
DM3 Standard Component
Interface Messages

Copyright © 1998 Dialogic Corporation

PRINTED ON RECYCLED PAPER

05-1040-001

COPYRIGHT NOTICE

Copyright 1998 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment
on the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot
guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. No
warranties of any nature are extended by the information contained in these copyrighted materials.
Use or implementation of any one of the concepts, applications, or ideas described this document or
on Web pages maintained by Dialogic-may infringe one or more patents or other intellectual property
rights owned by third parties. Dialogic does not condone or encourage such infringement. Dialogic
makes no warranty with respect to such infringement, nor does Dialogic waive any of its own
intellectual property rights which may cover systems implementing one or more of the ideas contained
herein. Procurement of appropriate intellectual property rights and licenses is solely the responsibility
of the system implementer. The software referred to in this document is provided under a Software
License Agreement. Refer to the Software License Agreement for complete details governing the use
of the software.

All names, products, and services mentioned herein are the trademarks or registered trademarks of
their respective organizations and are the sole property of their respective owners. DIALOGIC
(including the Dialogic logo) is a registered trademark of Dialogic Corporation. DM3, SCbus, and
Signal Computing System Architecture (SCSA) are trademarks of Dialogic Corporation.

Publication Date: April, 1998

Part Number: 05-1040-001

Dialogic Corporation
1515 Route 10
Parsippany NJ 07054

Technical Support
Phone: 973-993-1443
Fax: 973-993-8387
BBS: 973-993-0864
Email: CustEng@dialogic.com

For Sales Offices and other contact information, visit our website at http://www.dialogic.com

i

Table of Contents

1. Introduction ... 1
1.1. About This Guide ... 1

1.1.1. Information in This Guide ... 1
1.1.2. Other Relevant Guides and References.. 1
1.1.3. Glossary Definitions .. 2
1.1.4. Typeface Conventions ... 2

1.2. Key DM3 Architecture Concepts ... 2

2. Standard Component Interface Messages... 5
Std_MsgAck - the command has been received but not yet executed 10
Std_MsgArmRTC - arms a component instance for an RTC action...................... 12
Std_MsgArmRTCCmplt - component instance is armed for an RTC action 15
Std_MsgArmxRTCs - arms a component instance for multiple RTC actions........ 16
Std_MsgArmxRTCsCmplt - component instance is armed for multiple RTC

actions.. 19
Std_MsgCancelAllEvts - cancels the reporting of all events................................. 20
Std_MsgCancelAllEvtsCmplt - events will not be reported.................................. 22
Std_MsgCancelEvt - cancels the reporting of a single event 23
Std_MsgCancelEvtCmplt - verifies the event will not be reported 25
Std_MsgCancelxEvts - disables the reporting of multiple events 26
Std_MsgCancelxEvtsCmplt - verifies the events will not be reported 29
Std_MsgComtest - establishes a communications path with a component or

instance .. 30
Std_MsgComtestCmplt - verifies a communications path with a component or

instance .. 32
Std_MsgDetectEvt - configures a component instance to detect a specific event. 33
Std_MsgDetectEvtCmplt - component instance can detect a specific event 36
Std_MsgDetectxEvts - configures a component instance to detect multiple

events ... 37
Std_MsgDetectxEvtsCmplt - verifies the component instance can detect

multiple events... 40
Std_MsgDisarmAllRTCs - disables all RTC actions... 41
Std_MsgDisarmAllRTCsCmplt - component instance will not perform any

RTC actions ... 43
Std_MsgDisarmRTC - disables an RTC action... 44

DM3 Standard Component Interface Messages

ii

Std_MsgDisarmRTCCmplt - component instance will not perform an RTC
action ... 46

Std_MsgDisarmxRTCs - disables multiple RTC actions 47
Std_MsgDisarmxRTCsCmplt - component instance will not perform the RTC

actions.. 50
Std_MsgError - indicates an error in executing a command message 51
Std_MsgEvtDetected - indicates an event has occurred.. 53
Std_MsgExecute - executes the function contained in the message...................... 55
Std_MsgExecuteCmplt - component instance has executed the encapsulated

function .. 57
Std_MsgExit - shuts down a component instance ... 58
Std_MsgExitCmplt - verifies the component instance has shut down................... 60
Std_MsgGetParm - requests a parameter value.. 61
Std_MsgGetParmCmplt - contains a requested parameter value.......................... 63
Std_MsgGetxParms - requests multiple parameter values.................................... 65
Std_MsgGetxParmsCmplt - contains requested parameter values........................ 68
Std_MsgInit - initializes a component instance .. 70
Std_MsgInitCmplt - verifies the component instance is initialized....................... 72
Std_MsgSetAllParmsDef - sets all parameters to their default values 73
Std_MsgSetAllParmsDefCmplt - verifies all parameters are set to their default

value... 75
Std_MsgSetParm - changes the value of a specific parameter.............................. 76
Std_MsgSetParmCmplt - verifies the parameter is set.. 78
Std_MsgSetParmDef - sets a specific parameter to its default value 79
Std_MsgSetParmDefCmplt - verifies the parameter is set to its default value...... 81
Std_MsgSetxParms - changes the value of multiple parameters........................... 82
Std_MsgSetxParmsCmplt - verifies the parameters are set................................... 85
Std_MsgSetxParmsDef - sets multiple parameters to their default values 86
Std_MsgSetxParmsDefCmplt - parameters are set to their default values 89

3. Event Notification.. 91
3.1. About Event Notification and RTC Actions... 91
3.2. Event Registration .. 92
3.3. DM3 Resource Events.. 92

Appendix A: Parameters.. 93

Appendix B: Error Codes .. 95
How Error Notification Works... 95
Standard Component Error Codes.. 95

Index .. 99

1

1. Introduction

1.1. About This Guide

1.1.1. Information in This Guide

This document describes the DM3 GlobalCall Resource, including the various
parts of the resource, the message sets that the resource employs, and how to use
the resource's features.

This document contains the following chapters:

Chapter 2 lists and explains the messages in the Standard Component Message
Set.

Chapter 3 discusses event notification.

Appendix A describes the parameters of DM3 resources.

Appendix B lists and explains the error codes of DM3 resources.

1.1.2. Other Relevant Guides and References

This user's guide discusses topics pertaining globally to resources on the DM3
platform. Certain concepts are discussed in more detail in other publications, and
are referred to throughout this resource guide:

• the DM3 architecture: For an overview of the DM3 mediastream
architecture, see the DM3 Mediastream Architecture Overview guide (part
number 05-0813-001).

• resource-specific messages: For detailed information about the proprietary
messages used by each DM3 resource, see the user's guide for that resource.

DM3 Standard Component Interface Messages

2

1.1.3. Glossary Definitions

A term being defined for the first time will be in boldface, followed by its
definition.

1.1.4. Typeface Conventions

The following typeface conventions are used throughout this guide:

• function names are boldface, lowercase, and followed by parentheses.
Example: qMsgRead().

• filenames are italic and lowercase. Example: coders.h.

• message names are italic, lowercase, are proceeded by a prefix and
underscore. Example: Player_MsgAdjSpeed.

• Parameter and field names are boldface. Example: "the timeout parameter".

1.2. Key DM3 Architecture Concepts

For more information about these concepts, see the DM3 Mediastream
Architecture Overview (part number 05-0813-001).

• DM3 is an architecture on which a whole set of Dialogic products are built.
The DM3 architecture is open, layered, and flexible, encompassing hardware
as well as software components.

• A DM3 resource is a conceptual entity that provides a specific functionality
to a host application.

A resource contains a well defined interface or message set, which the host
application utilizes when accessing the resource. Resource firmware consists
of multiple components that run on top of the DM3 core platform software
(which includes the platform-specific DM3 kernel and device driver).

• A component is the entities that comprise a DM3 resource. A component
runs on a DM3 control processor or signal processor, depending on its
function. Certain components handle configuration and management issues,
while others process stream data.

1. Introduction

3

To access the features of a resource, the host exchanges messages and stream
data with certain components of that resource. During runtime, components
inside a resource communicate (via messages) with other components of that
resource, as well as with components of other resources.

• A DM3 message is a formatted block of data exchanged between the host and
various entities on the DM3 platform, as well as between the DM3 entities
themselves.

The DM3 architecture implements different kinds of messages, based on the
functionality of the message sender and recipient. Messages can initiate
actions, handle configuration, affect operating states, and indicate that events
have occurred. They can be sent synchronously or asynchronously.

• A cluster is a collection of DM3 component instances that share specific
TDM timeslots on the network interface or the SCbus, and which therefore
operate on the same mediastream data. The cluster concept in the DM3
architecture corresponds generally but not exactly to the concept of a “group”
in S.100 or to a “channel” in conventional Dialogic architectural terminology.
Component instances are bound to a particular cluster and its assigned
timeslots in an allocation operation.

• A port is a logical entity that represents the point at which PCM data can
flow into or out of a component instance or interface in a cluster. The port
abstraction provides a high-level means of defining potential data flow paths
within clusters and controlling the actual data flow using simple protocols.
Ports are classified and designated in terms of data flow direction and the
type of entity that provides the port.

5

2. Standard Component Interface
Messages

The messages in the DM3 Standard Component Message Set are contained in the
header file stddefs.h.

Not all components will support the complete set of Standard Component
Messages. The documentation for each DM3 component or resource will list the
standard messages that it supports.

NOTE: The Standard Component Message Set is one of three types of message
sets used by DM3 components and component instances. The other two
set types are:

• the standard DM3 Kernel Message Set. These messages are sent by a
DM3 component to the kernel or by the kernel to a component or
component instance that called a kernel function. For information
about the result messages returned by the kernel to the component
that called the function, see the DM3 Kernel Software Reference.

• resource-specific message sets. Each DM3 resource has component
and instance-level messages specific to that resource only, as created
and defined by the developer of the resource’s component(s). For
more information about resource-specific message sets, see the
appropriate resource user’s guide.

Each instance of a DM3 component uses three types of messages:

• command messages are messages sent to the appropriate component instance
from the host application.

• reply messages are a component instance’s response to command messages
and are sent from the instance to the host application. If an error occurs
during the execution of the command, an error message (Std_MsgError) will
be sent instead of the reply message.

• event messages are asynchronous messages that may be sent by the
component instance to the host application when they are enabled by that host
application.

DM3 Standard Component Interface Messages

6

The message sets that the host uses to communicate with the TSP resource are:

• a Standard Component Message Set, used by all DM3 resources for
accessing standard features such as parameter setting, asynchronous event
enable/disable, and Run Time Control. This chapter lists the standard
messages used by all DM3 resources.

• one or more resource-specific message sets, which is used to access features
specific to the resource. For more information about these resource-specific
sets, see the appropriate user's guide for the DM3 resource.

Table 1 lists the messages in the standard component message set. Each of these
messages is described in this chapter.

Table 1. The Standard Component Message Set

Command Message Description Reply Message
(indicates success)

Std_MsgAck the command has
been received but
not yet executed

Not applicable

Std_MsgArmRTC arms a component
instance for an
RTC action

Std_MsgArmRTCCmplt

Std_MsgArmxRTCs arms a component
instance for
multiple RTC
actions

Std_MsgArmxRTCsCmplt

Std_MsgCancelAllEvts cancels the
reporting of all
events by the
component instance

Std_MsgCancelAllEvtsCmplt

2. Standard Component Interface Messages

7

Command Message Description Reply Message
(indicates success)

Std_MsgCancelEvt cancels the
reporting of a
single event by the
component instance

Std_MsgCancelEvtCmplt

Std_MsgCancelxEvts disables the
reporting of
multiple events by
the component
instance

Std_MsgCancelxEvtsCmplt

Std_MsgComtest establishes a
communications
path with a
component or
instance of the
component

Std_MsgComtestCmplt

Std_MsgDetectEvt configures a
component instance
to detect a specific
event

Std_MsgDetectEvtCmplt

Std_MsgDetectxEvts configures a
component instance
to detect multiple
events

Std_MsgDetectxEvtsCmplt

Std_MsgDisarmRTC disables an RTC
action so that a
component instance
can no longer enact
it

Std_MsgDisarmRTCCmplt

DM3 Standard Component Interface Messages

8

Command Message Description Reply Message
(indicates success)

Std_MsgDisarmxRTCs disables multiple
RTC actions so that
a component
instance can no
longer enact them

Std_MsgDisarmxRTCsCmplt

Std_MsgDisarmAllRTCs disables all RTC
actions so that a
component instance
will not perform
any RTC actions

Std_MsgDisarmAllRTCsCmplt

Std_MsgError indicates an error
in executing a
command message

Not applicable

Std_MsgEvtDetected indicates an event
has occurred

Not applicable

Std_MsgExecute executes the
function contained
in the message

Std_MsgExecuteCmplt

Std_MsgExit shuts down a
component instance

Std_MsgExitCmplt

Std_MsgGetParm requests a
parameter value of
a component
instance

Std_MsgGetParmCmplt

Std_MsgGetxParms requests multiple
parameter values of
component instance

Std_MsgGetxParmsCmplt

Std_MsgInit initializes a
component instance

Std_MsgInitCmplt

2. Standard Component Interface Messages

9

Command Message Description Reply Message
(indicates success)

Std_MsgSetAllParmsDef sets all parameters
to their default
values

Std_MsgSetAllParmsDefCmplt

Std_MsgSetParm changes the value
of a specific
parameter

Std_MsgSetParmCmplt

Std_MsgSetParmDef sets a specific
parameter to its
default value

Std_MsgSetParmDefCmplt

Std_MsgSetxParms changes the value
of multiple
parameters

Std_MsgSetxParmsCmplt

Std_MsgSetxParmsDef sets multiple
parameters to their
default values

Std_MsgSetxParmsDefCmplt

DM3 Standard Component Interface Messages

10

Std_MsgAck

Definition

The Std_MsgAck message is a reply message for any DM3 command message. It
indicates that the command has been received but not yet executed.

Message Sender and Recipient

The component or component instance sends this message to the host.

Additional Information

This message may be used in addition to or in place of a command-specific reply
message.

Message Contents

The body of this message contains no data fields.

Cautions

The Std_MsgAck message verifies that the designated component or component
instance has received the command message; it does not indicate that a command
has been started or successfully completed. The following response messages can
be returned to the host after returning a Std_MsgAck message:

• the appropriate reply message for the command message indicated by
Std_MsgAck. The reply message indicates the command message was
successfully executed. The reply message usually ends in "Cmplt".

• a Std_MsgError message for the command message indicated by
Std_MsgAck. The Std_MsgError message indicates a failure in the execution
of the command message.

2. Standard Component Interface Messages

11

• Std_MsgEvtDetected messages for various events, which will announce
successful and unsuccessful events triggered by the command message
indicated by Std_MsgAck.

Errors

None.

Other Related Messages

All command messages that use this optional message as a response.

DM3 Standard Component Interface Messages

12

Std_MsgArmRTC

Definition

The Std_MsgArmRTC message is a command message that arms a component
instance for an RTC action.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

This message arms a single RTC event that has been set up using a particular
transaction ID from a particular source address. The source address and
transaction ID in the header of this message are used by the receiver to uniquely
identify this request. They are also used when cancelling the request. The
transaction ID and Label combination must be unique in the system to avoid
collision; at a minimum, the transaction ID should not equal 0.

Message Contents

The body of the Std_MsgArmRTC message contains two data fields in packed-
byte format. The Std_MsgArmRTC_put macro inserts the fields into a message,
from a data structure of type Std_MsgArmRTC_t, which contains the following
elements:

Field Data Type Description

Label UInt32 event label to expect in the Std_MsgEvtDetected
message

Action UInt32 action to take once this event has been received

2. Standard Component Interface Messages

13

Cautions

The sender must ensure that the transaction ID in the header of this message is the
same as that which is used in the Std_MsgDetectEvt message when the condition
to be detected is set up.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrLabelTrans A Label and Transaction ID pair that is already
in use was specified in an Arm RTC command
message.

Std_ErrRTCAction Invalid Run Time Control action was specified
in an event handling command message.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgArmRTCCmplt
• Std_MsgArmxRTCs
• Std_MsgCancelAllEvts
• Std_MsgCancelEvt
• Std_MsgCancelxEvts
• Std_MsgDetectEvt

DM3 Standard Component Interface Messages

14

• Std_MsgDetectxEvts
• Std_MsgDisarmAllRTCs
• Std_MsgDisarmRTC
• Std_MsgDisarmxRTCs
• Std_MsgEvtDetected

2. Standard Component Interface Messages

15

Std_MsgArmRTCCmplt

Definition

The Std_MsgArmRTCCmplt message is a reply message for the Std_MsgArmRTC
command. It confirms the component instance is armed for an RTC action.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgArmRTC

DM3 Standard Component Interface Messages

16

Std_MsgArmxRTCs

Definition

The Std_MsgArmxRTCs message is a command message that arms a component
instance for multiple RTC actions.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

The source address and transaction ID of this message are used by the receiver to
uniquely identify this request. They are also used when cancelling the request. The
transaction Id and Label combination must be unique in the system to avoid
collision. At a minimum the transaction ID should not equal 0.

Message Contents

The body of the Std_MsgArmxRTCs message contains a variable-size payload that
includes one fixed data field, followed by a variable-length list of data items.

The Std_MsgArmxRTCs_put macro inserts the fields into a message, from a data
structure of type Std_MsgArmxRTCs_t, which contains the following elements:

Field Data Type Description

Count UInt32 the number of events to expect. This fixed data
field specifies the number of Label/Action pairs
in the variable part of the message body.

Each Label/Action pair can be filled into the message body with a single call to
the qMsgVarFieldPut() function, specifying the field definition and source
variable for each of the two fields. For the initial call, the value of the offset
variable must be Std_MsgArmxRTCs_varstart, which is the value to which the

2. Standard Component Interface Messages

17

Std_MsgArmxRTCs_put macro automatically updated its offset variable. The
offset variable is automatically updated with each successive function call, to
reflect the start of a new Label/Action pair.

Field Data Type Description

Label UInt32 the label of an event to expect in a
Std_MsgEvtDetected message. Each Label is
paired with a corresponding Action.

Action UInt32 the action to take once the corresponding event
has been received. Each Action has a specific
corresponding Label.

Cautions

A sender of this message must ensure that the Transaction ID of this message is
the same as that which is used in the Std_MsgDetectEvt message when each of the
conditions to be detected is set up.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrLabelTrans A Label and Transaction ID pair that is already
in use was specified in an Arm RTC command
message.

Std_ErrListEmpty The list contains no elements.

DM3 Standard Component Interface Messages

18

ErrorCode Field Values Description

Std_ErrRTCAction Invalid Run Time Control action was specified
in an event handling command message.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgArmRTC
• Std_MsgArmxRTCsCmplt
• Std_MsgCancelAllEvts
• Std_MsgCancelEvt
• Std_MsgCancelxEvts
• Std_MsgDetectEvt
• Std_MsgDetectxEvts
• Std_MsgDisarmAllRTCs
• Std_MsgDisarmRTC
• Std_MsgDisarmxRTCs
• Std_MsgEvtDetected

2. Standard Component Interface Messages

19

Std_MsgArmxRTCsCmplt

Definition

The Std_MsgArmxRTCsCmplt message is a reply message for the
Std_MsgArmxRTCs command. It confirms the component instance is armed for
multiple RTC actions.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgArmxRTCs

DM3 Standard Component Interface Messages

20

Std_MsgCancelAllEvts

Definition

The Std_MsgCancelAllEvts message is a command message that cancels the
reporting of all events by the component instance.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

This message cancels the reporting of all events that have been set up with a
particular transaction ID from a particular source address.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

2. Standard Component Interface Messages

21

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrNotEnabled An event-cancelling message was received for an
event that is not currently enabled.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgArmRTC
• Std_MsgArmxRTCs
• Std_MsgCancelAllEvtsCmplt
• Std_MsgCancelEvt
• Std_MsgCancelxEvts
• Std_MsgDetectEvt
• Std_MsgDetectxEvts
• Std_MsgDisarmAllRTCs
• Std_MsgDisarmRTC
• Std_MsgDisarmxRTCs
• Std_MsgEvtDetected

DM3 Standard Component Interface Messages

22

Std_MsgCancelAllEvtsCmplt

Definition

The Std_MsgCancelAllEvtsCmplt message is a reply message for the
Std_MsgCancelAllEvts command. It confirms the specified events will not be
reported by the component instance.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgCancelAllEvts

2. Standard Component Interface Messages

23

Std_MsgCancelEvt

Definition

The Std_MsgCancelEvt message is a command message that cancels the reporting
of a single event by the component instance.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

This message cancels the reporting of a single event that had been set up using a
particular transaction ID from a particular source address.

Message Contents

The body of the Std_MsgCancelEvt message contains one data field in packed-
byte format. The Std_MsgCancelEvt_put macro inserts the fields into a message,
from a data structure of type Std_MsgCancelEvt_t, which contains the following
elements:

Field Data Type Description

Type UInt32 the event type to cancel.

Cautions

None.

DM3 Standard Component Interface Messages

24

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrEvtType Invalid event type was specified in an event
handling command message.

Std_ErrNotEnabled An event-cancelling message was received for
an event that is not currently enabled.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_DisarmxRTC
• Std_MsgArmRTC
• Std_MsgArmxRTCs
• Std_MsgCancelAllEvts
• Std_MsgCancelEvtCmplt
• Std_MsgCancelxEvts
• Std_MsgDetectEvt
• Std_MsgDetectxEvts
• Std_MsgDisarmAllRTCs
• Std_MsgDisarmRTC
• Std_MsgEvtDetected

2. Standard Component Interface Messages

25

Std_MsgCancelEvtCmplt

Definition

The Std_MsgCancelEvtCmplt message is a reply message for the
Std_MsgCancelEvt command. It verifies the event will not be reported by the
component instance.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgCancelEvt

DM3 Standard Component Interface Messages

26

Std_MsgCancelxEvts

Definition

The Std_MsgCancelxEvts message is a command message that disables the
reporting of multiple events by the component instance.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

The events must have been previously enabled using the same transaction ID and
source address as used for this command. If the Component Instance is able to
cancel the events, it replies to the sender with a Std_MsgCancelxEvtsCmplt
message.

Message Contents

The body of the Std_MsgCancelxEvts message contains a variable-size payload
that includes one fixed data field, followed by a variable-length list of data items.

The Std_MsgCancelxEvts_put macro inserts the fields into a message, from a data
structure of type Std_MsgCancelxEvts_t, which contains the following elements:

Field Data Type Description

Count UInt32 the number of events to disable. This single fixed
data field identifies the number of Type fields
contained in the variable part of the message
body.

Each Type can be filled into the message body with a single call to the
qMsgVarFieldPut() function, specifying the field definition and source variable
for the field. For the initial call, the value of the offset variable must be

2. Standard Component Interface Messages

27

Std_MsgCancelxEvts_varstart, which is the value to which the
Std_MsgCancelxEvts_put macro automatically updated its offset variable. The
offset variable is automatically updated with each successive function call, to
reflect the start of a new Type.

Field Data Type Description

Type UInt32 the event type to be disable. There are Count of
these Type fields in a variable data structure.

Cautions

If one of the event types in the list is invalid, then none of the events will be
canceled.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrEvtType Invalid event type was specified in an event
handling command message. The invalid type
will be returned.

Std_ErrListEmpty The list contains no elements.

Std_ErrNotEnabled An event-cancelling message was received for an
event that is not currently enabled.

Std_ErrSystem System level error occurred while executing a
command.

DM3 Standard Component Interface Messages

28

ErrorCode Field Values Description

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgArmRTC
• Std_MsgArmxRTCs
• Std_MsgCancelAllEvts
• Std_MsgCancelEvt
• Std_MsgCancelxEvtsCmplt
• Std_MsgDetectEvt
• Std_MsgDetectxEvts
• Std_MsgDisarmAllRTCs
• Std_MsgDisarmRTC
• Std_MsgDisarmxRTCs
• Std_MsgEvtDetected

2. Standard Component Interface Messages

29

Std_MsgCancelxEvtsCmplt

Definition

The Std_MsgCancelxEvtsCmplt message is a reply message for the
Std_MsgCancelxEvts command. It verifies the events will not be reported by the
component instance.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgCancelxEvts

DM3 Standard Component Interface Messages

30

Std_MsgComtest

Definition

The Std_MsgComtest message is a command message that establishes a
communications path with a component or instance of the component.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

Std_MsgComtest may be used as a primitive debug feature.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrSystem System level error occurred while executing a
command.

2. Standard Component Interface Messages

31

ErrorCode Field Values Description

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgComtestCmplt

DM3 Standard Component Interface Messages

32

Std_MsgComtestCmplt

Definition

The Std_MsgComtestCmplt message is a reply message for the Std_MsgComtest
command. It verifies a communications path with a component or instance of the
component.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgComtest

2. Standard Component Interface Messages

33

Std_MsgDetectEvt

Definition

The Std_MsgDetectEvt message is a command message that configures a
component instance to detect a specific event.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

This may be used for simply expressing interest in asynchronous events or for Run
Time Control. The source address and transaction ID of this message are used by
the receiver to uniquely identify this request. They are also used when cancelling
the request. A transaction ID of 0 is used by convention to simply enable
asynchronous events that are not used for Run Time Control.

If the receiver of this message is able to report the specified event, it replies to the
sender with a Std_MsgDetectEvtCmplt message. Note that this message does not
indicate that the event has been detected, but rather that the next occurrence of the
event will be reported as requested.

Message Contents

The body of the Std_MsgDetectEvt message contains three data fields in packed-
byte format. The Std_MsgDetectEvt_put macro inserts the fields into a message,
from a data structure of type Std_MsgEvtDetected_t, which contains the following
elements:

Field Data Type Description

RetAddr QcompDesc the address to send the Std_MsgEvtDetected
message to.

DM3 Standard Component Interface Messages

34

Type UInt32 the event type to be enabled.

Label UInt32 an event label to be included in the
Std_MsgEvtDetected message that will be
understood by the one receiving that message.

Cautions

A receiver of this message must always use the transaction ID of this message as
the transaction ID of the Std_MsgEvtDetected message.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrEvtType Invalid event type was specified in an event
handling command message.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgArmRTC
• Std_MsgArmxRTCs
• Std_MsgCancelAllEvts
• Std_MsgCancelEvt

2. Standard Component Interface Messages

35

• Std_MsgCancelxEvts
• Std_MsgDetectEvtCmplt
• Std_MsgDetectxEvts
• Std_MsgDisarmAllRTCs
• Std_MsgDisarmRTC
• Std_MsgDisarmxRTCs
• Std_MsgEvtDetected

DM3 Standard Component Interface Messages

36

Std_MsgDetectEvtCmplt

Definition

The Std_MsgDetectEvtCmplt message is a reply message for the
Std_MsgDetectEvt command. It verifies the component instance can detect a
specific event.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgDetectEvt

2. Standard Component Interface Messages

37

Std_MsgDetectxEvts

Definition

The Std_MsgDetectxEvts message is a command message that configures a
component instance to detect multiple events.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

Event reporting may be used for simply expressing interest in asynchronous events
or for Run Time Control. The source address and transaction ID of this message
are used by the receiver to uniquely identify this request. They are also used when
cancelling the request. The events are represented as tuples of Type and Label. A
transaction ID of 0 is used by convention to simply enable asynchronous events
that are not used for Run Time Control. If the receiver of this message is able to
enable the specified event types, it will reply to the sender with a
Std_MsgDetectxEvtsCmplt message.

Message Contents

The body of the Std_MsgDetectxEvts message contains a variable-size payload
that includes two fixed data fields, followed by a variable-length list of data items.

The Std_MsgDetectxEvts_put macro inserts the fields into a message, from a data
structure of type Std_MsgDetectxEvts_t, which contains the following elements:

Field Data Type Description

RetAddr QCompDesc the address to send the Std_MsgEvtDetected
messages to.

DM3 Standard Component Interface Messages

38

Field Data Type Description

Count UInt32 the number of events to report. This fixed data
field specifies the number of Type/Label field
pairs that are contained in the variable struture.

Each Type/Label pair can be filled into the message body with a single call to the
qMsgVarFieldPut() function, specifying the field definition and source variable
for each of the two fields. For the initial call, the value of the offset variable must
be Std_MsgDetectxEvts_varstart, which is the value to which the
Std_MsgDetectxEvts_put macro automatically updated its offset variable. The
offset variable is automatically updated with each successive function call, to
reflect the start of a new Type/Label pair.

Field Data Type Description

Type UInt32 an event type to be enabled. Each Type has an
associated Label.

Label UInt32 the event label to be returned in the
Std_MsgEvtDetected message corresponding to
each event Type. The label must be understood
by the one receiving that message.

Cautions

The receiver of this message must always return the transaction ID in the header
of this message as the transaction ID of all specified Std_MsgEvtDetected
messages.

If one of the event types in the list is invalid, then none of the events will be
enabled.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.

2. Standard Component Interface Messages

39

The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrEvtType Invalid event type was specified in an event
handling command message. The invalid type
will be returned.

Std_ErrListEmpty The list contains no elements.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgArmRTC
• Std_MsgArmxRTCs
• Std_MsgCancelAllEvts
• Std_MsgCancelEvt
• Std_MsgCancelxEvts
• Std_MsgDetectEvt
• Std_MsgDetectxEvtsCmplt
• Std_MsgDisarmAllRTCs
• Std_MsgDisarmRTC
• Std_MsgDisarmxRTCs
• Std_MsgEvtDetected

DM3 Standard Component Interface Messages

40

Std_MsgDetectxEvtsCmplt

Definition

The Std_MsgDetectxEvtsCmplt message is a reply message for the
Std_MsgDetectxEvts command. It verifies the component instance can detect
multiple events.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgDetectxEvts

2. Standard Component Interface Messages

41

Std_MsgDisarmAllRTCs

Definition

The Std_MsgDisarmAllRTCs message is a command message that disables all
RTC actions so that a component instance will not perform any RTC actions.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

This message disarms all RTC actions that have been set up using a particular
transaction ID from a particular source address.

Message Contents

The body of this message contains no data fields.

Cautions

A sender of this message must ensure that the Transaction ID of this message is
the same as that which was used in the Std_MsgDetectEvt message when the
conditions to be detected were set up.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

DM3 Standard Component Interface Messages

42

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgArmRTC
• Std_MsgArmxRTCs
• Std_MsgCancelAllEvents
• Std_MsgCancelEvt
• Std_MsgCancelxEvts
• Std_MsgDetectEvt
• Std_MsgDetectxEvts
• Std_MsgDisarmAllRTCsCmplt
• Std_MsgDisarmRTC
• Std_MsgDisarmxRTCs
• Std_MsgEvtDetected

2. Standard Component Interface Messages

43

Std_MsgDisarmAllRTCsCmplt

Definition

The Std_MsgDisarmAllRTCsCmplt message is a reply message for the
Std_MsgDisarmAllRTCs command. It confirms the component instance will not
perform any RTC actions.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgDisarmAllRTCs

DM3 Standard Component Interface Messages

44

Std_MsgDisarmRTC

Definition

The Std_MsgDisarmRTC message is a command message that disables an RTC
action so that a component instance can no longer enact it.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

This message disarms a single RTC event that has been set up using a particular
transaction ID from a particular source address

Message Contents

The body of the Std_MsgDisarmRTC message contains one data field in packed-
byte format. The Std_MsgDisarmRTC_put macro inserts the fields into a
message, from a data structure of type Std_MsgDisarmRTC_t, which contains the
following elements:

Field Data Type Description

Label UInt32 label of event to disarm.

Cautions

None.

2. Standard Component Interface Messages

45

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrEvtLabel Invalid event label was specified in an event
handling command message.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgArmRTC
• Std_MsgArmxRTCs
• Std_MsgCancelAllEvts
• Std_MsgCancelEvt
• Std_MsgCancelxEvts
• Std_MsgDetectEvt
• Std_MsgDetectxEvts
• Std_MsgDisarmAllRTCs
• Std_MsgDisarmRTCCmplt
• Std_MsgDisarmxRTCs
• Std_MsgEvtDetected

DM3 Standard Component Interface Messages

46

Std_MsgDisarmRTCCmplt

Definition

The Std_MsgDisarmRTCCmplt message is a reply message for the
Std_MsgDisarmRTC command. It confirms the component instance will not
perform an RTC action.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgDisarmRTC

2. Standard Component Interface Messages

47

Std_MsgDisarmxRTCs

Definition

The Std_MsgDisarmxRTCs message is a command message that disables multiple
RTC actions so that a component instance can no longer enact them.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

This message disarms multiple RTC actions that have been set up using a
particular transaction ID from a particular source address.

Message Contents

The body of the Std_MsgDisarmxRTCs message contains a variable-size payload
that includes one fixed data field, followed by a variable-length list of data items.

The Std_MsgDisarmxRTCs_put macro inserts the fields into a message, from a
data structure of type Std_MsgDisarmxRTCs_t, which contains the following
elements:

Field Data Type Description

Count UInt32 the number of RTC actions to disarm. This fixed
data field specifies the number of Label fields
that are contained in the variable portion of the
message body.

Each Label can be filled into the message body with a single call to the
qMsgVarFieldPut() function, specifying the field definition and source variable
for the field. For the initial call, the value of the offset variable must be
Std_MsgDisarmxRTCs_varstart, which is the value to which the

DM3 Standard Component Interface Messages

48

Std_MsgDisarmxRTCs_put macro automatically updated its offset variable. The
offset variable is automatically updated with each successive function call, to
reflect the start of a new Label.

Field Data Type Description

Label UInt32 the label of an event disarm. The message will
contain Count of these labels.

Cautions

If one of the Labels in the list is invalid then none of the RTC events will be
disarmed.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrEvtLabel Invalid event label was specified in an event
handling command message.

Std_ErrListEmpty The list contains no elements.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

2. Standard Component Interface Messages

49

Other Related Messages
• Std_MsgArmRTC
• Std_MsgArmxRTCs
• Std_MsgCancelAllEvts
• Std_MsgCancelEvt
• Std_MsgCancelxEvts
• Std_MsgDetectEvt
• Std_MsgDetectxEvts
• Std_MsgDisarmAllRTCs
• Std_MsgDisarmRTC
• Std_MsgDisarmxRTCsCmplt
• Std_MsgEvtDetected

DM3 Standard Component Interface Messages

50

Std_MsgDisarmxRTCsCmplt

Definition

The Std_MsgDisarmxRTCsCmplt message is a reply message the
Std_MsgDisarmxRTCs command. It confirms the component instance will not
perform the RTC actions.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgDisarmxRTCs

2. Standard Component Interface Messages

51

Std_MsgError

Definition

The Std_MsgError message is an error message that indicates an error in
executing a command message.

Message Sender and Recipient

The component or component instance sends this message to the host.

Additional Information

This message indicates failure of either an incoming command or command
execution. Components and component instances should also be able to receive
this message as a valid reply to any command it may send to other components or
component instances.

Message Contents

The body of the Std_MsgError message contains three data fields in packed-byte
format. The Std_MsgError_get macro extracts the fields from a message, into a
data structure of type Std_MsgError_t, which contains the following elements:

Field Data Type Description

ErrorMsg UInt32 message type where error was detected. If the
error was an asynchronous error not due to any
specific command message, this field should be
set to 0.

ErrorCode UInt32 reason for error. Standard error codes are listed in
an appendix to this document. Component-
specific error codes are defined in the individual
component interface specifications.

DM3 Standard Component Interface Messages

52

Field Data Type Description

Data[4] UInt32 any extra data to report as qualification of the
error. The use of these extra data fields is specific
to particular error codes and the receiver of the
message must be aware of the usage.

Cautions

None.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• All command messages that can result in an error.

2. Standard Component Interface Messages

53

Std_MsgEvtDetected

Definition

The Std_MsgEvtDetected message is an event-reporting message that indicates an
event has occurred.

Message Sender and Recipient

The component instance sends this message to the host.

Additional Information

This event reporting was configured by either the Std_MsgDetectEvt message or
the Std_MsgDetectxEvts message.

Message Contents

The body of the Std_MsgEvtDetected message contains two data fields in packed-
byte format. The Std_MsgDetectEvt_get macro extracts the fields from a message,
into a data structure of type Std_MsgDetectEvt_t, which contains the following
elements:

Field Data Type Description

Label UInt32 the event label that was specified in the
Std_MsgDetectEvt command that enabled the
event.

Data[5] UInt32 any extra data associated with this event. The
receiver of this data must be able to interpret it
based on the type of event.

DM3 Standard Component Interface Messages

54

Cautions

A sender of this message must ensure that the transaction ID in the header of this
message is the same as that which was specified in the Std_MsgDetectEvt
message.

Events with extra data should NOT be used for Run Time Control.

A receiver must match both the Label AND the transaction ID against its list of
events to expect. If either is invalid then this condition should be flagged
somehow and the message should be ignored.

Errors

None.

Other Related Messages
• Std_MsgArmRTC
• Std_MsgArmxRTCs
• Std_MsgCancelAllEvts
• Std_MsgCancelEvt
• Std_MsgCancelxEvts
• Std_MsgDetectEvt
• Std_MsgDetectxEvts
• Std_MsgDisarmAllRTCs
• Std_MsgDisarmRTC
• Std_MsgDisarmxRTCs

2. Standard Component Interface Messages

55

Std_MsgExecute

Definition

The Std_MsgExecute message is a command message that executes the function
contained in the message.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

How this message is interpreted is completely proprietary to the component writer
using it. If the Component or Instance is able to execute the function, it replies to
the sender with a Std_MsgExecuteCmplt message.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

DM3 Standard Component Interface Messages

56

ErrorCode Field Values Description

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgExecuteCmplt

2. Standard Component Interface Messages

57

Std_MsgExecuteCmplt

Definition

The Std_MsgExecuteCmplt message is a reply message for the Std_MsgExecute
message. It indicates the component instance has executed the encapsulated
function.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgExecute

DM3 Standard Component Interface Messages

58

Std_MsgExit

Definition

The Std_MsgExit message is a command message that shuts down a component
instance.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

This command should be accepted at all times.

The component instance will shut down in whatever proprietary way is
appropriate. This command is usually sent at shutdown time when a DM3 Load
Module is about to be unloaded. The module exit function will usually send this
message to all of the Components in that module. The Components may then
forward this to the Instances supported by that component.

Message Contents

The body of this message contains no data fields.

Cautions

When receiving this message the Component or Instance should gracefully shut
itself down in its own proprietary way without impacting the rest of the system.

2. Standard Component Interface Messages

59

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrInstInUse Instance is in use.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnexpectedMsg Unexpected message was received. This
unexpected message indicates one of the
following conditions:

• the message is not part of the standard
component message set or the resource-
specific message set

• the message is part of the standard component
message set, but the receiving component or
instance is not configured to recognize it

• the receiving component or instance can
recognize the message but is not in the proper
state to execute it.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgExitCmplt
• Std_MsgInit

DM3 Standard Component Interface Messages

60

Std_MsgExitCmplt

Definition

The Std_MsgExitCmplt message is a reply message for the Std_MsgExit
command. It verifies the component instance has shut down.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgExit

2. Standard Component Interface Messages

61

Std_MsgGetParm

Definition

The Std_MsgGetParm message is a command message that requests a parameter
value of a component instance.

Message Sender and Recipient

The host sends this message to the component instance.

Message Contents

The body of the Std_MsgGetParm message contains one data field in packed-byte
format. The Std_MsgGetParm_put macro inserts the fields into a message, from a
data structure of type Std_MsgGetParm_t, which contains the following elements:

Field Data Type Description

Num Qparm parameter number of parameter to read.

Cautions

The maximum size for parameter values using this command is 32 bits.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

DM3 Standard Component Interface Messages

62

ErrorCode Field Values Description

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrParmNum Invalid parameter number was specified in one
of the parameter service messages.

Std_ErrParmWriteOnly A parameter-writing message was received for
one or more write-only parameters.

Std_ErrSystem System level error occurred while executing a
command.

Other Related Messages
• Std_MsgGetParmCmplt
• Std_MsgGetxParms
• Std_MsgSetAllParmsDef
• Std_MsgSetParm
• Std_MsgSetParmDef
• Std_MsgSetxParm
• Std_MsgSetxParmsDef

2. Standard Component Interface Messages

63

Std_MsgGetParmCmplt

Definition

The Std_MsgGetParmCmplt message is a reply message for the Std_MsgGetParm
command. It contains a requested parameter value.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of the Std_MsgGetParmCmplt message contains a variable-size payload
that includes three fixed data fields, followed by a variable-length list of data
items.

The Std_MsgGetParmCmplt_get macro extracts the fixed fields from a message,
into a data structure of type Std_MsgGetParmCmplt_t, which contains the
following elements:

Field Data Type Description

Num Qparm parameter number of parameter that was read

Val UInt32 parameter value read

TextSize UInt32 size of optional text string

Each Text value can be retrieved from the message body with a single call to the
qMsgVarFieldGet() function, specifying the field definition and destination
variable for the field. For the initial call, the value of the offset variable must be
Std_MsgGetParmCmplt_varstart, which is the value to which the
Std_MsgGetParmCmplt_get macro automatically updated its offset variable. The
offset variable is automatically updated with each successive function call, to
reflect the start of a new Text.

DM3 Standard Component Interface Messages

64

Field Data Type Description

Text Char optional text string (ASCII null-delimited)
associated with the version parameter. If there is
no text, TextSize will be zero.

Cautions

The maximum size for parameter values in this message is 32 bits.

Errors

None.

Other Related Messages
• Std_MsgGetParm

2. Standard Component Interface Messages

65

Std_MsgGetxParms

The Std_MsgGetxParms message is a command message that requests multiple
parameter values of component instance.

Message Sender and Recipient

The host sends this message to the component instance.

Message Contents

The body of the Std_MsgGetxParms message contains a variable-size payload that
includes one fixed data field, followed by a variable-length list of data items.

The Std_MsgGetxParms_put macro inserts the fields into a message, from a data
structure of type Std_MsgGetxParms_t, which contains the following elements:

Field Data Type Description

Count UInt32 number of parameters to read. This fixed data
filed specifies the number of Num/Val pairs that
are contained in the variable part of the message
body.

Each Num/Val pair can be filled into the message body with a single call to the
qMsgVarFieldPut() function, specifying the field definition and source variable
for each of the two fields. For the initial call, the value of the offset variable must
be Std_MsgGetxParms_varstart, which is the value to which the
Std_MsgGetxParms_put macro automatically updated its offset variable. The
offset variable is automatically updated with each successive function call, to
reflect the start of a new Num/Val pair.

Field Data Type Description

Num Qparm the parameter number of a parameter to read. The
message contains Count parameter number fields,
each with a dummy Val field.

DM3 Standard Component Interface Messages

66

Field Data Type Description

Val UInt32 dummy placeholder for parameter value when
read. There is one Val for each of the Count
Num fields.

Cautions

The maximum size for parameter values using this command is 32 bits.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrListEmpty The list contains no elements.

Std_ErrParmNum Invalid parameter number was specified in one
of the parameter service messages.

Std_ErrParmWriteOnly A parameter-writing message was received for
one or more write-only parameters.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

2. Standard Component Interface Messages

67

Other Related Messages
• Std_MsgGetParm
• Std_MsgGetxParmsCmplt
• Std_MsgSetAllParmsDef
• Std_MsgSetParm
• Std_MsgSetParmDef
• Std_MsgSetxParms
• Std_MsgSetxParmsDef

DM3 Standard Component Interface Messages

68

Std_MsgGetxParmsCmplt

Definition

The Std_MsgGetxParmsCmplt message is a reply message for the
Std_MsgGetxParms command. It contains requested parameter values.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of the Std_MsgGetxParmsCmplt message contains a variable-size
payload that includes one fixed data field, followed by a variable-length list of
data items.

The Std_MsgGetxParmsCmplt_get macro extracts the fixed fields from a
message, into a data structure of type Std_MsgGetxParmsCmplt_t, which contains
the following elements:

Field Data Type Description

Count UInt32 number of parameters read. This fixed data field
specifies the number of Num/Val pairs that are
contained in the variable part of the message
body.

Each Num/Val pair can be retrieved from the message body with a single call to
the qMsgVarFieldGet() function, specifying the field definition and destination
variable for each of the two fields. For the initial call, the value of the offset
variable must be Std_MsgGetxParmsCmplt_varstart, which is the value to which
the Std_MsgGetxParmsCmplt_get macro automatically updated its offset variable.
The offset variable is automatically updated with each successive function call, to
reflect the start of a new Num/Val pair.

2. Standard Component Interface Messages

69

Field Data Type Description

Num QParm parameter number of the parameter that was read.
For each Num, there is a corresponding Val.

Val UInt32 the parameter value for the parameter specified by
Num. There is a Val for each Num in the list.

Cautions

The maximum size for parameter values using this command is 32 bits.

Errors

None.

Other Related Messages
• Std_MsgGetxParms

DM3 Standard Component Interface Messages

70

Std_MsgInit

Definition

The Std_MsgInit message is a command message that initializes a component
instance.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

This message initializes component instance in whatever proprietary way is
appropriate.

For Components, this command is sent by the host download utility at startup
time. The Component will usually create its Instances when it receives this
message. This command message may optionally be sent to an Instance, usually
by its parent Component, to initialize it.

Message Contents

The body of this message contains no data fields.

Cautions

This command should only be sent once, at initialization time.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.

2. Standard Component Interface Messages

71

The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrInstCreate Error creating instances.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnexpectedMsg Unexpected message was received. This
unexpected message indicates one of the
following conditions:

• the message is not part of the standard
component message set or the resource-
specific message set

• the message is part of the standard component
message set, but the receiving component or
instance is not configured to recognize it

• the receiving component or instance can
recognize the message but is not in the proper
state to execute it.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgExit
• Std_MsgInitCmplt

DM3 Standard Component Interface Messages

72

Std_MsgInitCmplt

Definition

The Std_MsgInitCmplt message is a reply message for the Std_MsgInit command.
It verifies the component instance is initialized.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgInit

2. Standard Component Interface Messages

73

Std_MsgSetAllParmsDef

Definition

The Std_MsgSetAllParmsDef message is a command message that sets all
parameters to their default values.

Message Sender and Recipient

The host sends this message to the component instance.

Message Contents

The body of this message contains no data fields.

Cautions

Setting parameters at run time can have adverse affects if a Component or
Instance is actively using these parameters.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

DM3 Standard Component Interface Messages

74

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrParmReadOnly A parameter-setting message was received for
one or more read-only parameters.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgGetParm
• Std_MsgGetxParms
• Std_MsgSetAllParmsDefCmplt
• Std_MsgSetParm
• Std_MsgSetParmDef
• Std_MsgSetxParms
• Std_MsgSetxParmsDef

2. Standard Component Interface Messages

75

Std_MsgSetAllParmsDefCmplt

Definition

The Std_MsgSetAllParmsDefCmplt message is a reply message for the
Std_MsgSetAllParmsDef command. It verifies all parameters are set to their
default value.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgSetAllParmsDef

DM3 Standard Component Interface Messages

76

Std_MsgSetParm

Definition

The Std_MsgSetParm message is a command message that changes the value of a
specific parameter.

Message Sender and Recipient

The host sends this message to the component instance.

Additional Information

The parameter is defined as the tuple of Num and Val. If the Component or
Instance successfully sets the specified parameter, it replies to the sender of the
command with a Std_MsgSetPArmCmplt message.

Message Contents

The body of the Std_MsgSetParm message contains two data fields in packed-byte
format. The Std_MsgSetParm_put macro inserts the fields into a message, from a
data structure of type Std_MsgSetParm_t, which contains the following elements:

Field Data Type Description

Num Qparm parameter number of the parameter to set.

Val UInt32 parameter value to set for parameter.

Cautions

Setting parameters at run time can have adverse affects if a Component or
Instance is actively using these parameters. The maximum size for parameter
values using this command is 32 bits.

2. Standard Component Interface Messages

77

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrParmNum Invalid parameter number was specified in one
of the parameter service messages.

Std_ErrParmReadOnly A parameter-setting message was received for
one or more read-only parameters.

Std_ErrParmValue Invalid parameter value was specified in a
parameter service command message.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgGetParm
• Std_MsgGetxParms
• Std_MsgSetAllParmsDef
• Std_MsgSetParmCmplt
• Std_MsgSetParmDef
• Std_MsgSetxParms
• Std_MsgSetxParmsDef

DM3 Standard Component Interface Messages

78

Std_MsgSetParmCmplt

Definition

The Std_MsgSetParmCmplt message is a reply message for the Std_MsgSetParm
command. It verifies the parameter is set.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages

• Std_MsgSetParm

2. Standard Component Interface Messages

79

Std_MsgSetParmDef

Definition

The Std_MsgSetParmDef message is a command message that sets a specific
parameter to its default value.

Message Sender and Recipient

The host sends this message to the component instance.

Message Contents

The body of the Std_MsgSetParmDef message contains one data field in packed-
byte format. The Std_MsgSetParmDef_put macro inserts the fields into a
message, from a data structure of type Std_MsgSetParmDef_t, which contains the
following elements:

Field Data Type Description

Num Qparm parameter number of the parameter to reset.

Cautions

Setting parameters at run time can have adverse affects if a Component or
Instance is actively using these parameters.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

DM3 Standard Component Interface Messages

80

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrParmNum Invalid parameter number was specified in one
of the parameter service messages.

Std_ErrParmReadOnly A parameter-setting message was received for
one or more read-only parameters.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_GetxParms
• Std_MsgGetParm
• Std_MsgSetAllParmsDef
• Std_MsgSetParm
• Std_MsgSetParmDefCmplt
• Std_MsgSetxParms
• Std_MsgSetxParmsDef

2. Standard Component Interface Messages

81

Std_MsgSetParmDefCmplt

Definition

The Std_MsgSetParmDefCmplt message is a reply message for the
Std_MsgSetParmDef command. It verifies the parameter is set to its default value.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages

• Std_MsgSetParmDef

DM3 Standard Component Interface Messages

82

Std_MsgSetxParms

Definition

The Std_MsgSetxParms message is a command message that changes the value of
multiple parameters.

Message Sender and Recipient

The host sends this message to the component instance.

Message Contents

The body of the Std_MsgSetxParms message contains a variable-size payload that
includes one fixed data field, followed by a variable-length list of data items.

The Std_MsgSetxParms_put macro inserts the fields into a message, from a data
structure of type Std_MsgSetxParms_t, which contains the following elements:

Field Data Type Description

Count UInt32 the number of parameters to set to defaults. This
fixed data field specifies the number of Num/Val
pairs in the variable part of the message body.

Each Num/Val pair can be filled into the message body with a single call to the
qMsgVarFieldPut() function, specifying the field definition and source variable
for each of the two fields. For the initial call, the value of the offset variable must
be Std_MsgSetxParms_varstart, which is the value to which the
Std_MsgSetxParms_put macro automatically updated its offset variable. The
offset variable is automatically updated with each successive function call, to
reflect the start of a new Num/Val pair.

2. Standard Component Interface Messages

83

Field Data Type Description

Num QParm the parameter number of a parameter to set. There
are Count parameters specified in the message,
each with a corresponding Val.

Val UInt32 the parameter value to set for parameter specified
in Num. Each Num has its own Val.

Cautions

Setting parameters at run time can have adverse affects if a Component or
Instance is actively using these parameters.

The maximum size for parameter values using this command is 32 bits.

If multiple parameters are set using this command and there is an error in any of
the parameter specifications then NO parameters should be updated.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrListEmpty The list contains no elements.

Std_ErrParmNum Invalid parameter number was specified in one
of the parameter service messages. The invalid
parameter number will be returned in the
Std_MsgError message.

DM3 Standard Component Interface Messages

84

ErrorCode Field Values Description

Std_ErrParmReadOnly A parameter-setting message was received for
one or more read-only parameters.

Std_ErrParmValue Invalid parameter value was specified in a
parameter service command message. The
invalid parameter number and value will be
returned in the Std_MsgError message.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgGetParm
• Std_MsgGetxParms
• Std_MsgSetAllParmsDef
• Std_MsgSetParm
• Std_MsgSetParmDef
• Std_MsgSetxParmsCmplt
• Std_MsgSetxParmsDef

2. Standard Component Interface Messages

85

Std_MsgSetxParmsCmplt

Definition

The Std_MsgSetxParmsCmplt message is a reply message for the
Std_MsgSetxParms command. It verifies the parameters are set.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages

• Std_MsgSetxParms

DM3 Standard Component Interface Messages

86

Std_MsgSetxParmsDef

Definition

The Std_MsgSetxParmsDef message is a command message that sets multiple
parameters to their default values.

Message Sender and Recipient

The host sends this message to the component instance.

Message Contents

The body of the Std_MsgSetxParmsDef message contains a variable-size payload
that includes one fixed data field, followed by a variable-length list of data items.

The Std_MsgSetxParmsDef_put macro inserts the fields into a message, from a
data structure of type Std_MsgSetxParmsDef_t, which contains the following
elements:

Field Data Type Description

Count UInt32 the number of parameters to set to defaults. This
fixed data field specifies the number of Num
fields in the variable part of the message body.

Each Num can be filled into the message body with a single call to the
qMsgVarFieldPut() function, specifying the field definition and source variable
for the field. For the initial call, the value of the offset variable must be
Std_MsgSetxParmsDef_varstart, which is the value to which the
Std_MsgSetxParmsDef_put macro automatically updated its offset variable. The
offset variable is automatically updated with each successive function call, to
reflect the start of a new Num.

2. Standard Component Interface Messages

87

Field Data Type Description

Num QParm the parameter number of a parameter to reset. The
message contains Count parameter numbers.

Cautions

Setting parameters at run time can have adverse affects if a Component or
Instance is actively using these parameters.

Errors

If an error occurs in the execution of the requested command, a Std_MsgError
message will be returned to the requester instead of the successful reply message.
The ErrorCode field in the body of this error message may contain one of the
following values defined for this command:

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received.

Std_ErrListEmpty The list contains no elements.

Std_ErrParmNum Invalid parameter number was specified in one
of the parameter service messages.

Std_ErrParmReadOnly A parameter-setting message was received for
one or more read-only parameters.

Std_ErrSystem System level error occurred while executing a
command.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

Other Related Messages
• Std_MsgGetParm

DM3 Standard Component Interface Messages

88

• Std_MsgGetxParms
• Std_MsgSetAllParmsDef
• Std_MsgSetParm
• Std_MsgSetParmDef
• Std_MsgSetxParms
• Std_MsgSetxParmsDefCmplt

2. Standard Component Interface Messages

89

Std_MsgSetxParmsDefCmplt

Definition

The Std_MsgSetxParmsDefCmplt message is a reply message for the
Std_MsgSetxParmsDef command. It verifies the parameters are set to their default
values.

Message Sender and Recipient

The component instance sends this message to the host.

Message Contents

The body of this message contains no data fields.

Cautions

None.

Errors

None.

Other Related Messages
• Std_MsgSetxParmsDef

91

3. Event Notification

When a DM3 component or component instance detects an event, it uses the
Std_MsgEvtDetected message to broadcast this event occurrence to certain DM3
entities—specifically, to those clients (a component instance or the host
application) registered for notification about this type of event.

DM3 component instances use event notification to keep each other informed of
events that have occurred. This is important for the following reasons:

• tracking and analyzing the performance of the different DM3 component
instances. Event messages can show the incremental progress (or failure) or a
command as it executes.

• to trigger RTC actions when specific events occur. An event message about a
particular event can trigger an RTC action by a client registered for
notification about the event.

Each DM3 resource uses the following standard messages for the event-
notification process:

• Std_MsgDetectEvt

• Std_MsgDetectxEvts

• Std_MsgEvtDetected

3.1. About Event Notification and RTC Actions

After receiving a Std_MsgEvtDetected message indicating an event, a client can
take an appropriate action. To do so, the client must first be set up to perform the
RTC action.

For more information about RTC actions, see the appropriate appendix.

DM3 Standard Component Interface Messages

92

3.2. Event Registration

In order for event reporting to occur, the following component instances must be
involved in a registration process for each specific event type:

• the component instance that will experience the event, so that it will notify the
appropriate clients (component instances registered for notification about a
particular event).

• the component instance that needs event notification about a particular event

For more information about

• each of these messages, see the document DM3 Standard Component
Interface Messages (part number 05-1040-001)

• event notification and event registration, see the DM3 Mediastream
Architecture Overview (part number 05-0813-001).

3.3. DM3 Resource Events

Each DM3 resource is configured to send notification to clients registered for this
type of event notification. For more information, see the appropriate DM3
resource user's guide.

93

Appendix A
Parameters

Table 2 lists the parameters supported by all DM3 components and component
instances in a DM3 firmware system.

Parameters control the behavior of a component and its instances. Parameter
access is classified as:

• read only (R)

• write only (W)

• both read and write (R/W)

The parameter level is classified as:

• component-level (C), which have the Dialogic factory settings as their
defaults when started

• instance level (I), which have the component-level parameter values as their
default upon allocation

• both component and instance level (C/I)

All components and their instances support the Std_MsgSetParm and
Std_MsgGetParm messages to allow their parameters to be set and read,
respectively. Parameters may be set or read while a component or instance is
active or idle.

All these standard parameters are of the UInt32 data type.

DM3 Standard Component Interface Messages

94

Table 2. Standard Parameter Definitions

Parameter Name Access Level Description

Std_ParmVersion R C The version number of the
Component. For Dialogic
Components, the format of the
version number is in Hex, e.g.
Version 3.60 Alpha 4.15 is
represented as 0x23600415.

Std_ParmVendor R C The vendor ID of the Component.

Std_ParmMaxInst R C The maximum number of Instances
supported by this Component

Std_ParmInstNum R/W C The number of Instances to create or
already created. This parameter can
be set at any time, but it only takes
effect when the instance is
initialized (with Std_MsgInit).

Std_ParmStartInst R/W C The starting Instance number

95

Appendix B
Error Codes

If an error occurs when a component instance tries to execute a command, a
Std_MsgError message will be sent to the client (the sender of the command
message), alerting it to the error. This Std_MsgError message is sent in lieu of any
reply message normally returned when the command goes through successfully.

Each component has its own set of valid error types. Errors that may be generated
by components and component instances of DM3 resources are discussed in this
appendix.

How Error Notification Works

The following process explains how error notification works:

1. A component or component instance sends a command message to another
component or component instance.

2. An error occurs in the execution of this command.

3. The entity that failed the command execution sends a Std_MsgError message
to the client (the source of the command message).

For more information about

• the Std_MsgError message, see the DM3 Standard Component Interface
Messages (part number 05-1040-001)

• error notification, see the DM3 Mediastream Architecture Overview (05-
0813-001).

Standard Component Error Codes

Table 3 lists the error types potentially generated by all DM3 components and
component instances. These codes are returned in the ErrorCode field of the
Std_MsgError message. The use of the additional data portion of the
Std_MsgError message body (the Data[4] field) varies according to the error
code, and this usage is noted in the Description column of the table. Note that the

DM3 Standard Component Interface Messages

96

message type of the command message that produced the error is always
contained in the ErrorMsg field of the Std_MsgError message.

Table 3. Error Codes of DM3 Components and Component Instances

ErrorCode Field Values Description

Std_ErrBusy Component or Instance was busy executing a
previous command when another command was
received. The additional data field is not used for
this error code.

Std_ErrEvtLabel Invalid event label was specified in an event
handling command message. For this error code,
the additional data portion of the Std_MsgError
message body is used to return the invalid event
label.

Std_ErrEvtType Invalid event type was specified in an event
handling command message. For this error code,
the additional data portion of the Std_MsgError
message body is used to return the invalid event
type.

Std_ErrInstCreate Error creating instances. The additional data
field is not used for this error code.

Std_ErrInstInUse Instance is in use. The additional data field is not
used for this error code.

Std_ErrLabelTrans A Label and Transaction ID pair that is already
in use was specified in an Arm RTC command
message. Sender should change one or both and
resend message. The additional data field is not
used for this error code.

Std_ErrListEmpty The list contains no elements.

Std_ErrNotEnabled An event-cancelling message was received for an
event that is not currently enabled.

Appendix B: Error Codes

97

ErrorCode Field Values Description

Std_ErrParmNum Invalid parameter number was specified in one
of the parameter service messages. For this error
code, the additional data portion of the
Std_MsgError message body is used to return
the invalid parameter number and the
corresponding parameter value.

Std_ErrParmReadOnly A parameter-setting message was received for
one or more read-only parameters.

Std_ErrParmValue Invalid parameter value was specified in a
parameter service command message. For this
error code, the additional data portion of the
Std_MsgError message body is used to return
the parameter number of the parameter with the
invalid value and the invalid value itself.

Std_ErrParmWriteOnly A parameter-writing message was received for
one or more write-only parameters.

Std_ErrRTCAction Invalid Run Time Control action was specified
in an event handling command message. For this
error code, the additional data portion of the
Std_MsgError message body are used to return
the event label associated with the invalid action
and the invalid action itself.

Std_ErrSystem System level error occurred while executing a
command. The additional data field is not used
for this error code.

DM3 Standard Component Interface Messages

98

ErrorCode Field Values Description

Std_ErrUnexpectedMsg Unexpected message was received. This
unexpected message indicates one of the
following conditions:

• the message is not part of the standard
component message set or the resource-
specific message set

• the message is part of the standard component
message set, but the receiving component or
instance is not configured to recognize it

• the receiving component or instance can
recognize the message but is not in the proper
state to execute it.

Std_ErrUnsupportedMsg Unsupported message was received. This
unsupported message is part of the standard
component message set.

99

Index

A
Architecture, DM3

definition, 2

C
Component

definition, 2

Components
and error notification, 95
and the Std_MsgError message, 95

Conventions, documentation, 2

D
DM3 architecture

overview, 1

Documentation conventions, 2

E
Event notification

and Std_MsgDetectEvt message, 91
and Std_MsgDetectxEvts message,

91
and the Std_MsgEvtDetected

message, 91
the process, 91

I
Introduction to DM3 architecture

definition, 2

M
Message

definition, 3

R
Resource

definition, 2

Resource-specific messages
overview, 1

Run Time Control (RTC)
and Standard Component Message

Set, 6

S
Std_MsgDetectEvt message, 91

Std_MsgDetectxEvts message, 91

Std_MsgEvtDetected message, 91

Std_MsgEvtDetected message, 91

DOCUMENTATION FEEDBACK FORM
Document Title: DM3 Standard Component Interface Messages

Publication Date: March, 1998 Part Number: 05-1040-001-03

1. Please rate this document in the following areas:

Excellent Good Adequate Fair Poor N/A

Accuracy ❑ ❑ ❑ ❑ ❑ ❑

Clarity ❑ ❑ ❑ ❑ ❑ ❑

Ease of Use ❑ ❑ ❑ ❑ ❑ ❑

Relevance to Job ❑ ❑ ❑ ❑ ❑ ❑

Code Examples ❑ ❑ ❑ ❑ ❑ ❑

Organization ❑ ❑ ❑ ❑ ❑ ❑

Completeness ❑ ❑ ❑ ❑ ❑ ❑

Figures/Illustrations ❑ ❑ ❑ ❑ ❑ ❑

Appearance ❑ ❑ ❑ ❑ ❑ ❑

Overall Satisfaction ❑ ❑ ❑ ❑ ❑ ❑

2. How can we improve this document?

❑ Improve the index

❑ Improve the organization

❑ Improve overviews and introductions

❑ Include more illustrations and figures

❑ Add more/better quick reference aids

❑ Add more troubleshooting information

❑ Add more step-by-step procedures and tutorials

❑ Make it more concise

❑ Add more detail

❑ Add more/better code examples

❑ Make it less technical

❑ Make it more technical

3. Please include any other comments on an additional sheet.

4. FAX this form to DIALOGIC DOCUMENTATION MANAGER at (973) 993-5916.

NAME: _____________________________ COMPANY: _________________________

PHONE: ____________________________ ADDRESS: __________________________

NOTES

NOTES

NOTES

