisely, the PCI
configuration process is handled by Windows NT at boot time and later, the
Protocol Driver discovers and claims the DM3 boards.) The Protocol Driver
supports both PIO (Programmed Input/Output) and DMA (Direct Memory
Access).

2.2. DM3 Hardware

The hardware used in a DM3 embedded system is a modular and scaleable
implementation of the DM3 architecture. A DM3 product consists of one
baseboard (PCI, CompactPCI, or VME), up to three signal-processing
daughterboards, and other hardware components. For details on the DM3
hardware architecture, see the DM3 Mediastream Architecture Overview Guide.

A configured hardware assembly is installed in a chassis. For details about
installing a particular board assembly, refer to the Quick Install Card packaged
with the product.

Using the DM3 Direct Interface for Windows NT

12

2.3. DM3 Firmware

At system startup, binary code is downloaded to the DM3 board assembly. The
firmware on the assembly is the ultimate target of all I/O operations. It includes
components, kernels, and service managers.

For more information about the DM3 software architecture, see the DM3
Mediastream Architecture Overview Guide.

2.4. Understanding Data Communication

The DM3 architecture uses messages and bulk data streams as its two major
communication mechanisms. Messages primarily pass commands, results, and
other events between the host application and the embedded system. Data streams
primarily pass large amounts of data, such as audio or fax data, between the host
and the embedded system.

For more information on the DM3 devices used for input and output, see Chapter
5. DM3 Devices.

2. Understanding the Direct Interface

13

2.4.1. Understanding Messaging

Messages are passed between the host and the embedded system via a structure
called the Multiple Message Block (MMB). Host applications should not access
the MMB structure directly. Instead, use the macros provided with the Direct
Interface that resolve the endian-type issues.

Macros exist to handle these five types of messages:

• Simple Messages
Messages that contain no payload data, only status information, such as an
operation completion message.

• Fixed-size Messages
Messages that contain a pre-defined payload of a known size.

• Variable Payload Messages
Messages containing an array payload information of a size that varies based
on the commands that were sent.

• Variable List Messages
These contain a list of different types of arrays of various payloads.

• KVSet Messages
Messages with Key/Value sets containing attribute information for board(s),
component(s), etc.

Multiple Message Blocks (MMBs)

An application built using the Direct Interface host library uses the Multiple
Message Block (MMB) as the primary data structure. The MMB is used to send
messages to and receive messages from the DM3 embedded system.

A Multiple Message Block (MMB) must be allocated for passing messages. The
memory block is made up of the following sections:

• MMB Header

• Command Message Fixed Header

• Command Message Payload

Using the DM3 Direct Interface for Windows NT

14

• Reply Message Fixed Header (optional)

• Reply Message Payload (optional)

The MMB contains space for one MMB Header and Command Message section
and for any number of reply messages, each with its own header and payload, as
shown in Figure 3. MMB Structure.

MMB Header

Command QMsg

Command Payload

First Reply QMsg

First Reply Payload

• •
• •
• •
• •

nth Reply QMsg

nth Reply Payload

Figure 3. MMB Structure

The header and payload information in an MMB is in a processor-specific format,
based on the processor’s endian-type. Although the MMB structure is defined in
an include file, it should be treated opaquely and not accessed directly.

2. Understanding the Direct Interface

15

2.4.2. Understanding Data Streams

Streams are the method by which large amounts of data are sent between the host
and a component on any processor and between a component on a processor and
the TDM Bus. Streams are based on a point-to-point unidirectional pipe-like
model.

Conceptually, a particular stream is opened at each end and has a single reader
and a single writer. The basic I/O method provides an unstructured word stream
regardless of the underlying physical stream implementation. Data buffering is
done invisibly.

2.4.3. Understanding Eventing and Run-Time Control

The Direct Interface uses Win32 API function calls to process messages coming
from the DM3 embedded system. Sometimes, a change in state in the embedded
system may cause an “unsolicited” message to be sent from the embedded system
to the host application.

The following types of messages may be sent to the application:

• reply messages (in response to a command message sent from the application)

• unsolicited messages (the host must be set up to receive these types of
messages)

The recommended method for recognizing and processing reply and unsolicited
messages is through I/O Completion Ports (IOCP). See the Win32 SDK
documentation for more information.

For each message expected from the DM3 embedded system, you must set up an
MMB data structure. When a message is received, the MMB will be populated
with relevant message parameters. If you’re using an asynchronous multithreaded
model, you should assign a specific I/O completion key and an Overlapped
pointer to the specific message type.

If an application might receive asynchronous unsolicited messages from the
embedded system, it must set up an empty MMB data structure. This is the only

Using the DM3 Direct Interface for Windows NT

16

way to guarantee that unsolicited messages will be received. For more
information, see Section 6. Using Messages.

17

3. Windows NT Programming Models

Choosing a programming model may be the most important decision you make
about the design of your application. Deciding your approach now can increase
your program’s efficiency or decrease the amount of time you might spend
developing an application.

It is important to understand the following terms as they apply to application
design:

• Single-threaded
Your application contains only one thread which controls one or more
devices. The following pseudo-code shows a typical form for a single-
threaded program:

 void main() // The main routine is the single thread
 {
 for (i=0;i<NumThreads;i++)
 {
 myThread();
 }
 }

• Multithreaded
Your application contains more than one thread, each of which can control
one or more devices. The following pseudo-code shows a typical form for a
multithreaded program:

 void main()
 {
 for (i=0;i<NumThreads;i++)
 {
 CreateThread(..., myThread,---)
 }

 //Wait for all threads to Stop
 }

• Synchronous
In synchronous programming, each function blocks thread execution until the
function completes. This includes callback models supported by the Win32
API.

• Asynchronous
In asynchronous programming, the calling thread or process performs further
operations while a called function completes. When the function completes,
the application receives an event notification.

Using the DM3 Direct Interface for Windows NT

18

Based on the goals and complexity of your program, you may decide to follow
one of these models:

• Asynchronous Multithreaded or Asynchronous Single-threaded

• Synchronous Multithreaded or Synchronous Single-threaded

3.1. Choosing a Programming Model

The following chart shows the various decision points which will lead you to favor
one model over the other:

Table 1. Choosing a Programming Model

IF… THEN choose…

❏ Your program flow is complicated

❏ Actions between devices are closely coupled

❏ Your application must be efficient

❏ Your application supports a large number of devices

❏ Your program requires a state machine

❏ Your program must wait for multiple devices on a
single thread

An asynchronous
model

❏ You plan to integrate DM3 devices with other
devices (such as a database)

Asynchronous
Multithreaded

❏ Your application will not integrate DM3 devices
with other devices

Asynchronous
Single-threaded

❏ Your program flow is simple

❏ Actions between devices are loosely coupled

❏ Each thread controls only one device

Synchronous
Multithreaded

❏ Your program services only one device at a time Synchronous
Single-threaded

The remainder of this section discusses the advantages, disadvantages, and some
programming notes for each model.

3. Windows NT Programming Models

19

3.2. Asynchronous Multithreaded Model

 Due to the high number of devices that DM3 allows you to control, Dialogic
recommends using the asynchronous multithreaded model. In asynchronous
multithreaded application programming, you create multiple threads, each of
which controls one or more devices. In such an application, each thread has its
own specific state machine for the devices that it controls. For example, you can
have one grouping of devices that provides fax services and another grouping that
provides Interactive Voice Response (IVR) services, while both share the same
processing space and database resources.

 An asynchronous multithreaded program does not block execution while waiting
for a function to complete; this would interfere with the processing requirements
of other devices also being managed by the thread. An asynchronous model allows
you to create an event-driven state machine for each device. Each function returns
immediately and allows thread processing to continue. Subsequently, when an
event is returned (signifying the completion of an operation), state machine
processing can continue.

 Using the asynchronous multithreaded model requires a familiarity with I/O
Completion Ports (see Section 4.1.1. OVERLAPPED Structure). After issuing an
asynchronous function, your application should use the
GetQueuedCompletionStatus() function to wait for events on Dialogic devices.
You may use either of the available Win32 Synchronization objects to achieve the
asynchronous behavior you require (such as WaitForSingleObject() and
WaitForMultipleObjects()).

3.2.1. Asynchronous Multithreaded Model Trade-offs

 Asynchronous programming offers the following advantages:

• Requires fewer system resources than the synchronous model because the you
use only a few threads for a large number of devices.

• Provides better control of DM3 applications that have high channel density.

• Reduces system overhead by minimizing thread context switching.

• Simplifies the coordination of events from many devices.

Using the DM3 Direct Interface for Windows NT

20

• Allows you to run entire portions of the application with a single thread in an
application controlling many devices (including non-Dialogic devices).

 Asynchronous programming offers the following disadvantages:

• This model is typically the most complex to develop due to the thread
synchronization and coordination required.

• The asynchronous multithreaded model requires the development of a state
machine.

3.2.2. Asynchronous Multithreaded Programming Notes

• If you use I/O Completion Ports, use GetQueuedCompletionStatus() to find
the status of the operation.

• After the event is processed, your application must determine what
asynchronous function should be issued next depending on what event has
occurred and the last state of the device when the event occurred.

• Do not use any DM3 device in more than one grouping. Otherwise, it is
impossible to determine which thread receives the event.

3. Windows NT Programming Models

21

3.3. Asynchronous Single-threaded Model

If you choose to avoid managing the complexities of multiple threads, then
asynchronous single-threaded programming is recommended for applications that
have large numbers of devices. However, as the total number of devices in the
thread increases, your application may reach a point where the latency in servicing
events and devices becomes intolerable. This may cause your application to
perform poorly and responsiveness may suffer.

3.3.1. Asynchronous Single-threaded Model Trade-offs

Asynchronous single-threaded programming offers the following advantages:

• Requires a considerably less complex model than an asynchronous
multithreaded model.

• Achieves a high level of resource management by combining multiple devices
in a single thread.

• Simplifies the coordination of events from many devices.

• Requires fewer system resources than any synchronous model because any
asynchronous model can use one thread for many devices.

Asynchronous single-threaded programming offers the following disadvantages:

• May require the development of a state machine.

• Asynchronous applications are typically more complex to develop than a
synchronous application.

3.3.2. Asynchronous Single-threaded Programming Notes

• After an event is processed, your application must determine what
asynchronous function should be issued next depending on what event has
occurred and the last state of the device when the event occurred.

Using the DM3 Direct Interface for Windows NT

22

3.4. Synchronous Multithreaded Model

 In a synchronous multithreaded model, the operating system can put individual
device threads to sleep while allowing threads that control other devices to
continue their actions without interruption. When a function completes, the
operating system wakes up the function’s thread so that processing continues. For
example, if the application is playing a file as a result of a certain function call, the
calling thread does not continue execution until the function call has completed
and the function has terminated.

 Typically, you can use this model to write code and create a thread for each
device that needs to run this code. You do not need event-driven state machine
processing because each function runs uninterrupted to completion.

 Choose the synchronous multithreaded model when you are programming an
application that has:

• Only a few devices.

• Simple and straight flow control with only one action per device occurring at
any time.

3.4.1. Synchronous Multithreaded Model Trade-offs

Synchronous multithreaded programming offers the following advantages:

• The synchronous multithreaded model is the easiest to program and maintain,
therefore it allows quicker application development than asynchronous
models. The synchronous model is the least complex programming model that
allows realistic usage of DM3 products.

Synchronous multithreaded programming offers the following disadvantages:

• Because the main thread creates a separate thread for each device, this model
requires a high level of system resources. This can limit the maximum device
density.

• Because a synchronous operation blocks thread execution, the thread cannot
perform any other processing.

• Unsolicited events are not processed until the thread calls a specific function.

3. Windows NT Programming Models

23

3.4.2. Synchronous Multithreaded Model Programming Notes

• You should use the synchronous multithreaded model only for simple and
straight flow control with only one action per device occurring at any time.

• Because each function in the synchronous multithreaded model blocks
execution in its thread, your application’s main thread must create a separate
thread for each device.

3.5. Synchronous Single-threaded Model

Using a synchronous single-threaded model is not recommended for production-
level DM3 applications. Use this model only for proof-of-concept testing or quick
programming exercises. With a synchronous single-threaded model, you can only
service one device at a time. Due to the high-density nature of DM3, using a
synchronous single-threaded programming model is not practical.

As an example, if an application is waiting for an inbound call on one channel and
playing a file on another channel, the “WaitForCall” function could block
indefinitely. However, the “PlayFile” call needs real-time servicing (for actions
such as transferring data down to the hardware). Using this model would lead to
intolerable latencies incurred during the play of the file and translate into a poor
quality play.

3.6. Multi-process Applications

Developing a multi-process application, where the application essentially spawns
a copy of itself, is not a recommended approach for Dialogic’s DM3-based
products under Windows NT. Forking a process is not recommended as there
would be a substantial performance degradation.

25

4. Calling Direct Interface Functions

Some issues you may need to consider when using the Direct Interface in your
application are discussed in this chapter. It is important to understand the
difference between calling functions synchronously and asynchronously, what
happens when you call certain types of functions.

NOTE: For a complete discussion of each function, data structure, and error
code, see the DM3 Direct Interface Function Reference for Windows NT.
Also, to help you implement common features and routine functions,
Dialogic offers Application Foundation Code with many DM3 products.
See the document entitled DM3 Application Foundation Code for
Windows NT.

Some Direct Interface functions execute only on the host computer and others
execute on the DM3 embedded system. By setting the lpOverlapped parameter, a
function can be called either synchronously (when lpOverlapped is set to NULL)
or asynchronously (when lpOverlapped is set to non-NULL) depending on
whether you want your thread to block.

As shown in Figure 4. Calling Functions From Your Application , functions that
execute on the host are synchronous, while those that execute on the board are
asynchronous, even if you call them synchronously.

Using the DM3 Direct Interface for Windows NT

26

Figure 4. Calling Functions From Your Application

4.1. Calling Functions Asynchronously

All Direct Interface host library functions that accept the lpOverlapped parameter
can operate in either asynchronous or synchronous mode. If the lpOverlapped
parameter is non-NULL, the call is in an asynchronous (overlapped) I/O mode and
the function returns immediately before the actual I/O completes.

If you choose to set the lpOverlapped parameter to NULL, the call is considered
synchronous and your thread will block until the function completes.

4.1.1. OVERLAPPED Structure

The OVERLAPPED structure is a Win32 API asynchronous I/O data structure.
An application normally allocates and initializes this structure, then passes it to the

4. Calling Direct Interface Functions

27

Win32 API functions, such as ReadFile() and WriteFile(). An application can
specify the hEvent field in the OVERLAPPED structure to the Win32 API wait-
for-object functions, such as WaitForSingleObject().

The application is responsible for managing the OVERLAPPED structure. If
multiple requests are outstanding on the same device, each request must be
associated with a unique OVERLAPPED structure.

If the message path handle, which is specified through the hDevice parameter, has
been opened with the FILE_FLAG_OVERLAPPED flag set in the
dwFlagsAndAttributes parameter in the CreateFile() function call, the
application can pass a valid lpOverlapped parameter with the request. The calling
thread can use any wait function to wait for the event object, a member of the
OVERLAPPED structure, to be signaled, then call the GetOverlappedResult()
function to determine the operation’s results.

If the specified message path has been opened without the
FILE_FLAG_OVERLAPPED flag, the lpOverlapped parameter should be set to
NULL. The function either completes the operation or times out. If the function
returns TRUE, it has completed successfully. Otherwise, it has failed or timed out,
and the calling thread calls the GetLastError() function to retrieve the error.

4.1.2. I/O Completion Ports

An I/O completion port is a Windows NT scheduling construct. It is tied directly
to a device handle and any I/O requests made to it. Using I/O completion ports is
recommended if you want the notifications to match the I/O completions and you
want to minimize context switches among your worker threads.

Use the Win32 API function call CreateIoCompletionPort(), to create and set
the parameters for an I/O Completion Port or to add handles to existing I/O
Completion Ports.

1

1
Using I/O completion ports is fully documented in Win32 documentation. For a thorough discussion,
see Jeffrey Richter’s Advanced Windows , 3rd ed. Redmond, Wash: Microsoft Press.

Using the DM3 Direct Interface for Windows NT

28

CreateIoCompletionPort() returns the handle of the I/O completion port and
takes the following arguments:

Parameter Description

HFileHandle File handle of device (in this case, the
DM3 Mpath or Strm device, see
Chapter 5. DM3 Devices) to associate
with the I/O Completion Port

HExistingCompletionPort Handle of I/O Completion Port if
already created

DwCompletionKey The key value associated with the
device

DwNumberOfConcurrentThreads Maximum number of concurrent threads
you will allow to be running to process
I/O completions

The following list shows additional items to remember:

• Note that the sequential order of notifications is not necessarily the same
sequential order of I/O completions.

• While I/O completions can feed into scheduling algorithms, they are entirely
asynchronous in nature. For example, by the time a thread is scheduled to run
again, there may be any number of MMBs that may have completed.

• You must create the file handle of the DM3 device (an Mpath or Strm
Device) with the FILE_FLAG set to FILE_FLAG_OVERLAPPED. This
allows data movement of the specified device to “overlap” in time with other
processing.

• Once an I/O completion port has been created, and DM3 devices are
associated it, use the Win32 function call GetQueuedCompletionStatus() to
report the completion of the asynchronous I/O.

• Associate multiple handles with the I/O Completion Port by calling
CreateIOCompletionPort() additional times. You can either assign a
completion key during each association (that is, one key per handle), or
associate the same key for many handles.

4. Calling Direct Interface Functions

29

The following sample code shows how a programmer might set up a C function
using the items discussed previously:

///
// NAME : Dm3CompSetAsyncParams()
// DESCRIPTION : Provides Async parameters to be used while sending
// and receiving messages in async mode
// INPUT : lpComp - the component instance
// hIOCP - the io completion port to use
// dwIocpKey - The key to be associated with the MPath
// used by the given component instance
// OUTPUT : None
// RETURNS : DM3SUCCESS or DM3FAIL
// CAUTIONS : Use GetLastError() to get error info
// The application should remember the key passed into this
// function. When this key is returned in the main loop by
// GetQueuedCompletionStatus(), the application should call
// Dm3CompProcIoCompletion() , to enable this component to
// dispatch messages to the user of this object.
//
DM3STATUS Dm3CompSetAsyncParams(LPDM3COMP lpComp,
 HANDLE hIOCP,
 DWORD dwIocpKey)
{

 if (lpComp == (LPDM3COMP)NULL)
 {
 SetLastError(ERROR_INVALID_PARAMETER);
 return DM3FAIL;
 }

 if (hIOCP != INVALID_HANDLE_VALUE)
 {
 lpComp->fSyncMode = FALSE;
 lpComp->hIOCP = hIOCP;
 lpComp->dwIocpKey = dwIocpKey;

 /*
 * Associate the MPath with the given IO Completion port
 */
 if (CreateIoCompletionPort(lpComp->hMPath,
 hIOCP ,
 dwIocpKey,
 0)
 != hIOCP)
 {
 return DM3FAIL;
 }
 /*
 * We have successfully associated the MPath with the given
 * IO Completion port
 */
 return DM3SUCCESS;
 }
 else
 {
 SetLastError(ERROR_INVALID_PARAMETER);
 return DM3FAIL;
 }
}

Using the DM3 Direct Interface for Windows NT

30

Use GetQueuedCompletionStatus() to return the number of bytes transferred,
the completion key, and the address of the OVERLAPPED structure. Within
Win32, the OVERLAPPED structure is used during asynchronous data movement
and its pointer is also used as an anchor for DM3-specific message data structures.
For a complete description of the GetQueuedCompletionStatus() Win32 API
call and the Win32 OVERLAPPED structure please refer to Win32
documentation.

4.1.3. Handling Asynchronous Function Returns

The operations detailed below and the flow chart in Figure 5 describe the steps to
follow when a function is called asynchronously.

1. A Direct Interface function will always return FALSE when called
asynchronously. Call the Win32 GetLastError() function to retrieve an
error code. The error code may be one of three types: Windows NT (defined
in winerror.h), DM3 Direct Interface (defined in dllmnti.h), or DM3 Kernel
(defined in qkernerr.h).

2. If GetLastError() returns ERROR_IO_PENDING, it indicates the operation
has not completed. Wait for function completion using the Win32 wait-for-
object functions WaitForSingleObject(), WaitForMultipleObjects(), or
GetQueuedCompletionStatus().

3. Upon function completion, call the GetOverlappedResult() function.

4. Call the MNT_GET_REPLY_QMSG() macro to find the reply message.

5. Use the QMSG_GET_MSGTYPE() macro on the reply message to
determine the reply message type.

6. If the message type is QResultError, call the QResultError_get() macro and
process the kernel error (defined in qkernerr.h).

7. If the message type is not QResultError, the function has completed
successfully and the result message contents may be processed.

4. Calling Direct Interface Functions

31

Call
Remote Function
Asynchronously

Return=
FALSE

Yes

Yes

No

No

GetLastError()==
ERROR_ IO_PENDING

Process MNTI or
WindowsNT error

Process MNTI or
WindowsNT error

Wait for
Completion

GetOverlappedResult()
==TRUE

Call
MNT_GET_REPLY_QMSG()

macro

Call
QResultError_get()

macro

Yes No

Done; process
successful result

message

QMSG_GET_MSGTYPE()
==QResultError

Process
Kernel Error

Figure 5. Handling Asynchronous Function Returns

Using the DM3 Direct Interface for Windows NT

32

This code fragment provides a general example of handling a function return
asynchronously.

if (mntSendMessage(DevHandle, lpMMB, &Overlapped) == FALSE){
 // Call GetLastError to get the error code
 ErrorCode = GetLastError();
 if (ErrorCode == ERROR_IO_PENDING){
 // Now wait for operation to complete
 if ((WaitForSingleObject(DevHandle, INFINITE)) ==
WAIT_FAILED) {
 // perform error handling
 return(FALSE);
 }
 if (GetOverlappedResult(DevHandle, &Overlapped,
&RecvByteCount,
 FALSE) == FALSE){
 // Call GetLastError to get the error code
 ErrorCode = GetLastError();
 // perform error handling
 return(FALSE);
 }
 }

/* If send message is successful, retrieve results */
 MNT_GET_REPLY_QMSG(lpMMB, 1, &pMsg);

 /* Check for firmware error */
 QMSG_GET_MSGTYPE(pMsg, &ReplyType);

 if (ReplyType == QResultError) {
 /* Error, print error code */
 QResultError_t qr;

 QResultError_get(pMsg, &qr, Offset);
 printf("Error %x\n", qr.errorCode);
 goto cleanup;
 }
}

4. Calling Direct Interface Functions

33

4.2. Calling Functions Synchronously

Some Direct Interface host library functions, such as mntAllocateMMB(), work
only in synchronous mode. As stated earlier, most functions can operate either
asynchronously or synchronously depending on the lpOverlapped parameter.

4.2.1. Handling Synchronous Function Returns

The operations detailed below and the flow chart in Figure 6 describe the steps to
follow when a function is called synchronously.

• If the function return value is TRUE, it indicates that the driver successfully
processed the arguments. Any expected function outputs will have valid
contents. For example, if the mntCompFind() function is called in
synchronous mode and valid arguments are sent and returned, when the
TRUE return message is received, the variable pointed to by the lpInstance
argument will contain the returned component descriptor.

• If the function return value is FALSE, the function call has failed.

1. Call the Win32 GetLastError() function to retrieve an error code. The error
code may be one of three types: Windows NT (defined in winerror.h), DM3
Direct Interface (defined in dllmnti.h), or DM3 Kernel (defined in
qkernerr.h).

2. Logically AND the mask constant ERROR_MNT_BASE with the value
returned from GetLastError() to determine if the error is Windows NT or
Direct Interface.

3. If GetLastError() returns ERROR_MNT_MERCURY_KERNEL, it
indicates a DM3 Kernel error has occurred.

4. Call the mntGetTLSmmb() function, which returns a pointer to the reply
message contained in the thread-local-storage MMB.

5. Use the QMSG_GET_MSGTYPE() macro on the reply message to
determine the reply message type.

6. If the message type is QResultError, call the QResultError_get() macro and
process the kernel error (defined in qkernerr.h).

7. If the message type is not QResultError, the error is undefined.

Using the DM3 Direct Interface for Windows NT

34

Call MNTI Function
Synchronously

Done
Arguments are valid

ErrorCode=
GetLastError()

Call
mntGetTLSmmb()

to get MMB

Call
QResultError_get()

macro

Yes

Yes

No

No

Undefined error

QMSG_GET_MSGTYPE()
==QResultError

ErrorCode==
ERROR_MNT_MERCURY_KRNL

Process MNTI or
WindowsNT error

Process Kernel error

Return=
FALSE

Return=
TRUE

Figure 6. Handling Synchronous Function Returns

4. Calling Direct Interface Functions

35

This code fragment provides a general example of handling a function return
synchronously.

/* Issue the command */
 if (mntClusterCompInfo(hMCD,
 mntTransGen(),
 &clusterAddr,
 &count,
 compDescs,
 DEF_TIMEOUT,
 NULL,
 NULL) == FALSE) {
 printf("mntClusterCompInfo failed %d", GetLastError());
 /* If send message is successful, retrieve results */
 mntGetTLSmmb(&lpMMB, NULL, &pMsg);

 /* Check for firmware error */
 QMSG_GET_MSGTYPE(pMsg, &ReplyType);

 if (ReplyType == QResultError) {
 /* Error, print error code */
 QResultError_t qr;

 QResultError_get(pMsg, &qr, Offset);
 printf("Error %x\n", qr.errorCode);
 goto cleanup;
 }
 return(1);
 }

 /* Success! comp desc array is filled in by
mntClusterCompInfo() */
 printf("mntClusterCompInfo successful count = %d\n", count);

37

5. DM3 Devices

The Direct Interface is like other custom APIs that adhere to the Win32 model; it
requires a kernel-mode device driver which it can talk to (in this case, the Class
Driver). For custom operations, such as the messaging I/O, the Class Driver
supports a full array of specialized functions (by using the Win32’s IOCTL
function) which make the Direct Interface completely compliant with the Win32
API.

When the Class Driver initializes, it creates a number of device names that end up
in NT’s object namespace, specifically under the \Device path. It also creates
corresponding symbolic links under the \DosDevices root which the
application uses in the CreateFile() call. Without the handle returned from this
call, no I/O is possible. The semantics of these device names are important.

The two types of DM3 I/O are differentiated primarily by size and the application
protocol with the resource:

• messages are used for small transfers (as in command/reply messages)

• streams are used for bulk data transfers.

5.1. Device Names

You can use two different device types in your Direct Interface-based application:

• Mpath
Mpath is a message type device type to support messaging I/O operations
between the host and the embedded system. It allows the application to
establish a logical connection to the driver.

• Strm
Strm is a stream device type to support I/O operations for bulk data. It allows
the application to establish a logical connection to a DM3 component on the
embedded system.

NOTE: These are logical devices whose sole purpose is to serve as the bridge
between the user space applications and the kernel space (that is, the
Class Driver).

Using the DM3 Direct Interface for Windows NT

38

The Class Driver (DLGCMCD) implements both the Mpath and Strm devices and
assigns names for each device sequentially (for example, MercMpath1,
MercMpath2, MercMpath3, through MercMpathn, and MercStrm1, MercStrm2,
MercStrm3, through MercStrmn).

5.1.1. Message Paths (Mpath)

A message path (Mpath) device is a generic conduit for communicating with DM3
component instances.

2
 Because it is not bound permanently to its destination

endpoint, you can use an Mpath device to communicate with any valid destination
instance address by loading the handle of the device in the mntSendMessage()
function call. Since Mpath devices are not board-specific, you can use them to
communicate with any DM3 board assembly.

The source address of an Mpath device is assigned at its creation time by the Class
Driver, and it cannot be changed. In fact, much as with a client TCP port number
(an “ephemeral” port), you should not generally be concerned about the source
address. In most cases, the application only needs to know the destination address.

NOTE: There are instances when your host application would need to know
about the source address (QCompDesc) of an Mpath device. For
example, if your application must be notified of an asynchronous
message from the firmware, the application must provide its own source
address in the MMB.

Therefore, you can use a single Mpath device to communicate with any number of
component instances. This approach can be feasible for one-time initializations.
However, you would employ multiple Mpath devices if you need to communicate
concurrently (asynchronously) with multiple destinations. In such a case, you can
use multiple Win32 API handles with associated OVERLAPPED structures using
the default source address matching.

2
 More specifically, a handle to an Mpath device is a ticket to the Class Driver space. Since the Class
Driver created the device in the first place, once a handle is assigned to it, it is entirely up to NT’s
I/O Manager to maintain the link. For each handle returned to the user space, there is a
corresponding file object in the kernel space which happens to be a waitable object. This is the base
support for the various wait synchronization calls in Win32. Thus, it’s possible to wait-synch upon
handles directly or event objects of your own.

5. DM3 Devices

39

The question of how many Mpath devices to use boils down to this:

• If you wish to depend on the default source address matching and would like
to do overlapped I/O in different threads, then you need multiple Mpath
devices to correspond to each thread.

• If you are willing to use MMBs with proper matching criteria (the minimum
being the source address), then you could open the same Mpath multiple
times and bind the resulting handles to the same I/O completion port. This is
convenient since you can use the key as a pointer to your I/O context
information. But going further, it should be possible to use just a single
handle to a single Mpath and rely upon a super, customized OVERLAPPED
structure that would contain the context as well. (Note that if you open the
Win32 handle with FILE_FLAG_OVERLAPPED, you can use this handle
for asynchronous operations only.)

There is, however, one caveat to this strategy and that pertains to exit
notification (see Section 9. Exit Notification).

Using Mpath Devices in a Multithreaded Application

Always use multitasking and multithreading judiciously. Since they all share the
same address space (as well as resources such as device handles), they incur
overhead. Threads within a process incur less context-switch overhead than that
among processes.

Although using threads is relatively straightforward, designing and implementing
proper synchronization between them can become complex. Attempt to abide by
the following guidelines:

• minimize the number of threads employed

• absolutely minimize the need for interactions such as sharing common device
handles.

If you must share an Mpath handle across processes, then use DuplicateHandle()
to pass it via an Inter-Process Communication (IPC) mechanism such as shared
memory. Further, make sure that MMBs are qualified with proper matching
criteria to ensure proper I/O notifications when using the same Mpath (see Section
6.4.1. Matching Criteria).

Using the DM3 Direct Interface for Windows NT

40

If you wish to employ multiple threads in multiple processes and freely use both
synchronous and asynchronous function calls, it’s safest to use unique Mpath
devices (thus, unique DM3 source addresses). Otherwise, you must be careful to
use MMBs that are qualified with proper matching criteria. This avoids erroneous
completion notifications.

The cost of an Mpath device is a small amount of non-paged pool space which
poses only a minimal impact to the application design (if any). However, since
there is a finite number of Mpath devices (specified either via a Registry
parameter or the Class Driver default), you should not automatically allocate them
on a permanent basis unless they are required to receive truly asynchronous
messages.

Also, when you close the device handle and there are no more references to it (that
is, you’re performing the last close), the associated Mpath device name is freed
and available for subsequent requests.

5.1.2. Stream Paths (Strm)

Unlike an Mpath device, a stream device is not a generic conduit. A stream device
is a Win32 API vehicle for getting to a particular DM3 stream on a specific
platform. Make this association by calling the mntAttachMercStream() function
and specifying the target board number and the stream number (if known).

A stream is unidirectional; it performs either read or write operations. You cannot
write to a read stream or read from a write stream. Any attempt to do so results in
an error. The direction of the stream is specified in the mntAttachMercStream()
function call, by setting the mode parameter to as either
MNT_STREAM_FLAG_READ or MNT_STREAM_FLAG_WRITE.

A stream number of zero (0) has a special meaning; it indicates that an unallocated
stream of specified size and direction should be created and opened.

5.1.3. Board Number

As a Direct Interface programmer, it is up to you to locate or discover the DM3
components with which you must communicate. Essential to both messaging and
stream I/O is the address of the component instance, which contains the logical

5. DM3 Devices

41

board number. (NOTE: It is called the “logical” board number since it does not
have to be equal to the physical number assigned by the Protocol Driver on its
initialization.) In the Windows NT Registry, after a successful installation and
configuration of the DM3 boards (assigned by the Dialogic Configuration
Manager software), there are entries describing physical board instance numbers
and associated logical attributes, one of which is the logical board number.

You can determine the board number by calling mntGetBoardsByAttr() with
the desired qualifying attributes.

This board number must be properly filled into the destination DM3 address field
of an Multiple Message Block (MMB).

Example: Finding Boards in a DM3 System

The following sample code shows how to find all the boards in a DM3 system by
using the mntGetBoardByAttr() function.

#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <Windows.h>

#include <Qhostlib.h>
#include <Qcluster.h>
#include <mercdefs.h>
#include <stddefs.h>

#define DEF_TIMEOUT 60/* Default timeout for MNTI functions */

#define MAX_NO_OF_BOARDS 4

void main()
{
 int n;
 QValueAttr valAttr[2];
 ULONG MaxBoardAttrs = MAX_NO_OF_BOARDS+1;
 QBoardAttr boardAttr[MAX_NO_OF_BOARDS+1];
 ULONG boardsFound=0x0;
 ULONG maxBoards=1;

 DWORD errorCode;
 UCHAR boardNum;

 // Initilize memory

 ZeroMemory(valAttr, 2*sizeof(QValueAttr));
 ZeroMemory(boardAttr,MaxBoardAttrs*sizeof(QBoardAttr));

 // Fill out valAttr structure to locate Dm3 boards

 strcpy(valAttr[0].ValueName, "CurrentState");

Using the DM3 Direct Interface for Windows NT

42

 strcpy(valAttr[0].Value, "Running");
 valAttr[0].ValueType = REG_SZ;
 valAttr[0].ValueFlag = 0; /* match on ’Value’ field */

 // Call mntGetBoardsByAttr function to search registry
 // to find boards with the matching attributes

 if (mntGetBoardsByAttr(valAttr,MaxBoardAttrs,
 boardAttr,
 &maxBoards,
 &boardsFound) == FALSE)
 {
 errorCode = GetLastError();
 printf("Can’t get boards attributes (0x%x)\n",
 errorCode);
 exit(0);
 }

 printf("Number of Dm3 boards found: %d \n",(int)boardsFound);
 for (n=0;n<(int) boardsFound;n++)
 {
 printf("Board Num: %d \n",boardAttr[n].BoardNo);
 }
}

5. DM3 Devices

43

5.2. Obtaining Device Name Strings

When coding your application, you create a handle for a device by passing the
device name strings to the CreateFile() function (see 5.3. Obtaining File
Handles to Communicate with DM3 Devices). You can obtain the device name
strings by calling the mntEnumMpathDevice() function for message devices or
the mntEnumStrmDevice() function for stream devices.

The sample code in section 5.3. Obtaining File Handles to Communicate with
DM3 Devices shows the syntax of the mntEnum…Device() function.

5.2.1. Avoiding Sharing Violations

There is one potential pitfall when obtaining device name strings. If you try to get
device names simultaneously in multiple threads, and make a subsequent
CreateFile() function call, it can fail with an ERROR_SHARING_VIOLATION
due to contention. In other words, each mntEnumMpathDevice() or
mntEnumStrmDevice() function call simply returns the next available,
unopened device. Therefore, the thread that reaches the Class Driver first, wins.

In threads under your control, you can protect all calls to the
mntEnumMpathDevice(), mntEnumStrmDevice(), and CreateFile()
functions as atomic operations. Simple retries, with or without delays, can work as
well. Alternatively, you can stagger the start of the threads in your application.

Using the DM3 Direct Interface for Windows NT

44

5.3. Obtaining File Handles to Communicate with DM3
Devices

Once the device name is used to define a handle, you can open the device by
assigning the handle to the CreateFile() function.

The following sample code shows how to use the Direct Interface to create a
utility function to create a message path.
///
// NAME : Dm3CreateMPath()
// DESCRIPTION : Utility function to create a Dm3 Message path
// INPUT : None.
// OUTPUT : None.
// RETURNS : Handle to the message path
// CAUTIONS : The message path is always opened with FILE_FLAG_OVERLAPPED
///
HANDLE Dm3CreateMPath()
{
 ULONG ulDevStatus = 0;
 ULONG ulMpathDevNameSize = 0;
 HANDLE hMPath = INVALID_HANDLE_VALUE;

 CHAR szMpathDeviceName[MNTI_MAX_DEVICE_NAME_SIZE];

 do
 {

 /*
 * Get first available Mpath device
 */
 if (!mntEnumMpathDevice(MNT_FIRST_AVAILABLE,
 szMpathDeviceName,
 &ulMpathDevNameSize,
 &ulDevStatus))
 {
 return INVALID_HANDLE_VALUE;
 }

 /*
 * Open Mpath device handle
 */
 hMPath = CreateFile(szMpathDeviceName,
 GENERIC_WRITE | GENERIC_READ,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_OVERLAPPED,
 NULL);
 }
 while (hMPath == INVALID_HANDLE_VALUE);

 return hMPath;
}

45

6. Using Messages

This section describes how to build, send, and receive DM3 messages. To perform
messaging I/O operations, you need a filled-in MMB (see the section entitled
Multiple Message Blocks (MMBs))and a handle to an Mpath device (see Section
5.1.1. Message Paths (Mpath)). The Direct Interface provides macros to fill in the
fields of an MMB structure. After you have a Win32 API handle to the Mpath
device, you can call mntSendMessage().

Messaging can be divided into several distinct parts:

1. Creating an I/O Completion Port (see Section 4.1.2. I/O Completion Ports)

2. Requesting an Mpath device name

3. Creating a handle to the Mpath Device

4. Allocating an MMB

5. Filling in MMB fields

6. Sending the message

7. Retrieving the Reply

8. Extracting Payload Data (if any)

There are many ways to retrieve message data after the Win32 system alerts the
application to an I/O completion. When building your application, Dialogic
recommends using I/O Completion Ports because this method is both efficient and
easily scaled. Once the application has the MMB pointer, the complete received
message may be accessed. See Section 4.1.2. I/O Completion Ports.

Using the DM3 Direct Interface for Windows NT

46

6.1. Requesting an Mpath Device Name

Enumerate a DM3 Mpath device by using the following Direct Interface function
call:

• mntEnumMpathDevice()

This function returns an available Mpath device that matches the specified criteria.
Mpath devices are used for communicating with any DM3 component on any
DM3 board in a system. The source address of the Mpath device is determined at
creation time, but the desired destination address must be loaded into the MMB
before sending a message. A message path to any component on any board can be
established by loading its address as the destination address of an Mpath. The
Mpath device type supports messaging I/O operations.

6.2. Creating a Handle to the Mpath Device

Open the device using the following Win32 API function call:

• CreateFile()

When the device is created/opened, you must set a File_Flag argument. By setting
the flag to FILE_FLAG_OVERLAPPED, you indicate that this device may
operate either synchronously or asynchronously. This function returns a Win32
device handle for the DeviceName that was previously specified in the
mntEnumMpathDevice() call.

Call mntCompFind() or mntCompFindAll() to get the destination address of
the device. These function calls are presented in the DM3 Direct Interface
Function Reference for Windows NT.

6. Using Messages

47

6.3. Allocating a Multiple Message Block (MMB)

Allocate and initialize an MMB with the following Direct Interface function:

• mntAllocateMMB()

You must allocate system memory for both the data that will comprise the
message to be sent, and the expected reply message. The nReplyMaxSize
parameter indicates the maximum size in bytes of all replies that might be
received by the host.

NOTE: There is no MMB structure associated with stream devices. Instead, a
stream has defined components at both ends to source and synchronize
data.

6.4. Filling in MMB Fields

This section discusses how to format a message. DM3 messages are sent through a
system in a packed-byte format. Pre-built message access macros are provided
which transparently deal with the Endian issues of packing and unpacking
message data.

DM3 message macros are defined in a set of resource-specific host-side header
files and in the standard message header (stddefs.h).

The following types of macros are provided:

• MMB Control Header Macros
These macros are available to access the MMB header. Examples of these
macros are MNT_PUT_MMB_CMD_SIZE and
MNT_PUT_MMB_EXPECTED_REPLY_COUNT.

• DM3 Message Macros
There are three types of DM3 Message Macros:

− DM3 Message Pointer macros

− DM3 Message Header macros

− DM3 Message Payload macros

Using the DM3 Direct Interface for Windows NT

48

For details on specific macros, consult the DM3 Direct Interface Function
Reference for Windows NT.

Use the DM3 message macros to get the pointer to the command or reply
messages, to access command or reply message headers, and to extract command
or reply message payloads. MNT_GET_CMD_QMSG(),
QMSG_SET_MSGTYPE(), and QComponentResult_get() are examples of
message pointer, message header, and message payload macros. Command and
reply message headers are of the type QMsg.

6. Using Messages

49

6.4.1. Matching Criteria

Setting flags on the MMB allows the driver to match reply messages from the
firmware to the command message sent from the host. Before sending an MMB,
you can set the matching criteria in the Flags field. The driver uses these to match
incoming replies and declare the I/O requests to be completed. Table 2 lists the
criteria on which you can match.

It is important to do proper matching, otherwise your application may never
receive messages intended for it. Matching is an AND operation (not an OR
operation), the matched reply must meet all matching criteria.

The broadest coverage is provided by the MATCH_ON_SRC_ADDR flag, which
is the default. It matches all replies destined for a host-side DM3 address.

Adding any or all of the optional completion option flags lets you tighten the
matching requirements as follows:

• Add the optional MATCH_ON_DEST_ADDR flag if you wish to receive
reply messages only from the same component instance specified in the
MMB.

• Add the optional MATCH_ON_TRANSACTION_ID flag if you expect reply
messages returned with the same transaction ID as in the message sent.

• Add the optional MATCH_ON_MSG_TYPE flag if you expect reply
messages returned with the same message type as in the message sent. Use
this flag in conjunction with an empty message to receive asynchronous
messages such as alarms or events.

Use different matching criteria for expected replies and unsolicited messages:

• For expected replies, use the MATCH_ON_TRANSACTION_ID flag, and
avoid using MATCH_ON_MSG_TYPE (since most commands can have
either successful or unsuccessful reply messages).

• For unsolicited messages, use the MATCH_ON_MSG_TYPE flag (because
you are setting up an MMB to receive a specific type of message, such as
Std_MsgEvtDetected), and avoid using MATCH_ON_TRANSACTION_ID.

Using the DM3 Direct Interface for Windows NT

50

NOTE: Although the Direct Interface automatically sets the
MATCH_ON_SRC_ADDR, other flags are optional. Therefore,
although you don’t need to set this flag yourself, you cause no harm by
doing so.

Table 2. Matching Criteria

Matching Criteria Required
or
Optional

the match is between:

MATCH_ON_SRC_ADDR Required
and set by
default.

destination address of the
incoming message and the
source address of the
command message in the
MMB.

MATCH_ON_DEST_ADDR Optional source address of the
incoming message and the
destination address of the
command message in the
MMB.

MATCH_ON_TRANSACTION_ID Optional transaction ID of the
incoming message and the
transaction ID of the
command message in the
MMB.

MATCH_ON_MSG_TYPE Optional message type of the
incoming message and the
message type of the
command message in the
MMB.

6. Using Messages

51

6.5. Sending the Message

Once the MMB has been allocated and filled in, you can send it and begin waiting
for the reply. Send the message using the following Direct Interface function call:

• mntSendMessage()

Make sure you include

• the correct Mpath device

• the MMB pointer to reference the correct message data for sending of the
data and to place expected replies

• the overlapped pointer (for Win32 to use) during asynchronous data
movement.

Wait for the reply using one of the following Win32 functions:

• WaitForSingleObject()

• WaitForMultipleObjects()

• GetQueuedCompletionStatus()

NOTE: Using GetQueuedCompletionStatus() is possible only if an I/O
completion port has been created and the DM3 device has been
associated with the IOCP (see Section 4.1.2. I/O Completion Ports).

6.5.1. Sending Asynchronously or Synchronously

Functions that can operate asynchronously or synchronously accept the
lpOverlapped parameter. Specify the mode by setting the lpOverlapped
parameter to either NULL (for synchronous) or non-NULL (for asynchronous or
overlapped). When asynchronous, the function returns immediately before the
actual I/O completes.

For asynchronous, set the lpOverlapped parameter to the OVERLAPPED
pointer. The OVERLAPPED structure is an asynchronous I/O data structure from
the Win32 API.

Using the DM3 Direct Interface for Windows NT

52

If you’re using a synchronous model, the call will block until either an error or a
reply is received. Then, the application must look at the reply portion of the MMB
and extract the reply message.

6.5.2. Example: Sending and Receiving a Simple Message

The following example shows an example function called
Dm3CompProcIoCompletion(). This sends a simple message (with no payload)
to a component. If synchronous mode is set, this returns the reply message.
Otherwise, callback is called whenever a message is received.

#define DM3COMP_SEND_SIMPLE_MSG(lpComp, MsgType) \
{ \
 LPMMB lpMMB = NULL; \
 QMsgRef lpMsg = NULL; \
 ULONG ulCmdSize = 0; \
 \
 ulCmdSize = sizeof(QMsg) + MsgType##_Size; \
 \
 lpMMB = mntAllocateMMB(ulCmdSize, \
 (lpComp)->ucExpectedReplyCount, \
 (lpComp)->ulMaxReplySize); \
 \
 if (lpMMB != (LPMMB)NULL) \
 { \
 MNT_GET_CMD_QMSG(lpMMB, &lpMsg); \
 QMSG_SET_MSGTYPE(lpMsg, MsgType); \
 Dm3CompSendAndRecvMsg(lpComp, lpMMB); \
 } \
}

6. Using Messages

53

6.5.3. Example: Sending a Fixed-Size Message

This following macro shows the code to send a message with a fixed size payload.

#define DM3COMP_SEND_FIXED_SIZE_MSG(lpComp, MsgType, lpData) \
{ \
 LPMMB lpMMB = NULL; \
 QMsgRef lpMsg = NULL; \
 UINT unOffset = 0; \
 ULONG ulCmdSize= 0; \
 \
 ulCmdSize = sizeof(QMsg) + MsgType##_Size; \
 \
 lpMMB = mntAllocateMMB(ulCmdSize, \
 (lpComp)->ucExpectedReplyCount, \
 (lpComp)->ulMaxReplySize); \
 if(lpMMB != (LPMMB)NULL) \
 { \
 MNT_GET_CMD_QMSG(lpMMB, &lpMsg); \
 QMSG_SET_MSGTYPE(lpMsg, MsgType); \
 MsgType##_put(lpMsg, lpData, unOffset); \
 Dm3CompSendAndRecvMsg(lpComp, lpMMB); \
 } \
}

Using the DM3 Direct Interface for Windows NT

54

6.5.4. Example: Sending a Variable Payload Message

The following example shows a macro that sends a message with a fixed and a
variable sized payload. If syncronous mode is enabled, it returns with the reply
message. This macro is used to append an array of data structures to the end of
fixed portion of the payload. The payload’s fixed portion typically includes a
count for the variable payload.

#define DM3COMP_SEND_VAR_SIZED_MSG(lpComp, \
 MsgType, \
 lpData, \
 VarCount, \
 VarFieldDef, \
 lpVarData) \
{ \
 LPMMB lpMMB = NULL; \
 QMsgRef lpMsg = NULL; \
 UINT unOffset = 0; \
 ULONG ulCmdSize= 0; \
 INT nCounter = 0; \
 \
 ulCmdSize = sizeof(QMsg) + \
 MsgType##_Size + \
 (sizeof(VarFieldDef##_t) * VarCount); \
 \
 lpMMB = mntAllocateMMB(ulCmdSize, \
 (lpComp)->ucExpectedReplyCount, \
 (lpComp)->ulMaxReplySize); \
 \
 if (lpMMB != (LPMMB)NULL) \
 { \
 MNT_GET_CMD_QMSG(lpMMB, &lpMsg); \
 QMSG_SET_MSGTYPE(lpMsg, MsgType); \
 MsgType##_put(lpMsg, lpData, unOffset); \
 \
 unOffset = MsgType##_varStart; \
 for (nCounter = 0; nCounter < (INT)(VarCount); ++nCounter) \
 { \
 qMsgVarFieldPut(lpMsg, 1, &unOffset, \
 VarFieldDef, &(lpVarData[nCounter])); \
 } \
 Dm3CompSendAndRecvMsg(lpComp, lpMMB); \
 } \
}

6. Using Messages

55

6.5.5. Example: Sending a Variable List Message

This example shows how to send a message that contains a list of elements at the
end of the fixed portion of the payload.

#define DM3COMP_SEND_LIST_MSG(lpComp, \
 MsgType, \
 lpData, \
 VarCount, \
 lpVarData) \
{ \
 LPMMB lpMMB = NULL; \
 QMsgRef lpMsg = NULL; \
 UINT unOffset = 0; \
 ULONG ulCmdSize= 0; \
 INT nCounter = 0; \
 \
 ulCmdSize = sizeof(QMsg) + \
 MsgType##_Size + \
 (sizeof(MsgType##_List_t) * VarCount); \
 \
 lpMMB = mntAllocateMMB(ulCmdSize, \
 (lpComp)->ucExpectedReplyCount, \
 (lpComp)->ulMaxReplySize); \
 \
 if (lpMMB != (LPMMB)NULL) \
 { \
 MNT_GET_CMD_QMSG(lpMMB, &lpMsg); \
 QMSG_SET_MSGTYPE(lpMsg, MsgType); \
 MsgType##_put(lpMsg, lpData, unOffset); \
 \
 unOffset = MsgType##_varStart; \
 for (nCounter = 0; nCounter < (INT)(VarCount); ++nCounter) \
 { \
 MsgType##_List_put(lpMsg,&(lpVarData[nCounter]),unOffset); \
 } \
 Dm3CompSendAndRecvMsg(lpComp, lpMMB); \
 } \
}

Using the DM3 Direct Interface for Windows NT

56

6.5.6. Example: Sending a KVSet Message

This example shows a macro that prepares a message that has supplementary KV
set data.

#define DM3COMP_PREP_KVS_MSG(lpComp, lpMMB, MsgType, lpData, KvSize) /
{ /
 QMsgRef lpMsg = NULL; /
 UINT unOffset = 0; /
 ULONG ulCmdSize= 0; /
 /
 ulCmdSize = sizeof(QMsg) + MsgType##_Size + KvSize; /
 /
 (lpMMB) = mntAllocateMMB(ulCmdSize, /
 (lpComp)->ucExpectedReplyCount, /
 (lpComp)->ulMaxReplySize); /
 if(lpMMB != (LPMMB)NULL) /
 { /
 MNT_GET_CMD_QMSG(lpMMB, &lpMsg); /
 QMSG_SET_MSGTYPE(lpMsg, MsgType); /
 MsgType##_put(lpMsg, lpData, unOffset); /
 } /
}

6. Using Messages

57

6.6. Retrieving a Reply Message

Extract the reply from the MMB using the message macros. Once the application
receives an event, the type of message received will determine the routine to be
executed. Message macros are used to get the MMB pointer and to extract the
data from the MMB.

This technique is the sole method for capturing events from the DM3 embedded
system. Various methods are available for the Win32 subsystem to inform the
application that a message has been received. When using the IOCP, a device key
and overlapped pointer are furnished by the Win32 function call
GetQueuedCompletionStatus(). Use that data to resolve the MMB pointer.

Since every asynchronous message or stream device must have a unique
overlapped pointer, use the value of the overlapped pointer for a user-defined
structure. By type casting this overlapped pointer to this user-defined structure,
the overlapped pointer then serves two purposes:

• the intended use of the overlapped pointer for the Win32 subsystem

• as the pointer to the user defined structure.

This structure will contain at least the MMB pointer and the device handle.

Once you’re done using an MMB, you will want to free up the memory by using
mntFreeMMB().

Using the DM3 Direct Interface for Windows NT

58

6.6.1. Retrieving Messages from the Completion Port

If you are building an application that uses DM3 boards and other Dialogic
boards, you’ll need to parse the returned message to determine which card the
message is from. Here’s an example shown in pseudo-code:
switch (CompletionKey) {
case SRL_KEY:
Parse SRL event
case IPT_KEY:
Parse IPT event

1. Use the Win32 function GetQueuedCompletionStatus() to retrieve the
OVERLAPPED structure on which I/O was successful.

2. Retrieve the MMB associated with this overlapped structure when you sent
the message.

3. Use the Direct Interface macros to retrieve the reply mesage header and
payload (if any) of this MMB.

4. Retrieve the reply message type. The message may indicate a successful
completion or an error.

5. Process the reply accordingly.

The following example is from DM3 Application Foundation Code:

// Check for event on IO Completion port.
 bOk = GetQueuedCompletionStatus(hIocp,
 &dwByteCount,
 &dwDm3Key,
 &lpOverlapped,
 1000);
 // Get the Last Error.
 dwLastError = GetLastError();

 if (!bOk)
 {
 if (dwLastError == WAIT_TIMEOUT)
 {
 return TRUE;
 }
 }

// Process IO Completion Event.
 switch(dwDm3Key)
 {
 case DM3_COMP_KEY:
 Dm3CompProcIoCompletion(lpOverlapped, dwLastError);
 break;

 case DM3_STREAM_KEY:

6. Using Messages

59

 Dm3StrmProcIoCompletion(lpOverlapped, dwLastError);
 break;

 case DM3_FILE_KEY:
 Dm3FileProcIoCompletion(lpOverlapped, dwLastError);
 break;

 default:
 printf("Received unknown Dm3Key\n");
 return FALSE;
 break;
 }

 return TRUE;
}

6.7. Handling Unsolicited Messages

Some messages are sent by the DM3 firmware or drivers, but they are not sent in
response to a command message from the application. These are called
unsolicited messages.

To specify an unsolicited message MMB, use the
MNT_SET_MMB_EMPTY_MSG() macro. This macro posts an empty message
MMB that has no command message to send, but has room for a specified number
of replies. Set the destination instance address in the MMB (even though no
message is actually being sent).

When an unsolicited message arrives, the device driver must match it to one of the
pending MMBs using the destination address. Unless a single thread is dedicated
for fielding all messages from the DM3 board, an empty MMB should specify
more qualified matching criteria such as the destination address or the message
type, and/or the transaction ID.

6.7.1. Waiting for an Event

The application will wait for any asynchronous I/O to complete using the
following Win32 function call:

• GetQueuedCompletionStatus()

NOTE: This function call will block until some activity completes or the
specified timeout occurs.

Using the DM3 Direct Interface for Windows NT

60

6.8. Canceling Pending Messages

To cancel a specific message that has already been sent, call the following Win32
function:

• CancelIo()

If the message is canceled, your application will be notified via an I/O Completion
Port with an error code of ERROR_IO_ABORTED.

6.9. Example: Sending a Message and Receiving a Reply

The following code segment shows the typical steps in sending a
Std_MsgSetParm message and receiving a Std_MsgSetParmCmplt reply. These
steps include:

1. Enumerating for an Mpath device name.

2. Obtaining a handle to the device.

3. Finding a DM3 board that matches your requirements.

4. Getting a destination address on the target board.

5. Allocating an MMB for the command and reply messages, then initializing
the MMB.

6. Sending the message and waiting for a reply.

7. Extracting the reply from the MMB, then processing it after the reply is
received.

NOTE: For details on DM3 messages and related macros, please see the specific
component interface specifications in the guide entitled DM3 Standard
Component Interface Messages.

// Example: Sending a Message and Receiving a Reply

#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <Windows.h>

#include <Qhostlib.h>
#include <Qcluster.h>
#include <mercdefs.h>
#include <stddefs.h>

6. Using Messages

61

// QVS resource header files

#include <tscdefs.h>

#define DEF_TIMEOUT 60 /* Default timeout for MNTI functions */

#define MAX_NO_OF_BOARDS 4

// Prototypes

BOOL sendMsg();

// Main Routine

void main()
{
 if (sendMsg()!=TRUE) printf("Error in sendMsg \n");
}

// Code segment showing how to send a Std_MsgSetParm
// message using MNTI

BOOL sendMsg()
{
 QMsgRef pMsg;
 LPMMB lpMMB;
 QCompDesc InstDesc;
 QCompAttr Attr[2];
 CHAR DeviceName[MNTI_MAX_DEVICE_NAME_SIZE];
 ULONG DeviceNameSize;
 DWORD DeviceStatus;
 HANDLE hMpath, hMsgEvent;
 DWORD ErrorCode;
 UCHAR boardNum=0;
 DWORD CommandSize;
 DWORD ReplyCount;
 DWORD ReplyMaxSize;
 DWORD offset=0;
 Std_MsgSetParm_tParm;
 QTrans TransID;
 DWORD RecvByteCount;
 DWORD ReplyType;
 OVERLAPPED Overlapped;

 // Find an Mpath device name

 if (mntEnumMpathDevice(MNT_FIRST_AVAILABLE,
DeviceName,
&DeviceNameSize,
&DeviceStatus) == FALSE)

 {
 // Call GetLastError to get the error code

 ErrorCode = GetLastError();

 // perform error handling

 printf("Error %d in mntEnumMpathDevice \n",ErrorCode);
 return(FALSE);
 }

Using the DM3 Direct Interface for Windows NT

62

 // Open the device file and get a handle

 if ((hMpath = CreateFile(DeviceName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,

 OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
NULL))== INVALID_HANDLE_VALUE)

 {
// Call GetLastError to get the error code

ErrorCode = GetLastError();

// perform error handling

 printf("Error %d in CreateFile \n",ErrorCode);
return(FALSE);

 }

 // Find the TSC instance

 Attr[0].key=Std_ComponentType;
 Attr[0].value=TSC_Std_ComponentType;
 Attr[1].key=QATTR_NULL;
 Attr[1].value=0xfb;

 InstDesc.node = 0;
 InstDesc.board = 0;
 InstDesc.processor = QCOMP_P_NIL;
 InstDesc.component = QCOMP_C_NIL;
 InstDesc.instance = 1;

 if (mntCompFind(hMpath,mntTransGen(),
 &InstDesc,Attr,DEF_TIMEOUT,

 NULL,NULL)== FALSE)
 {
 // Call GetLastError to get the error code
 ErrorCode = GetLastError();
 printf("Error %d in mntComp \n",ErrorCode);
 return (FALSE);
 }
 else
 printf("TSC QCompDesc: (%d:%d:%d:%d:%d) \n",
 (InstDesc.node) ,
 (InstDesc.board) ,
 (InstDesc.processor) ,
 (InstDesc.component) ,
 (InstDesc.instance));

 // Allocate an MMB for our purpose

 CommandSize = sizeof(QMsg) + Std_MsgSetParm_Size;
 ReplyCount = 1;
 ReplyMaxSize = sizeof(QMsg) + Std_MsgSetParmCmplt_Size;
 if ((lpMMB = mntAllocateMMB(CommandSize, ReplyCount, ReplyMaxSize))== NULL)
 {
 ErrorCode = GetLastError();

 // perform error handling
 printf("Error %d in mntAllocateMMB \n",ErrorCode);

 return(FALSE);

6. Using Messages

63

 }

 // Get the start of command QMsg

 MNT_GET_CMD_QMSG(lpMMB, &pMsg);

 // Fill in message header

 QMSG_SET_MSGTYPE(pMsg, Std_MsgSetParm);
 QMSG_SET_DESTADDR(pMsg, &InstDesc);

 // Should keep the Transaction ID unique for each message

 TransID = mntTransGen();
 QMSG_SET_TRANS(pMsg, TransID);

 // set the parameter for the message body

 Parm.Num = TSC_ParmEncoding;
 Parm.Val = TSC_ParmEncoding_Mulaw;

 // Copy message body to MMB

 Std_MsgSetParm_put(pMsg, &Parm, offset);

 // MMB Ready to ship. Setup overlapped for async message sending

 ZeroMemory((PVOID) &Overlapped, sizeof(OVERLAPPED));

 hMsgEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
 Overlapped.Internal = 0;
 Overlapped.InternalHigh = 0;
 Overlapped.Offset = 0;
 Overlapped.OffsetHigh = 0;
 Overlapped.hEvent = hMsgEvent;

 printf("Ready to send Msg \n");
 // Now send the message to the board

 if (mntSendMessage(hMpath, lpMMB, &Overlapped) == FALSE)
 {

 // Call GetLastError to get the error code
 ErrorCode = GetLastError();
 if (ErrorCode == ERROR_IO_PENDING)

 {
// Now wait for operation to complete
if ((WaitForSingleObject((Overlapped.hEvent),

 INFINITE)) == WAIT_FAILED)
 {

// perform error handling
 printf("WaitForSingleObject Failed \n");

return(FALSE);
}
if (GetOverlappedResult(hMpath,&Overlapped,

 &RecvByteCount,FALSE) == FALSE)
 {

// Call GetLastError to get the error code
ErrorCode = GetLastError();

 printf("Error %d in GetOverlappedResult \n",
 ErrorCode);

// perform error handling
return(FALSE);

Using the DM3 Direct Interface for Windows NT

64

}
 }

 }
 else
 printf("Error %d in mntSendMessage \n",ErrorCode);

 // At this point, the reply message is in the MMB reply section

 MNT_GET_REPLY_QMSG(lpMMB,1, &pMsg);
 QMSG_GET_MSGTYPE(pMsg, &ReplyType);

 // Now process according to reply type

 printf("Received MsgType: %d Expected Type: %d \n",
 ReplyType,Std_MsgSetParmCmplt);

 return TRUE;
}

6. Using Messages

65

6.10. Using Attributes to Find a Component

When selecting a component that you want to use, pass the criteria of your
selection to a function call. Do this by passing specific attributes of the
component. Attributes describe a component’s characteristics, for example, an
Automatic Speech Recognition (ASR) component may have attributes that allow
you to select it based on certain exclusive features (such as discrete recognition,
word spotting, or the technology developed by a particular vendor).

To select a component, pass an array of keys and values to either
mntClusterByCompFind(), mntCompFind() or mntCompFindAll(). Note
that when you’re developing this array, you must end the list of attributes by
defining the key as QATTR_NULL.

The names of attributes and their values are defined in the resource’s
documentation and header file. The header files are found in the inc directory
which contains a number of <resource>defs.h files (for example, playdefs.h,
recdefs.h).

The following code example shows an array (ClusterAttrs) that can be passed into
a …CompFind() function:

QCompAttr ClusterAttrs[3];
ClusterAttr[0].key = Std_ComponentType;
ClusterAttr[0].value = TSC;
ClusterAttr[1].key = TSC_AttrProtocolBase;
ClusterAttr[1].value = TSC_ParmProtocolBase_H323;
ClusterAttr[2].key = QATTR_NULL;

Using the DM3 Direct Interface for Windows NT

66

6.10.1. Standard Component Types

Dialogic has defined the following standard component types. These are defined
as constants in header files included with the components available on the board.
If the DM3 system you’re working with uses these technologies, you can use these
by making the statement key = Std_ComponentType, followed with a
value set to one of the following:

For this standard component type… set the value to…

Audio Decoder ADec_Std_ComponentType

Audio Encoder AEnc_Std_ComponentType

Call Analysis CA_Std_ComponentType

Channel Associated Signaling (CAS) CAS_Std_ComponentType

Common Channel Signaling (CCS) CCS_Std_ComponentType

Channel Protocol (CHP) CHP_Std_ComponentType

Line Control LCON_Std_ComponentType

NetTSC NetTSC_Std_ComponentType

Package Version PkgVersion_Std_ComponentType

Player Player_Std_ComponentType

Recorder Recorder_Std_ComponentType

SCBus QSCRES_Std_Component_Type

Signal Event Buffer SB_Std_ComponentType

Signal Event Detector SD_Std_ComponentType

Springware Spng_Std_ComponentType

Tone Generator Tgen_Std_ComponentType

Telephony Services Component (TSC) TSC_Std_ComponentType

Waveform Generator WGen_Std_ComponentType

67

7. Using Data Streams

The DM3 device driver uses data blocks to pass data streams between the host and
the DM3 embedded system. These blocks also carry attribute information that you
can use to control data transfer. To set attribute information properly, the host
application needs to be aware of this block-oriented data transfer.

Writing streams (bulk data) is similar to writing messages because the stream I/O
operations complete as soon as the driver writes them to the Shared RAM on the
embedded system. However, the completion of this type of I/O operation indicates
only that the stream data was delivered to the on-board memory, not that it was
properly picked up and delivered to its destination instance. It is the responsibility
of the application and resource protocol whether such an acknowledgment is
expected or not.

Figure 7 shows an overview of stream flow.

Because the message and stream data travel through independent queues, you
cannot assume a first-sent/first-received sequence between the messages and
stream data; there is no guarantee that sent messages and stream data are received
by the component instance in the same sequence. To address this issue, some
resource-specific streams have header flags associated with each transferred data
block. The Direct Interface provides the following predefined flags:

• EOD (end of data)
• EOT (end of transmission)
• EOF (end of file)

Depending on the resource, you may or may not need to use the header flags. For
more information on these flags, see Section 7.1.3. Setting Stream Flags.

There are five additional bits that you can use for defining other stream header
flags. Specific meanings and their usage protocols are entirely determined by the
application and its counterpart on the embedded system.

For requests made by ReadFile() function calls, the device driver matches these
header flags against those in the incoming data block. If the device driver finds
matching flags, the I/O request completes successfully. Although you can examine

Using the DM3 Direct Interface for Windows NT

68

the flags by calling the mntGetStreamHeader() function, you need not do so
unless the requested transfer count differs from the actual count. In any case, if the
ReadFile() function returns TRUE, the returned transfer count is correct
regardless of whether the I/O operation was synchronous or asynchronous.

NOTE: You can also specify MNT_STREAM_FLAG_IGNORE_HEADER in
the mntAttachMercStream() call in order to instruct the device driver
to ignore the header portion of the SRAM data block, in effect, defeating
the processing of the above flags.

Streams are uni-directional, with one end opened to read and the other opened to
write. If the read stream has been closed by the sending end, all pending read
requests complete prematurely, and COMPLETE_ON_EOF is set in the bufFlags
field, and STREAM_CLOSED is set in the sysFlags field. If the read stream has
not been closed by the sending end, the read operation completes when either the
specified number of bytes have been received or the time out value expires
(ERR_SEM_TIMEOUT).

Process: Stream Flow

Stream flow generally occurs according to a process similar to the following
outline. This discussion corresponds to Figure 7. Direct Interface Stream Flow:

1. The application calls mntEnumStrmDevice(), receives a Strm device, and
calls CreateFile() for a Win32 handle.

2. Then, the application calls mntAttachMercStream() to open a stream in
either the read or write direction (by setting the nModeFlags parameter to
either MNT_STREAM_FLAG_READ or MNT_STREAM_FLAG_WRITE).

3. The application can issue multiple reads or writes to the Strm device using
Win32 overlapped I/O (and await completion via Win32 synchronization
calls), or block for synchronous execution.

4. The Class Driver and Protocol Driver handle internal mappings and stream
management functions.

5. The firmware on the embedded system transfers stream data between the host
and the board.

7. Using Data Streams

69

Protocol Driver

Class Driver

Win32 API

Win32 Application

Host

Embedded

DM3 Host Library

Accessible

Inaccessible

Figure 7. Direct Interface Stream Flow

7.1. Writing Stream Data

Writing stream data means transmitting data from the host application to the DM3
embedded system. For sample code, see Section 7.1.1. Example: Writing Stream
Data.

Procedure

To program write streams, use the following procedure. Please note that
enumerating a stream device name and creating a file handle must be atomic
functions (see Section 5.2.1. Avoiding Sharing Violations for more information).

1. Enumerate a stream device by using the following Direct Interface Function
call:

Using the DM3 Direct Interface for Windows NT

70

• mntEnumStrmDevice()

A Strm device is used to move large amounts of data between the host and the
DM3 card; a Strm is created to be either a read or write stream. Strm devices
are for streaming I/O operations.

2. Open the device handle by using the following Win32 API function call:

• CreateFile()

Pass the GENERIC_WRITE and FILE_FLAG_OVERLAPPED flags in this
function. Setting the flag to FILE_FLAG_OVERLAPPED indicates that
asynchronous data movement will be done for this device. This function
returns a Win32 device handle for the specified DeviceName; the same
DeviceName that was previously specified in the mntEnumStrmDevice()
Direct Interface function call.

3. Get a unique stream ID using the following Direct Interface function call:

• mntAttachMercStream()

4. Pass the hDevice, nBoardNumber, nModeFlags, lpMercStreamID,
nStreamSize, and nTimeout parameters to the mntAttachMercStream()
function. The Win32 device handle returned by the CreateFile() function
call is passed to this function. This function attaches a stream ID to the
specified Stream device. Pass an OVERLAPPED structure to this function if
you want the command message to go to the firmware asynchronously; pass
NULL if synchronously. The mode flag should specify
MNT_STREAM_FLAG_WRITE.

5. If the resource on the DM3 embedded system requires header flags, specify
the fields in the STRM_HDR structure by calling the following function:

• mntSetStreamHeader()

Pass the bufFlags fields to the function.

6. Set up the data to be transferred by setting up an OVERLAPPED structure
and passing it to the WriteFile() function to send the data.

7. Repeat step 6 until all data blocks, except the last, have been sent to the DM3
board.

8. If the resource on the DM3 embedded system requires header flags when the
last data block has been sent, set the appropriate flag in the bufFlags field of

7. Using Data Streams

71

STRM_HDR structure (such as MNT_EOT, MNT_EOS, or MNT_EOD).
Then, pass the bufFlags parameter to the mntSetStreamHeader() function.

9. Call the WriteFile() function to send the last data block.

10. If necessary, call the mntDetachMercStream() function to close the stream
device.

7.1.1. Example: Writing Stream Data

The following code segment shows the typical steps in setting up and sending data
to a stream. Please note that this is a synchronous example. These steps include:

1. Enumerating a stream device name.
2. Opening the device file and obtaining the Win32 handle.
3. Getting the destination address of a Player instance.
4. Attaching a stream to the stream device.
5. Writing data to the stream.

// Example: Writing Stream Data
#include <stdio.h>
#include <windows.h>
#include <qhostlib.h>

#include <tscdefs.h>
#include <playdefs.h>
#include <coders.h>

#define DEF_TIMEOUT 60

BOOL writeStrmData(HANDLE hFile);

void main()
{
 HANDLE hFile;

 /* Open data file */

 if ((hFile = CreateFile("mercury.rvx",
 GENERIC_READ,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL
)) == INVALID_HANDLE_VALUE)
 {
 printf("Can’t get a handle to mercury.rvx \n");
 exit(0);
 }

Using the DM3 Direct Interface for Windows NT

72

 // Open data file

 SetFilePointer(hFile, 0, NULL, FILE_BEGIN);

 // Call "writeStrmData" to send data to player

 printf("Calling writeStrmData \n");
 if (writeStrmData(hFile) !=TRUE) printf("Error in writeStrmData \n");
}

//
// Code segment showing how to setup and
// write to a stream assigned to a player instance
//

#define BUFF_SIZE 4032

BOOL writeStrmData(HANDLE hFile)
{
 ULONG boardNum=0;
 int timeSlot=1;
 HANDLE hMpath, hStrm;
 CHAR DeviceName[MNTI_MAX_DEVICE_NAME_SIZE];
 ULONG DeviceNameSize;
 DWORD DeviceStatus;
 DWORD ErrorCode;
 UCHAR OutBuffer[BUFF_SIZE];
 int instance;
 DWORD bytesRead,bytesXfer;
 QCompDesc primaryPort;
 QCompAttr attrs[4];
 QCompDesc theCluster;
 QCompDesc thePlayer;
 ULONG streamID = 0, strmSize = MNT_STREAMSIZE_NORMAL;
 ULONG rmType;
 QMsgRef rmPtr;
 int done,cnt;
 Player_MsgStart_t playerStart;

 // Find an Mpath device name
 // we’ll use this device to send/receive messages
 //

 if (mntEnumMpathDevice(MNT_FIRST_AVAILABLE, DeviceName,
 &DeviceNameSize, &DeviceStatus) == FALSE)
 {
 // Call GetLastError to get the error code

 ErrorCode = GetLastError();
 // perform error handling
 return(FALSE);

 }

 // Use Win32 API function CreateFile to associate a native handle
 // to Mpath device

 if ((hMpath = CreateFile(DeviceName,
GENERIC_WRITE,
FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,

7. Using Data Streams

73

FILE_FLAG_OVERLAPPED,
NULL))== INVALID_HANDLE_VALUE)

 {
 // Call GetLastError to get the error code

 ErrorCode = GetLastError();
 // perform error handling
 return(FALSE);

 }

 // Find the TSC (front end) component

 primaryPort.board = (UCHAR) boardNum;
 primaryPort.processor = QCOMP_P_CP;
 primaryPort.component = QCOMP_C_NIL;
 primaryPort.instance = timeSlot;

 attrs[0].key = Std_ComponentType;
 attrs[0].value = TSC_Std_ComponentType;
 attrs[1].key = QATTR_NULL;
 attrs[1].value = 0xfb;

 if (mntCompFind(hMpath, mntTransGen(), &primaryPort, attrs,
 DEF_TIMEOUT,NULL, NULL) == FALSE)
 {
 printf("mntCompFind failed %d", GetLastError());
 // perform error handling
 return(FALSE);
 }

 // Get the cluster associated with our TSC component

 if (mntClusterByComp(hMpath, mntTransGen(), primaryPort,
 &theCluster,
 DEF_TIMEOUT, NULL, NULL) == FALSE)
 {

 // perform error handling
 printf("mntClusterByComp failed %d", GetLastError());
 return(FALSE);
 }

 // Find the player allocated to the cluster

 thePlayer.board = (UCHAR) boardNum;
 thePlayer.processor = QCOMP_P_CP;
 thePlayer.component = QCOMP_C_NIL;
 thePlayer.instance = QCOMP_I_NIL;

 attrs[0].key = Std_ComponentType;
 attrs[0].value = Player_Std_ComponentType;
 attrs[1].key = QATTR_NULL;
 attrs[1].value = 0xfb;

 if (mntClusterCompByAttr(hMpath,mntTransGen(),theCluster,
 attrs,&thePlayer,

 DEF_TIMEOUT,NULL,NULL)== FALSE)
 {
 // perform error handling
 printf("mntClusterCompByAttr failed %x", GetLastError());
 return(FALSE);
 }

 //

Using the DM3 Direct Interface for Windows NT

74

 // Get first available Stream device
 // we’ll use this for writing stream data
 //

 if (mntEnumStrmDevice(MNT_FIRST_AVAILABLE, DeviceName,
 &DeviceNameSize,
 &DeviceStatus) == FALSE)
 {
 // Call GetLastError to get the error code

 ErrorCode = GetLastError();
 // perform error handling
 return(FALSE);

 }

 // Open Stream device handle

 if ((hStrm = CreateFile(DeviceName, GENERIC_WRITE,FILE_SHARE_WRITE,
 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
 NULL)) == INVALID_HANDLE_VALUE)
 {
 // Call GetLastError to get the error code
 ErrorCode = GetLastError();
 // perform error handling
 printf("Error %d in CreateFile for stream \n",ErrorCode);
 return(FALSE);
 }

 // Attach (open) a stream to our Stream device

 if ((mntAttachMercStream(hStrm,
 boardNum, // BoardNumber

 MNT_STREAM_FLAG_WRITE, // ModeFlags
 &streamID, // MercStreamID,

 &strmSize, // StreamSize,
 DEF_TIMEOUT,
 NULL)) == FALSE)

 {
 // Call GetLastError to get the error code
 ErrorCode = GetLastError();
 // perform error handling
 printf("%d: mntAttachMercStream failed: error = %d, strm# %ld\n",

instance, ErrorCode, streamID);
 return(FALSE);
 }

 // At this point, the streamID is set to the returned value
 // by the driver and we need to notify the player to read
 // from the stream

 playerStart.StreamID = streamID;
 playerStart.Decoding = MULAW64D;
 playerStart.StartMode = Player_MsgStart_StartMode_NORMAL;
 playerStart.StartPos = 0;

 if (mntSendMessageWait(hMpath, Player_MsgStart, NORMAL_MSG,
 sizeof(Player_MsgStart_t),
 &playerStart, 1, &thePlayer, NULL, NULL) == FALSE)
 {
 ErrorCode = GetLastError();
 printf("Error %d in mntSendMessageWait \n",ErrorCode);
 return(FALSE);
 }

7. Using Data Streams

75

 //
 // Now we can begin writing to the stream in a loop by:
 // reading from a disk file then
 // writing it out to the stream
 //

 done=0;
 cnt=0;
 while (done==0)
 {
 // Read data from disk

 if (ReadFile(hFile, (LPVOID)OutBuffer, BUFF_SIZE,
 &bytesRead, NULL) == FALSE)
 {

 // perform error handling
 printf("ReadFile on file failed %d\n", GetLastError());
 return(FALSE);
 }

 // Check if last block

 if (bytesRead < BUFF_SIZE)
 {
 // If last, set EOS flag to signify end of play
 STRM_HDR StrmHdr;
 ZeroMemory(&StrmHdr, sizeof(StrmHdr));
 StrmHdr.bufFlags = MNT_EOS;
 mntSetStreamHeader(hStrm, &StrmHdr, 0);

 done=1;
 }

 printf("Writing %d block to stream \n",cnt++);

 // Write data to stream

 if (WriteFile(hStrm, (LPVOID)OutBuffer, bytesRead,
 &bytesXfer, NULL) == FALSE)
 {
 // perform error handling
 printf("WriteFile failed %d\n", GetLastError());
 return(FALSE);
 }
 }

 // Wait for play stopped message from the player

 if (mntSendMessageWait(hMpath, Player_MsgStopped,EMPTY_MSG,0,
 NULL, 1, &thePlayer, &rmType, &rmPtr) == FALSE)
 {
 // perform error handling

 ErrorCode = GetLastError();
 printf("%d: Unable to send stop-play message. Last error = (%x)h\n",
 instance, ErrorCode);
 return(FALSE);
 }

 return TRUE;
}

Using the DM3 Direct Interface for Windows NT

76

7.1.2. Flow Control

Programming write streams is much simpler than programming read streams:

• First, after preparing the buffer, you can call the WriteFile() function; not
much can go wrong except for a possible time out.

• Second, as long as there is room in the Shared RAM, the Driver simply
pumps data out as soon and as fast as possible. The Class Driver monitors the
flow control messages and properly paces the output so as to not overwhelm
the DM3 embedded system.

This flow control applies only in the host-to-board direction. The DM3 embedded
system regulates the flow through the Can_Take messages that are specific to the
streams.

The stream flow control is generally transparent to the Direct Interface
programmer. However, you must never in any single call, write more data than
the stream size without first notifying the receiving instance to begin consuming
the data. For example, in writing to a 16-kb stream assigned to a player instance,
you must not write more than 16 kb before sending the start-play message.

7.1.3. Setting Stream Flags

You can use stream flags to convey application-specific meanings to counterpart
components that must understand and comply with the protocol.

Before issuing write requests, you need to set the stream flags by calling the
mntSetStreamHeader() function. The driver transmits the latest stream flag
settings along with the data blocks. Therefore, before you alter the stream header
flags, you need to make sure that all preceding writes have completed
successfully.

Here’s an example showing how to play several files that have different decoding
formats:

1. Use the MNT_EOT flag to indicate the separate format demarcations in the
stream. For a Dialogic standard Player component, the MNT_EOT flag must
accompany the last data block; otherwise, it is discarded and an error message
is returned.

7. Using Data Streams

77

2. After the last block has been sent, reset the MNT_EOT flag, then send the
next set of data blocks.

3. After all files have completed playing, set the MNT_EOS flag in the header
and make the last write request. Of course, if appropriate, you can also call
the mntDetachMercStream() function to close the stream.

For a list of Read/Write errors, see the DM3 Direct Interface Function Reference
for Windows NT.

7.1.4. Canceling Stream Writes

To cancel a specific stream write that is in progress, calling the following Win32
function will cancel all I/O for that handle:

• CancelIo()

If the stream write is canceled, your application will be notified via an I/O
Completion Port with an error code of ERROR_IO_ABORTED.

7.2. Reading Stream Data

Reading stream data means the host application is receiving data from the DM3
embedded system. For sample code, see 7.2.1. Example: Reading Stream Data .

To program read streams, use the following procedure:

1. Find an available stream device, then obtain its stream device name by calling
the following function:

• mntEnumStrmDevice()

2. Obtain the stream device handle by passing the stream device name to the
following Win32 function:

• CreateFile()

Pass the GENERIC_READ, FILE_SHARE_READ, and
FILE_FLAG_OVERLAPPED flags in this function.

3. Attach a stream ID to the specified Stream device by calling the following
Direct Interface function:

Using the DM3 Direct Interface for Windows NT

78

• mntAttachMercStream()

Pass the hDevice, nBoardNumber, nModeFlags, lpMercStreamID,
nStreamSize, and nTimeout parameters to the function. The mode flag
should specify MNT_STREAM_FLAG_READ.

4. Set up the memory location to store the read data and set up an
OVERLAPPED structure.

5. Specify the ReadCompletionMask. Pass these parameters to the following
function:

• mntSetStreamHeader()

6. Call the Win32 function ReadFile(). Then, set up the following condition:

• If it returns FALSE, call the GetLastError() function.

• If its LastError parameter contains ERROR_IO_PENDING, call the
WaitForSingleObject() and GetOverlappedResult() functions to get
the results.

7. If the actual bytes read is equal to the bytes requested, repeat step 6 to post
another read.

NOTE: If the actual bytes read is not equal to the bytes requested, retrieve
the stream header by calling the mntGetStreamHeader() function.
Check if either the requested completion flag is set, such as
MNT_EOD; or if the stream has been closed by the sending
component, indicated by the STREAM_CLOSED sysFlags of the
header. If so, break out of the read loop. Otherwise, an error has
occurred, and you must analyze it.

8. If necessary, call the mntDetachMercStream() function to close the stream
device.

9. Use CloseHandle() per Win32 conventions.

7. Using Data Streams

79

7.2.1. Example: Reading Stream Data

The following code segment shows the typical steps receiving data from a stream.
Please note that the example shows a synchronous operation. These steps include:

1. Enumerating a stream device name.
2. Opening the device file and obtaining the Win32 handle.
3. Getting the destination address of a Recorder instance.
4. Attaching a stream to the Stream device.
5. Reading data from the stream.

// Example: Reading Stream Data

#include <stdio.h>
#include <windows.h>
#include <qhostlib.h>

#include <tscdefs.h>
#include <recdefs.h>
#include <coders.h>

#define DEF_TIMEOUT 60

BOOL readStrmData(HANDLE hFile);

void main()
{

HANDLE hFile;

 /* Open data file */

 if ((hFile = CreateFile("readTest.dat",
 GENERIC_WRITE,
 0,
 NULL,
 CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL,
 NULL
)) == INVALID_HANDLE_VALUE)
 {
 printf("Can’t get a handle to readTest.dat \n");
 exit(0);
 }

 // Open data file

 SetFilePointer(hFile, 0, NULL, FILE_BEGIN);

// Call routine "readStrmData" to get data from recorder

if (readStrmData(hFile)!=TRUE) printf("Error in readStrmData \n");

}

// Code segment showing how to Setup and read from a stream

Using the DM3 Direct Interface for Windows NT

80

#define BUFF_SIZE 4032

BOOL readStrmData(HANDLE hFile)
{
 CHAR DeviceName[MNTI_MAX_DEVICE_NAME_SIZE];
 ULONG DeviceNameSize;
 DWORD DeviceStatus;
 HANDLE hMpath;
 DWORD ErrorCode;
 ULONG boardNum=0;
 UCHAR InBuffer[BUFF_SIZE];
 int instance;
 QCompDesc primaryPort;
 QCompAttr attrs[4];
 QCompDesc theCluster;
 QCompDesc theRecorder;
 int timeSlot = 1;
 ULONG done = 0;
 HANDLE hStrm;
 ULONG streamID = 0;
 ULONG strmSize = MNT_STREAMSIZE_NORMAL;
 STRM_HDR header; /* Retrieved stream header */
 ULONG duration = 6; // record duration in sec
 Recorder_MsgStart_t recorderStart;
 Std_MsgSetParm_t setParm;
 ULONG rmType;
 QMsgRef rmPtr;
 DWORD bytesRead;

 // Find an Mpath device name
 // we’ll use this device to send/receive messages
 //

 if (mntEnumMpathDevice(MNT_FIRST_AVAILABLE,
 DeviceName, &DeviceNameSize,
 &DeviceStatus) == FALSE)
 {
 // Call GetLastError to get the error code

 ErrorCode = GetLastError();
 // perform error handling
 printf("Error %d in mntEnumMpathDevice \n");
 return(FALSE);

 }

 if ((hMpath = CreateFile(DeviceName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
NULL))== INVALID_HANDLE_VALUE)

 {
 // Call GetLastError to get the error code

 ErrorCode = GetLastError();
 // perform error handling
 printf("Error %d in CreateFile for mpath \n",ErrorCode);
 return(FALSE);

 }

 // Find the TSC (front end) component

7. Using Data Streams

81

 primaryPort.board = (UCHAR) boardNum;
 primaryPort.processor = QCOMP_P_CP;
 primaryPort.component = QCOMP_C_NIL;
 primaryPort.instance = timeSlot;

 attrs[0].key = Std_ComponentType;
 attrs[0].value = TSC_Std_ComponentType;
 attrs[1].key = QATTR_NULL;
 attrs[1].value = 0xfb;

 if (mntCompFind(hMpath, mntTransGen(), &primaryPort, attrs,
 DEF_TIMEOUT, NULL, NULL) == FALSE)
 {
 // perform error handling
 printf("mntCompFind failed %d", GetLastError());
 return(FALSE);
 }

 // Get the cluster associated with our TSC component

 if (mntClusterByComp(hMpath, mntTransGen(), primaryPort, &theCluster,
 DEF_TIMEOUT, NULL, NULL) == FALSE)
 {
 // perform error handling
 printf("mntClusterByComp failed %d", GetLastError());
 return(FALSE);
 }

 // Find the allocated recorder to the cluster

 theRecorder.board = (UCHAR) boardNum;
 theRecorder.processor = QCOMP_P_CP;
 theRecorder.component = QCOMP_C_NIL;
 theRecorder.instance = QCOMP_I_NIL;

 attrs[0].key = Std_ComponentType;
 attrs[0].value = Recorder_Std_ComponentType;
 attrs[1].key = QATTR_NULL;
 attrs[1].value = 0xfb;

 if (mntClusterCompByAttr(hMpath,mntTransGen(),theCluster,
 attrs,&theRecorder,

 DEF_TIMEOUT,NULL,NULL)== FALSE)
 {
 // perform error handling
 printf("mntClusterCompByAttr failed %x", GetLastError());
 return(FALSE);
 }

 // Get first available Stream device
 // we’ll use this for writing stream data
 //

 if (mntEnumStrmDevice(MNT_FIRST_AVAILABLE, DeviceName,
 &DeviceNameSize, &DeviceStatus) == FALSE)
 {

 // Call GetLastError to get the error code
 ErrorCode = GetLastError();
 // perform error handling
 printf("Error %d in mntEnumStrmDevice \n",ErrorCode);
 return(FALSE);

 }

Using the DM3 Direct Interface for Windows NT

82

 // Open Stream device handle

 if ((hStrm = CreateFile(DeviceName, GENERIC_READ,
 FILE_SHARE_READ, NULL,

 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
 NULL)) == INVALID_HANDLE_VALUE)
 {
 // Call GetLastError to get the error code

 ErrorCode = GetLastError();
 // perform error handling
 printf("Error %d in Create File for stream device \n",ErrorCode);
 return(FALSE);

 }

 // Attach (open) a stream to our Stream device

 if ((mntAttachMercStream(hStrm,
 boardNum, // BoardNumber

MNT_STREAM_FLAG_READ, // ModeFlags
 &streamID, // MercStreamID,

 &strmSize, // StreamSize,
 DEF_TIMEOUT,
 NULL)) == FALSE)

 {
 // Call GetLastError to get the error code
 ErrorCode = GetLastError();
 // perform error handling
 printf("Error %d in mntAttachMercStream \n",ErrorCode);
 return(FALSE);
 }

 // At this point, the streamID is set to the returned value
 // by the driver and we need to notify the Recorder to record
 // for so many seconds
 //

 setParm.Num = Recorder_ParmDuration;
 setParm.Val = 1000*duration;

 // Send the message to the board

 if (mntSendMessageWait(hMpath, Std_MsgSetParm, NORMAL_MSG,
 sizeof(Std_MsgSetParm_t),
 &setParm, 1, &theRecorder, NULL, NULL) == FALSE)
 {
 ErrorCode = GetLastError();
 // perform error handling
 printf("%d: Unable to send set-parm message. Last error = %d\n",
 instance, ErrorCode);
 return(FALSE);
 }

 // Set up the start-record message and
 // send it to the recorder
 //

 recorderStart.StreamID = streamID;
 recorderStart.Encoding = OKI32E;
 recorderStart.StartMode = Recorder_MsgStart_StartMode_TIMED;

 if (mntSendMessageWait(hMpath, Recorder_MsgStart, NORMAL_MSG,

7. Using Data Streams

83

 sizeof(Recorder_MsgStart_t),&recorderStart,
 1, &theRecorder, &rmType, &rmPtr) == FALSE)
 {
 ErrorCode = GetLastError();
 // Perform error handling
 printf("\n%d: Unable to send start-record message. Last error = %d",
 instance, ErrorCode);
 if (ErrorCode == ERROR_MNT_MERCURY_STD_MSG)
 printf("\n%d: Merc errs: %x, %x\n",
 instance, rmPtr->type, rmPtr->msgsize);
 return(FALSE);
 }

 //
 // now we’re ready to read the record stream
 // clearing all read-completion mask allows EOS to complete the read
 //
 mntSetStreamHeader(hStrm, NULL, 0);

 done=0;
 while (done==0)
 {
 // Read data from driver

 if (ReadFile(hStrm, (LPVOID)InBuffer,
 BUFF_SIZE, &bytesRead, NULL) == FALSE)
 {

 // perform error handling
 printf("%d: ReadFile failed %d; read=%d\n", instance,
 GetLastError(), bytesRead);
 return(FALSE);
 }

 else
 printf("Read %d bytes from DM3 stream \n",bytesRead);

 if (bytesRead != BUFF_SIZE)
 {
 mntGetStreamHeader(hStrm, &header);
 if (header.bufFlags & MNT_EOD
 || header.sysFlags & STREAM_CLOSED) done = 1;
 }

 // Write the buffer just read to a disk file

 if (WriteFile(hFile, (LPVOID)InBuffer,
 BUFF_SIZE, &bytesRead, NULL) == FALSE)
 {
 printf("WriteFile failed %d\n", GetLastError());
 exit(0);
 }

}
 // Wait for record complete
 if (mntSendMessageWait(hMpath, Recorder_MsgStopped,EMPTY_MSG,0,
 NULL, 1, &theRecorder, &rmType, &rmPtr) == FALSE)
 {
 ErrorCode = GetLastError();
 // perform error handling
 printf("Unable to receive stopped message. Last error = %d\n",
 ErrorCode);
 return(FALSE);
 }

 return TRUE;
}

Using the DM3 Direct Interface for Windows NT

84

7.2.2. Protocol Driver Buffering

When the Protocol Driver reads the incoming data blocks and attempts to find a
pending read request, it might not find any, especially under a heavy system load.
In this case, the Protocol Driver buffers the blocks into an orphan buffer until a
request is made. To avoid this costly extra copying, make sure that you post read
requests promptly. If non-paged system buffers are available, the Protocol Driver
can buffer all overflows and service the subsequent read requests. However, under
extreme conditions (or if the application simply goes away), the orphan buffer can
fill up and be in an overrun condition (STATUS_DATA_OVERRUN or
ERROR_IO_DEVICE). The stream header’s sysFlags field is set to
STREAM_OVERRUN.

NOTE: The orphan buffer can contain residue from a previous I/O operation. If
you want to ensure there’s a “clean pipe” before you start to read from a
stream, you need to first read and discard the residue in the orphan
buffer. The mntCheckStreamOrphans() host library function returns
the number of orphaned bytes, if any. When a particular stream is opened
in write mode, the Protocol Driver automatically frees up orphans for a
previous read stream.

The Protocol Driver buffers overflow messages also, but while there is one buffer
for each stream (that is, multiple buffers per board), there is only one orphan
message buffer per board. As long as requests for a message read make it down to
the Protocol Driver in time, no messages will be lost. You should always attempt
to avoid creating orphans.

7. Using Data Streams

85

7.2.3. Specifying Read Buffer Sizes

When you call the ReadFile() function, you must specify a buffer and its size.
Determining the optimum size of the buffer can be challenging.

Most developers who perform intensive I/O operations find an optimum buffer
size through experimenting with different sizes. It helps if you understand how the
underlying driver moves the data. Typical buffer sizes tend to be 16 Kb, 32 Kb, or
64 Kb. However, buffer size depends on device capability. For example, you
would probably not specify a 64-Kb buffer size for a dial-up PPP connection,
although 64 Kb might be fine for an ATM or NIC card.

NOTE: When you make read calls, Windows NT locks down your provided
buffers in the working set of your process. Therefore, there may be a
practical limit to the number of asynchronous I/O operations that you can
post.

7.2.4. Canceling Stream Reads

To cancel a specific stream read that is in progress, call the following Win32
function:

• CancelIo()

If the read is canceled, your application will be notified via an I/O Completion
Port with an error code of ERROR_IO_ABORTED.

87

8. Using Clusters

NOTE: WITH CURRENT QUADSPAN AND IPLINK RELEASES, CLUSTERS ARE PRE-
BUILT BY DIALOGIC AND SHOULD NOT BE MODIFIED BY APPLICATION
DEVELOPERS.

8.1. Host Application Cluster Control

This section deals with the mechanics of how a host application controls clusters,
how it uses them to exchange TDM data on the SCbus, and how it directs
component instances to exchange TDM data on the network front end. A host
application using the DM3 embedded system controls clusters by performing the
following:

1. Find a cluster.

2. Add component instances to a cluster.

3. Add SCbus resources with input or output ports to a cluster.

4. Assign SCbus timeslots to SCbus resources.

5. Remove SCbus resources from a cluster.

6. Maintain Talker protocol for SCbus output ports.

 Advanced Tasks:

7. Change default cluster connections.

8. Connect clusters on the same board together.

Table 3 gives a summary of the host library functions used to accomplish each
task.

Using the DM3 Direct Interface for Windows NT

88

Table 3. Host Cluster Control Tasks

To Do This… Use Host Library Function(s)…

Find a cluster mntClusterFind()
mntClusterByComp()

Add components to the cluster* mntCompAllocate()

Add SCbus resources with input
and output ports to clusters*

mntCompAllocate()

Assign SCbus timeslots to SCbus
resources

mntClusterTSAssign()

Remove SCbus resources from
cluster*

mntCompFree()

Manage Talker protocol for
SCbus output ports

Full Talker Functions:
mntClusterActivate()
mntClusterDeactivate()

For Advanced Tasks… Use Host Library Function(s)…

Change default cluster
configuration*

mntClusterDisconnect()
mntClusterConnect()

Connect cluster ports in different
clusters on the same board *

mntClusterConnect()

* This task is not applicable for this release.

8. Using Clusters

89

8.1.1. Finding a Cluster

Existing clusters may have component instances added to them. If a TSP
component exists on the board, most applications will allocate components into a
TSP’s pre-existing cluster. To add instances to an existing cluster, first find a
cluster with the necessary attributes.

To find clusters, two functions are used:

mntCompFind() Finds a component with the specified set of attributes

mntClusterByComp() Finds the cluster that a specified component belongs to

For example, to find the TSP cluster controlling T-1 timeslot 6, use the
mntCompFind() function specifying a TSP component with timeslot 6. After the
component is found, retrieve the TSP’s cluster by calling the
mntClusterByComp() function using the found component address.

8.1.2. Adding Components to Clusters

DM3 component instances are added to clusters during component allocation.
When a host application allocates a component with the mntCompAllocate()
function, it must specify the cluster to which it belongs.

When component instances are added to a cluster, a set of default connections are
automatically established. The kernel maps central ports to valid non-central
ports, that is, IN-ports are connected to OUT-ports. A TSP component instance
always has a pair of central ports, therefore, whenever a TSP component instance
is in a cluster, it will be connected to any instances added to that cluster.

Occasionally, SCbus resources are configured as central ports, typically if the
cluster does not contain a TSP instance.

Figure 8 is an example of the default connection map created when a cluster
contains a TSP, player, recorder, tone generator, and signal detector. The TSP
component instance is shaded to indicate that it is the central instance with two

Using the DM3 Direct Interface for Windows NT

90

central ports. For most applications, it is not necessary to configure clusters
differently than the default configuration.

Cluster

Recorder

Player

Signal
Detector

Tone
Generator

TSP

RO

RO

RI RI

NI

NO

Figure 8. Default Cluster Connections Example

8. Using Clusters

91

8.1.3. Assigning an SCbus Timeslot to an SCbus Resource

When an SCbus resource is created, it does not have a specific SCbus timeslot
assigned to it. The SCbus IN-ports are used to transmit TDM data into a specific
SCbus timeslot and the SCbus OUT-ports are used to receive data from a specific
SCbus timeslot.

To assign a timeslot, an application uses the mntClusterTSAssign() function call
specifying the:

• cluster

• SCbus resource component address

• SCbus resource port identity

• SCbus timeslot number

NOTE: For this release, mntClusterTSAssign() is only valid for SCbus OUT-
ports.

To stop data from being transmitted over the SCbus, mntClusterTSUnassign()
can be called to clear any timeslot assignments from the SCbus port.

8.1.4. Talker Protocol

When an SCbus resource with an SO port is part of a cluster, DM3 talker protocol
must be followed. The host application has several choices:

• Follow full DM3 talker protocol.

• Follow a simple DM3 talker protocol.

• Provide the address of a component that follows full DM3 Talker protocol.

Using the DM3 Direct Interface for Windows NT

92

Simple Talker Protocol

Simple Talker protocol provides the means for a host application to add SCbus
resources that “talk” (transmit TDM data) with minimal application talker
protocol overhead. This is accomplished by using the mntClusterActivate() and
mntClusterDeactivate() host library function calls.

The mntClusterActivate() call is used to activate the connections from the
SCbus OUT-port to the IN-ports inside the cluster. For example, in the figure
below, when the SCbus OUT-port is made active by the host application, the
network IN-port is accepting TDM data from the SCbus and the Tone generator
and the Player connections are not active.

Once the connection is active, what happens when the Player wants to generate
TDM data? This is dependent on how mntClusterActivate() was used.

Tone
Generator

Cluster

Player

Signal
Detector

SCbus
Resource

TSP

RO

RO

RI

NI

NO

SO

Figure 9. SCbus Resource Talking

8. Using Clusters

93

When the function is called, one of two default talker protocol response options is
supplied. The default response informs the kernel how to handle the situation.
Valid options are defined in mercdefs.h. They are:

QCLUST_AutoReject Data from the SCbus cannot be interrupted by any other
OUT-port resource in the cluster. The connection
between the SO port and all the input ports it connects
to will remain active until the host application explicitly
deactivates the connection with a
mntClusterDeactivate() function call.

QCLUST_AutoAccept Data from the SCbus can be interrupted by any other
OUT-port resource in the cluster. The connection
between the SO port and cluster input ports can be
temporarily suspended and re-established after the
interrupting resource has finished. No notification will
take place if this occurs.

Using the DM3 Direct Interface for Windows NT

94

Full Talker Protocol

A host application can act as a proxy for a resource that outputs data on the SCbus
and transmits data into the SO port of a cluster.

A resource that outputs data must be able to send a set of commands to request to
talk, and must be able to reply to kernel requests for interruptions with a specific
set of messages. These messages are summarized below:

Message Name Action Response Message

QClusterSuspend kernel request to stop
output of data

QClusterSuspendResult

QClusterResume kernel request to resume
output of data

QClusterResumeResult

QClusterActivate component request to
output data

QClusterActivateComplete

QClusterDeactivate component informing
kernel that it has stopped
outputting data

QClusterDectivateComplete

8.1.5. Changing the Default Cluster Configuration

NOTE: This functionality is not implemented for this release.

This is considered an advanced task since the default cluster configuration should
handle most situations.

Reconfiguring a cluster means that the host application will connect ports inside a
cluster to each other in a configuration that is different than the default behavior.
The figure below is a default cluster connection map that results when a TSP is in
a cluster with a player instance and an SCbus resource.

8. Using Clusters

95

SCbus
Resource

Cluster

Player

TSP

RO

NI

NO

SI

Figure 10. Default Cluster Connections Example

It may be desirable to configure the player resource to output to the SI port as well
as the NI port temporarily in a drop and insert situation. To establish a connection
between the RO and SI ports, call mntClusterConnect() specifying the cluster, SI

port, and RO port. This results in a new connection map as shown in Figure 11.

To return to the original connection map, call mntClusterDisconnect()
specifying the cluster, SI port and RO port.

Using the DM3 Direct Interface for Windows NT

96

8.1.6. Finding Cluster Assignment

To find the cluster that a component instance is part of, call:

mntClusterbyComp() Given an instance descriptor, finds the cluster to
which it is allocated.

SCbus
Resource

Cluster

Player

TSP

RO

NI

NO

SI

Figure 11. Reconfigured Cluster

8.1.7. Connecting Ports on the Same Board

Clusters on the same board can sometimes be connected without using SCbus
timeslots. To connect two clusters together, use the mntClusterConnect()
function. If the cluster ports specified can be connected without SCbus timeslots,
the function will succeed. If they cannot, the connection will fail.

97

9. Exit Notification

Direct Interface functionality called exit notification allows you to be notified
when a host application or specific component instance terminates. There are two
types of exit notification and each must be explicitly enabled in your application.

• Board-level exit notification
If a component instance exits and/or fails, the host application is notified by
the DM3 Kernel via a QFailureNotify message.

• Application exit notification
If a host application exits and/or fails, the driver notifies the DM3 Kernel via
a QExitNotify message when the Mpath device is closed. The driver does not
distinguish an abnormal termination from a normal exit; it blindly exercises
the exit notification logic upon the last close of the Mpath device.

Due to its impact on performance, the exit notification feature is typically used
only during application development. Production applications should be designed
to exit gracefully by closing opened streams and releasing allocated instances.

9.1. Setting up Board-level Exit Notification

To enable board-level exit notification, an application issues an
mntNotifyRegister() call. The DM3 Kernel records the sender’s address. If a
component fails, the application is notified via a QFailureNotify message. Note
that the application enabling notification must queue a request to receive this
message. To disable component exit notification, the application issues an
mntNotifyUnregister() call on the same source address (Mpath).

9.2. Setting up Application Exit Notification

There are two steps needed to set up application exit notification to the embedded
system. First, the host application must call the mntSetExitNotify() function on
the Mpath to enable the sending of the QExitNotify exit notification message.
When enabled, whether the handle is closed implicitly (via crash or failure) or
explicitly (via CloseHandle()), a QExitNotify message is sent for that Mpath, that
is, for that application/Mpath’s source address. Note, if the application exits

Using the DM3 Direct Interface for Windows NT

98

gracefully, to avoid undue overhead it should disable the notification using the
mntSetExitNotify() function.

Next the application must register with the DM3 Kernel the fact that it is “using”
certain component instances by calling the mntCompUse() function. When the
handle associated with the source address is closed and a QExitNotify message is
sent, the DM3 Kernel will send the QExitNotify to each component instance
identified as “used.” However, if a particular component instance is also being
“used” by another application, the kernel only removes that address from the used
list and does not send QExitNotify. At that point, the component instance will
know to stop any active operations and clean up any resources. Similarly, the
mntCompAllocate() function causes a sort of implicit “use” as a side effect
where the calling application address is added to the user list.

Call the mntCompUnuse() function to disable exit notification by the DM3
Kernel to the component instances listed in the payload, that is, to remove the
caller from the “used” list.

Application exit notification applies to clusters as well. When an application calls
mntClusterCreate() or mntClusterAllocate(), the cluster is considered “used”
by the application. If the DM3 Kernel receives a QExitNotify message for that
source address, then one of two things may happen. If the cluster was locked by a
call to mntClusterConfigLock(), then the cluster is freed, assuming no other
application are “using” it. If the cluster was not locked and no more applications
are “using” it, then the QExitNotify message is forwarded to all component
instances within the cluster. After all the component instances have responded,
then the cluster is freed and destroyed.

99

10. Error Handling

10.1. Retrieving Errors from the Host

Use the Win32 API function call GetLastError() to retrieve error information
from the host machine. See Section 4.1.3. Handling Asynchronous Function
Returns.

10.2. Retrieving Error Codes from the Embedded System

You will retrieve errors much differently depending on whether you called the
function synchronously or asynchronously.

10.2.1. Synchronous Platform Function Calls

If a synchronous function returns TRUE, it has completed successfully; no further
action is necessary. If it returns FALSE, it has failed; you must call the
GetLastError() function to get the error code. See Section 4.2.1. Handling
Synchronous Function Returns.

10.2.2. Asynchronous Platform Function Calls

The application is responsible for managing the OVERLAPPED structure.

If multiple requests are outstanding on the same device, each request must be
associated with a unique OVERLAPPED structure. If the message path, which is
specified through the hDevice parameter, has been opened with the
FILE_FLAG_OVERLAPPED flag set in the dwFlagsAndAttributes parameter
in the CreateFile() function call, the application must pass a valid lpOverlapped
parameter with the request.

The calling thread can use any wait function to wait for the event object, a
member of the OVERLAPPED structure, to be signaled, then call the
GetOverlappedResult() function to determine the operation’s results.

101

11. Direct Interface Application
Guidelines

Here’s a list of things to remember when using the Direct Interface.

11.1. Design & Development

Here’s a few general guidelines for when you’re designing and developing your
application:

• Your program must be robust enough to clean up after itself. Specifically, any
allocated component instances should be freed and any open streams should
be closed.

• Use the WinNT Structured Exception Handling (SEH) feature to run your
cleanup code and cause the system to notify your application when certain
situations occur.

• Use the WinNT SetConsoleCtrlHandler() function to catch CTRL-C and
BREAK entries from the keyboard.

11.2. Performance Issues

The following list shows how to avoid certain performance issues:

• Avoid orphans messages and streams of any kind (that is, data copies). Use
asynchronous I/O to avoid this situation.

• Use the MercMon and PerfMon tools to watch I/O traffic as well as to get
information about orphan messages, streams, and timeouts.

• Avoid page faults by using Pview and PerfMon to understand the details of
the activity on the board.

Using the DM3 Direct Interface for Windows NT

102

11.2.1. Pending I/O Requests

To avoid orphan messages or streams, you will typically need to post more than
one request. The number of requests you post depends on your application and the
load you expect it to handle under a particular system configuration.

For the unsolicited messages that you need to field throughout the life of the
application (for example, alarms or errors), you should allocate permanent MMBs
and use the mntRegisterAsyncMessages() function call. During development
and testing, use the MercMon utility (see Section 14.4. MercMon) to see if any
orphan messages are created. Please note, however, that MercMon’s counter of
orphan messages shows the total cumulative number of orphaned messages, not
the current orphan count.

If the orphan message volume does not drop back to zero, your application is not
reading them. Use the omdump tool (see Section 14.6. Omdump) to examine the
orphan messages and take appropriate action.

In terms of performance impact, remember that when the Protocol Driver receives
a message, it has to search through all pending MMBs for a potential match.
Therefore, it’s best to optimize by posting just enough MMBs to avoid orphans.
This applies to reading streams as well.

Simply because of the required buffering needed, orphan streams are likely to
have greater impact on performance. Be sure to use MercMon to monitor orphan
streams while running your application. If you see any, you should increase the
number of posted reads. For convenience, use mntRegisterAsyncStreams() to
post multiple read buffers. Keep in mind that for each read posted, its buffer is
mapped to system space and its physical pages are locked. Thus, there is a
practical limit to how many reads you can post before you begin to impact other
areas of the system.

103

12. Compiling and Linking an
Application

How you compile and link is partially a function of your C or C++ environment.
However, there a few things to keep in mind as you perform these functions:

• There are two versions of the Direct Interface library: one containing debug
functions (that enables logging information), and another without debug
functions.

Table 4. Filenames of Libraries

If you’re using… and you want a
library…

link this file:

Microsoft Visual C++ with debug functionality mntid.lib

without debug
functionality

mnti.lib

Borland C++ with debug functionality mntid_b.lib

without debug
functionality

mnti_b.lib

105

13. Debugging

Because the Direct Interface program is a communications application that has
strict requirements for performance and robustness, debugging might consist of
not only logging API calls, and but also capturing and recording the actual I/O
traffic. For this reason, the Direct Interface provides two debugging facilities,
tracing and the Protocol Driver trace log.

During your development and testing phases, you should use the debug version of
the Direct Interface (mntid.lib) that supports debug tracing. When you no longer
need debug functionality, link in the non-debug version of the library (mnti.lib).

13.1. Tracing

When tracing is enabled, all Direct Interface functions output the tracing to a disk
file that you can examine after the program has run. This can be especially helpful
if you run several processes and/or threads. In the non-debug version of the Direct
Interface, all tracing calls are null operations and present no overhead.

13.2. Protocol Driver Trace Log

The Protocol Driver provides logging services that capture both inbound and
outbound messages and streams. Only the system administrator can enable
Protocol Driver tracing. Enabled traced events are written to the mpd_dbug.dat
file in the %SystemRoot%\system32\drivers directory. Because Protocol
Driver tracing impacts system performance, you should use it only if absolutely
necessary, and only during testing.

Caution

Enabling Protocol Driver tracing can add further confusion during
debugging because it might subtly alter real time application behavior.

Use this feature only as a last resort.

Using the DM3 Direct Interface for Windows NT

106

13.3. Cleaning Up after Exits and Crashes

One facet of writing a reliable and robust Direct Interface application program is
to properly release DM3 resources each time the program terminates, whether
normally or abnormally. Specifically, you must release all allocated component
instances and close all open streams. Otherwise, you will eventually lose these
critical resources and be unable to access the DM3 embedded system.

For the development phase of your application, the Direct Interface provides exit
notification functionality (described in 9. Exit Notification) to help you clean up
at program termination. Once your application is headed into its production phase
however, You should not use or depend on these functions.

For your production application, you should use Windows NT structured
exception handling to clean up properly at program exit. For Windows NT
console programs, you need to provide your own Ctrl+C and Ctrl+Break handlers
that properly close all open streams through mntDetachMercStream() function
calls and free all component instances through mntCompFree() function calls.

107

14. Tools and Utilities

This chapter contains instructions for a number of tools and utilities that are
packaged with the Direct Interface. Use these tools for a variety of tasks during
your development cycle:

• dm3stderr
This utility acts like a virtual "tip" or serial port session to the DM3 board.

• Mercmon
This tool logs and reports any issues raised from the DM3 embedded system.

• Mpdtrace
This program can enable or disable driver debugging, and retrieve the driver
debug buffer.

• qerror
This utility displays a string associated with the error code returned in a
QResultError message from the board.

• Omdump
This utility can be used to dump Orphaned Messages to a file.

• strmstat
This utility displays a stream’s current state.

Using the DM3 Direct Interface for Windows NT

108

14.1. dm3stderr

This utility acts like a virtual "tip" or serial port session to the DM3 board. All
DM3 boards send “printfs” to both the serial port and to the host. This program
polls the board and displays those “printfs” from the resources and kernel to the
screen.

The dm3stderr utility takes the following parameters:

Parameter Meaning

-b board number The number of the board in the system. This is
required.

-d debug level Sets the debug level.

-f filename The name of the file in which you want to capture the
output.

-h Displays a help screen.

-v Displays the version number of the software.

14.1.1. Example

dm3stderr -b1 -f output.txt

This will grab the printf data from board 1 and display it to the screen and save it
to file "output.txt".

14. Tools and Utilities

109

14.2. qerror

This utility displays a string associated with the error code returned in a
QResultError message from the board. This code is generated with a PERL script
directly from the header files, so it is as accurate as the comments in the header
files are.

The source to this code is arranged so that the "get error string" function can be
pulled out and used in any application.

14.2.1. Usage

Enter qerror on the command line in the following manner:

qerror [option_list] ERRORCODE

The qerror utility takes the following options:

Parameter Meaning

-b number Base of the input number. Use 10 for decimal or 16
for hexadecimal. 16 is the default.

-d debug level Set the debug level in a range from 0 to 5. 0 is the
default.

-h Displays a help screen.

-v Displays the version number of the software.

14.2.2. Example
qerror 28008
 ERROR==> 0x28008 (163848)
 Kernel Error:
 Cluster does not exist or cannot be found

Using the DM3 Direct Interface for Windows NT

110

14.3. kernelver

This utility will query the kernel on any processor for its version number. Use the
-l option to "ping" the board if you just want to generate message traffic or as a
good test to see if the kernel is running.

The kernelver command takes the following parameters:

Parameter Meaning

-b board number The number of the board in the system. This is
required.

-d debug level Set the debug level in a range from 0 to 5. 0 is the
default.

-p processor number The number of the processor on the board. This is
always required.

-l loop Number of times to grab version.

-h Displays a help screen.

-v Displays the version number of the software.

14.3.1. Example

• kernelver -b0 -p2
Gets the version of the kernel running on processor 2.

14. Tools and Utilities

111

 14.4. MercMon

Both the Class Driver and the Protocol Driver maintain various counters that can
aid in monitoring system activities and interpreting certain behaviors. Since
MercMon is a read-only application, permissions are granted to all users.

14.4.1. Usage

The MercMon utility takes the following parameters:

Parameter Meaning

/t milliseconds The timer period in milliseconds. Default is 1000.

/l seconds The log period in seconds. Default is 600.

Table 5 lists the Class Driver counters. Table 6 lists the Protocol Driver counters.

You can also use NT’s PerfMon utility to monitor the DM3 boards. Select either
“MCD Device” (for the Class Driver) or “MPD Device” (for the Protocol Driver)
object and add specific counters of interest.

Table 5. Class Driver Counters

Class Driver
Counter

Description

CanTakes number of Can_Take messages received. The DM3 board can
send Can_Take messages to control the flow from the host.

CloseStrmErrs number of stream close request errors.

FailMpathFind number of times that the Class Driver has failed to find an
Mpath device.

FailStrmFind number of times that the Class Driver has failed to find a Stream
device.

OpenedStrms number of currently opened streams.

Using the DM3 Direct Interface for Windows NT

112

Class Driver
Counter

Description

OpenStrmErrs number of stream open request errors.

Reads number, in kilobytes, of read requests successfully completed.

ReadTimeouts number of stream read requests that have timed out.

SendTimeouts number of message write requests that have timed out.

SplitWrites number of split writes that the Class Driver has made. For each
large write request, the Class Driver splits it into multiple
partial transfers.

StrmCloses number of stream close requests received

StrmOpens number of stream open requests received

TotalReads number of stream read requests received

TotalSends number of message send requests received

TotalWrites number of stream write requests received

Writes number, in kilobytes, of write requests successfully completed.

WriteTimeouts number of stream write requests that have timed out.

Table 6. Protocol Driver Counters

Protocol Driver
Counters

Description

AsyncMsgQ number of asych message read requests received

AsyncMsgQDone number of message read requests completed.

BadSramOffset number of invalid values that the Protocol Driver
has found in the control structures in the DM3-
board-resident SRAM. These control structures
consist of circular buffers and a chained list of free
data blocks. This count should always be 0.

14. Tools and Utilities

113

Protocol Driver
Counters

Description

BigMsgsRcvd number of big messages received from the DM3
board through data blocks. The Protocol Driver uses
a data block for each message larger than 24 bytes.

BigMsgsSent number of big messages sent

BogusInterrupts number of times that the Protocol Driver received
interrupts from the DM3 board while its status
register contained 0.

DmaInterrupts because the Protocol Driver does not support DMA,
this value should always be 0.

DpcOverruns number of times that the Protocol Driver could not
queue its DPC processing in response to interrupts.
If this counter is increasing persistently, it indicates
an overloaded system. In other words, the system
cannot keep up with its incoming interrupts. You
need to make some hardware upgrades.

IrpsCanceled number of canceled I/O requests.

MsgInQ number of message read requests received

MsgInQDone number of message read requests completed

MsgInSram the cumulative total of messages read from the
SRAM.

MsgOutQ number of message send requests received

MsgOutQDone number of message send requests completed

MsgOutSram number of messages written to the SRAM.

MsgOverruns number of times that the Protocol Driver could not
buffer incoming message data. If this counter is
increasing persistently, you need to increase the
value in the orphanageMsgLen parameter.

Using the DM3 Direct Interface for Windows NT

114

Protocol Driver
Counters

Description

MsgsInPerSramSession number of messages that the Protocol Driver has
read from the SRAM during any inbound session.
This counter fluctuates between 0 and integer values
that vary according to DM3-board-generated traffic.

MsgsOutPerSramSession number of messages that the Protocol Driver has
written to the SRAM during any outbound session.
This counter fluctuates between 0 and integer values
that vary according to application-generated traffic.

MsgTimeouts number of message read and send requests that have
timed out

NoInDataDpcIsr number of times that the Protocol Driver received
interrupts from the DM3 board and attempted to
read the SRAM buffers, but there were nothing to be
read. This can happen if the Protocol Driver’s timer
routine has already emptied the buffers. This timer
routine runs at the interval specified in the
sramOutTimer parameter.

OrphanStrms number of times that the Protocol Driver had to
buffer streams. This indicates that read requests are
not getting to the Protocol Driver quickly enough.
Unless there are also overruns and timeouts, this
counter can be increasing without indicating a major
problem.

OrphanStrmVol aggregate number, in bytes, of all orphan buffers. If
there are orphan streams, you should see this counter
fluctuate up and down, hopefully down to 0.

OrphMsgMatches number of message read requests satisfied by the
message orphan buffer.

OrphMsgs number of orphan messages received. Please note
that this is the total count of orphan messages, not
the current count.

14. Tools and Utilities

115

Protocol Driver
Counters

Description

OrphMsgVolume current size, in bytes, of the message orphanage.

OrphStrmMatches number of stream read requests satisfied by an
orphan buffer.

SramDataFull number of times that the Protocol Driver found the
SRAM data queue full, and could not write to it.. If
this count is not 0, you might need to increase the
value in the maxHostDataXfer parameter.

SramGrantInterrupts number of grant interrupts received by the Protocol
Driver. The Protocol Driver must obtain permission
before it can access the DM3 board-resident SRAM.
Unless such permission has already been granted,
the Protocol Driver must wait for a grant interrupt.
This number should increase, but much more slowly
than the number in the SramInterrupts counter.

SramGrantLost number of SRAM grants that the Protocol Driver
could not find. Each time the Protocol Driver finds
an invalid value in the SRAM control structures, it
tries to find a grant in the SRAM grant status
register. This count should always be 0.

SramInterrupts number of DM3 board interrupts that indicated that
messages and/or data were ready to be read.

SramMsgFull number of times that the Protocol Driver found the
SRAM message queue full, and could not write to it.

StrmInQ number of stream read requests received by the
Protocol Driver. For example, these can be
ReadFile() function calls.

StrmInSram number of stream blocks read from the SRAM.

StrmInQDone number of stream read requests completed

StrmOutQ number of stream send requests received

Using the DM3 Direct Interface for Windows NT

116

Protocol Driver
Counters

Description

StrmOutQDone number of stream send requests completed

StrmOutSram number of stream blocks written to the SRAM.

StrmOverruns number of times that the Protocol Driver could not
buffer incoming stream data. Any non-zero value
here dictates that you need to take remedial action.
You might need to adjust the application. You might
need to provide more physical memory. Clearly, if
this counter is increasing persistently, it indicates a
serious problem that you must address.

StrmsInPerSramSession number of stream blocks that the Protocol Driver has
read from the SRAM during any inbound session.
This counter fluctuates between 0 and integer values
that vary according to DM3-board-generated traffic.
If this count is consistently low, you can increase the
value in the hwIntInterval parameter.

StrmsOutPerSramSession number of stream blocks that the Protocol Driver has
written to the SRAM during any outbound session.
This counter fluctuates between 0 and integer values
that vary according to application-generated traffic.

StrmTimeouts number of times that read requests have timed out.
Although this is not as serious as stream overruns,
this counter should not be increasing constantly.

UnknownInterrupts number of times that the Protocol Driver received
interrupts from the DM3 board, and could not
determine the reasons. This value should always be
0.

14. Tools and Utilities

117

14.5. Mpdtrace

This program can enable or disable driver debugging, and retrieve the driver
debug buffer. The driver debug buffer is enabled and retrieved on a per board
basis.

14.5.1. Usage

The mpdtrace command takes the following parameters:

Parameter Meaning

/b board number Board number. This is required.

/tr tracing enable/disable 0/1 enables or disables tracing.

/mi message in enable/disable 0/1 enables or disables message in.

/mo message out enable/disable 0/1 enables or disables message out.

/si stream in enable/disable 0/1 enables or disables stream in.

/so stream out enable/disable 0/1 enables or disables stream out.

14.5.2. Examples

• mpdtrace /b3 /tr0
Enables driver tracing on board 3

• mpdtrace /b3 /tr1
Disables driver tracing on board 3

Using the DM3 Direct Interface for Windows NT

118

14.6. Omdump

The omdump utility dumps orphan messages and places them in a file. An orphan
message is defined as an MMB that was posted but there were no receive buffers
for it.

14.6.1. Usage

The omdump command takes the following parameters:

Parameter Meaning

/b board number Board number. This is required.

/f filename The name of the output file.

/? Displays a help screen.

14.6.2. Examples

The following shows the command line and the output file:

• omdump /b 0 /f orphan.dmp
This command dumps the messages in the orphan buffer to a file called
orphan.dmp. The output is in the following format:
Current Time: Fri Feb 13 11:35:06 1998

#0
 status: alive with longevity=11
 flag: 80
 xid: 0x00000001, 1
 type: 0x00000020, 32
 srcDesc: 0:0:1:15:1
 dstDesc: 0:0:0:2:51
 msgSize: 24
 msg# 0: 0x00000001
 msg# 1: 0x0000123a
 msg# 2: 0x0013283c
 msg# 3: 0x00030001
 msg# 4: 0x0000000a
 msg# 5: 0x0000000c

#1
 status: alive with longevity=11
 flag: 80
 xid: 0x00000001, 1

14. Tools and Utilities

119

 type: 0x00000020, 32
 srcDesc: 0:0:1:15:1
 dstDesc: 0:0:0:2:62
 msgSize: 24
 msg# 0: 0x00000001
 msg# 1: 0x0000123a
 msg# 2: 0x0013283c
 msg# 3: 0x00030001
 msg# 4: 0x0000000a
 msg# 5: 0x0000000c

14.7. strmstat

This utility displays the current state of the stream(s) specified.

States shown include:

• Closing

• Closed

• Close failed

• Opening

• Opened for write

• Opened for read

• Open failed

14.7.1. Usage

The strmstat command takes the following parameters:

Parameter Meaning

/i number of streams The number of stream on which to report.

/b board number Board number. This is required.

/s start stream The first stream to report.

/? Displays a help screen.

Using the DM3 Direct Interface for Windows NT

120

14.8. Examples

The following shows the command line and the output file:

• strmstat /b 0 /i 16
This command displays the stream state for stream IDs 1 to 16 on board 0.
The output is simliar to the following example:

Stream Status for Board = 0
Stream ID State Additional Info
 1 Closed
 2 Closed
 3 Closed
 4 Closed
 5 Closed
 6 Closed
 7 Closed
 8 Opened Write
 9 Opened Write
 10 Opened Write
 11 Opened Write
 12 Opened Write
 13 Opened Write
 14 Opened Write
 15 Opened Write
 16 Opened Write
TOTALS
Closed = 7 Opened = 9 Closing = 0 Opening = 0
CloseErr = 0 OpenErr = 0 Unknown = 0

121

Index

A
address space, 39

application cleanup, 106

application development models
Asynchronous, 19
Synchronous, 22

application exit notification, 97

Architecture, DM3
definition, 7

asynchronous functions, 26
OVERLAPPED structure, 26

Asynchronous model, 19

asynchronous models
Asynchronous, 19

asynchronous programming, 19, 21

attributes, 41, 65, 89

B
Board Number, 40

buffering
protocol driver, 84

C
callback programming model, 17

Can_Take, 76

CancelIo(), 60, 77, 85

Class Driver, 11
initialization, 37

cleanup, 106

Component

definition, 7

component exit notification, 97

cPCI, 6

CreateFile(), 37, 43, 44

CreateIoCompletionPort(), 27

D
debugging

logging, 105
tracing, 105

debugging your program, 105

device types
DM3, 37
Mpath, 38
Stream, 40

Devices
names, 43
opening, 44

Dialogic Class Driver, 11

Dialogic Protocol Driver, 11

Direct Interface
debugging, 105

DLGCMCD, 11

DLGCMPD, 11

DM3 architecture
key concepts, 7

DM3 device types, 37

DM3 Direct Interface host library, 10

DM3 embedded system, 11

DM3 firmware, 12

Using the DM3 Direct Interface for Windows NT

122

DM3 Hardware, 11

DM3 host library, 10

DMA, 11

DuplicateHandle(), 39

E
EOD (end of data), 67

EOF (end of file), 67

EOT (end of transmission), 67

ERROR_SHARING_VIOLATION, 43

Eventing, 15

exit notification
component, 97

F
FILE_FLAG, 28

flow control
write streams, 76

functions
asynchronous, 26

G
GetQueuedCompletionStatus(), 28, 30,

51

H
Hardware, 11

I
I/O Completion Option Flags, 50

I/O completion ports, 15, 27

Introduction to DM3 architecture
definition, 7

L
logging services, 105

logical board number, 41

M
Macros

MMB Header, 47
QMsg structure, 48

MercMon, 111

Message Block, Multiple, 13

Message Paths (Mpath), 38

Messages
asynchronous, 59
canceling, 60
definition, 8
empty, 59
reply, 15
unsolicited, 15, 49, 59, 102

MMB, 13, 40

mntAttachMercStream(), 40

mntDetachMercStream(), 71

mntEnumMpathDevice(), 43

mntEnumStrmDevice(), 43, 70

mntFreeMMB(), 57

mntGetBoardsByAttr(), 41

Models
programming, 17

Mpath, 37
handle

sharing across processes, 39

Mpath device type, 38

Mpath devices
number of, 39

Index

123

MPD buffering, 84

Multiple Message Block, 13

Multitasking, 39

Multithreaded applications
Mpath devices in, 39

O
overhead, 39

Overlapped, 15

P
PCI, 6

PIO, 11

programming fundamentals
asynchronous programming, 19, 21
synchronous programming, 22

Programming Models, 17
callback, 17

Protocol Driver, 11

protocol driver buffering, 84

protocol driver trace log, 105

Q
QMsg

structure macros, 48

R
read buffer size

specifying, 85

read streams
programming, 77

ReadFile(), 11

reply messages, 15

Resource

definition, 7

Run-Time Control, 15

S
Sharing Violations

avoiding, 43

state machine, 20

stream
number, 40

stream data
reading, 77
writing, 69

Stream device type, 40

Stream Paths (Strm), 40

streams
flags, 76
I/O operations, 67
programming, 67
reading, 77
writing, 69

Strm, 37

Strm device type, 40

synchronization, 39

Synchronous model
choosing, 22
defined, 22

synchronous programming, 22

T
TCP port number, 38

threads
synchronization, 39

tracing, 105

tuning considerations

Using the DM3 Direct Interface for Windows NT

124

MercMon, 111

U
unsolicited messages, 15, 49, 59, 102

W
WaitForMultipleObjects(), 51

WaitForSingleObject(), 51

Win32, 37

write streams
flow control, 76
programming, 69

WriteFile(), 11

Index

125

Using the DM3 Direct Interface for Windows NT

126

NOTES

NOTES

NOTES

DOCUMENTATION FEEDBACK FORM

Document Title: Using the DM3 Direct Interface for Windows NT

Publication Date: April, 1998 Part Number: 05-0987-001

1. Please rate this document in the following areas:

Excellent Good Adequate Fair Poor N/A

Accuracy ❑ ❑ ❑ ❑ ❑ ❑

Clarity ❑ ❑ ❑ ❑ ❑ ❑

Ease of Use ❑ ❑ ❑ ❑ ❑ ❑

Relevance to Job ❑ ❑ ❑ ❑ ❑ ❑

Code Examples ❑ ❑ ❑ ❑ ❑ ❑

Organization ❑ ❑ ❑ ❑ ❑ ❑

Completeness ❑ ❑ ❑ ❑ ❑ ❑

Figures/Illustrations ❑ ❑ ❑ ❑ ❑ ❑

Appearance ❑ ❑ ❑ ❑ ❑ ❑

Overall Satisfaction ❑ ❑ ❑ ❑ ❑ ❑

2. How can we improve this document?

❑ Improve the index

❑ Improve the organization

❑ Improve overviews and introductions

❑ Include more illustrations and figures

❑ Add more/better quick reference aids

❑ Add more troubleshooting information

❑ Add more step-by-step procedures and tutorials

❑ Make it more concise

❑ Add more detail

❑ Add more/better code examples

❑ Make it less technical

❑ Make it more technical

3. Please include any other comments on an additional sheet.

4. FAX this form to DIALOGIC DOCUMENTATION MANAGER at (973) 993-5916.

NAME: _____________________________ COMPANY: _________________________

PHONE: ____________________________ ADDRESS: __________________________

