
DM3 Mediastream
Architecture Overview

Copyright © 1998 Dialogic Corporation

05-0813-001

PRINTED ON RECYCLED PAPER

COPYRIGHT NOTICE

Copyright 1998 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment
on the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot
guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. No
warranties of any nature are extended by the information contained in these copyrighted materials.
Use or implementation of any one of the concepts, applications, or ideas described this document or
on Web pages maintained by Dialogic-may infringe one or more patents or other intellectual property
rights owned by third parties. Dialogic does not condone or encourage such infringement. Dialogic
makes no warranty with respect to such infringement, nor does Dialogic waive any of its own
intellectual property rights which may cover systems implementing one or more of the ideas contained
herein. Procurement of appropriate intellectual property rights and licenses is solely the responsibility
of the system implementer. The software referred to in this document is provided under a Software
License Agreement. Refer to the Software License Agreement for complete details governing the use
of the software.

All names, products, and services mentioned herein are the trademarks or registered trademarks of
their respective organizations and are the sole property of their respective owners. DIALOGIC
(including the Dialogic logo), DTI/124, SpringBoard, and Signal Computing System Architecture
(SCSA) are registered trademarks of Dialogic Corporation. The following are also trademarks of
Dialogic Corporation: DM3, IPLink.

Publication Date: April, 1998

Part Number: 05-0813-001

Dialogic Corporation
1515 Route 10
Parsippany NJ 07054

Technical Support
Phone: 973-993-1443
Fax: 973-993-8387
BBS: 973-993-0864
Email: CustEng@dialogic.com

For Sales Offices and other contact information, visit our website at http://www.dialogic.com

iii

Table of Contents

1. Introduction ... 1
1.1. Why Build Products on the DM3 Mediastream Architecture? 1

1.1.1. CT Products Before DM3.. 1
1.1.2. DM3 Advantages ... 2
1.1.3. Solution: The Open DM3 Platform.. 3
1.1.4. DM3 Terminology ... 4
1.1.5. Robust Programming Environments .. 5

1.2. Features of the DM3 Mediastream Architecture .. 5

2. Software Architecture... 9
2.1. Division of Services ... 10
2.2. DM3 Kernel.. 13
2.3. DM3 Direct Interface ... 15

3. High Density Hardware Architecture ... 17
3.1. DM3 Baseboard ... 18

3.1.1. Mediastream Management ASIC (MMA) ... 19
3.1.2. Control Processor (CP).. 21
3.1.3. Global Memory.. 21
3.1.4. Moving Data to and from the Host .. 21
3.1.5. Control Processor Memory.. 21
3.1.6. SP Memory .. 22
3.1.7. Host Shared RAM.. 22
3.1.8. PCM RAM... 22
3.1.9. SCbus/SC4000... 22
3.1.10. Digital Network Interfaces... 23
3.1.11. High-level Data Link Communication (HDLC) Controllers.............. 23

3.2. SP Daughterboards... 23
3.2.1. Motorola-based 5630x Daughterboards... 24
3.2.2. PowerPC Daughterboards.. 24

3.3. Digital Network Interface (DNI) Daughterboard ... 25
3.4. Ethernet Network Interface Card Daughterboard ... 25
3.5. Remote Access Daughterboard... 25
3.6. Data Communication.. 25

4. Cluster Concepts.. 27
4.1. Concepts and Terms ... 27

4.1.1. TDM Data.. 27

DM3 Mediastream Architecture Overview

iv

4.1.2. C-Streams .. 28
4.1.3. Ports... 28
4.1.4. Clusters .. 30
4.1.5. Connections ... 31
4.1.6. Talker Protocol .. 32
4.1.7. Data Switching via the SCbus (or CT Bus) ... 33
4.1.8. Connecting Clusters... 34

4.2. Host Application Cluster Control ... 37
4.2.1. Finding a Cluster.. 39
4.2.2. Adding Components to Clusters .. 39
4.2.3. Assigning a timeslot to an SCbus Resource... 40
4.2.4. Talker Protocol .. 41
4.2.5. Changing the Default Cluster Configuration.. 43
4.2.6. Finding Cluster Assignment... 44
4.2.7. Connecting Ports on the Same Board .. 45

Index .. 47

v

List of Tables

Table 1. Host Cluster Control Tasks ... 38

vii

List of Figures

Figure 1. The New Development Paradigm .. 2
Figure 2. Inter-operable Platforms and Technologies.. 3
Figure 3. Architecture to Products... 5
Figure 4. Kernel Services on the DM3 Platform ... 11
Figure 5. Structure of a Resource .. 12
Figure 6. Resource, Components, and Component Instances 13
Figure 7. Layered Software Structure.. 14
Figure 8. DM3 Direct Interface ... 16
Figure 9. High Density Platforms.. 18
Figure 10. DM3 Configuration Diagram ... 19
Figure 11. Messages and Data Flow.. 26
Figure 12. TDM Data Exchange between Component Instances 28
Figure 13. TDM Data Flow with Port Notation... 30
Figure 14. DM3 Cluster with SCbus Resources .. 34
Figure 15. Inter-Cluster Connections... 35
Figure 16. Default Cluster Connections Example ... 40
Figure 17. SCbus Resource Talking .. 42
Figure 18. Default Cluster Connections Example ... 44
Figure 19. Reconfigured Cluster.. 45

1

1. Introduction

This document introduces the DM3™ mediastream architecture. This architecture
provides computer telephony (CT) resource developers and application solution
developers with an unparalleled degree of flexibility and performance, and
represents a new paradigm for planning and deploying computer telephony
solutions. The purpose of this document is to show the capabilities of the DM3
mediastream architecture, not to define any specific DM3 products.

This document provides an overview of the DM3 architecture, the process used to
create products based on the architecture, and an introduction to the development
environment.

1.1. Why Build Products on the DM3 Mediastream
Architecture?

Computer telephony (CT) technology allows computers to make and receive calls,
handle various communication media (such as audio and data), and make
conversions between different media using mediastream resources (such as
network interface, fax, automatic speech recognition, and text-to-speech).

1.1.1. CT Products Before DM3

Before DM3, a typical CT product offered fixed functionality at the board level,
with resources from a single vendor.

1
 In addition, these products were dependent

on the DSP and other processors being used and had limited scalability. This
paradigm made it difficult for developers to rapidly integrate new resources into
their applications, or to reconfigure an application using one resource to use
another resource.

1
 An exception is Dialogic’s Antares product, which offers over a dozen speech technologies from
multiple vendors on the same hardware platform (although they cannot run simultaneously).

DM3 Mediastream Architecture Overview

2

• Open “universal” resource platforms

• SCSA standards-based CT servers

Application Software
Application

SCSA System

FAX...

Voice...

• Resource-specific hardware
• Single vendor system

DM3 Hardware Platforms...

Dialogic
Voice

Dialogic
FAX

3rd Party
Technology

DM3 Firmware Resources...

Application

Figure 1. The New Development Paradigm

1.1.2. DM3 Advantages

DM3 solves these problems with a new development paradigm that offers the
following advantages:

� Deploy multiple resources on a single platform
Resources such as call control, voice (playback, recording, and tone
detection), fax, and automatic speech recognition (ASR) all operate on any
DM3 platform.

� Upgrade capabilities with modular hardware
Developers can rapidly upgrade and reconfigure their systems while
protecting their investment in the underlying hardware. Modular DSP and
processor-independent hardware makes modifications to a system easier and
less expensive.

� Develop in an open environment
The open DM3 mediastream architecture helps developers rapidly integrate
multiple resources from multiple vendors. Using DMFast™ development
tools, developers can build industry-standard, inter-operable solutions based
on SCSA� hardware and SCSA-compatible software.

1. Introduction

3

� Grow with an easily extensible platform
Since DM3 offers modular platforms, developers can rapidly adopt industry-
leading processors and memories. Solutions are available on PCI, Compact
PCI, and VME platforms.

Voice, Network Interface, Coders, ASR, TTS...

Voice/Fax
over IPFAX

PCI...
SCSA

V
M

E
...

cP
C

I..
.

Figure 2. Inter-operable Platforms and Technologies

1.1.3. Solution: The Open DM3 Platform

The DM3 mediastream architecture is a flexible, layered, open CT resource
architecture for network protocol and media processing resources that is designed
for both firmware resource developers and application solution developers.
Firmware resource developers can create or port algorithms onto the DM3
architecture to build firmware resources, while solution developers can create host
applications that use the DM3 firmware resources. Firmware resources are
embedded algorithms, such as network interface, voice, fax, and ASR, that are
written to leverage the DM3 software kernel for inter-processor management and
resource cooperation. This speeds CT resource development and integration for
firmware resource developers and allows them to more quickly take advantage of
industry advancements in signal processing technology.

DM3 Mediastream Architecture Overview

4

1.1.4. DM3 Terminology

The DM3 mediastream architecture consists of embedded software modules and
hardware that provide a platform for developing leading-edge call processing
applications.

DM3 platforms are modular, scaleable hardware implementations of the
architecture and include high density PCI, high density Compact PCI, and high
density VME platforms. Lower density platforms (with 4 to 30 ports) will also
become available.

Platforms are integrated with resources to create product bundles.

Resources perform the following functions:

� Digital network interfaces (T-1, E-1, ISDN) � Call processing, including:

� Internet telephony (voice over Internet) �Voice record and play

� Fax �Call progress

� Automatic speech recognition (ASR) �DTMF detection

� Text-to-speech (TTS) �Tone generation

� Audio conferencing �Speed and volume control

1. Introduction

5

DM3: An Open & Multi-Vendor Resource Architecture
Application portability across systems

Multi-vendor resource portability across platforms
Multi-card, multi-vendor integration (SCbus)

Scaleable & Modular Platforms

Flexibly Integrated Products
(integrated resources + platforms)

Value-Added Products
(resources + platforms + development kits + services)

Modular Resources

Figure 3. Architecture to Products

1.1.5. Robust Programming Environments

DM3 is compliant with high-level APIs such as the ECTF industry standard S.100
API. Also, DM3 is designed for backwards-compatibility with existing Dialogic
APIs. Lower-level API support based on the DM3 Direct Interface is provided as
well. All of these interfaces are fully documented and available on all DM3
Compact PCI, PCI, and VME hardware platforms.

Resource developers can write their own algorithms to the DM3 Kernel, which
helps to insulate the developer from the low-level details of the real-time
operating system and increases processor independence, code portability, and
supportability.

1.2. Features of the DM3 Mediastream Architecture

The following is a high-level list of the features of the DM3 mediastream
architecture:

DM3 Mediastream Architecture Overview

6

Open Architecture
DM3 hardware platforms are available in standard form factors (PCI, cPCI, and
VME) and are compatible with standard SCbus and CT Bus interboard buses.

Resource independence from the hardware platform
The DM3 Kernel provides processor independence through a common low-level
interface to all processors. The kernel also manages the resources of the platform.
The hardware, firmware, and software can all be upgraded independently of each
other, which allows for mix-and-match solutions.

Flexible hardware platforms
The hardware design is modular, consisting of one baseboard with up to three
stackable signal-processing daughterboards.

High performance hardware platforms
The DM3 mediastream architecture contains at its core a high-performance
custom ASIC called the Mediastream Management ASIC (MMA). The logical
interfaces to all processors in a high density DM3 system are managed by the
MMA. Furthermore, a high degree of processor independence is achieved by
employing memory interfaces that are not specific to a particular processor.

The DM3 baseboard Control Processor (CP), a RISC Intel i960CF, controls the
SC4000s and High-level Data Link Controls (HDLCs). There are multiple high-
performance Signal Processors (SPs) available on stackable daughterboards. This
includes the following processors:

� up to 18 Motorola 5630x fixed-point DSPs running at 66 or 100 MHz and
faster.

� up to 8 Motorola 603E PowerPC RISC processors running at 166 or 200
MHz or above.

Other processors will also become available.

The Mediastream Management ASIC (MMA) performs �-law to linear and A-law
to linear companding, and manages the data flow between the host, the SCbus (or
CT Bus), and all processors on the board. Two SC4000 ASICs (with HDLC) can
access 256 full-duplex timeslots on the SCbus (or CT Bus).

1. Introduction

7

For applications, there is a configurable global memory available and run-time
control to increase application response times.

High density
A single slot can support up to four T-1, E-1, or ISDN trunks running Dialogic’s
network interface and voice software. Also, up to 30 send and receive fax
channels can be supported in one slot. Higher channel densities are planned for
future releases of the DM3 platform.

DMFast™ Development Environment
The development environment can be configured to best fit your budget or method
of development:

� In Simulated Development Mode (SDM), the DM3 Kernel and demo
program run on a development workstation using Wind River Systems’
VxWorks to simulate the DM3 board environment.

� In Remote Access Development Mode (RADM), a remote host computer (a
Sun workstation) communicates with the DM3 platform via Ethernet.

� In Host Access Development Mode (HADM), a VME Force 5V host
communicates with the DM3 platform via the VME bus.

Wind River Systems’ Tornado and VxWorks tools, along with other Dialogic and
third party tools, make the development environment easy to use.

9

2. Software Architecture

The DM3 mediastream architecture provides several key benefits to both
technology developers and application engineers:

� Resources (such as fax, voice, and ASR) are platform independent. They can
be moved across platforms (PCI, Compact PCI, and VME) and operating
systems (UNIX and WinNT).

� Frameworks for developing resources have pluggable components. Resource
frameworks exist so that component code can be easily plugged into an
existing message set. This allows interoperability with other pre-existing
embedded components and Host APIs.

� Multiple application interfaces provide for low-level (Direct Interface)
development and support high-level APIs (such as ECTF S.100).

� Open development environment, DMFast™, includes environments for
remote and simulated development, various tools from Dialogic and third
parties, a low-level kernel API, and development kits for voice, fax, ASR,
TTS, voice coders, Internet coders and other resources.

The DM3 software architecture follows a straightforward model: a defined set of
system services manage the software entities used to implement algorithm
resources. The model, based on an architecture-neutral system-service layer called
the DM3 Kernel, supports a real-time execution environment and manages
resource entities, inter-component communication, and external device I/O.

The software architecture uses messages and data streams to provide a uniform
communication method between all entities that access or are part of DM3
technology. Executable entities, called components, may be logically grouped into
resources and physically implemented as tasks. This includes communication
between internal software entities termed component instances.

The software environment also enables optimization of algorithms for improved
performance when running on the DM3 platform. Resources may be split into
multiple components that can distributed among different processors and
processor types. For example, the CP can be used for control and management
functions, while the DSP can perform signal processing functions. The kernel also

DM3 Mediastream Architecture Overview

10

shields developers from low-level specifics of the Real Time Operating System
(RTOS), further facilitating the development process.

The kernel is a C functional interface that is consistent across all supported
processor types, which allows resource developers to easily move components to
different processors.

2.1. Division of Services

The DM3 software architecture is based on an architecture-independent kernel-
services layer. The kernel defines a uniform set of interfaces that is consistent
across the various physical implementations of DM3 and can be used by DM3-
based resources. The kernel layer is independent of any processor or underlying
RTOS. It also manages hardware dependencies such as byte-ordering and I/O
interfaces, while normalizing RTOS features such as task management and inter-
process communication.

In a hardware implementation that uses a control processor as well as signal
processor(s), the kernel is replicated on each processor above the native RTOS.
The processor(s) implement and use the standard messaging and data stream
mechanism for communication between each other and between components.

Figure 4 details the division of kernel services on any DM3 platform.

2. Software Architecture

11

Host Driver
CP

Kernel
Services

VxWorks

Host

˜
• ˜

•
SP

Kernel
Services

SPOX
or

VxWorks

CP SP

Platform

External
interface to
SCbus and

network
interfaces

ASICs

Messaging Protocol
Data Stream Protocol

Figure 4. Kernel Services on the DM3 Platform

A DM3 resource is the primary logical entity in the DM3 embedded software
environment and closely matches the SCSA concept of a resource (such as a
Player, Recorder, Fax Transmitter, etc.). A resource represents a set of features to
be performed and the functions of one resource are logically independent of any
other resource.

DM3 components are logical entities that implement specific features within a
resource. A resource may be separated into components to distribute functions
among processors (for example, control functions versus signal processing
algorithms), or to provide alternative or optional services within a resource (such
as multiple coders in a player resource).

DM3 Mediastream Architecture Overview

12

Resource

Component

Component

Component

Component Component

Resource

Figure 5. Structure of a Resource

A component instance is an addressable unit within the DM3 software
architecture; it represents a single thread of control. The DM3 system resource
management and messaging services operate at the instance level. A set of
component instances that make up a resource instance communicate with one
another using the DM3 system messaging services. A set of component instances
is usually associated with a channel of call processing.

One implementation of a component actually encompasses two logical entities. It
represents the implementation of the instances (analogous to a class for which the
instances are the created objects of the class) and a separate execution context and
address as a generator and manager of instances with its own address.

A task is an executable entity that represents an execution context for a
component. The run-time environment, real-time scheduling, and inter-component
messaging are all managed at a task level. Component instances execute in the
context of a task, however, developers can decide to map one instance or multiple
instances to a task.

The following figure shows a resource, its components, and component instances
and their interaction.

2. Software Architecture

13

˜
˜

Host Driver

Host support
Library

Mercury Messaging Protocol

CP
Kernel
Services

VxWorks

Host

SP
Kernel

Services

SPOX
or

VxWorks

CP SP

Platform

External
interface to
SCbus and

network
interfaces

ASICs

Resource

Messaging Protocol
Data Stream Protocol

CP
Component
CP
Component
CP
Component
CP
Component

Instance

CP
Component
CP
Component
CP
Component
CP
Component
SP Component

Instance

Host
Application

CP Component

Figure 6. Resource, Components, and Component Instances

2.2. DM3 Kernel

The DM3 Kernel provides a wrapper around the processor’s real time operating
system, shielding the resource developer from the differences between the
operating systems and the processors on which they run. For example, a developer
can split a particular resource across processors, using the CP for management
functionality and the SP for dedicated signal processing, without concern for
processor location. This enables algorithm developers to optimize their resources
and improve overall board and system performance. The DM3 Kernel provides all
core platform services and has a well-defined, documented, open interface.

DM3 Mediastream Architecture Overview

14

In addition to providing independence from the underlying physical architecture
and real time operating system, the kernel provides the following set of services:
� management of call-processing components (timer services, resource

management, configuration management, and memory management)
� message-sending mechanisms for command and data transfer between

resources and between resources and host applications
� device I/O between resources and the external network (PSTN or Internet)

and between resources via the internal TDM bus (SCbus or CT Bus)

Native Real-time OS

Kernel

Resource & Technology
Component Firmware

Figure 7. Layered Software Structure

Component Management: The kernel provides a complete set of resource and
configuration management services. The architecture contains a flexible
mechanism called the universal port scenario to concurrently support many types
of call-processing resources on a single platform. In the future, an adaptable
scheme will be implemented to dynamically load, unload, and configure resources
on a platform, providing the ability to change the functionality of the platform
over time. This future offering allows dynamic bandwidth allocation of a
platform’s processors, thus maximizing the number of concurrently active call-
processing resources.

Command and Data Transfer: The kernel features a uniform communication
model. DM3 uses the same communication mechanisms whether the
communication is between two component instances, between component
instances and host applications, or between component instances and the
telephone network. The DM3 system uses messages and data streams as its two

2. Software Architecture

15

major communication mechanisms. Using the kernel, messages primarily pass
commands, results, and other events between component instances and between
the host applications and component instances. Data streams primarily pass large
amounts of data, such as audio or fax data, between the host and component
instances, and between component instances and the network (PSTN or Internet).

Device I/O: The DM3 Kernel services also provide the physical device drivers
for all device interconnections to a DM3 platform. The drivers are not visible as a
user-accessible service, but provide the underlying device support for the I/O and
communications services. The driver services support the following devices:

� Mediastream Management ASIC (MMA) � Host interface

� Interboard SCbus and CT Bus interfaces � Internal timers

� Local network interface (internal TDM
bus)

� External network interfaces (PSTN
and Internet)

� HDLC interfaces � SC message bus interface (planned)

2.3. DM3 Direct Interface

The DM3 Direct Interface is a low-level foundation interface that provides access
to the DM3 Host Library. Available under VME Solaris and Windows NT, the
Direct Interface provides full direct control of the DM3 platform utilizing
standard messages for DM3 resources.

Shown in Figure 8, the Direct Interface shields applications from device driver
specifics and essentially mirrors the DM3 Kernel functions on the host. Services
provided by the Direct Interface include configuration management, message
allocation, messaging services, cluster and time slot management, and bulk data
stream services.

DM3 Mediastream Architecture Overview

16

Kernel

DLGC
Resource #1

3rd Party
Resource #3

Host Driver

Host Software
Library #1

HSL # 3

3rd Party
Resource #2

HSL # 2

Embedded

Host

Direct
Interface Host Interface Library

RTOS

Figure 8. DM3 Direct Interface

By writing to the Direct Interface, an application gains full control of the DM3
platform. This code, which directly accesses the DM3 device driver, can provide a
base for building custom or proprietary APIs based on standard resource message
sets. Additionally, developers using the Direct Interface must create their own
resource and file management services.

17

3. High Density Hardware Architecture

This chapter discusses the architecture of the hardware used to implement high-
density DM3 products. (A different hardware implementation will support lower
channel densities.) The high-density hardware architecture consists of the
following:

� DM3 PCI, cPCI, or VME baseboard containing the Control Processor (CP),
Mediastream Management ASIC (MMA), global memory, control processor
memory, host interface memory, SC4000 chips for SCbus or CT Bus access,
and two digital network interfaces.

� Signal Processor (SP) daughterboards (available in 5630x or PowerPC
versions).

� Digital Network Interface (DNI) daughterboard with two additional network
interfaces, for a total of up to four T-1, E-1, or ISDN interfaces.

� Ethernet Network Interface Card (NIC) daughterboard which performs
Internet Protocol (IP) processing and contains logic to perform connections
between Internet-Ethernet networks.

� Remote access daughterboard—for development only

These items can be combined in a number of different fashions to create high-
density solutions hosting a variety of technologies.

DM3 Mediastream Architecture Overview

18

SP daughtercard
Stackable x 3
ONYX 5630x
up to 6 SPs/bd

DNI D/B
-and/or-

Remote
Access D/B

SCbus/SC4000 VME/PCI/cPCI Form Factor
G

lo
b

al
 M

e
m

or
y

4-16
MB

i960
CP

CP
Mem
2-8 MB

512K Host
I/F Memory

MMA

...RISC

...other

• 0, 1, 2 or 4 T1/E1s w/ISDN
• Multiple memory options
• Stackable, mix & match daughterboards

DNI
#1 & #2

DNI
#3 & #4

Figure 9. High Density Platforms

3.1. DM3 Baseboard

There are three baseboard types: Compact PCI, PCI, and VME. These
baseboard types support daughterboards for signal processing and computing,
additional network interfaces (T-1, E-1, or ISDN), and remote access during
development (Ethernet and RS-232).

The baseboard contains an Intel i960CF Control Processor (CP), associated
RAM and flash memory, two complete network interfaces,

2
 two SC4000 ASICs,

configurable global memory, host RAM for communication between the CP and
the host, and a Mediastream Management ASIC (MMA).

Up to three 5630x SP daughterboards (or two PowerPC daughterboards) and a
DNI (Digital Network Interface) daughterboard can be stacked on a single
baseboard.

2
 The DM3 baseboard can be configured with zero, one, or two digital network interfaces.

3. High Density Hardware Architecture

19

Host Shared Ram

Host Bus
CP

Memory
Control
Processor

SCbus

SP Memory Global
Memory

...

MMA Bus

PCM Buffer

SC 4000SC 4000

DNI
(x2)Dual

HDLC
Dual
HDLC

DNI
(x2)

Mediastream Management

ASIC (MMA)

SP Memory

Daughter-
boards

x18

Figure 10. DM3 Configuration Diagram

3.1.1. Mediastream Management ASIC (MMA)

The heart of the DM3 high density hardware architecture is the MMA, a Dialogic-
designed high-performance custom ASIC functioning as a multi-channel
controller. The MMA uses a high-speed 32-bit DMA (direct memory access) bus
to transfer bulk data between the DM3 global memory and the host shared RAM,
the CP, the SP(s), and the two SC4000 ASICs.

By reading, controlling, and initiating interrupts, the MMA manages the data
movement throughout the system without processor contention, freeing the control
processor and signal processors to perform tasks other than data exchange, and
eliminating individual dependencies on processor timing. Using the MMA enables
very simple timing and ends complex DSP arbitration mechanisms. This design
allows for rapid support of new processors and memories while using minimal
overhead.

The MMA further reduces processing overhead by performing companding in
hardware (�-law-to-linear and A-law-to-linear). The MMA bus supports 8-, 16-,
24- or 32-bit data widths, enabling support of multiple signal processor types. A
Byte Steering ASIC (BSA) complements the MMA and provides byte lane

DM3 Mediastream Architecture Overview

20

steering when converting from one processor bus width to another. This device
provides byte or word packing as an option (for example, 12 bytes in three 32-bit
words may be packed by the BSA into four 24-bit words). Since the MMA
interfaces directly with the memory devices, processor bus type is not a concern,
enabling support of a wide range of control and signal processors.

The MMA has two major functions:

� transfer of data between the global memory and device memory as instructed
by the Global Memory Control Structure (GMCS) contents.

� transfer of data between the PCM buffer and device memory as instructed by
the PCM Memory Control Structure (PMCS) contents.

Global Memory Data Transfer

The movement of data to and from global memory is managed by the GMCS
(Global Memory Control Structure), a circular structure that stores up to 256
commands. Each memory device in the system (host shared RAM, CP memory,
and each SP memory) has a separate MMA interface and GMCS associated with
it. The GMCS contains all the control information needed by the MMA for
managing bulk data and message transfers between system memory resources.

The MMA services all the device memories in a round robin fashion. The MMA
examines the GMCS associated with each memory device in a time sliced manner,
servicing host shared RAM first, CP memory next, followed by all the SP
memories (up to a maximum of 18). Once completed, the servicing cycle begins
again. The time slice size is independently programmable for each MMA
interface. (Currently, this value is set by Dialogic; in future releases, the time slice
size will be customer-configurable.)

PCM Data Transfer

The PMCS (PCM Memory Control Structure) is similar to the GMCS, but it
controls PCM timeslot data transfers. The PCM buffer, shown in Figure 10,
provides direct data access to and from the SC4000 chips and is read and filled in
a ping-pong manner. The MMA preempts the GMCS data movement every 4
milliseconds in order to move PCM data from the 8-bit serial PCM buffer and into
the appropriate SP or CP memories.

3. High Density Hardware Architecture

21

3.1.2. Control Processor (CP)

The single control processor (CP) on the DM3 baseboard manages access to the
SCbus (or CT Bus) via the MMA and SC4000 ASICs, while also managing access
to the SC message bus via an HDLC controller. The CP is an Intel i960 with built-
in caches. This is a highly scaleable, industry standard RISC processor, running
the VxWorks real time operating system, currently available with multiple
memory options including 2, 4, or 8 Mbytes DRAM. The CP acts as a message
router for DM3 control messages.

In other architectures, the control processor is typically burdened with the task of
moving bulk data between the host and the board. The DM3 high-density
hardware architecture eliminates this because data flow is controlled by the MMA,
enabling bulk data to flow around the CP.

3.1.3. Global Memory

The DM3 global memory currently provides 4, 8, or 16 Mbytes of 32-bit wide
DRAM which is accessible to the CP, all SPs and the host. For easy upgrades, the
global memory is configured as standard 72-pin SIMM (VME form factor) or 72-
pin SO DIMM (PCI and cPCI form factors) modules. This memory provides data
storage and/or buffering and can act as a virtual file system (not just flat address
space) for messages, ASR vocabularies, fax fonts, prompt caching, etc. Because
so much memory is available, the data does not have to be frequently transferred
to and from disk.

3.1.4. Moving Data to and from the Host

The architecture is designed so that the host can request a semaphore when data
transfer is required, and then go back to work on other tasks. This means that the
host is not polling, contending, or otherwise unnecessarily degrading CPU
performance. When the board is available, it generates an interrupt and the host
transfers block data at full bus speed. This optimizes host CPU performance. The
semaphore system is controlled by bus interface logic.

3.1.5. Control Processor Memory

Up to 8 Mbytes of fast-page-mode DRAM is local and available to the CP.

DM3 Mediastream Architecture Overview

22

3.1.6. SP Memory

SP memories are used for the processors on the SP daughterboards. The MMA
supports up to 18 SP memories on up to three daughterboards (which means it
supports a maximum of 18 SPs).

3.1.7. Host Shared RAM

512 Kbytes of host shared RAM are available on the baseboard, helping to
prevent bottlenecking on the host bus. This RAM is triple-ported between the CP,
the host bus, and the MMA bus.

3.1.8. PCM RAM

The PCM RAM provides temporary storage for 4 milliseconds of PCM data. The
serial data is stored as bytes in two 32-byte ping-pong buffers per channel.

3.1.9. SCbus/SC4000

The SC4000 is a Dialogic-designed custom VLSI circuit optimized for use in the
SCSA call-processing environment.

3
 The two SC4000 chips on the DM3

baseboard provide a large-capacity interface of up to 256 full-duplex timeslots
between internal (local) serial TDM streams and an external (expansion) TDM
bus. Using all 256 timeslots, four T-1/E-1 spans can be accommodated plus
reference timeslots for complete echo cancellation, thus achieving the DM3 goals
of maximized performance and channel density.

The primary function of the SC4000 is to exchange digital data between the
timeslots on the local bus and the timeslots on the expansion bus. A
microprocessor interface allows the host CPU to define the timeslots and serial
data streams used for data exchange.

3
 Computer telephony hardware developers can order the SCSA Hardware Development Kit from
VLSI Technology, Inc. to design an SCbus interface using the SC4000 ASIC.

3. High Density Hardware Architecture

23

Internal buffering allows the exchange of data between local and expansion buses
of different speeds. The SC4000 supports SCbus, CT Bus, and MVIP bus formats
and provides full clock and data support for each. The switching functions and
operational configurations of the SC4000 are fully software programmable.

On VME and cPCI boards, the backplane or a ribbon overlay may be used for
interboard communication; on PCI boards, a ribbon cable is used as the physical
SCbus or CT Bus to connect multiple boards together.

The SC4000s connect to the DNI (Digital Network Interface) daughterboard such
that local timeslot switching is possible without consuming timeslots on the SCbus
or CT Bus (if all the data is available locally). Either the network interface logic,
the SCbus or CT Bus, or the local oscillator can act as the master clock.

3.1.10. Digital Network Interfaces

The DM3 hardware supports 0, 1, 2, or 4 digital network interfaces. Two network
interfaces can be installed on the DM3 baseboard for connecting to T-1, E-1, or
ISDN trunks. When the Digital Network Interface (DNI) daughterboard is mated
to the baseboard, the number of network trunks is doubled.

3.1.11. High-level Data Link Communication (HDLC) Controllers

The DM3 baseboard contains three HDLC controllers; one each for the two
T-1/E-1 interfaces and one for future support of the SC message bus. The DNI
daughterboard also contains a dual HDLC controller providing up to four D
(data) channels in a quad T-1/E-1 configuration.

3.2. SP Daughterboards

Each SP daughterboard is configured with Motorola® 5630x™ DSPs (up to six
DSPs per daughterboard), or the Motorola PowerPC™ 603e processor (up to four
processors per daughterboard). Up to three SP daughterboards of varying types
may be stacked on each baseboard within power limits. The same SP
daughterboards can be used on Compact PCI, PCI, and VME baseboards.

DM3 Mediastream Architecture Overview

24

In the future, additional signal processors can be used on SP daughterboards, and
daughterboards with different processors can be combined for maximum
flexibility.

A baseboard with a single SP daughterboard requires only one VME, Compact
PCI, or PCI slot. A baseboard with two or three stacked SP daughterboards
utilizes two slots in a chassis.

3.2.1. Motorola-based 5630x Daughterboards

The Motorola 5630x daughterboards are available in several versions. The
5630x DSP itself offers the following advantages:
� 66 and 100 MIPS
� Built in DRAM controller
� Large program space (eliminates 64k limit)
� Compatible w/56000 software
� Power efficiency using 3.3V technology

The 5630x DSPs offer optimized price versus performance by providing
DRAM for programs or large linear tables and local SRAM (one wait state) for
random access of data. If a loop fits within a 1K cache, the chip can run zero
wait states.

The DM3 5630x SP daughterboard features include:
� One to six (de-)stuffable 24-bit Motorola 5630x DSPs
� 256K/1Mwords DRAM with 1K program cache per DSP
� 128K SRAM per DSP

3.2.2. PowerPC Daughterboards

These high performance and cost effective boards contain between one and four
Motorola 603e processors and offer the following advantages:

� 166, 200, 225, and 240 MHz
� 8 or 32 MB local SDRAMs (@ 66 MHz bus speed)
� High density reduces slots and system cost
� 32 KB built-in cache

3. High Density Hardware Architecture

25

� Excellent C programmability for efficient code compilation and processor
independence

� Broad range of robust tools (e.g., WindRiver VxWorks/VxSim)
� Relatively low power dissipation at 3.3 V; less than 30 W for a PowerPC

daughterboard with 4 installed processors.

3.3. Digital Network Interface (DNI) Daughterboard

The digital network interface (DNI) daughterboard provides two additional T-1,
E-1, or ISDN network interfaces to supplement the two network interfaces on
the baseboard. The DNI daughterboard also contains a dual HDLC controller
providing up to four D (data) channels in a quad T-1/E-1 configuration.

3.4. Ethernet Network Interface Card Daughterboard

The Ethernet Network Interface Card (NIC) daughterboard contains a Motorola
603e PowerPC processor which performs Internet Protocol (IP) processing. The
daughterboard also contains logic to perform connections between Internet and
Ethernet networks.

3.5. Remote Access Daughterboard

An integral part of the DMFast software development kit, the remote access
daughterboard contains 10 Base-T Ethernet and RS-232 serial port interfaces.
Using C tools at a Sun workstation, you can boot, download, debug, and gain
direct access to the DM3 baseboard through Ethernet. This board is only used
during the development stage.

3.6. Data Communication

The DM3 mediastream architecture is message-driven; messages pass commands,
results, and other events between component instances and between the host
applications and component instances.

As shown in Figure 11, there are only two types of data under DM3: messages
and bulk data streams. All messages go through the Control Processor allowing it

DM3 Mediastream Architecture Overview

26

to act as a message router. The CP, located on the baseboard, manages the
messages passed between components without becoming a bottleneck for the bulk
data streams being passed between the Host and Signal Processors or between the
Host and SCbus (or CT Bus).

Host

Control Processor (CP)

Signal Processor (SP)

SCbus

M
e

ssag
e

 C
h

an
n

el (fu
tu

re)

Messages

Data Streams
Messages

D
a

ta
 S

tr
e

am
s

M
essag

es

Figure 11. Messages and Data Flow

Bulk data can flow around the CP directly to an SP located on one of the SP
daughterboards. While the architecture supports bulk data streams to and from the
CP, their usage should be limited so as not to overburden the CP.

27

4. Cluster Concepts

Under the DM3 Mediastream architecture, data switching is accomplished
using a concept known as a cluster. A cluster acts as the communication
manager for a group of component instances that share the same set of
timeslots. This chapter presents general information on clusters and some
guidelines on how clusters can be used.

This chapter is applicable for:
� Component developers creating DM3-compatible components
� Application developers using components to create a host application

4.1. Concepts and Terms

The following sections describe the most common concepts and terms used
by the DM3 data switching architecture.

4.1.1. TDM Data

In the DM3 architecture, components process Time Division Multiplexed
(TDM) data. For example, a tone generator component can generate DTMF
digits (dual-tone multi-frequency digits) as a TDM data stream. Also, a
recorder component can take a TDM data stream and convert it (encode it)
into a form that can be written to a disk. Another example is a telephony
service component (TSC) which can relay TDM data to and from a central
office interface, typically a T-1 or E-1 interface. Figure 12 shows TDM
data flowing between component instances.

Figure 12 also illustrates how the flow of TDM data is centralized around
the TSC component. The player and tone generator instances send TDM
data to the TSC instance, while the recorder and signal detector instances
receive TDM data from the TSC instance. The TSC instance in this
example represents the interface into the network (PSTN or Internet) and is
called the central instance of the cluster, because it acts as a
communication center.

DM3 Mediastream Architecture Overview

28

RecorderPlayer

Signal
Detector

Tone
Generator

TSC

Figure 12. TDM Data Exchange between Component Instances

4.1.2. C-Streams

The Memory Management ASIC (MMA) transfers data to and from CP and
SP RAM via data streams attached to circular buffers. Each circular buffer
is associated with (connected to) an MMA timeslot to allow data to be sent
and received from TDM busses. The streams of data are called circular
streams or C-Streams. Data carried by DM3 C-Streams is the only type of
data that can be managed by clusters.

4.1.3. Ports

In the DM3 switching architecture, the term port represents specific TDM
data flow points. DM3 component instances use ports to transfer TDM
data. Valid DM3 port types are:

N-Port Network port. It represents the point at which TDM data flows
into or out of a network front-end interface (such as T-1, E-1,
or ISDN interface).

R-Port Resource port. It represents the point at which a circular stream
carrying TDM data flows into or out of a component instance.
For example, a player component instance sends TDM data out
of an R-Port.

4. Cluster Concepts

29

S-Port SCbus port. It represents data flow to/from an SCbus timeslot.
(This nomenclature is also used for CT Bus ports.)

In relation to the port types described above, TDM data can be described as
flowing in a particular direction. In order to fully characterize a port in the
DM3 architecture, it must be specified with a direction as well as a type. A
port can either be an IN-port or an OUT-port .

IN represents data flowing into the device or component instance. An IN-
port is a data consumer. For example, data flows into the network (PSTN
or Internet), into the SCbus/CT Bus, into the recorder component instance,
or into the signal detector component instance.

OUT represents data flowing from the device or component instance. An
OUT-port is a data producer. For example, data flows out of a network
interface, out of the SCbus/CT Bus, out of the player component instance,
or out of the tone generator component instance.

DM3 ports are referred to using a simple standard notation: TYPEdirection

For example, in Figure 13, RI is a resource IN-port, RO is a resource OUT-
port, NI is a network IN-port, and NO is a network OUT-port. Notice in this
figure that instances compete for control of a shared IN-port. For example,
the tone generator and the player instances compete for the NI port of the
TSC instance. There is no competition for a shared OUT-port, such as NO,
since both input ports connected to it get data from it at the same time. Port
sharing is made possible by the DM3 cluster functionality.

DM3 Mediastream Architecture Overview

30

Recorder

Player
Signal

Detector

Tone
Generator

TSC

RO

RO RI

RI

NI NO

Figure 13. TDM Data Flow with Port Notation

4.1.4. Clusters

The figures above suggest that when component instances are sharing TDM
data, it is natural to group them together and think of them as a single unit.
This is exactly the approach used in the DM3 architecture. Specifically, the
architecture defines a cluster as a managed collection of component
instances and ports which are controlled by API function calls. Clusters
control how TDM data is transferred between component instances and
how TDM data is routed to and from the SCbus/CT Bus.

The communication center for a cluster is called a central instance, which
is (usually) the first instance that was allocated into the cluster. A cluster
consists of a central instance and one or more additional component
instances. A component instance is allocated into a specific cluster. Once a
cluster has been created, the kernel controls the cluster ports to allow the
component instances within that cluster to share ports in an intelligent
manner.

NOTE: The component instances and ports in a cluster must all exist on
the same board.

A resource IN-port or resource OUT-port can be accessed from any
processor in a DM3-based system. For example, a resource OUT-port can

4. Cluster Concepts

31

be opened for write operation by processor 1 and processor 2 in a multi-
processor system.

Any components that exist on the same CP or SP, and execute under the
same DM3 Kernel, can physically share the C-Streams in the processor’s
data space, but in the receive direction only. For example, if two instances
on the same processor open the same resource IN-port, they share the local
buffer in internal memory.

4.1.5. Connections

A TDM data flow path between two ports is called a connection.
Establishing a TDM connection has two steps, creation and activation.
Creating connections informs the DM3 kernel of potential data flow
between ports. Creation establishes a map of port connections where data
can flow. Activating a connection establishes the physical link between an
input port and an output port and allows data to flow between them. A
connection becomes active when an output port requests to talk or upon
receiving a host request. The kernel establishes a physical connection
according to the map defined in the creation process.

The DM3 kernel builds and stores a map of connections when they are
created. It uses this map to efficiently and intelligently create physical
connections (that is, switch between ports) when they are activated. Since
the kernel is aware of the underlying hardware, it utilizes the hardware in
the most efficient manner. In addition to intelligent routing, the kernel also
removes the burden of storing connection map information inside an
application or a component, thus easing application design.

The kernel creates and activates connections according to the following
rules:

� A connection can only be created between an OUT-port and an IN-
port; a connection between two IN-ports or two OUT-ports is illegal.

� An OUT-port can have active connections to multiple IN-ports (it can
broadcast data to multiple IN-ports).

� An IN-port can have an active connection to only one OUT-port at any
one point in time (it can only listen to a single OUT-port).

DM3 Mediastream Architecture Overview

32

Note that connections may be created for multiple OUT-ports to one IN-
port, but that only one of these connections can be active at any given time.

A central component instance is usually the first instance allocated to a
cluster and is also the instance that all the other instances in a cluster
exchange TDM data with. This definition can be extended to include the
concept of central ports. If a TSC component instance is the central
instance in a cluster, the cluster will have two central ports, the NI port and
the NO port. When additional component instances are allocated into this
cluster, connections are automatically created (but not activated) between
the ports on those component instances and the central ports whenever that
connection is possible.

For example, a cluster has a TSC with central NI and NO ports. When a
player instance is allocated into this cluster, a connection is automatically
created between the player instance’s RO port and the TSC’s NI port. The
player’s RO port is not connected to the TSC’s NO port since this
connection is not possible (two OUT-ports may not be connected).

4.1.6. Talker Protocol

An important concept in the DM3 switching architecture is the Talker
protocol, in which the DM3 kernel automatically activates connections at
the request of component instances. The Talker protocol is used by
component instances with OUT-ports that need to transmit TDM data.

Component instances that want to send TDM data out of RO ports must
first make a request to the kernel for permission. The kernel examines its
connection map and determines which IN-port(s) the RO port is connected
to. The kernel then pinpoints the desired IN-port, deactivates any other
connection using this IN-port, and activates the connection from the
requesting RO port to the IN-port. The kernel then informs the component
instance that it can start transmitting TDM data. Once transmission is
complete, any interrupted connections will be restored. This protocol
ensures that an input port is only listening to one output port at any one
point in time.

The Talker protocol is transparent for DM3 RO ports, because the host
application needs to do nothing to support it. A host application only needs

4. Cluster Concepts

33

to inform a player instance to play TDM data, and the connections are
automatically set up by the kernel.

For SCbus (SO) ports, the host application must provide additional
information to support the Talker protocol because an SCbus port
represents a bus connection. Bus connections are not DM3 addressable
components, so the kernel cannot make stop transmission requests when it
wishes to deactivate the connection. The host must therefore provide:

� either a proxy component that carries out the Talker protocol on behalf
of the device using the SO port,

� or default actions to carry out when the kernel tries to activate and
deactivate the connection (such as, always reject the kernel request, or
always allow the kernel to interrupt).

4.1.7. Data Switching via the SCbus (or CT Bus)

To allow the host to control SCbus (or CT Bus) connections, SCbus
timeslots are modeled after DM3 component instances using the concept of
an SCbus resource. (The term SCbus resource in this case also applies to
components operating on the PCI DM3 platform, which can use either the
SCbus or CT Bus for interboard connectivity.) SCbus resources, while part
of the DM3 kernel, are treated like other component instances as shown in
Figure 14. SCbus resources are allocated to a cluster using the
SCRES_Std_ComponentType attribute.

In Figure 14, the central component instance (the TSC instance) is shaded.
Also in that figure, one SCbus resource is transmitting TDM data to the
TSC instance. For example, a Text to Speech device on a different board
may be outputting speech data on SCbus timeslot 200. The SCbus resource
is added to the cluster and configured to have an SCbus OUTPUT port
(taking TDM data from SCbus timeslot 200) which is connected to the
TSC’s central INPUT port.

The second SCbus resource in Figure 14 is receiving TDM data from the
TSC. An example is an ASR instance on another DM3 board that needs to
receive data from the network (PSTN or Internet). The ASR instance would
be configured to receive data from the SCbus time slot to which the SCbus
IN-port in Figure 14 is connected.

DM3 Mediastream Architecture Overview

34

Cluster

Recorder

Player

Signal
Detector

Tone
Generator

TSC

RO

RO

RI

RI

NI

NO

SCbus
Resource

SO

SCbus
Resource

SI

Figure 14. DM3 Cluster with SCbus Resources

4.1.8. Connecting Clusters

The figure below shows connections between clusters, which are called
inter-cluster connections. Note that central instances are shaded and
SCbus (or CT Bus) timeslot connections are dashed lines. The connection
between the TSC and ASR component instances is an on-board or direct
connection. The connection between the two SCbus resources is a host-
managed connection.

4. Cluster Concepts

35

Recorder
Signal

Detector

TSC

Tone
Generator

RO

RI
RI

NI

NO

Cluster 1

TTS
PlayerRO

Cluster 3

ASR
RI

Cluster 2

SCbus
Resource

SO

SCbus
Resource SI

Player
RO

Figure 15. Inter-Cluster Connections

Connections between clusters can occur in a variety of ways through
different port types. Inter-cluster connections are created by an external
entity, usually a host application. In certain situations, the activation of the
connection is controlled by the application and in other situations it can be
controlled by the component instance itself using Talker protocol. The
following paragraphs describe the two cases of inter-cluster connections
shown in Figure 15.

Direct Cluster Connection

For a direct connection, both clusters must reside on the same board. The
direct connection shown in Figure 15 shows an inter-cluster connection
between a TSC instance in Cluster 1 and an ASR instance in Cluster 2. This
connection joins an NO to an RI port and uses on-board DM3 hardware
devices such as the memory management ASIC (MMA) and occurs under
control of the DM3 kernel. In this scenario, a host application must make a
request to the kernel to create this connection.

DM3 Mediastream Architecture Overview

36

Cluster Connection via SCbus (or CT Bus)

An SCbus connection can exist between resources in clusters that exist on
two separate DM3 boards. This type of connection can also be made
between component instances on the same DM3 board, however, it is an
inefficient use of SCbus (or CT Bus) timeslots. Figure 15 shows a
connection between a TSC instance in Cluster 1 and a TTS instance in
Cluster 3. This connection links an SO to an SI port and uses SCbus (or CT
Bus) timeslots to exchange TDM data. Allocation of SCbus resources
originates upon request from the host, either by an application or server
software, such as an SCSA Server. An SCbus connection is set up by
allocating an SCbus resource in Cluster 1 with an SO port and assigning an
SCbus (or CT Bus) timeslot to it. Cluster 3 was created with an SCbus
resource as the central instance and the TTS instance is transmitting to the
SI port. Both SCbus resources are configured to use the same SCbus
timeslot.

Because SCbus ports are really bus connections and not addressable
component instances, Talker protocol in Cluster 1 must be managed by the
host application. Cluster 1 must be able to switch between the SCbus
connection and the player and tone generator connections inside the cluster.
The host can support Talker protocol by any one of the following:

� informing Cluster 1 of the TTS component instance address so that
Cluster 1 can send Talker protocol messages to the TTS component
instance.

� proactively informing Cluster 1 via messages from the host when the
SCbus resource wants to transmit and stop transmitting.

� setting the default Talker protocol response of the SCbus resource in
Cluster 1 to always accept interruption. In this case, the connection
between the TSC and the SCbus resource is only active when both the
player and tone generator are not transmitting.

� setting the default Talker protocol response of the SCbus resource in
Cluster 1 to always reject interruption so the connection between the
TSC and the SCbus resource is always active. When the host wishes to
stop, it must deallocate the SCbus resource.

4. Cluster Concepts

37

4.2. Host Application Cluster Control

This section deals with the mechanics of how a host application controls
clusters, how it uses them to exchange TDM data on the SCbus or CT Bus,
and how it directs component instances to exchange TDM data on the
network front end. A host application using the DM3 platform controls
clusters by performing the following:

1. Find a cluster.
2. Add component instances to a cluster.
3. Add SCbus resources with input or output ports to a cluster.
4. Assign SCbus or CT Bus timeslots to SCbus resources.
5. Remove SCbus resources from a cluster.
6. Maintain Talker protocol for SCbus output ports.

 Advanced Tasks:
7. Change default cluster connections.
8. Connect clusters on the same board together.

NOTE: The DM3 Direct Interface Host Library supports two operating
systems: VME Solaris and Windows NT. The function names for
each operating system are generally similar, except for the prefix.
(A q prefix is used for VME Solaris functions and an mnt prefix
identifies Windows NT function.) In this chapter, nn is used to
represent either prefix. For further details on any of the functions
mentioned here, refer to the DM3 Direct Interface Reference or
DM3 Host Library Reference for a particular operating system.

Table 1 gives a summary of the host library functions used to accomplish
each task.

DM3 Mediastream Architecture Overview

38

Table 1. Host Cluster Control Tasks

To Do This… Use Host Library Function(s)…

Find a cluster nnCompFind()
nnClusterByComp()

Add components to the cluster nnCompAllocate()

Add SCbus resources with input
and output ports to clusters

nnCompAllocate()

Assign SCbus or CT Bus
timeslots to SCbus resources

nnClusterTSAssign()

Remove SCbus resources from
cluster

nnCompFree()

Manage Talker protocol for
SCbus output ports

Full Talker Functions:
nnClusterActivate()
nnClusterDeactivate()

For Advanced Tasks… Use Host Library Function(s)…

Change default cluster
configuration

nnClusterDisconnect()
nnClusterConnect()

Connect cluster ports in different
clusters on the same board

nnClusterConnect()

4. Cluster Concepts

39

4.2.1. Finding a Cluster

Existing clusters may have component instances added to them. If a TSC
component exists on the board, most applications will allocate components
into a TSC’s pre-existing cluster. To add instances to an existing cluster,
first find a cluster with the necessary attributes.

To find clusters, two functions are used:
nnCompFind() Finds a component with the specified set of
attributes
nnClusterByComp() Finds the cluster that a specified component
belongs to

For example, to find the cluster controlling T-1 timeslot 6, use the
nnCompFind() function specifying a TSC component with timeslot 6.
After the component is found, retrieve the TSC’s cluster by calling the
nnClusterByComp() function using the found component address.

4.2.2. Adding Components to Clusters

DM3 component instances are added to clusters during component
allocation. When a host application allocates a component with the
nnCompAllocate() function, it must specify the cluster to which it
belongs.

When component instances are added to a cluster, a set of default
connections are automatically established. The kernel maps central ports to
valid non-central ports, that is, IN-ports are connected to OUT-ports. A
TSC instance always has a pair of central ports, therefore, whenever a TSC
instance is in a cluster, it will be connected to any instances added to that
cluster.

Occasionally, SCbus resources are configured as central ports, typically if
the cluster does not contain a TSC instance.

DM3 Mediastream Architecture Overview

40

Figure 16 is an example of the default connection map created when a
cluster contains a TSC, player, recorder, tone generator, and signal
detector. The TSC instance is shaded to indicate that it is the central
instance with two central ports. For most applications, it is not necessary to
configure clusters differently than the default configuration.

Cluster

Recorder

Player

Signal
Detector

Tone
Generator

TSC

RO

RO

RI RI

NI

NO

Figure 16. Default Cluster Connections Example

4.2.3. Assigning a timeslot to an SCbus Resource

When an SCbus resource is created, it does not have a specific SCbus (or
CT Bus) timeslot assigned to it. The SCbus IN-ports are used to transmit
TDM data into a specific SCbus (or CT Bus) timeslot and the SCbus OUT-
ports are used to receive data from a specific SCbus (or CT Bus) timeslot.

4. Cluster Concepts

41

To assign a timeslot, an application uses the nnClusterTSAssign()
function call specifying the:
� cluster
� SCbus resource component address
� SCbus resource port identity
� SCbus (or CT Bus) timeslot number

To stop data from being transmitted over the SCbus or CT Bus,
nnClusterTSUnassign() can be called to clear any timeslot assignments
from the SCbus port.

4.2.4. Talker Protocol

When an SCbus resource with an SO port is part of a cluster, DM3 talker
protocol must be followed. The host application has several choices:
� Follow full DM3 talker protocol.
� Follow a simple DM3 talker protocol.
� Provide the address of a component that follows full DM3 Talker

protocol.

Simple Talker Protocol

Simple Talker protocol provides the means for a host application to add
SCbus resources that “talk” (transmit TDM data) with minimal application
talker protocol overhead. This is accomplished by using the
nnClusterActivate() and nnClusterDeactivate() host library function
calls.

The nnClusterActivate() call is used to activate the connections from the
SCbus OUT-port to the IN-ports inside the cluster. For example, in the
figure below, when the SCbus OUT-port is made active by the host
application, the network IN-port is accepting TDM data from the SCbus
and the Tone generator and the Player connections are not active.

Once the connection is active, what happens when the Player wants to
generate TDM data? This is dependent on how nnClusterActivate() was
used.

DM3 Mediastream Architecture Overview

42

Tone
Generator

Cluster

Player

Signal
Detector

SCbus
Resource

TSC

RO

RO

RI

NI

NO

SO

Figure 17. SCbus Resource Talking

When the function is called, one of two default talker protocol response
options is supplied. The default response informs the kernel how to handle
the situation. Valid options are defined in mercdefs.h. They are:

QCLUST_AutoReject Data from the SCbus (or CT Bus) cannot be interrupted
by any other OUT-port resource in the cluster. The
connection between the SO port and all the input ports it
connects to will remain active until the host application
explicitly deactivates the connection with a
nnClusterDeactivate() function call.

4. Cluster Concepts

43

QCLUST_AutoAccept Data from the SCbus (or CT Bus) can be interrupted by
any other OUT-port resource in the cluster. The
connection between the SO port and cluster input ports
can be temporarily suspended and re-established after
the interrupting resource has finished. No notification
will take place if this occurs.

Full Talker Protocol

A host application can act as a proxy for a resource that outputs data on the
SCbus (or CT Bus) and transmits data into the SO port of a cluster.

A resource that outputs data must be able to send a set of commands to
request to talk, and must be able to reply to kernel requests for interruptions
with a specific set of messages. These messages are summarized below:

Message Name Action Response Message

QClusterSuspend kernel request to stop
output of data

QClusterSuspendResult

QClusterResume kernel request to resume
output of data

QClusterResumeResult

QClusterActivate component request to
output data

QClusterActivateComplete

QClusterDeactivate component informing
kernel that it has stopped
outputting data

QClusterDectivateComplete

4.2.5. Changing the Default Cluster Configuration

This is considered an advanced task since the default cluster configuration
should handle most situations.

Reconfiguring a cluster means that the host application will connect ports
inside a cluster to each other in a configuration that is different than the

DM3 Mediastream Architecture Overview

44

default behavior. The figure below is a default cluster connection map that
results when a TSC is in a cluster with a player instance and an SCbus
resource.

SCbus
Resource

Cluster

Player

TSC

RO

NI

NO

SI

Figure 18. Default Cluster Connections Example

It may be desirable to configure the player resource to output to the SI port
as well as the NI port temporarily in a drop and insert situation. To
establish a connection between the RO and SI ports, call
nnClusterConnect() specifying the cluster, SI port, and RO port. This
results in a new connection map as shown in Figure 19.

To return to the original connection map, call nnClusterDisconnect()
specifying the cluster, SI port and RO port.

4.2.6. Finding Cluster Assignment

To find the cluster that a component instance is part of, call:

4. Cluster Concepts

45

nnClusterbyComp() Given an instance descriptor, finds the cluster to
which it is allocated.

SCbus
Resource

Cluster

Player

TSC

RO

NI

NO

SI

Figure 19. Reconfigured Cluster

4.2.7. Connecting Ports on the Same Board

Clusters on the same board can sometimes be connected without using
SCbus (or CT Bus) timeslots. To connect two clusters together, use the
nnClusterConnect() function. If the cluster ports specified can be
connected without SCbus (or CT Bus) timeslots, the function will succeed.
If they cannot, the connection will fail.

47

Index

B

Baseboard, 18
control processor (CP), 21
control processor memory, 21
data transfer, 21
digital network interfaces, 23
global memory, 21
HDLC controllers, 23
host shared RAM, 22
Mediastream Management ASIC

(MMA), 19
PCM RAM, 22
SCbus/SC4000, 22
SP memory, 22

C

Central instance, 30

Circular Streams, 28

Cluster connections
via the SCbus or CT Bus, 36

Cluster control, 37
adding components, 39
assigning timeslots, 40
changing cluster configurations, 43
connecting ports, 45
finding a cluster, 39
finding cluster assignments, 44
functions, 37
Talker protocol, 41

Clusters, 27, 30
central instance, 27, 30
concepts and terms, 27
connecting clusters, 31, 34
C-Streams, 28
direct cluster connection, 35
host application cluster control, 37

ports, 28
switching, 27
switching via SCbus or CT Bus, 33
Talker protocol, 32
TDM data, 27

Component instance, 12

Components, 11

Control Processor (CP), 21
memory, 21

Controlling clusters. See cluster control

C-Streams. See circular streams

CT Bus
assigning timeslots, 40

CT Bus switching, 33

D

Data communication, 25

Data Transfer
global memory, 20
PCM, 20
to and from host, 21

Digital Network Interface (DNI)
daughterboard, 25

Digital network interfaces, 23
daughterboard, 25

Direct cluster connections, 35

Division of services, 10

DM3 Architecture, 1
advantages, 2
clusters, 27
features, 5
high density hardware, 17
history, 1

DM3 Mediastream Architecture Overview

48

open platform, 3
programming environments, 5
software, 9
switching, 27
terminology, 4

DM3 Direct Interface, 15

DMFast, 7

E

Ethernet Network Interface Card (NIC)
daughterboard, 25

F

Features, 5

Finding clusters, 39
nnClusterByComp(), 39
nnCompFind(), 39

Full talker
functions, 38

Full Talker Protocol, 43

Functions, 37

G

Global memory, 21

Global memory data transfer, 20

H

HDLC controllers, 23

High Density Architecture
baseboard, 18
data communication, 25
digital network interface (DNI)

daughterboard, 25
Ethernet NIC daughterboard, 25
remote access daughterboard, 25
SP Daughterboards, 23

Host Library functions, 38

Host Shared RAM, 22

I

Inter-cluster connections, 34

Introduction, 1

K

Kernel, 13
command transfer, 14
component management, 14
data transfer, 14
device I/O, 15

M

Mediastream Management ASIC
(MMA), 19

functions, 20

messages, 25

MMA. See Mediastream Management
ASIC (MMA)

global memory data transfer, 20
PCM data transfer, 20

Motorola-based daughterboards, 24

N

nnClusterActivate, 38

nnClusterByComp(), 38, 39

nnClusterConnect, 38

nnClusterDeactivate, 38

nnClusterDisconnect(), 38

nnClusterTSAssign(), 38, 41

nnClusterTSUnassign(), 41

nnCompAllocate(), 38, 39

nnCompFind(), 38, 39

nnCompFree(), 38

Index

49

N-Port, 28

P

PCM data transfer, 20

PCM RAM, 22

Platform, 4

Ports, 28
central, 32
IN- and OUT-ports, 29
N-Port, 28
R-Port, 28
S-Port, 29

PowerPC daughterboards, 24

R

RAM
host shared, 22
PCM, 22

Remote Access daughterboard, 25

Resource, 4, 11
structure, 11

Resources
functions, 4

R-Port, 28

S

SC4000, 22

SCbus
assigning timeslots, 40

SCbus switching, 33

Signal Processor (SP)
memory, 22

Signal Processor (SP) daughterboards,
23

Motorola-based, 24
PowerPC, 24

Simple Talker Protocol, 41

Software Architecture, 9
division of services, 10
DM3 Direct Interface, 15
DM3 kernel, 13

S-Port, 29

streams, 25

Switching, 27

T

Talker Protocol, 32, 41

Task, 12

TDM data, 27
connections, 31
ports, 28

Terminology, 4

NOTES

NOTES

