
DM3 IPLink™ User’s Guide
for Windows NT

Copyright © 1998 Dialogic Corporation

PRINTED ON RECYCLED PAPER

05-0917-001

COPYRIGHT NOTICE

Copyright 1998 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment on
the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot guarantee the
accuracy of this material, nor can it accept responsibility for errors or omissions. No warranties of any
nature are extended by the information contained in these copyrighted materials. Use or implementation of
any one of the concepts, applications, or ideas described in this document or on Web pages maintained by
Dialogic-may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not condone or encourage such infringement. Dialogic makes no warranty with respect to
such infringement, nor does Dialogic waive any of its own intellectual property rights which may cover
systems implementing one or more of the ideas contained herein. Procurement of appropriate intellectual
property rights and licenses is solely the responsibility of the system implementer. The software referred to
in this document is provided under a Software License Agreement. Refer to the Software License
Agreement for complete details governing the use of the software.

All names, products, and services mentioned herein are the trademarks or registered trademarks of their
respective organizations and are the sole property of their respective owners. DIALOGIC (including the
Dialogic logo), DTI/124, SpringBoard, and Signal Computing System Architecture (SCSA) are registered
trademarks of Dialogic Corporation. A detailed trademark listing can be found at
http://www.dialogic.com/legal.htm.

Dialogic Corporation
1515 Route 10
Parsippany NJ 07054

Technical Support
Phone: 973-993-1443
Fax: 973-993-8387
Email: CustEng@dialogic.com

For Sales Offices and other contact information, visit our website at http://www.dialogic.com

Publication Date: April, 1998

Part Number: 05-0917-001

iii

Table of Contents

1. Introduction... 11
1.1. About This Guide... 11
1.2. IP Telephony Overview... 12
1.3. What You Need to Know To Create An Application 13

2. The DM3 IPLink Platform ... 15
2.1. What is the DM3 IPLink Platform? .. 15
2.2. The DM3 Platform... 16

2.2.1. The DM3 Platform... 16
2.2.2. The DM3 Technology Resources.. 17
2.2.3. DM3 Component ... 17
2.2.4. Clusters ... 17
2.2.5. DM3 Component Communication ... 18
2.2.6. The SCbus ... 18

2.3. IPLink Platform Capabilities .. 18
2.4. Quality of Service.. 19
2.5. Hardware Configuration... 19
2.6. The Net Telephony Service Provider (NetTSP) Resource.......................... 21

2.6.1. NetTSP Resource Overview ... 21
2.6.2. NetTSP Resource Features ... 21
2.6.3. NetTSP Resource Elements.. 22
2.6.4. NetTSC Component... 24
2.6.5. NetTSC Component Activities... 25

2.7. Line Administration Component .. 25
2.7.1. Line Administration Component Activities 25

2.8. Internal Components.. 26
2.8.1. Voice Stream Resource Component (VSR)....................................... 26
2.8.2. H.323 Component.. 27

3. Host Application.. 29
3.1. Host Application Responsibilities ... 29
3.2. Host Application Communication with Dialogic Resources 30

3.2.1. Event Reporting... 31

4. Programming Model ... 33
4.1. What are Call-States?... 33
4.2. What are Call-State Changes?.. 35

DM3 IPLink™ User’s Guide for Windows NT

iv

4.3. Enabling Detection of Call-State Changes.. 36
4.4. State Diagrams .. 36

4.4.1. Outbound Internet Calls .. 37
4.4.2. Inbound Internet Calls... 38

5. Using the NetTSP Resource.. 41
5.1. Messages ... 41

5.1.1. Standard Messages Used by the NetTSC Component....................... 41
5.1.2. TSC Messages Used by the NetTSC Component.............................. 43
5.1.3. NetTSC Component Messages... 44

5.2. Detecting Events.. 45
5.2.1. About Events... 45
5.2.2. Event Messages ... 46
5.2.3. The Event-Reporting Process... 46
5.2.4. Events Specific to the NetTSC Component 47

5.3. Allocating a NetTSP .. 48
5.3.1. Procedure: Allocating a Cluster ... 48

5.4. Assigning Timeslots .. 49
5.4.1. Procedure: Assigning a Receive Timeslot to the NetTSC

Component .. 49
5.4.2. Querying About the SCbus Transmit Timeslot................................. 50

5.5. Making an Outbound Call.. 52
5.5.1. Procedure: Making an Outbound Call.. 53

5.6. Receiving an Inbound Call... 55
5.6.1. Procedure: Answering an Inbound Call ... 56
5.6.2. Procedure: Accepting a Call .. 59

5.7. Terminating Calls.. 63
5.7.1. Procedure: Terminating a Call by the Host 64
5.7.2. Procedure: Call Terminated by the IP Network 65

5.8. Getting Call Statistics .. 68
5.8.1. Procedure: Getting Call Statistics .. 69

5.9. Other Call Control Operations ... 70
5.9.1. Rejecting an Inbound Call ... 70
5.9.2. Failed Outbound Call .. 71

6. Setting IPLink Parameters... 77
6.1. FCD File.. 77

6.1.1. SP Parameters ... 78
6.1.2. H.323 Parameters .. 81
6.1.3. Miscellaneous Parameters.. 83

1. Introduction

v

6.2. PCD File .. 87
6.3. Config.val .. 88

6.3.1. Describe Coder Capabilities ... 89
6.3.2. Enable a Gatekeeper .. 90

7. Debugging.. 95
7.1. Download Failed .. 95

7.1.1. Check the Hardware .. 97
7.1.2. Check the Drivers .. 99
7.1.3. Check the PCD/FCD files .. 100

7.2. Download Succeeded.. 101
7.2.1. H.323 Service .. 102
7.2.2. H.323 Protocol Messages ... 104
7.2.3. CP and SP Errors... 104

7.3. Information for Customer Support.. 105

Appendix A - Introduction to Internet Telephony 109
Standards... 110

ITU Recommendation H.323 .. 111

Appendix B - config.val File... 115

Appendix C - ipt.fcd File .. 119

Glossary.. 127

Index... 135

vii

List of Tables

Table 1. Call-States... 34
Table 2. State Transitions ... 35
Table 3. DM3 Standard Messages Used by the NetTSC Component............... 42
Table 4. TSC Component Messages Used by the NetTSC Component............. 43
Table 5. NetTSC Component Messages... 45
Table 6. NetTSC Component Event Types .. 47
Table 7. Procedure: Allocating a Cluster ... 48
Table 8. Procedure: Assigning a Timeslot ... 50
Table 9. Procedure: Querying the PSTN.. 51
Table 10. Procedure: Querying the DM3 ... 52
Table 11. Procedure: Outbound Calls .. 54
Table 12. Procedure: Answering Inbound Calls... 58
Table 13. Procedure: Accepting Inbound Calls .. 61
Table 14. Terminating a Call by the Host .. 65
Table 15. Call Terminated by the IP Network.. 66
Table 16. Getting Call Statistics.. 69
Table 17. Rejecting an Inbound Call ... 71
Table 18. Failed Outbound Call .. 73

ix

List of Figures

Figure 1. DM3 IPLink Platform Configuration Tree.. 16
Figure 2. PSTN-IP Gateway Configuration (separate Network Interface

Board) ... 20
Figure 3. PSTN-IP Gateway Configuration (Network Interface on IPLink)...... 21
Figure 4. NetTSP Architecture - DM/IPLink-T1(E1) Board 23
Figure 5. NetTSP Architecture - DM/IPLink-T1(E1)_NIC Board.................... 24
Figure 6. Typical Gateway .. 30
Figure 7. State Diagram Explanation .. 37
Figure 8. Outbound Call-State Diagram .. 38
Figure 9. Inbound Call-State Diagram... 39
Figure 10. Outbound Call - Simplified State Machine 53
Figure 11. Answer Inbound Call - Simplified State Diagram.......................... 57
Figure 12. Call Establishment Messages - Simple Model 59
Figure 13. Accept Inbound Call - Simplified State Diagram............................ 60
Figure 14. Call Establishment Messages - Accept Call 63
Figure 15. Call Termination - Simplified State Diagram 64
Figure 16. Call Termination Messages .. 68
Figure 17. Rejecting an Inbound Call - Simplified State Diagram 70
Figure 18. Failed Outbound Call - Simplified State Diagram........................... 72
Figure 19. Debug Flow - Download Failed .. 96
Figure 20. Boot Kernel Versions ... 97
Figure 21. SCbusClockMaster Parameter Setting .. 99
Figure 22. Debug Flow - Download Succeeded.. 102
Figure 23. Typical IP Telephony Configuration.. 110

11

1. Introduction

The DM3 IPLink User’s Guide provides the information necessary to build an
Internet Telephony application using Dialogic Corporation’s DM3 IPLink
platform.

Topics discussed in this introduction include:

• About This Guide
• IP Telephony Overview
• What You Need to Know To Create An Application
• What Resources are Available?

The DM3 IPLink User’s Guide assumes that the hardware is installed and the
firmware has been download, and therefore will not describe hardware
installation or firmware download. Refer to the DM3 IPLink Series Quick Install
Card included with each board for a description of hardware installation and
Installing and Configuring The DM3 IPLink SDK for Windows NT for firmware
download.
.

1.1. About This Guide

This document is divided into two sections:

• • Section 1 provides an introduction to the DM3 IPLink platform. It includes:

• Chapter 2. The DM3 IPLink Platform

• Chapter 3. Host Application

• Section 2 provides programmer resource material. It includes:

• Chapter 4. Programming Model

• Chapter 5. Using the NetTSP Resource

• Chapter 6. Setting the DM3 IPLink Parameters

• Chapter 7. Debugging

DM3 IPLink™ User’s Guide for Windows NT

12

Background information about Internet Telephony can be found in the
Appendix.

NOTE: Dialogic Corporation recommends that first-time users read through
this entire User’s Guide before beginning to write a host application.
Experienced users can refer directly to the chapters in Section 2 when
writing an application.

1.2. IP Telephony Overview

Transporting voice over the Internet Protocol (IP) requires computationally
intensive signal processing functions, including low bandwidth coders, advanced
echo cancellation, multimedia call control and high performance protocol stacks.

The DM3 IPLink platform allows a “voice over IP” call to be connected via the
DM3 platform to the SCbus. By adding additional SCbus boards, one can build a
variety of applications, such as an IPPSTN gateway.

The DM3 IPLink board and firmware, together with standard Dialogic
Corporation SCbus PSTN cards, provide all the call control functions necessary
for IP telephony:

• Answer incoming calls from either the IP network or the PSTN network

• Collect relevant information from the incoming call

• Make a corresponding call on the complementary network

• Bridge the two calls

This capability can be used to build a gateway, bridging the traditional circuit-
switched telephony world with the Internet.

The IP Telephony configuration enables current Dialogic Corporation telephony
resources to be mixed and matched with an IP connection and Dialogic’s DM3
IPLink platform to build a wide variety of solutions.

1. Introduction

13

1.3. What You Need to Know To Create An Application

This section describes the knowledge you will need to write an Internet telephony
application. Before beginning to write an application, you should already be
familiar with:

• C or C++ programming language

• Windows NT Programming

In order to write an Internet telephony application, you should be familiar with:

• DM3 messages, clustering, timeslot assignment

• See DM3 Architecture Overview for a description of clustering
concepts and timeslot assignment

• See IPLink Reference Guide for a complete description of TSC
messages
• For a list of TSC messages - see Section 5.1.2. TSC Messages

Used by the NetTSC Component

• See DM3 Standard Component Interface Messages for a complete
description of DM3 standard messages
• For a list of standard messages - see Section 5.1.1. Standard

Messages Used by the NetTSC Component

• Dialogic System Software for Windows NT (when using Dialogic
Corporation SCbus PSTN cards)

• The Dialogic System Software on-line bookshelf is included with this
IPLink SDK.

• DM3 Direct Interface

• See DM3 Direct Interface Function Reference and Using the DM3
Direct Inteface for Windows NT

• Win32 Synchronization Methods

• See Using NSM for Event Notification with DM3, R4, and Win32
Devices

15

2. The DM3 IPLink Platform

This chapter presents a high-level description of the DM3 IPLink platform,
describing both the hardware platform and the software.

Topics discussed include:

• The DM3 IPLink Platform
• DM3 IPLink Capabilities
• Quality of Service
• Hardware Platform
• The NetTSP Resource
• Timeslot Management
• Line Administration Component
• Internal Components

2.1. What is the DM3 IPLink Platform?

The DM3 IPLink platform includes both hardware and software. Figure 1
displays the various parts of the IPLink platform. The grayed areas are internal
components not accessible to the application writer and are shown in order to
present a complete picture of the IPLink platform. The components shown in
circles are not supplied by Dialogic Corporation.

DM3 IPLink™ User’s Guide for Windows NT

16

Software

NIC
PSTN
Board

DM/IPLINK-T1_NIC/
DMIPLINK-E1_NIC
Telephony Board

IP PSTN
NetTSP

Resource

Line
Administration

Component

TCP/IP
Stack

DNA Sys. SW
NetTSC

Component
VSR

Component
H.323

Component

Voice Coders
Tone Generator
Signal Detector

Echo Canceler Component
Packet Loss Recovery Module

Hardware

IP
Telephony
Solution

Legend
Supplied by Dialogic

Not Supplied by Dialogic

a
Internal Component
Shown for Information Only

DM/IPLINK-T1/
DMIPLINK-E1

Telephony Board

PSTN
Board

If no NIC on DM3 board

Figure 1. DM3 IPLink Platform Configuration Tree

2.2. The DM3 Platform

This section introduces basic concepts and terminology relating to the DM3
Mediastream Architecture. DM3 is an architecture on which a whole set of
Dialogic products are built. The DM3 architecture is open, layered, and flexible,
encompassing hardware as well as software components.

2.2.1. The DM3 Platform

The software on the DM3 platform consists of the following types of software:

• Core platform software, which includes the platform-specific DM3 kernel
and device driver. All base platforms of the same type will have the same
core platform software.

• DM3 resource software, which provides the features of a resulting product.

2. The DM3 IPLink Platform

17

2.2.2. The DM3 Technology Resources

A DM3 technology resource is a set of embedded resource software that
provides a specific set of features, such as voice over Internet Protocol, for a
DM3 product. A resource represents a set of features to be performed and the
functions of one resource are logically independent of any other resource. A
DM3 resource closely matches the SCSA concept of a resource (such as a player,
recorder, fax transmitter, etc.).

A DM3 signal-computing resource is made up of a host software component that
resides on the host platform containing the DM3 board(s), and one or more DM3
firmware components that reside on the various processors on the boards
themselves.

2.2.3. DM3 Component

DM3 components are logical entities that implement specific features within a
resource. A resource may be separated into components to distribute functions
among processors (for example, control functions versus signal processing
algorithms), or to provide alternative or optional services within a resource (such
as multiple coders in a player resource).

A component instance is an addressable unit within the DM3 software
architecture; it represents a single thread of control. The DM3 system resource
management and messaging services operate at the instance level. A set of
component instances communicate with one another using the DM3 system
messaging services. A set of component instances is usually associated with a
channel of call processing.

2.2.4. Clusters

A set of component instances that share SCbus timeslots and collectively
deliver a set of functions for the host controller are grouped into a cluster.
Clusters control how TDM data is transferred from one component to another,
and how TDM data is routed to and from the SCbus. When a DM3 component
instance is allocated, it is allocated into a specific cluster. Once a cluster has
been created, the DM3 kernel can control the ports to allow the resources within
that cluster to share ports in an intelligent manner.

DM3 IPLink™ User’s Guide for Windows NT

18

While the cluster contents can be dynamically configured at run-time, default
setups are usually enough for most applications and offer a higher level
granularity of access to the DM3 platform.

2.2.5. DM3 Component Communication

DM3 components have two communication mechanisms:

• Sending messages
• Sending blocks of data

A message-based protocol is used for communicating between DM3 components
or component instances in the system.

Bulk data in a DM3 system is manipulated using global streams to transfer the
data between processors, between the host and a component or instance, and
between the SCbus and a component or instance.

2.2.6. The SCbus

The SCbus allows different SCSA compatible boards to communicate with each
other. The DM3 IPLink platform allows a “voice over IP” call to be connected
via the DM3 platform to the SCbus.

2.3. IPLink Platform Capabilities

The DM3 IPLink platform supplies the following capabilities:

• Call Management is provided by the NetTSC component which, in turn,
uses an H.323 stack.

• The RTP/RTCP media stream is a sequence of packets using UDP (User
Datagram Protocol) as transport. Packetization is handled by the resources
on the IPLink board.

• The following Voice Coders are supported by the DM3 IPLink platform (at
the time of writing this manual):

• G.723.1

2. The DM3 IPLink Platform

19

• G.711

• GSM

• DTMF Detection/Generation

The IPLink platform provides both inband and out-of-band tone detection
and generation.

• Packet Loss Recovery Mechanism

The IPLink platform includes a sophisticated algorithm for lost packet
recovery.

2.4. Quality of Service

Unlike the PSTN, in which quality of service is defined as a particular level of
service (“toll-like”), quality of service for voice over the Internet Protocol is
defined as a continuum of levels, affected by packet delay or loss, line
congestion, and hardware quality such as microphone quality.

The DM3 IPLink platform is designed to operate along the entire range of
quality of service, enabling the application to retrieve information necessary for
correct billing.

2.5. Hardware Configuration

The IPLink platform is available in two hardware configurations:

• DM/IPLink-T1 and DM/IPLink-E1

• Requires a host Network Interface Card (NIC) to connect to the IP
network

• DM/IPLink-T1_NIC and DM/IPLink-E1_NIC

• Network interface is included on the IPLink board

NOTE: Call your Dialogic Corporation sales engineer for the complete list
of supported voice coders.

DM3 IPLink™ User’s Guide for Windows NT

20

Both models of the IPLink board connect to a separate PSTN board via the
SCbus.

A typical PSTN-IP Gateway configuration consists of three parts:

• Dialogic SCbus PSTN Interface Board (PSTN Connection)

• DM3 IPLink Board (IP Network Connection)

• Network Interface Board (IP Interface) or DM3 IPLink Board with NIC

Figure 2 illustrates a possible hardware configuration using an IPLink board
with a separate network connector:

Dialogic SCBus
PSTN Interface

 Board

IPLink
Board
without
Network

Connector
SCBus
Cable

Network
Interface

Board

PSTN
Line

Internet/Intranet
Line

Figure 2. PSTN-IP Gateway Configuration (separate Network
Interface Board)

Figure 3 illustrates a possible hardware configuration using an IPLink board
with a network connector:

2. The DM3 IPLink Platform

21

Internet/Intranet
Line

Standard Dialogic
PSTN Interface

Board

IPLink
Board with

Network
Connector

SCBus
Cable

PSTN
Line

Figure 3. PSTN-IP Gateway Configuration (Network Interface on
IPLink)

2.6. The Net Telephony Service Provider (NetTSP)
Resource

2.6.1. NetTSP Resource Overview

The NetTSP resource provides complete embedded IP call control from within
the DM3 platform. The NetTSP resource allows a host application to:

• Make a call

• Answer a call

• Manage established calls

• Gather call statistics

• Connect the IP network to the SCbus

2.6.2. NetTSP Resource Features

The NetTSP resource provides all the features necessary to rapidly build an
Internet phone gateway:

• High-level API

DM3 IPLink™ User’s Guide for Windows NT

22

• Call control capabilities (H.323)

• RTP/RTCP protocol

• Connectivity to IP Stack

• Family of voice coders

• Timeslot management

2.6.3. NetTSP Resource Elements

The NetTSP Resource contains the following component:

• NetTSC Component

The NetTSC component acts as a liaison between the host and all the sub-
components in the NetTSP resource. It is the manager for all NetTSP
services on the platform.

In addition, the NetTSP resource contains these additional components whose
function is transparent to the host application:

• H.323 Component

Supplies the services required for sending voice over the Internet, e.g., call
management.

• VSR (Voice Stream Resource) Component

Performs the transcoding between PCM audio to and from the PSTN and a
digitally coded data stream to and from the Internet. The VSR contains the
following main features:

• Voice Coders

• Tone Generator Component

• Signal Detector Component

• Echo Canceler Component

• Packet Loss Recovery Module

2. The DM3 IPLink Platform

23

Figure 4 shows the relationship among the IP Telephony components.

Host Application

H.323 Component

Host

Line
Administration

Component

Firmware

Device Driver

Provided by Dialogic Corporation

SCBus

NetTSC
Component

Instance

NetTSP
Cluster

SCBus
Management

VSR
Component

NIC

Figure 4. NetTSP Architecture - DM/IPLink-T1(E1) Board

DM3 IPLink™ User’s Guide for Windows NT

24

Host Application

Host

Line
Administration

Component

Firmware

Device Driver

Provided by Dialogic Corporation

SCBus

NetTSC
Component

Instance

NetTSP
Cluster

SCBus
Management

VSR
ComponentH.323

Component

NIC

Figure 5. NetTSP Architecture - DM/IPLink-T1(E1)_NIC Board

2.6.4. NetTSC Component

The NetTSC component is the primary component of the NetTSP resource. The
IPLink platform has a single NetTSC component and many instances. Each
instance of the NetTSC component represents a single channel of call control.

Applications using the runtime features of the NetTSP resource communicate
only with NetTSC component instances.

Runtime features are features enabled after instance initialization, such as call
connection, statistic gathering, etc.

2. The DM3 IPLink Platform

25

Each NetTSC instance provides complete call control for inbound and/or
outbound calls on its logical channel.

The NetTSC component acts as the liaison between the host and all the
components of the NetTSP resource. The NetTSC component is the manager for
all the TSP services on the platform.

The host application accesses the features of the NetTSP resource by
communicating with an instance of the NetTSC component. Chapter 6. Setting
IPLink Parameters.

2.6.5. NetTSC Component Activities

The NetTSC component performs the following activities:

• Interfaces to the NetTSP resource

• Creates clusters and allocates instances of the VSR component to each
cluster (at initialization)

• Communicates with the H.323 component

• Provides information on Quality of Service (QoS) per call

• Manages Alarm Events

2.7. Line Administration Component

NOTE: The Line Administration Component is not implemented in this version
of the IPLink Development Kit.

The Line Administration component collects statistics and provides information
on board-level activities. The host application can communicate directly with
this component to collect the required information.

2.7.1. Line Administration Component Activities

The Line Administration component performs the following activities:

• Statistic Collection (board level)

DM3 IPLink™ User’s Guide for Windows NT

26

• Number of concurrent calls

• Maximum number of concurrent calls

• Average number of lost packets

• Network Alarms

• Network disconnect

2.8. Internal Components

2.8.1. Voice Stream Resource Component (VSR)

The VSR component performs the transcoding between PCM audio to and from
the PSTN and a digitally coded data stream to and from the Internet. VSR
activities include:

• Encoding/Decoding (Voice Coder)

• Creating RTP packets

• Tone (DTMF) detection

• Tone (DTMF) generation

• Echo cancellation

• Lost packet recovery

The operation of the VSR resource is transparent to the user, except for
optionally setting several parameters. See Chapter 6. Setting IPLink Parameters
for a description of parameters that may be set by the application.

Voice Coder

The voice coder implements the bi-directional translation between a compressed
speech format (on the IP network) and an 8 KHz linear stream of PCM audio
samples (on the SCbus).

NOTE: This section is informational only. It describes components that operate
internally and are not accessible by the application.

2. The DM3 IPLink Platform

27

Key features include:

• Low bandwidth

• High voice quality (3.5 MOS
*
 rating or better)

• Low latency

The IPLink platform supports multiple coders, allowing proprietary coders as
well as new standard coders to be added to the system.

Echo Canceler

The echo canceler removes the echo from the far signal channel.

Key features include:

• “Echo-tail” length of up to 64 ms.

• Programmable length

DTMF Tone Detector/Generator

The IPLink platform provides a DTMF tone detection and suppression
algorithm, and supports out-of-band as well as in-band DTMF handling.

Packet Loss Recovery Module (PLR)

The IP Telephony solution includes a sophisticated packet loss recovery
mechanism, enabling the system to maintain the highest quality of service.

2.8.2. H.323 Component

The H.323 Protocol component provides the call signaling and management
services as defined in the ITU-T recommendation H.323, Visual Telephone

*

 Mean Opinion Score

DM3 IPLink™ User’s Guide for Windows NT

28

Systems and Equipment for Local Area Networks Which Provide a Non-
Guaranteed Quality of Service.

The H.323 component receives the IP media streams from the IP Network
Interface, exchanging the stream contents with resources on the DM3 IPLink
board.

Depending on the hardware configuration, the H.323 component can sit either
on the host or on the DM3 board. In both cases it is transparent to the host
application and communicates via the NetTSC component.

29

3. Host Application

Dialogic’s IPLink platform provides a standards-based platform for developing
Internet telephony applications. It is the user’s responsibility to develop the host
application according to the specific needs the application is addressing. Several
guidelines are provided in this document, although they are not meant to be
specific solutions to specific design problems. Before writing a host application
Dialogic Corporation recommends that you thoroughly read this document, the
IPTGate Demo Guide and run the IPTGate demo. Many suggestions for
application design can be found in the demo.

Topics discussed in this chapter include:

• Host Application Responsibilities
• Host Application Communication with Dialogic Resources

3.1. Host Application Responsibilities

The host application is responsible for all of the connection control, directory
services and session control processing, and all of the interaction between the
NetTSP and the data network traffic as part of the data transfer. The IPLink
platform can be used to build a wide variety of applications, meeting a multitude
of user needs.

Following are some typical responsibilities of the host application.

• Overall system management

• PSTN and NetTSP control applications

• Routing

The host application communicates with the IPLink platform is via a high-level
API, enabling the application writer to concentrate on application specific issues
without having to master the complexities of the IPLink internal design.

DM3 IPLink™ User’s Guide for Windows NT

30

3.2. Host Application Communication with Dialogic
Resources

The host application communicates with the different Dialogic boards via the
Dialogic APIs and other interfaces. Figure 6 presents a sample gateway
configuration:

DNA DM3 Direct Interface

Win32 Native
Synchronization

Host Application

Host

SRL

SCBus

Boards

DM3 IPLink
Card

PSTN Interface
Card

PSTN

R4 APIs Application
Foundation

Code

Figure 6. Typical Gateway

Host application access to DM3 devices on Windows NT is via the DM3 Direct
Interface host library functions. The Direct Interface is used in conjunction with
the Win32 API to produce highly native applications. The Direct Interface
library provides a method for sending and receiving messages, as well as
providing a full array of convenience functions for cluster and component
management. The DM3 Mediastream Message Block (MMB) is the primary data
structure used by an MTNI application to send and receive messages to and from
the DM3 platform. See Using the DM3 Direct Interface for Windows NT and

3. Host Application

31

DM3 Direct Interface Function Reference for Windows NT for more information
about the Direct Interface.

Host application access to the PSTN Interface Card is via familiar R4 APIs.
Refer to the Standard Runtime Library for Windows NT Programmer’s Guide
for information about the standard Dialogic Corporation PSTN Card APIs.

3.2.1. Event Reporting

Retrieving events is a key element in designing a WinNT application. In the
Windows NT Native R4 environment, the application is notified about an event
via the Standard Runtime Library (SRL). In the DM3 environment an
application can use any Win32 native synchronization, such as I/O Completion
Ports, to wait for event notification.

The Native Synchronization Methods (NSM) solution enables the eventing
solution to have one synchronization point in the application for DM3, R4, and
other Win32 devices. The NSM solution uses Windows NT native
synchronization methods, such as I/O Completion Ports, together with SRL
enhancements. Using this approach, DM3 is completely native and R4 devices
report their events to this I/O Completion Port using SRL support for NSM.

 See Using NSM for Event Notification with DM3, R4, and Win32 Devices for a
detailed description of using I/O Completion Ports.

33

4. Programming Model

This chapter describes the programming model used by the NetTSP resource. It
discusses the general philosophy and method of tracking events. It explains call-
states and call-state transitions and how the NetTSC component uses these state-
transitions to manage the call.

Topics discussed include:

• What are call-states?
• What are call-state transitions?
• Enabling detection of call-state changes

4.1. What are Call-States?

The NetTSP resource presents a call-control programming model based on the
concept of call-state.

A call is a point-to-point multimedia communication between two Internet
endpoints. The call begins with the call setup procedure and ends with the call
termination procedure. The call consists of the collection of virtual channels
between the endpoints.

A call-state is a clearly defined stage of a call’s progression, for example,
Initiated, Connected, Disconnected, Idle, etc.

A call is created in one of two ways:

• The host application issues a TSC_MsgMakeCall command to initiate an
outbound call.

• The H.323 stack notifies the NetTSC component instance that an incoming
call is present. This results in a call being created. A call-state transition is
generated from the Null state to the Offered state. The host application is
notified of the new call via a Std_MsgEvtDetected message about this
transition to the Offered state and receives the call identifier for this call.

DM3 IPLink™ User’s Guide for Windows NT

34

Each call moves from state to state as the call connection is established,
connected, and concluded. The particular state a call is in determines what
commands and actions may be performed. Such states are called valid states for
a particular command. If a command is issued when the call is not in a valid
state for that command an error occurs. The following table lists the call-states:

Table 1. Call-States

Call State Description

Accepted The call that was offered has been accepted by the host
application. The host application has accepted
responsibility in answering the call.

Alerting The caller is notified that the call was accepted.

Connected The calling and called parties are connected and the call
is active on the related call channel. Information may be
exchanged. In the case of an outbound call, this state
indicates that the remote party has answered. In the case
of an inbound call, this state indicates that the local
party has answered the call. This is the only state in
which the audio path is established and open.

Disconnected The remote party has disconnected from the call.

Failed The outbound call attempt was unsuccessful. The call
attempt will transition to this state if it is determined to
be unsuccessful due to rejection by the other side.

Idle The local party to the call has disconnected or has been
disconnected.

Initiated The outbound call attempt has been initiated
(TSC_MsgMakeCall).

Null This indicates that the call has been released and all call
information related to the call has been destroyed.

4. Programming Model

35

Call State Description

Offered The inbound call is newly arrived and is being offered to
the host application. Call information is available to the
host application at this time in order for the host
application to determine the appropriate action to take
with regards to the call.

Proceeding Part of the call setup. When the inbound call state
transitions to Offered, the outbound state transitions to
Proceeding.

4.2. What are Call-State Changes?

Each call maintains a current state, transitioning from its current state to a new
state for one of two reasons:

Table 2. State Transitions

Reason Example

The host application requests
a transition.

A call that is in the Offered state (an incoming call)
will transition to the Connected state if the host
application issues a TSC_MsgAnswerCall.

Changes occur on the network
channel associated with the
call via the H.323 connection.

A call that is currently in the Connected state will
transition to the Disconnected state if the remote party
disconnects.

Transition to a new state occurs when a message or event relating to a call is
received by the NetTSC component instance. It may be triggered by either the
host application or by the network on which the call exists. For example, if the
host application sends a TSC_MsgDropCall message, the state machine
transitions from the Connected state to the Idle state. The host is notified via the
Std_MsgEvtDetected message. See Section 5.2. Detecting Events for more
information about events.

DM3 IPLink™ User’s Guide for Windows NT

36

4.3. Enabling Detection of Call-State Changes

Call-state changes are reported to the application using the standard DM3 Run
Time Control (RTC) mechanism.

Call-state changes (events) must be enabled before they can be reported to the
application. The following procedure must be followed for each call-state to be
enabled:

1. Send the following message to an appropriate NetTSC instance (see Section
5.3. Allocating a NetTSP for a description of allocating NetTSP instances)
for each event to be registered:

• Std_MsgDetectEvt

The NetTSC component instance will send a Std_MsgEvtDetected
message each time its call state changes to one of those enabled by the
application.

2. Repeat step 1 for each event to be enabled.

3. Repeat steps 1 and 2 for each additional NetTSC instance.

NOTE: An alternative to sending Std_MsgDetectEvt for each event is to send
Std_MsgDetectxEvts listing all relevant events.

4.4. State Diagrams

The following state diagrams describe the call-states for outbound (to the IP
network) and inbound (from the IP network) calls. Each state is represented by
an ellipse containing the state name and the Std_MsgEvtDetected message sent
to the host upon that state transition. The states are connected with arrows
indicating the valid state-changes. Each state change includes the message used
to cause that state change.

4. Programming Model

37

Null

StdMsgEvtDetected(Null)
Host: MsgMakeCall

State Name

The event name
returned to host

Initiated

StdMsgEvtDetected(Initiated)

Message
causing

state
transition

Valid
State

Transition

Message
Initiator

(Host or H323)

Figure 7. State Diagram Explanation

NOTE: These state diagrams are complex. Simplified versions will be shown in
Chapter 6 for each call operation.

4.4.1. Outbound Internet Calls

The following state diagram describes the call-states and the state transitions
when making an outbound call.

DM3 IPLink™ User’s Guide for Windows NT

38

Host: MsgMakeCall

H323:MsgCallConnected

H323:MsgFailed

H323:MsgDisconnected

Host: MsgDropCall

Host: MsgReleaseCall

Host: MsgDropCall

Host: MsgDropCall

Null

Std_MsgEvtDetected(Null)

Initiated

Std_MsgEvtDetected(Initiated)

Idle

Std_MsgEvtDetected(Idle)

Disconnected

Std_MsgEvtDetected(Disconnected)

Failed

Std_MsgEvtDetected(Failed)

H323:MsgCallConnected

Connected

Std_MsgEvtDetected(Connected)
H323:MsgFailed

Host:MsgDropCall

Alerting

Std_MsgEvtDetected(Alerting)

Proceeding

Std_MsgEvtDetected(Proceeding)

H323:MsgProceeding

H323:MsgAlerting

Host:MsgDropCall
H323:MsgAlerting

H323:MsgCallConnected

Host: MsgDropCall

Figure 8. Outbound Call-State Diagram

4.4.2. Inbound Internet Calls

The following state diagram describes the call-states and the state transitions
when making an inbound call.

4. Programming Model

39

Host: MsgDropCall
H323:MsgDisconnected

Null

Std_MsgEvtDetected(Null)

Offered

Std_MsgEvtDetected(Offered)

Connected

Std_MsgEvtDetected(Connected)

Disconnected

Std_MsgEvtDetected(Disconnected)

Idle

StdMsgEvtDetected(Idle)

Accepted

Std_MsgEvtDetected(Accepted)

Host: MsgAcceptCall

Host: MsgDropCall or H323: MsgDisconnected

Host: MsgRejectCall or H323:MsgDisconnected

Host: MsgAnswerCall

H323:MsgCallOffering

Host: MsgAnswerCall

Host: MsgDropCall

Host: MsgReleaseCall

Figure 9. Inbound Call-State Diagram

41

 5. Using the NetTSP Resource

This chapter explains how the DM3 messages (standard messages, TSC
component messages, and NetTSC component messages) are used to implement
the various features visible to the host application software. Typical call
progressions are presented.

Topics discussed include:

• Messages
• Allocating a NetTSP
• Detecting Events
• Making an Outbound Call
• Receiving an Inbound Call
• Terminating Calls
• Getting Call Statistics
• Other Call Control Operations

5.1. Messages

Communication between the host application and the NetTSC component
instances is via messages. This section briefly describes all the messages used by
the NetTSC component.

5.1.1. Standard Messages Used by the NetTSC Component

The following DM3 Standard Messages are used by the NetTSC component.
Refer to DM3 Standard Component Interface Messages for a complete
description of all the DM3 Standard Messages.

DM3 IPLink™ User’s Guide for Windows NT

42

Table 3. DM3 Standard Messages Used by the NetTSC Component

Command Message Description Reply Message
(indicates success)

Std_MsgCancelAllEvts Cancels all RTC
requests

Std_MsgCancelAllEvtsCmplt

Std_MsgCancelEvt Cancel RTC request Std_MsgCancelEvtCmplt
MsgCancelEvtCmplt
MsgCancelEvtCmplt

Std_MsgCancelxEvts Cancels multiple RTC
requests

Std_MsgCancelxEvtsCmplt

Std_MsgComtest Ping message Std_MsgComtestCmplt

Std_MsgDetectEvt Detect RTC event Std_MsgDetectEvtCmplt

Std_MsgDetectxEvts Detect multiple RTC
events

Std_MsgDetectxEvtsCmplt

Std_MsgError Error detected Not applicable

Std_MsgEvtDetected Event detected Not applicable

Std_MsgExit Shuts down an
instance in a
proprietary way.

Std_MsgExitCmplt

Std_MsgGetParm Read parameter value Std_MsgGetParmCmplt

Std_MsgInit Initialize resource Std_MsgInitCmplt

5. Using the NetTSP Resource

43

Command Message Description Reply Message
(indicates success)

Std_MsgSetAllParmsDef Sets parameter values
to default values

Std_MsgSetAllParmsDefCmplt

Std_MsgSetParm Set parameter Std_MsgSetParmCmplt

Std_MsgSetParmDef Changes the value of a
parameter

Std_MsgSetParmDefCmplt

5.1.2. TSC Messages Used by the NetTSC Component

The following TSC Messages are used by the NetTSC component. Refer to the
IPT Reference Guide for a complete description of all the TSC Messages.

Table 4. TSC Component Messages Used by the NetTSC
Component

Command Message Description Reply Message
(indicates success)

TSC_MsgAcceptCall Accepts the
incoming call

Std_MsgEvtDetected(Accepted)

TSC_MsgAnswerCall Answers the
incoming call

Std_MsgEvtDetected(Connected)

TSC_MsgDropCall Drops or
disconnects a call

Std_MsgEvtDetected(Idle)

DM3 IPLink™ User’s Guide for Windows NT

44

Command Message Description Reply Message
(indicates success)

TSC_MsgGetCallInfo Requests stored
information related
to a call

TSC_MsgGetCallInfoCmplt

TSC_MsgGetCallState Requests the current
state of a call

TSC_MsgGetCallStateCmplt

TSC_MsgMakeCall Initiates a call to a
specified destination
address

DestAddr is the IP
address, rather than
the phone number.

TSC_MsgMakeCallCmplt

TSC_MsgReleaseCall Releases a call
identifier

Std_MsgEvtDetected(Null)

TSC_MsgRejectCall Rejects an incoming
call

Std_MsgEvtDetected(Idle)

5.1.3. NetTSC Component Messages

The following messages are specific to the NetTSC component.

5. Using the NetTSP Resource

45

Table 5. NetTSC Component Messages

Command Message Description Reply Message
(indicates success)

NetTSC_MsgSendUserInputIndication Puts DTMF input
on the H.245
channel

NA

NetTSC_MsgSendNonStandardCmd Sends non-
standard data on
the H.245
channel, between
two Dialogic
gateways

NA

5.2. Detecting Events

This section describes detecting events in detail.

5.2.1. About Events

An event is an asynchronous message sent by a resource component to inform
the host application of a change in state or other information.

DM3 IPLink™ User’s Guide for Windows NT

46

5.2.2. Event Messages

The components and component instances of the NetTSC component use two
standard messages to communicate information about events:

Standard Message Description

Std_MsgDetectEvt Performs two functions:

• enables a component or component instance to
detect the event specified by the message

• registers the host application to receive
notification whenever the specified event occurs.

Std_MsgEventDetected Alerts the host application registered for
notification about this particular event.

The Std_MsgEventDetected message is the only message that conveys event
information. To accommodate a variety of events, the Std_MsgEventDetected
message has a variable body; the type of event that has occurred determines the
type and number of fields inside the message.

Each DM3 component has its own set of valid event types. NetTSC component
event types are discussed in Section 5.2.4. Events Specific to the NetTSC
Component.

5.2.3. The Event-Reporting Process

In order for event reporting to occur, all these steps must be performed in the
specified order:

5. Using the NetTSP Resource

47

1. The host application interested in a particular event must register for
notification with the component or component instance that will encounter
the event. Send a Std_MsgDetectEvt message to the appropriate NetTSC
component instance providing: the event type, e.g.,
TSC_EvtCallState_Offered; an appropriate Event Label (generated by the
application); and the address to send the event to (i.e., the application’s
address) as the body of the message.

2. The specified event occurs.

3. The component instance that encountered the event sends a
Std_MsgEvtDetected event message to the host application. The type of
event determines the body and fields of this message

5.2.4. Events Specific to the NetTSC Component

Table 6 shows the events specific to the NetTSC component. Depending on the
event that has occurred, the body of the Std_MsgEvtDetected message will
contain specific fields related to that event. The shaded rows indicate that the
event is not supported in the current revision of the IPLink development kit.

Table 6. NetTSC Component Event Types

Event Description

TSC_EvtCallInfo Delivers call-related information
to the application as the
information becomes available.

TSC_EvtCallState Indicates a change in call state.

NetTSC_EvtH245Data_NonStdCmd Notifies the application that non-
standard data has been received
on the H.245 channel.

DM3 IPLink™ User’s Guide for Windows NT

48

Event Description

NetTSC_EvtH245Data_UsrInputIndication Notifies the application that the
User-Input-Indication data has
been received on the H.245
channel.

NetTSC_EvtThresholdAlarm Notifies that an alarm occurs.

NetTSC_EvtSystemFailed H.323 failure, e.g., NIC
disconnect

5.3. Allocating a NetTSP

Before a call can be opened, a cluster must be allocated. This identifies, for the
host application, which cluster is to manage the call.

5.3.1. Procedure: Allocating a Cluster

The host application allocates a cluster by issuing a mntClusterAllocate message
followed by an mntClusterCompbyAttribute message.

The steps involved are as follows:

Table 7. Procedure: Allocating a Cluster

Step Operation Message Description

1 Host
allocates a
NetTSP
cluster

mntClusterAllocate

(sent from application to Direct
Interface)

Selects an H.323
cluster

5. Using the NetTSP Resource

49

Step Operation Message Description

2 Host
identifies the
NetTSC
component

mntClusterCompbyAttribute

(sent from application to Direct
Interface)

Identifies the NetTSC
component within the
cluster.

5.4. Assigning Timeslots

In order for data to be transmitted to and received from the SCbus, timeslots
must be assigned to the cluster’s components. A transmit timeslot is
automatically assigned to the NetTSC component during the download
procedure. The receive timeslot must be assigned by the application. The
procedure for assigning a receive timeslot to the NetTSC component is described
here.

5.4.1. Procedure: Assigning a Receive Timeslot to the NetTSC
Component

The host application assigns a receive timeslot by issuing a mntClusterTSAssign
message followed by a mntClusterActivate message.

The steps involved are as follows:

DM3 IPLink™ User’s Guide for Windows NT

50

Table 8. Procedure: Assigning a Timeslot

Step Operation Message Description

1 Host assigns a
receive timeslot to
a NetTSC instance

xx_mntClusterTSAssign

(sent from application to
Direct Interface)

Assigns a receive
timeslot to a NetTSC
component instance.

2 Host activates the
connection

mntClusterActivate

(sent from application to
Direct Interface)

Activates the IN-port
in the NetTSC
component instance.
This allows TDM
data to flow from the
SCbus into the
NetTSC component
instance.

5.4.2. Querying About the SCbus Transmit Timeslot

Components can receive data only when they are aware of the transmitting
component’s Tx timeslot. Each side must query the other to determine the
transmit timeslot.

Listening to the PSTN Card

The NetTSC component must query the PSTN card to determine the transmit
slot. The procedure is as follows:

5. Using the NetTSP Resource

51

Table 9. Procedure: Querying the PSTN

Step Operation Message Description

1 Get the SCbus
transmit timeslot
assigned to the
PSTN card

xx_getXmitSlo (where
xx indicates the type of
PSTN card)

The legacy card Tx
slot is identified

2 Assign the timeslot
to the NetTSP
cluster’s Rx port

mntClusterTSAssign Assigns a receive
timeslot to the
NetTSC component
instance.

3 Activate the
connection

mntClusterActivate Activates the IN-port
in the NetTSP
cluster. This allows
TDM data to flow
from the SCbus into
the NetTSP cluster.

Listening to the DM3 Card

The legacy card must query the NetTSP cluster to determine the Transmit slot.
The procedure is as follows:

DM3 IPLink™ User’s Guide for Windows NT

52

Table 10. Procedure: Querying the DM3

Step Operation Message Description

1 Get the SCbus
transmit timeslot
assigned to the
NetTSP cluster

mntClusterSlotInfo The NetTSP cluster
Tx slot is identified

2 Assign the timeslot
to the legacy card
Rx port

xx_listen (where xx
indicates the type of
PSTN card)

Assigns a receive
timeslot to the legacy
card.

5.5. Making an Outbound Call

This section describes a typical procedure for making an outbound call to the IP
Network. A simplified call session model is presented here, illustrating the call-
state transitions: Null → Initiated → Connected → Idle → Null. Other states
will be added in later sections.

NOTE: This section, and the sections that follow, present only one possible way
of implementing these call control scenarios. It is the responsibility of
the application developer to select the implementation most suitable for
the particular application needs.

The state diagram below illustrates the state transitions for making an outbound
call. See Section 5.7. Terminating Calls for an explanation of the call
termination options.

5. Using the NetTSP Resource

53

Host: MsgMakeCall

H323:MsgCallConnected

H323:MsgFailed

H323:MsgDisconnected

Host: MsgDropCall

Host: MsgReleaseCall

Host: MsgDropCall

Host: MsgDropCall

Null

Std_MsgEvtDetected(Null)

Initiated

Std_MsgEvtDetected(Initiated)

Idle

Std_MsgEvtDetected(Idle)

Disconnected

Std_MsgEvtDetected(Disconnected)

Failed

Std_MsgEvtDetected(Failed)

H323:MsgCallConnected

Connected

Std_MsgEvtDetected(Connected)
H323:MsgFailed

Host:MsgDropCall

Alerting

Std_MsgEvtDetected(Alerting)

Proceeding

Std_MsgEvtDetected(Proceeding)

H323:MsgProceeding

H323:MsgAlerting

Host:MsgDropCall
H323:MsgAlerting

H323:MsgCallConnected

Host: MsgDropCall

Figure 10. Outbound Call - Simplified State Machine

5.5.1. Procedure: Making an Outbound Call

The host application places an outgoing call to the IP Network by issuing a
TSC_MsgMakeCall message. The Call State RTC mechanism is used to monitor
the outcome of the call.

The steps involved are as follows:

DM3 IPLink™ User’s Guide for Windows NT

54

Table 11. Procedure: Outbound Calls

Step Operation Message Description State

1 Host
registers
events

Std_MsgDetectxEvts
(event_list)

(sent from
application to
NetTSC component
instance)

All relevant events are
registered with the kernel.

Null

2 Host
initiates
call

TSC_MsgMakeCall

(sent from
application to
NetTSC component
instance)

The NetTSC component
instance returns
TSC_MsgMakeCallCmplt
with the call ID. Logical
channels are opened and
data streams are allocated.

Note that a Std_MsgError
message could be received
instead, indicating that an
error occurred trying to
initiate the outgoing call.

Initiated

3 Host is
notified of
connection

Std_MsgEvtDetected
(Connected)

(sent from NetTSC
component instance
to application)

Call-state transitions to
Connected.

Connected

5. Using the NetTSP Resource

55

NOTE: The host application does not have to register all events. For example,
in this call session the application might not want to be notified of a
transition to the Initiated state. The application should then register
only the Null, Connected, Disconnected, and Idle states. The state-
transition to Initiated will occur without notifying the application.
When the call-state transitions to Connected, a
Std_MsgEvtDetected(Connected) message is sent to the host
application.

5.6. Receiving an Inbound Call

This section describes the procedure for receiving an inbound call from the IP
Network. A simplified call session model is presented first, illustrating the call-
state transitions: Null → Offered → Connected → Idle → Null.

When the host application receives the event message
Std_MsgEvtDetected(Offered), indicating that an incoming call is being offered,
it has a choice of operations on the call:

• answering the call by issuing a TSC_MsgAnswerCall message

This command instructs the NetTSC component instance to open the audio
streams and allow conversation to begin. The call-state transitions to
Connected.

• accepting a call by issuing a TSC_MsgAcceptCall message

This command instructs the NetTSC component instance to respond to the
calling party while waiting to open the audio streams. The call-state
transitions to an interim state − Accepted . This keeps the calling party from
“timing-out” while the gateway performs some other action. A
TSC_MsgAnswerCall message must be sent to open the audio channels and
enable conversation.

DM3 IPLink™ User’s Guide for Windows NT

56

• rejecting the call by issuing a TSC_MsgRejectCall message

This command instructs the NetTSC component instance to reject the call.
The call-state transitions to Idle. Call information is still available (e.g.,
calling party) until the TSC_MsgReleaseCall message is sent. See Section
5.9.1. Rejecting an Inbound Call for a description of rejecting a call.

5.6.1. Procedure: Answering an Inbound Call

The state diagram below illustrates the state transitions for answering an
inbound call. See Section 5.7. Terminating Calls for an explanation of the call
termination options.

5. Using the NetTSP Resource

57

Host: MsgDropCall
H323:MsgDisconnected

Null

Std_MsgEvtDetected(Null)

Offered

Std_MsgEvtDetected(Offered)

Connected

Std_MsgEvtDetected(Connected)

Disconnected

Std_MsgEvtDetected(Disconnected)

Idle

StdMsgEvtDetected(Idle)

Accepted

Std_MsgEvtDetected(Accepted)

Host: MsgAcceptCall

Host: MsgDropCall or H323: MsgDisconnected

Host: MsgRejectCall or H323:MsgDisconnected

Host: MsgAnswerCall

H323:MsgCallOffering

Host: MsgAnswerCall

Host: MsgDropCall

Host: MsgReleaseCall

Figure 11. Answer Inbound Call - Simplified State Diagram

The host application receives incoming call notification via the Standard DM3
Event mechanism.

The steps involved are as follows:

DM3 IPLink™ User’s Guide for Windows NT

58

Table 12. Procedure: Answering Inbound Calls

Step Operation Message Description State

1 Host
registers
events

Std_MsgDetectxEvts
(event_list)

(sent from application
to NetTSC component
instance)

All relevant events
are registered with
the kernel.

Null

2 Host
notified of
incoming
call

Std_MsgEvtDetected
(Offered, CallID)

(sent from NetTSC
component to
application)

Call-state changed
from Idle to Offered

Offered

3 Host
answers
call

TSC_MsgAnswerCall
(CallID, coder)

(sent from application
to NetTSC component
instance)

Logical channels
are opened and data
streams are
allocated.

Connected

4 Host is
notified of
connection

Std_MsgEvtDetected
(Connected)

(sent from NetTSC
component to
application)

Call-state
transitions to
Connected

Connected

5. Using the NetTSP Resource

59

Message Summary

The following figure illustrates the messages and call-states on either side of an
Internet gateway for the above model.

Host
Application

NetTSC
Component

Instance

Call-State

Null

Initiated

Connected

Call-State

Offered

Null

NetTSC
Component

Instance
Host

Application

Connected

Outbound Side Inbound Side

Std_MsgDetectEvt

TSC_MsgMakeCall

TSC_MsgMakeCallCmplt
(CID)

Std_MsgEvtDetected
(Initiated)

Std_MsgEvtDetected
(Connected)

Std_MsgDetectEvt

Std_MsgEvtDetected
(Offered,CID)

TSC_MsgAnswerCall
(CID, coder)

Std_MsgEvtDetected
(Connected)

Causes

Causes

TSC_MsgGetCallInfo(CID)

TSC_MsgGetCallInfoCmplt
(Called Party, Calling Party)

Figure 12. Call Establishment Messages - Simple Model

5.6.2. Procedure: Accepting a Call

A gateway may accept a call without opening the audio path. This allows the
gateway to respond to the call offering, attempt to contact the destination
address, and only after the destination answers the call, to open the audio path.

DM3 IPLink™ User’s Guide for Windows NT

60

This feature allows the application developer to begin the billing procedure only
when a call is actually connected.

The state diagram below illustrates the state transitions for the above inbound
call. See Section 5.7. Terminating Calls for an explanation of the call
termination options.

Host: MsgDropCall
H323:MsgDisconnected

Null

Std_MsgEvtDetected(Null)

Offered

Std_MsgEvtDetected(Offered)

Connected

Std_MsgEvtDetected(Connected)

Disconnected

Std_MsgEvtDetected(Disconnected)

Idle

StdMsgEvtDetected(Idle)

Accepted

Std_MsgEvtDetected(Accepted)

Host: MsgAcceptCall

Host: MsgDropCall or H323: MsgDisconnected

Host: MsgRejectCall or H323:MsgDisconnected

Host: MsgAnswerCall

H323:MsgCallOffering

Host: MsgAnswerCall

Host: MsgDropCall

Host: MsgReleaseCall

Figure 13. Accept Inbound Call - Simplified State Diagram

5. Using the NetTSP Resource

61

The host application receives incoming call notification via the Standard DM3
Event mechanism.

The steps involved are as follows:

Table 13. Procedure: Accepting Inbound Calls

Step Operation Message Description State

1 Host
registers
events

Std_MsgDetectxEvts
(event_list)

(sent from application
to NetTSC component
instance)

All relevant events are
registered with the kernel.

Null

2 Host
notified of
incoming
call

Std_MsgEvtDetected
(Offered, CallID)

(sent from NetTSC
component to
application)

Call-state changed from
Idle to Offered

Offered

3 Host
accepts call

TSC_MsgAcceptCall
(CallID)

(sent from application
to NetTSC component
instance)

The inbound call is
acknowledged, but not yet
answered.

This interim state allows
the gateway to perform
other actions before
connecting the call.

Accepted

DM3 IPLink™ User’s Guide for Windows NT

62

Step Operation Message Description State

4 Host
answers
call

TSC_MsgAnswerCall
(CallID, coder)

(sent from application
to NetTSC component
instance)

Logical channels are
opened and data streams
are allocated.

NOTE: The audio path is
opened only when
TSC_MsgAnswer
Call is sent.

Connected

5 Host is
notified of
connection

Std_MsgEvtDetected
(Connected)

(sent from NetTSC
component to
application)

Call-state transitions to
Connected

Connected

Message Summary

The following figure illustrates the messages and call-states on either side of an
Internet gateway for the above model.

5. Using the NetTSP Resource

63

Host
Application

NetTSC
Component

Instance

Call-State

Null

Initiated

Connected

Call-State

Offered

Null

NetTSC
Component

Instance
Host

Application

Connected

Outbound Side Inbound Side

Std_MsgDetectEvt

TSC_MsgMakeCall

TSC_MsgMakeCallCmplt
(CID)

Std_MsgEvtDetected
(Initiated)

Std_MsgEvtDetected
(Accepted)

Std_MsgDetectEvt

Std_MsgEvtDetected
(Offered,CID)

TSC_MsgAcceptCall(CID)

Causes

Std_MsgEvtDetected
(Connected)

TSC_MsgGetCallInfo(CID)

Std_MsgEvtDetected
(Connected)

TSC_MsgAnswerCall
(CID, coder)

Accepted

Causes

Causes

TSC_MsgGetCallInfoCmplt
(Called Party, Calling Party)

Figure 14. Call Establishment Messages - Accept Call

5.7. Terminating Calls

Once a call has been established (call-state = Connected), it can be terminated by
either the host application (using call control operations) or the network (using
H.323 Protocol termination).

The state diagram below illustrates the state transitions for terminating a call:

DM3 IPLink™ User’s Guide for Windows NT

64

Null

StdMsgEvtDetected(Null)

Connected

StdMsgEvtDetected(Connected)

Disconnected

StdMsgEvtDetected(Disconnected)

Idle

StdMsgEvtDetected(Idle)Host: MsgDropCall

H323: MsgDisconnected
Host: MsgDropCall

Host: MsgReleaseCall

Figure 15. Call Termination - Simplified State Diagram

5.7.1. Procedure: Terminating a Call by the Host

The host application can terminate a call using the command
TSC_MsgDropCall. This will result in two actions:

• a call state transition to Idle

• Std_MsgEvtDetected(Idle) is sent to the host application, if it is registered
for this type of event notification.

NOTE: Call statistics are stored until the call state transitions to Null. See
Section 5.8. Getting Call Statistics for the procedure for accessing the
call statistics.

5. Using the NetTSP Resource

65

The steps involved are as follows:

Table 14. Terminating a Call by the Host

Step Operation Message Description State

1 Host
application
disconnects

TSC_MsgDropCall

(sent from application
to NetTSC component
instance)

Tells the NetTSC instance
to begin the sequence to
disconnect the call.

The NetTSC instance
returns
Std_MsgEvtDetected (Idle)
to the application upon
successful completion of the
disconnect.

Idle

2 Host clears
the call

TSC_MsgReleaseCall

(sent from application
to NetTSC component
instance)

CallID is cleared and the
call state transitions to Idle.

The NetTSC instance
returns
Std_MsgEvtDetected (Null)

Null

5.7.2. Procedure: Call Terminated by the IP Network

The network can terminate the call while the call is in the Connected state. This
will result in two actions:

• a call state transition to Disconnected

• Std_MsgEvtDetected(Disconnected) is issued to the application to report the
transition, if the application is registered for this type of event notification.

DM3 IPLink™ User’s Guide for Windows NT

66

The steps involved are as follows:

Table 15. Call Terminated by the IP Network

Step Operation Message Description State

1 Network
disconnects

TSC_MsgDisconnected

(sent from H.323
component to NetTSC
component instance)

Tells the NetTSC
instance that the call
has been
disconnected.

The NetTSC instance
returns
Std_MsgEvtDetected
(Disconnected) to the
application.

Disconnected

2 Host
application
disconnects

TSC_MsgDropCall

(sent from application to
NetTSC component
instance)

Tells the NetTSC
instance to begin the
sequence to
disconnect the call.

The NetTSC instance
returns
Std_MsgEvtDetected
(Idle) to the
application upon
successful completion
of the disconnect.

Idle

5. Using the NetTSP Resource

67

Step Operation Message Description State

3 Host clears
the call

TSC_MsgReleaseCall

(sent from application to
NetTSC component
instance)

CallID is cleared and
the call state
transitions to Idle.

The NetTSC instance
returns
Std_MsgEvtDetected
(Null)

Null

Message Summary

The following figure illustrates the messages and call-states on either side of an
Internet gateway for the above model.

DM3 IPLink™ User’s Guide for Windows NT

68

Host
Application

NetTSC
Component

Instance

Std_MsgEvtDetected(Idle)

Std_MsgEvtDetected(Null)

Call-State

TSC_MsgGetCallInfo

Call-State

Idle

Disconnected

NetTSC
Component

Instance
Host

Application

Std_MsgEvtDetected(Disconnected)

Std_MsgEvtDetected(Idle)

Std_MsgEvtDetected(Null)Null

Outbound Side Inbound Side

TSC_MsgGetCallInfoCmplt

Connected

TSC_MsgDropCall(CID)

Idle

TSC_MsgReleaseCall

Null

TSC_MsgDropCall

TSC_MsgGetCallInfo

TSC_MsgGetCallInfoCmplt

TSC_MsgReleaseCall

Causes

Figure 16. Call Termination Messages

5.8. Getting Call Statistics

The host application can get call statistics from the NetTSC component instance
by issuing either a TSC_MsgGetCallInfo or a TSC_MsgGetCallInfoExt
message. Information can be gathered at any point during a call, until the call
state transitions to Null.

5. Using the NetTSP Resource

69

5.8.1. Procedure: Getting Call Statistics

The following procedure illustrates how to get call statistics at the end of a call.

Table 16. Getting Call Statistics

Step Operation Message Description State

1 Host
application
disconnects

TSC_MsgDropCall

(sent from application
to NetTSC component
instance)

Tells the NetTSC instance to
begin the sequence to
disconnect the call.

The NetTSC instance returns
Std_MsgEvtDetected (Idle)
to the application upon
successful completion of the
disconnect.

Idle

2 Host
requests call
information

TSC_MsgGetCallInfo

(sent from application
to NetTSC component
instance)

The host application request
call information from the
NetTSC instance.

The NetTSC instance returns
TSC_MsgGetCallInfoCmplt
with the requested
information.

NA

3 Host clears
the call

TSC_MsgReleaseCall

(sent from application
to NetTSC component
instance)

CallID is cleared and the call
state transitions to Idlez.

The NetTSC instance returns
Std_MsgEvtDetected (Null)

Null

DM3 IPLink™ User’s Guide for Windows NT

70

5.9. Other Call Control Operations

5.9.1. Rejecting an Inbound Call

This section describes the procedure for rejecting a call.

The state diagram below illustrates the state transitions for rejecting a call:

Host: MsgDropCall
H323:MsgDisconnected

Null

Std_MsgEvtDetected(Null)

Offered

Std_MsgEvtDetected(Offered)

Connected

Std_MsgEvtDetected(Connected)

Disconnected

Std_MsgEvtDetected(Disconnected)

Idle

StdMsgEvtDetected(Idle)

Accepted

Std_MsgEvtDetected(Accepted)

Host: MsgAcceptCall

Host: MsgDropCall or H323: MsgDisconnected

Host: MsgRejectCall or H323:MsgDisconnected

Host: MsgAnswerCall

H323:MsgCallOffering

Host: MsgAnswerCall

Host: MsgDropCall

Host: MsgReleaseCall

Figure 17. Rejecting an Inbound Call - Simplified State Diagram

5. Using the NetTSP Resource

71

The following procedure illustrates how to reject an inbound call:

Table 17. Rejecting an Inbound Call

Step Operation Message Description State

1 Host
notified of
incoming
call

Std_MsgEvtDetected
(Offered, CallID)

(sent from NetTSC
component to
application)

Call-state changed
from Idle to Offered

Offered

2 Host rejects
call

TSC_MsgRejectCall

(sent from application
to NetTSC component
instance)

The inbound call is
rejected.

Idle

3 Host
releases
call

TSC_MsgReleaseCall

(sent from application
to NetTSC component
instance)

Call ID is cleared
and the call state
transitions to Idle.

The NetTSC instance
returns
Std_MsgEvtDetected
(Null)

Null

5.9.2. Failed Outbound Call

This section describes what happens when an outbound call fails.

The state diagram below illustrates the state transitions when a call is rejected by
the IP Network:

DM3 IPLink™ User’s Guide for Windows NT

72

Host: MsgMakeCall

H323:MsgCallConnected

H323:MsgFailed

H323:MsgDisconnected

Host: MsgDropCall

Host: MsgReleaseCall

Host: MsgDropCall

Host: MsgDropCall

Null

Std_MsgEvtDetected(Null)

Initiated

Std_MsgEvtDetected(Initiated)

Idle

Std_MsgEvtDetected(Idle)

Disconnected

Std_MsgEvtDetected(Disconnected)

Failed

Std_MsgEvtDetected(Failed)

H323:MsgCallConnected

Connected

Std_MsgEvtDetected(Connected)
H323:MsgFailed

Host:MsgDropCall

Alerting

Std_MsgEvtDetected(Alerting)

Proceeding

Std_MsgEvtDetected(Proceeding)

H323:MsgProceeding

H323:MsgAlerting

Host:MsgDropCall
H323:MsgAlerting

H323:MsgCallConnected

Host: MsgDropCall

Figure 18. Failed Outbound Call - Simplified State Diagram

The following procedure illustrates how an outbound call fails, i.e., is rejected by
the IP network:

5. Using the NetTSP Resource

73

Table 18. Failed Outbound Call

Step Operation Message Description State

1 Host
registers
events

Std_MsgDetectxEvts
(event_list)

(sent from application
to NetTSC component
instance)

All relevant events are
registered with the kernel.

Null

2 Host
initiates
call

TSC_MsgMakeCall

(sent from application
to NetTSC component
instance)

The NetTSC component
instance returns
TSC_MsgMakeCallCmplt
with the call ID. Logical
channels are opened and
data streams are allocated.

Note that a Std_MsgError
message could be received
instead, indicating that an
error occurred trying to
initiate the outgoing call.

Initiated

DM3 IPLink™ User’s Guide for Windows NT

74

Step Operation Message Description State

3 Call is
rejected by
the IP
network

MsgFailed

(sent from the H.323
component to the
NetTSC component
instance)

The H.323 component
receives a rejection from
the IP Network and
informs the NetTSC
component instance.

The NetTSC component
instance returns
Std_MsgEvtDetected
(Failed) to the host
application.

Failed

4 Host
application
disconnects

TSC_MsgDropCall

(sent from the host
application to the
NetTSC component
instance)

Tells the NetTSC instance
to begin the sequence to
disconnect the call.

The NetTSC instance
returns
Std_MsgEvtDetected
(Idle) to the application
upon successful
completion of the
disconnect.

Idle

5 Host
releases
call

TSC_MsgReleaseCall

(sent from application
to NetTSC component
instance)

Call ID is cleared and the
call state transitions to
Idle.

The NetTSC instance
returns
Std_MsgEvtDetected
(Null)

Null

5. Using the NetTSP Resource

75

77

6. Setting IPLink Parameters

Various parameters may be set to configure the IPLink platform for an
application’s particular needs. This chapter discusses the content of each
parameter and includes examples of how they are set in the parameter
configuration files supplied by Dialogic Corporation.

Topics discussed include:

• SP parameters
• H.323 parameters
• Miscellaneous parameters
• Setting number of instances
• H.323 Stack configuration

6.1. FCD File

The Feature Configuration Description (FCD) file defines certain components
that need to be configured with a unique set of parameters. The parameters are
defined in the DM3 messages and sent to the components.

A default FCD file, ipt.fcd, is supplied with the IPLink platform software. The
following sections describe the IPLink parameters and how to set them. There
are three types of IPLink parameters set in the FCD file:

• SP parameters

• H.323 parameters

• Miscellaneous parameters

The relevant sections of the ipt.pcd file can be found in Appendix C.

DM3 IPLink™ User’s Guide for Windows NT

78

6.1.1. SP Parameters

Echo Canceler

Two parameters can be set for the echo canceler:

• Enable/Disable

Parameter Name Parameter Number

prmECActive 0x1b12

Possible values are:

0 Enable (Default)

1 Disable

• Number of taps (1 tap = 1/8 msec.)

The echo canceler can be set to sample up to 256 taps (32 msecs).

NOTE: While the echo canceler is designed to support an “echo-tail” of up
to 64 msecs, due to testing limitations this parameter has been
limited to a maximum value of 32 msecs.

Parameter Name Parameter Number

prmECOrder 0x1b13

 Possible values are:

Any integer between: 32 − 256 (Default = 128)

6. Setting IPLink Parameters

79

Power Level

The power level parameter attenuates the power level of the encoded frames. It is
computed by multiplying the encoded frame by the value of the PwrLvlCtrl
parameter:

PowerLevel = EncodedFrame * PwrLvlCtrl parameter

Each sample of decoded PCM data is multiplied by this factor before being
transmitted to the bus.

The default is 0.5.

Parameter Name Parameter Number

prmPwrLvlCtrl 0x1b14

Possible values are:

Any number between: 0 − 0.999999 (0x0 − 0x7fffff)

Default value: 0.5 (0x400000)

NOTE: The parameter must assume a hexadecimal value corresponding to
the DSP’s 24 bit fractional representation.

To compute the value:

1. Choose the desired attenuation factor in the range 0.0 − 0.999999.

2. Multiply that value by 223.

DM3 IPLink™ User’s Guide for Windows NT

80

3. Convert that value to its hexadecimal representation and set as the
VolumeControl parameter.

Automatic Gain Control (AGC)

The AGC maintains a uniform signal power level as the data is retreived from
the bus.

Parameter Name Parameter Number

prmAGCActive 0x1b1c

Possible values are:

0 Enable (Default)

1 Disable

High Pass Filter (HPF)

The HPF removes DC and very low frequency corruption of the data.

Parameter Name Parameter Number

prmHPFActive 0x1b1d

Possible values are:

0 Enable (Default)

6. Setting IPLink Parameters

81

1 Disable

6.1.2. H.323 Parameters

Dialogic Enable

If set, enables Dialogic specific features. This parameter must be set to use the
TSC_MsgNonStandardCmd message

Parameter Name Parameter Number

PrmDialogicEnable 0x1e19

DM3 IPLink™ User’s Guide for Windows NT

82

Possible values are:

0 Standard Gateway(Default)

1 Dialogic Gateway

Debug Print Levels

Sets the debug print level for the:

• Stack module (PrmDebugLevelStack)
• Message module (PrmDebugLevelMsg)
• Stream module (PrmDebugLevelStream)
• State Machine module (PrmDebugLevelStates)
• Timer module (PrmDebugLevelTimer)
• Utilities module (PrmDebugLevelUtil)
• MNTI module (PrmDebugLevelMNTI)
• RV module (PrmDebugLevelRVSTACK)

Parameter Name Parameter Number Default

PrmDebugLevelStack 0x1e0e 2

PrmDebugLevelMsg 0x1e0f 3

PrmDebugLevelStream 0x1e10 0

PrmDebugLevelStates 0x1e11 3

PrmDebugLevelTimer 0x1e12 0

PrmDebugLevelUtil 0x1e13 3

6. Setting IPLink Parameters

83

Parameter Name Parameter Number Default

PrmDebugLevelMNTI 0x1e14 0

PrmDebugLevelRVSTACK 0x1e1e 0

Possible values are:

0 no printouts

1 fatal errors only

2 adds non-fatal error printouts

3 adds warning printouts

4 adds trace printouts

6.1.3. Miscellaneous Parameters

Compute Call Duration

This parameter specifies the method used to compute the call duration:

• When the NetTSC transitions to Connected state

• When the NetTSC transitions to Initiated state

Parameter Name Parameter Number

PrmCallDurationComput 0x1e1a

DM3 IPLink™ User’s Guide for Windows NT

84

Possible values are:

0 (default) Compute call duration from the
Connected state

1 Compute call duration from the
Initiated state

Set Number of Read Stream Buffers

This parameter sets the number of packets buffered between the VSR component
and the H.323 component. If there is excessive load on the host, or many
interruptions on the IP network, you may need to set this parameter to a higher
value. Otherwise, Dialogic recommends leaving it at its default value.

NOTE: This parameter is used only with DM/IPLink-T1 or DM/IPLink-E1
boards.

Parameter Name Parameter Number

PrmNumOfReadStreamBuf 0x1e15

6. Setting IPLink Parameters

85

Possible values are:

Any integer between: 1 - 10 (Default = 1)

Set Number of Write Stream Buffers

This parameter sets the number of packets buffered between the H.323
component and the VSR component. If there is excessive load on the host, or
many interruptions on the IP network, you may need to set this parameter to a
higher value. Otherwise, Dialogic recommends leaving it at its default value.

Parameter Name Parameter Number

PrmNumOfWriteStreamBuf 0x1e16

DM3 IPLink™ User’s Guide for Windows NT

86

Possible values are:

Any integer between: 1 - 40 (Default = 1)

Setting the Number of Write DTMF Buffers

This parameter sets the number of out-of-band DTMFpackets buffered between
the VSR component and the H.323 component.

Parameter Name Parameter Number

PrmNumOfWriteDTMFBuf 0x1e22

6. Setting IPLink Parameters

87

Possible values are:

Any integer between: 1 - 40 (Default = 10)

6.2. PCD File

The Product Configuration Description (PCD) file describes the configurable
parameters for one or more Processor Load Modules (PLMs) that are defined for
a single platform or board. You can change the number of instances, depending
on your IP telephony application configuration.

CAUTION

Do not change any settings in the PCD file, except for those explained
here. The firmware will not function properly if other changes are

made.

Use the following procedure to change the PCD file:

1. Locate the [CP] section

2. Change the NumInstances field for the following sections:

• [COMP VSRP]
• [COMP H323I]
• [COMP NetTSC]
• [COMP HOST]
• [SP ONYX <1−6>] (change to <1−n>, where n = number of instances)

DM3 IPLink™ User’s Guide for Windows NT

88

For example, locate the [COMP VSRP] section. Change the NumInstances field
from 6 channels to 4 channels.

[COMP VSRP]
 {
 Attribute : Std_ComponentType:0x1a

 NumInstances : 6
 StartInstanceNum : 1

 ConfigOption : YES
 InitOption : YES

 DependentComp : CP TSC
 }

6.3. Config.val

You can configure the H.323 Stack Configuration file (config.val) to:

• Describe coder capabilities

• Enable a gatekeeper

These capabilities are broadcast during the capability exchange at call setup.

The entire config.val file can be found in Appendix B.

CAUTION

Do not change any settings in the config.val file, except for those
explained here. The H.323 stack will not function properly if other

changes are made.

Change from 6 to 4

6. Setting IPLink Parameters

89

6.3.1. Describe Coder Capabilities

Each supported coder’s capabilities are described in the config.val file. G.711
and G.723.1 are currently designated as the default coders. You may adjust
certain receive parameters for each coder.

G.711

You may set the maximum frame size that this coder can receive. It can be set
for either 30, 20, or 10 msecs. The larger frame size also allows the smaller
frame sizes, i.e., the default 30 msec frame size also allows the 20 msec and 10
msec frame sizes. The line to be changed is highlighted in the code fragment
below:

4 capabilityTable = 0
5 * = 0 #Sequence
6 capabilityTableEntryNumber = 1 # INTEGER [1..65535]
6 capability = 0
7 receiveAudioCapability = 0
8 g711Ulaw64k = 30 # INTEGER [1..256]

G.723.1

You may designate the number of frames per packet that the coder can receive,
and enable or disable silence suppression (VAD). As of the time of the writing of
this guide, the IPLink platform can receive up to 8 frames per packet. See the
Release Notes for any changes. The lines to be changed are highlighted in the
code fragment below:

5 * = 0 #Sequence
6 capabilityTableEntryNumber = 2 # INTEGER [1..65535]
6 capability = 0
7 receiveAudioCapability = 0
8 g7231 = 0

30 = 30,20,10 msec frames
20 = 20,10 msec frames
10 = 10 msec frame

DM3 IPLink™ User’s Guide for Windows NT

90

9 maxA1-sduAudioFrames = 1 # INTEGER [1..256]
9 silenceSuppression = 0 # INTEGER [1..256]

NOTE: The capabilityTableEntryNumber must be sequential starting from 1.
If you make any changes, make sure that the numbers are correct. In
addition, the capabilityDescriptors section must contain the same
number of capabilities. Comment out non-applicable lines:

4 capabilityDescriptors = 0
5 * = 0 #Sequence
6 capabilityDescriptorNumber = 0 #INTEGER [1..255]
6 simultaneousCapabilities = 0
7 * = 0
8 * = 1 # INTEGER [1..65535]
8 * = 2 # INTEGER [1..65535]
#8 * = 3 # INTEGER [1..65535]
#8 * = 4 # INTEGER [1..65535]

6.3.2. Enable a Gatekeeper

A gatekeeper serves as a directory of Internet addresses and telephone numbers.
The IPLink platform can be configured to register with a gatekeeper. By default,
the IPLink platform is configured for no gatekeeper as shown in the following
fragment from the config.val file:

1 RAS = 0
2 responseTimeOut = 1
#2 gatekeeper = 1
2 manualRAS = 1
#2 manual Discovery = 0
#3 defaultGatekeeper = 0
#4 ipAddres = 0
#5 ip = <200.202.200.200>
#5 port = 1719

Enter an integer
from 1 to 8

0 = Off
1 = On

6. Setting IPLink Parameters

91

To register with a gatekeeper, comment line 4 (of this section of code). It should
appear as follows:

1 RAS = 0
2 responseTimeOut = 1
#2 gatekeeper = 1
#2 manualRAS = 1
#2 manual Discovery = 0
#3 defaultGatekeeper = 0
#4 ipAddres = 0
#5 ip = <200.202.200.200>
#5 port = 1719

In addition, you must either insert a specific gatekeeper IP address, or enable
discovery (broadcasting a request for a gatekeeper).

If you know the IP address of the gatekeeper you want to register with,
uncomment lines 5 − 9 and insert the correct IP address in line 8. It should
appear as follows:

1 RAS = 0
2 responseTimeOut = 1
#2 gatekeeper = 1
#2 manualRAS = 1
2 manual Discovery = 0
3 defaultGatekeeper = 0
4 ipAddres = 0
5 ip = <insert IP address of gatekeeper here>
5 port = 1719

If you want to broadcast a general request for a gatekeeper, you can choose to
either:

• broadcast to those gatekeepers registered for Multicasting or,

• broadcast a general request to all gatekeepers

DM3 IPLink™ User’s Guide for Windows NT

92

To broadcast to a Multicast address, there is no need to change the default
settings:

#Not applicable when manualDiscovery is enabled !
2 rasMulticastAddress = 0
3 ipAddress = 0
4 ip = <224.0.1.41>
4 port = 1718
#Broadcast address
#4 ip = <255.255.255.255>
#4 port = 1718
#station ras port (reply from gatekeeper)
2 rasPort = 1719

To broadcast to all gatekeepers, comment lines 4 and 5 and uncomment lines 7
and 8 as shown below:

#Not applicable when manualDiscovery is enabled !
2 rasMulticastAddress = 0
3 ipAddress = 0
#4 ip = <224.0.1.41>
#4 port = 1718
#Broadcast address
4 ip = <255.255.255.255>
4 port = 1718
#station ras port (reply from gatekeeper)
2 rasPort = 1719

The gateway may identify itself by name and/or by phone number. If you wish to
identify your gateway by only one characteristic, comment out the pair of lines
that are not used (lines 7/8 or lines 9/10):

2 registrationInfo = 0
3 terminalType = 0
4 mc = 0
4 undefinedNode = 0
4 terminal = 0

6. Setting IPLink Parameters

93

3 terminalAlias = 0
4 * = 0
5 h323-ID = "Insert Gateway Name Here"
4 * = 0
5 e164 = 'Insert Gateway Phone Number Here'!

NOTE: The config.val syntax requires that the gateway name string be
contained within double quotes and the gateway phone number
string be contained within single quotes, followed by an
exclamation point.

95

7. Debugging

Several debugging utilities are supplied with the IPLink Development Kit. They
are designed to supply information that can help you debug your application.

Debugging can be divided into two basic flows, depending on whether or not the
download was successful. Refer to Figure 19. Debug Flow - Download Failed
and Figure 22. Debug Flow - Download Succeeded for the basic debug
procedure.

Each diagram contains a series of decision and process boxes. Each step of the
procedure deals with one possible diagnostic operation that should be performed
before continuing to the next step. Several of the steps include extra information
contained in “call-outs” as a reminder what should be checked in that particular
step.

NOTE: These flow diagrams do not show how to perform the diagnostic
procedures in detail. Refer to the description in the following sections
for a complete explanation of each diagnostic step.

The following sections describe the diagnostic flow in greater detail using the
various utilities supplied with the IPLink platform software.

7.1. Download Failed

If the download failed, use the following debugging procedure:

1. Check the hardware
2. Check the drivers
3. Check the PCD/FCD files

Refer to Figure 19 as a guide to debugging:

DM3 IPLink™ User’s Guide for Windows NT

96

Was the
download

successful?
No

Is the DM3
hardware properly

connected?

Yes

No

Contact your
Dialogic Support

Engineer

Is the PSTN card
set properly?

Yes

No

Are the drivers
properly loaded?

Yes

No

Have you
changed the PCD

or FCD files?
Yes

No

DM3 board, boot kernel
version, SCbus cable

PSTN board
SCbus cable

Rotary switch = DCM
config.

SCBusClock = NONE

mpd, mcd, Dialogic
Configuration Driver,

Dialogic FW Download
Dirvers, Dialogic SRAM

Protocol Driver

Re-connect all
hardware and re-

download the DM3
drivers (DCM)

Re-connect all
hardware properly
and re-download
the native drivers

(DCM)

1. Manually start
the driver

2. Uninstall DNA
and/or MNTI and
reinstall

Load the default
files supplied with

the IPLink
Development Kit

Yes

See Flow Diagram:
Download Succeeded

Figure 19. Debug Flow - Download Failed

7. Debugging

97

7.1.1. Check the Hardware

Check that all the hardware is properly connected:

1. Verify that the:

• DM3 IPLink board is seated properly

• DM3 boot kernel versions are correct: See the Release Catalog for the
correct versions.

Open Dialogic Configuration Manager, double click on the IPT board
and select the “Version Info” tab. The boot versions are listed.

Figure 20. Boot Kernel Versions

DM3 IPLink™ User’s Guide for Windows NT

98

NOTE: If you cannot verify the boot kernel versions, you may not be able to
debug your application. Contact your Dialogic Support Engineer.

2. Verify that the:

• PSTN board is seated properly

• Rotary switch on the PSTN board (if so configured) is set to the same
value as in the DCM Configuration Manager.

• PSTN board is set as SCbusClockMaster = NONE:

Open the Dialogic Configuration Manager, double click on the PSTN
card you are using and select the “Dialogic Bus” tab. If the
SCbusClockMaster is set incorrectly, change the Value to “None”.

7. Debugging

99

Figure 21. SCbusClockMaster Parameter Setting

3. Verify that the SCbus Cable is connected to both the DM3 IPLink board and
the PSTN board.

7.1.2. Check the Drivers

1. Open the Windows Control Panel from the Start Icon.

2. Open the Devices folder. Check that the status of the following drivers is
“Running”:

• MPD
• MCD

DM3 IPLink™ User’s Guide for Windows NT

100

• Dialogic Configuration Drivers
• Dialogic FW Download Drivers
• Dialogic SRAM Protocol Drivers

Manually start any drivers that are not running. If this fails, uninstall the
firmware and then re-install it.

7.1.3. Check the PCD/FCD files

1. Verify that the PCD and FCD files are in your file structure and are pointed
to correctly.

2. If you have changed any settings in either of the files, make sure that the
changes are correct. Load the default files supplied with the IPLink
Development Kit and check for proper operation of the application.

7. Debugging

101

7.2. Download Succeeded

If the download succeeded, use the following debug flow. You will check the
output of various utilities. Each step consists of:

• closing the system
• enabling the log file
• re-running the application
• checking the log file

Use the following procedure for debugging your application:

1. Check for H.323 service errors

2. Check for H.323 protocol message errors

3. Check for CP and SP errors

Refer to Figure 22 as a guide to debugging:

DM3 IPLink™ User’s Guide for Windows NT

102

Yes

Did the
application run

correctly?
YesDone No

Did you identify a
problem with the H.323
service (h323dbg.txt)?

No

1. Close the system
2. Enable debug info log file
3. Restart and run the

application

Did you identify a
problem with the H.323

protocol messages
(rvtsp1.log)?

NoYes
Contact your

Dialogic Support
Engineer

1. Close the system
2. Enable H.323 protocol

message log file
3. Restart and run the

application

Did you find a
CP or SP error?

No

Yes
Contact your

Dialogic Support
Engineer

Contact your
Dialogic Support

Engineer

1. Close the system
2. Restart the system
3. Run DMSSTDER
4. Run the application

Was the
download

successful?
No

See Flow Diagram:
Download Failed

Yes
Contact your

Dialogic Support
Engineer

Figure 22. Debug Flow - Download Succeeded

7.2.1. H.323 Service

By default, the log file h323dbg.txt is enabled in the FCD file to print both fatal
and non-fatal errors.

7. Debugging

103

1. Close the system.

2. Re-configure the following parameters to print only fatal errors as described
in Chapter 6. Setting IPLink Parameters:

• • PrmDebugLevelStack
• • PrmDebugLevelMsg
• • PrmDebugLevelStream
• • PrmDebugLevelStates
• • PrmDebugLevelTimer
• • PrmDebugLevelUtil
• PrmDebugLevelMNTI

This reduces the overhead on the CPU and reduces the size of the log file.

For example, change the PrmDebugLevelStack setting from 2 to 1::

! Setting NetTSC_PrmDebugLevelStack parameter to value 2 (Default)
! This parameter sets the debug print level for stack module of H323
! Values range: 0-4
! 0 sets no printouts
! 1 sets fatal errors only printouts
! 2 adds non-fatal errors printouts
! 3 adds warning printouts
! 4 adds trace printouts
!
 MsgType : 0x8

 UInt32 : 0x1e0e
 UInt32 : 0x2
 }

3. Restart the system and run the application.

4. If the problem doesn’t show up in the log file, return to step 1 and reset the
parameters to the next level.

5. Continue until the problem is found. If the problem is not found, continue to
the next section.

Change from 0x2
to 0x1

DM3 IPLink™ User’s Guide for Windows NT

104

7.2.2. H.323 Protocol Messages

By default, the log file rvtsp1.log is enabled in the FCD file to print fatal and
non-fatal errors.

1. Close the system.

2. Re-configure the PrmDebugLevelRVStack parameter to print only fatal
errors as described in Chapter 6. Setting IPLink Parameters. This reduces
the overhead on the CPU and reduces the size of the log file.

For example, change the PrmDebugLevelRVStack setting from 2 to 1::

! Setting NetTSC_PrmDebugLevelRVStack parameter to value 2 (Default)
! This parameter sets the debug print level for RV stack module of H323
! Values range: 0-4
! 0 sets no printouts
! 1 sets fatal errors only printouts
! 2 adds non-fatal errors printouts
! 3 adds warning printouts
! 4 adds trace printouts
!
 MsgType : 0x8

 UInt32 :
 UInt32 : 0x2
 }

3. Restart the system and run the application.

4. If the problem doesn’t show up in the log file, return to step 1 and reset the
parameter to the next level.

5. Continue until the problem is found. If the problem is not found, continue to
the next section.

7.2.3. CP and SP Errors

The DM3STDER utility is used to display CP and SP errors.

Change from 0x2
to 0x1

7. Debugging

105

NOTE: This utility must be invoked after a successful download, and before
running the application.

After successfully downloading the firmware:

1. Open a DOS window.

2. Change to the \PATCH directory.

3. Invoke the DM3STDER utility by typing:

DM3STDER -b <board_number> -f <file_name>

where:

<board_number> is the number of the DM3 board

<file_name> is a file name for redirecting the data

For example, if there is only a single DM3 board, type:

DM3STDER -b0 -f dm3err.txt

4. Run the application.

5. If the problem is not found, contact your Dialogic Support Engineer.

7.3. Information for Customer Support

Have the following information ready when you contact you customer support
engineer:

• Log files
• IPT SDK version
• MNTI version
• DNA version
• CP Boot Kernel version

DM3 IPLink™ User’s Guide for Windows NT

106

• SP Boot Kernel version
• Platform Description

• CPU type and speed
• RAM
• WindowsNT version

• Problem description

7. Debugging

107

The following table should be completed before contacting customer
engineering:

Description Version Number/Other Information

IPT SDK

MNTI

DNA

CP Boot Kernel

SP Boot Kernel

CPU type and speed

RAM

WindowsNT version

Problem description

109

Appendix A
Introduction to Internet Telephony

Internet Telephony is driving the convergence of the telephone network (PSTN)
and the data network (Internet Protocol) into a single communication network
that offers powerful, economical, new communications options. Conceptually,
Internet telephone gateways provide the following services:

• On one side, the gateway connects to the telephone world. It can
communicate with any phone in the world. A phone line plugs into the
gateway on this end.

• On the other side, the gateway connects to the Internet world. It can
communicate with any computer in the world that is connected to the
Internet.

• The gateway takes the standard telephone signal, digitizes it (if it is not
already digital), significantly compresses it, packetizes it for the IP, and
routes it to a destination over the Internet.

• The gateway reverses the operation for packets coming in from the
network and going out to the phone.

• The gateway also transfers and translates all the call control functions
necessary for maintaining the call.

• Both operations (coming from and going to the phone network) take place
at the same time, allowing a full duplex (two-way) conversation.

The figure below shows a typical configuration, utilizing a single gateway for
Phone-to-PC operation and two gateways for Phone-to-Phone operation.
Dialogic’s IP Telephony solution provides the ability to configure a system for

DM3 IPLink™ User’s Guide for Windows NT

110

both Phone-to-PC and Phone-to-Phone operation, with call control and call
information retrieval built-in to the system.

T1 Line T1 Line

Voice Terminal

 LAN

DM3 IP Telephony GatewayDM3 IP Telephony Gateway

PBX Central Office

Figure 23. Typical IP Telephony Configuration

A number of configurations can be built from this basic operation. Phone-to-PC
or PC-to-phone operation can take place with one gateway. Phone-to-phone
operation can occur with two gateways.

Standards

Support for voice over the Internet, for both PCs and workstations, is rapidly
being introduced into the marketplace. The VOIP Service Interoperability
Implementation Agreement specifies baseline requirements so that products

Appendix A

111

complying with its specification can interoperate. The basic standards for Voice
over the Internet are as follows:

• All connections are made using the H.323/H.245/H.225/Q.931 session
protocol suite.

Dialogic’s DM3 IPLink platform meets these standards for call
establishment and call control. This feature is built-in “under-the-hood” and
is invisible to the user. A set of high-level user interface functions simplify
the task of creating a host application.

• Connections are made over TCP/UDP/IP protocol layers.

Dialogic’s IPLink platform makes efficient use of the TCP/UDP/IP protocol
layers. A sophisticated packet loss algorithm ensures a high quality of
service.

• RTP is used to encapsulate real-time traffic.

Real-Time Transport Protocol (and its accompanying Real-Time Transport
Control Protocol) are built-in to the IPLink platform. Packetization is
completely handled by the internal components.

ITU Recommendation H.323

Recommendation H.323 describes terminals, equipment, and services for
multimedia communication over Local Area Networks (LAN) which do not
provide a guaranteed Quality of Service. H.323 terminals and equipment may
carry real-time voice, data, and video, or any combination, including
videotelephony.

• An H.323 terminal is an endpoint on the LAN, capable of providing real-
time, two-way communication with another H.323 terminal on another part
of the LAN. A terminal, can therefore be either a multi-media PC connected
to the LAN, or a gateway such as that described in this document.

DM3 IPLink™ User’s Guide for Windows NT

112

The LAN over which H.323 terminals communicate may be a single segment or
ring, or it may be multiple segments with complex topologies. The operation of
H.323 terminals over the multiple LAN segments (including the Internet) may
result in poor performance. The possible means by which quality of service
might be assured on such types of LANs/internetworks is beyond the scope of
this recommendation.

H.323 terminals may be integrated into personal computers or implemented in
stand-alone devices such as videotelephones. Support for voice is mandatory,
while data and video are optional, but if supported, the ability to use a specified
common mode of operation is required, so that all terminals supporting that
media type can interwork. H.323 allows more than one channel of each type to
be in use. Other Recommendations in the H.323 series include H.225.0 packet
and synchronization, H.245 control, H.261 and H.263 video codecs, G.711,
G.722, G.728, G.729, and G.723.1 audio codecs, and the T.120 series of
multimedia communications protocols.

H.323 makes use of the logical channel signaling procedures of
Recommendation H.245, in which the content of each logical channel is
described when the channel is opened. Procedures are provided for expression of
receiver and transmitter capabilities, so transmissions are limited to what
receivers can decode, and so that receivers may request a particular desired mode
from transmitters.

The following elements are mandatory within the scope of H.323:

• The Audio Codec encodes the audio signal from the microphone for
transmission and decodes the received audio code which is output to the
loudspeaker.

H.323 specifies a number of audio codecs (G.711, G.722, G.723.1, MPEG1,
G.728, and G.729). The standard allows the parties to negotiate the codec.
Several of the specified codecs are especially relevant for Internet use. Other

Appendix A

113

codecs can be added, allowing proprietary codecs to be integrated into an
Internet Gateway. Dialogic’s IPLink platform supports multiple codecs, both
standard and proprietary.

• The System Control Unit (H.245, H.225.0) provides signaling for proper
operation of the H.323 terminal. It provides for call control, capability
exchange, signaling of commands and indications, and messages to open
and fully describe the content of logical channels.

This capability is built-in to the Dialogic IPLink platform. The application
developer can easily access these features via high-level functions.

• H.225.0 Layer (H.225.0) formats the transmitted audio data and control
streams into messages for output to the network interface, and retrieves the
received audio and control streams from messages which have been input
from the network interface. In addition, it performs logical framing,
sequence numbering, error detection, and error correction.

H.225.0 makes use of RTP/RTCP (Real-time Transport Protocol/Real-
Time Transport Control Protocol) for media stream packetization and
synchronization for all underlying LANs.

This capability is built-in to the Dialogic IPLink platform. The application
developer can easily access these features via high-level functions.

• The LAN Interface is implementation specific and is outside the scope of
Recommendation H.323. However, the LAN interface shall provide the
services described in Recommendation H.225.0. This includes:

• Reliable (e.g., TCP, SPX) end-to-end service is mandatory for the H.245
Control Channel and the Call Signaling Channel.

• Unreliable (e.g., UDP, IPX) end-to-end service is mandatory for the
Audio Channels.

DM3 IPLink™ User’s Guide for Windows NT

114

These services may be duplex or simplex, unicast or multicast depending on
the application, the capabilities of the terminals, and the configuration of the
LAN.

Dialogic’s IPLink platform supports the reliable channels and ensures a high
quality of service on the unreliable channel (UDP).

115

Appendix B
config.val File

H.323 Stack Configuration File

1 system = 0
#2 pdlName = 'radvh323.raw'
2 allocations = 0
3 vtPoolSize = 100000
3 vtNodeCount = 20000
3 channels = 500
3 chanDescs = 5
3 messages = 200
3 nameChans = 10
3 tpktChans = 80
3 udpChans = 5
3 protocols = 400
3 maxProcs = 400
3 maxDepth = 200

1 RAS = 0
2 responseTimeOut = 20
#2 gatekeeper = 1
2 manualRAS = 1
#2 manualDiscovery = 0
#3 defaultGatekeeper = 0
#4 ipAddress = 0
#5 ip = <200.200.200.200>
#5 port = 1719

2 registrationInfo = 0
3 terminalType = 0
4 mc = 0
4 undefinedNode = 0
4 terminal = 0
3 terminalAlias = 0
4 * = 0
5 h323-ID = "Name"
4 * = 0
5 e164 = '1111'!

#Not applicabale when manualDiscivery is enabled !

DM3 IPLink™ User’s Guide for Windows NT

116

2 rasMulticastAddress = 0
3 ipAddress = 0
4 ip = <224.0.1.41>
4 port = 1718
#BroadCast address
#4 ip = <255.255.255.255>
#4 port = 1718
#station ras port(reply from gatekeeper)
2 rasPort = 1719

1 Q931 = 0
2 responseTimeOut = 50
2 connectTimeOut = 500
2 callSignalingPort = 1720
2 maxCalls = 10
#2 notEstablishControl = 0
2 manualAccept = 1

1 h245 = 0
2 masterSlave = 0 # Sequence <Optional>
3 terminalType = 70 # INTEGER [0..255]
#3 manualOperation = 0 # NULL
3 timeout = 40

2 capabilities = 0 # Sequence <Optional>
3 timeout = 40
#3 manualOperation = 0
3 terminalCapabilitySet = 0 # Sequence
4 sequenceNumber = 0 # INTEGER [0..255]
4 protocolIdentifier = [00] # Object Identifier [0..0]

4 multiplexCapability = 0
5 h2250Capability = 0 # Sequence
6 maximumAudioDelayJitter = 60 # INTEGER [0..1023]
6 receiveMultipointCapability = 0 # Sequence
7 multicastCapability = 0 # BOOLEAN [0..0]
7 multiUniCastConference = 0 # BOOLEAN [0..0]
7 mediaDistributionCapability = 0
8 * = 0 # Sequence
9 centralizedControl = 0 # BOOLEAN [0..0]
9 distributedControl = 0 # BOOLEAN [0..0]
9 centralizedAudio = 0 # BOOLEAN [0..0]
9 distributedAudio = 0 # BOOLEAN [0..0]
9 centralizedVideo = 0 # BOOLEAN [0..0]
9 distributedVideo = 0 # BOOLEAN [0..0]
6 transmitMultipointCapability = 0 # Sequence

Appendix B

117

7 multicastCapability = 0 # BOOLEAN [0..0]
7 multiUniCastConference = 0 # BOOLEAN [0..0]
7 mediaDistributionCapability = 0
8 * = 0 # Sequence
9 centralizedControl = 0 # BOOLEAN [0..0]
9 distributedControl = 0 # BOOLEAN [0..0]
9 centralizedAudio = 0 # BOOLEAN [0..0]
9 distributedAudio = 0 # BOOLEAN [0..0]
9 centralizedVideo = 0 # BOOLEAN [0..0]
9 distributedVideo = 0 # BOOLEAN [0..0]
6 receiveAndTransmitMultipointCapability = 0 # Sequence
7 multicastCapability = 0 # BOOLEAN [0..0]
7 multiUniCastConference = 0 # BOOLEAN [0..0]
7 mediaDistributionCapability = 0
8 * = 0 # Sequence
9 centralizedControl = 0 # BOOLEAN [0..0]
9 distributedControl = 0 # BOOLEAN [0..0]
9 centralizedAudio = 0 # BOOLEAN [0..0]
9 distributedAudio = 0 # BOOLEAN [0..0]
9 centralizedVideo = 0 # BOOLEAN [0..0]
9 distributedVideo = 0 # BOOLEAN [0..0]
6 mcCapability = 0 # Sequence
7 centralizedConferenceMC = 0 # BOOLEAN [0..0]
7 decentralizedConferenceMC = 0 # BOOLEAN [0..0]
6 rtcpVideoControlCapability = 0 # BOOLEAN [0..0]
6 mediaPacketizationCapability = 0 # Sequence
7 h261aVideoPacketization = 0 # BOOLEAN [0..0]

4 capabilityTable = 0
5 * = 0 # Sequence
6 capabilityTableEntryNumber = 1 # INTEGER [1..65535]
6 capability = 0
7 receiveAudioCapability = 0
8 g711Ulaw64k = 30 # INTEGER [1..256]

5 * = 0 # Sequence
6 capabilityTableEntryNumber = 2 # INTEGER [1..65535]
6 capability = 0
7 receiveAudioCapability = 0
8 g7231 = 0
9 maxAl-sduAudioFrames = 1 # INTEGER [1..256]
9 silenceSuppression = 1 # INTEGER [1..256]

4 capabilityDescriptors = 0
5 * = 0 # Sequence
6 capabilityDescriptorNumber = 0 # INTEGER [0..255]

DM3 IPLink™ User’s Guide for Windows NT

118

6 simultaneousCapabilities = 0
7 * = 0
8 * = 1 # INTEGER [1..65535]
8 * = 2 # INTEGER [1..65535]

2 channels = 0

3 * = 0 # Sequence
4 name = 'g711Ulaw10' # IA5String [1..128]
4 dataType = 0
5 audioData = 0
6 g711Ulaw64k = 10 # INTEGER [1..256]

3 * = 0 # Sequence
4 name = 'g711Ulaw20' # IA5String [1..128]
4 dataType = 0
5 audioData = 0
6 g711Ulaw64k = 20 # INTEGER [1..256]

3 * = 0 # Sequence
4 name = 'g711Ulaw30' # IA5String [1..128]
4 dataType = 0
5 audioData = 0
6 g711Ulaw64k = 30 # INTEGER [1..256]

3 * = 0 # Sequence
4 name = 'g7231' # IA5String [1..128]
4 dataType = 0
5 audioData = 0
6 g7231 = 0
7 maxAl-sduAudioFrames = 1 # INTEGER [1..256]
7 silenceSuppression = 1 # INTEGER [1..256]

119

Appendix C
ipt.fcd File

;;;; FCD File generated from : qvs_t1.config
;;;; And appended to for the IPT NetTSC
;;;;
;;;; Search down for [NetTSC] to see beginning of additions
;;;; which were typed in (not generated)
;;;;
;;;; Note that for each ["component"]
;;;; [SendMsg] sends the parameter
;;;; and then [RcvMsg] verifies that it was received

**
*
[NOTE: This file illustrates only the IP Telephony
parameters.]
**
*

[NetTSC]
{
 Attribute : 0:0x1e

! NetTSC_PrmDebugLevelStack
(0=OFF,1=FATAL,2=ERROR,3=Warning,4=Info)
;; SetParam (7694,2) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1e0e ;7694
 UInt32 : 0x2 ;2
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! NetTSC_PrmDebugLevelMsg
(0=OFF,1=FATAL,2=ERROR,3=Warning,4=Info)
;; SetParam (7695,2) on NetTSC

DM3 IPLink™ User’s Guide for Windows NT

120

 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1e0f ;7695
 UInt32 : 0x2 ;2
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! NetTSC_PrmDebugLevelStream
(0=OFF,1=FATAL,2=ERROR,3=Warning,4=Info)
;; SetParam (7696,0) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1e10 ;7696
 UInt32 : 0x0 ;0
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! NetTSC_PrmDebugLevelStates
(0=OFF,1=FATAL,2=ERROR,3=Warning,4=Info)
;; SetParam (7697,4) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1e11 ;7697
 UInt32 : 0x4 ;4
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9

Appendix C

121

 TimeOut : 0x1388 ;5000
 }

! NetTSC_PrmDebugLevelTimer
(0=OFF,1=FATAL,2=ERROR,3=Warning,4=Info)
;; SetParam (7698,0) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1e12 ;7698
 UInt32 : 0x0 ;0
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! NetTSC_PrmDebugLevelUtil
(0=OFF,1=FATAL,2=ERROR,3=Warning,4=Info)
;; SetParam (7699,2) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1e13 ;7699
 UInt32 : 0x2 ;2
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! NetTSC_PrmDebugLevelMNTI (0-3=OFF,4=Info)
;; SetParam (7700,0) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8

DM3 IPLink™ User’s Guide for Windows NT

122

 UInt32 : 0x1e14 ;7700
 UInt32 : 0x0 ;0
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! NetTSC_PrmDebugLevelRVSTACK (0-3=OFF,4=Info)
;; SetParam (7710,0) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1e1e ;7710
 UInt32 : 0x0 ;0
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! NetTSC_PrmDialogicEnable (0=Standard Gateway,1=Dialogic
Gateway)
;; SetParam (7705,1) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1e19 ;7705
 UInt32 : 0x1 ;1
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

Appendix C

123

! prmECActive (0=Enable,1=Disable)
;; SetParam (6930,0) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1b12 ;6930
 UInt32 : 0x1 ;0
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! prmECOrder (128/256)
;; SetParam (6931,128) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1b13 ;6931
 UInt32 : 0x80 ;128
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! prmVolumeControl (1-8)
;; SetParam (6932,2) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x7fffff ;.999999
 UInt32 : 0x0 ;0
 }

DM3 IPLink™ User’s Guide for Windows NT

124

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! prmSQM_1
;; SetParam (6919,2) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1b07 ;6919
 UInt32 : 0x6 ;6
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! prmSQM_2
;; SetParam (6918,2) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1b08 ;6918
 UInt32 : 0xf ;15
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! prmSQM_3
;; SetParam (6927,2) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8

Appendix C

125

 UInt32 : 0x1b0f ;6927
 UInt32 : 0x78 ;120
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! prmSQM_4
;; SetParam (6928,100) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1b10 ;6928
 UInt32 : 0x3c ;60
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! prmSQM_5
;; SetParam (6918,0) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1b06 ;6918
 UInt32 : 0x2 ;2
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! prmSQM_6
;; SetParam (6917,2) on NetTSC

DM3 IPLink™ User’s Guide for Windows NT

126

 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1b05 ;6917
 UInt32 : 0x4 ;4
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }

! prmSQM_7
;; SetParam (6933,1) on NetTSC
 [SendMsg]
 {
! Setting parameter for NetTSC.0
 MsgType : 0x8 ;8
 UInt32 : 0x1b15 ;6933
 UInt32 : 0x1 ;1
 }

 [RcvMsg]
 {
! Expecting parm Complete from NetTSC.0
 MsgType : 0x9 ;9
 TimeOut : 0x1388 ;5000
 }
}

127

Glossary

Asynchronous mode An operating mode of certain DM3 kernel or host
library function calls. Asynchronous mode is a non-blocking mode that
is typically used when a function involves operation on a remote
processor (e.g. a host library function that initiates a kernel operation
on a DM3 platform’s Control Processor) or when data movement via
the MMA and global memory is required. In asynchronous mode a
value signifying “pending” status is immediately returned to the
calling function, and the actual completion or failure of the operation
is reported to the caller via a DM3 result message.

Cluster A collection of DM3 components that share a set of TDM
timeslots on the network interface or the SCbus. Components are
bound to a particular cluster and its assigned timeslots in an allocation
operation. The component that contains the ports to the TDM
timeslots (generally the first component allocated into the cluster) is
called the central component.

Codec see COder/DECoder

COder/DECoder A circuit used on Dialogic boards to convert analog
voice data to digital and digital voice data to analog audio

Component An executable entity that resides on a particular processor
on the DM3 platform and provides a single type of service to a DM3
resource. For example, a decoder component may be part of the Player
resource, residing on a signal processor (SP) and providing specific
decoding services for mediastream playback. Currently, the object code
for a DM3 component is linked with the DM3 and RTOS kernels and
downloaded to the target processor as a single Processor Load Module
(PLM). The DM3 architecture supports multiple instances of
components to allow independent simultaneous handling of multiple
media streams.

Component instance A logical entity that represents a single thread of
control for the operations associated with a DM3 component. Each
DM3 component supports multiple instances up to some defined

DM3 IPLink™ User’s Guide for Windows NT

128

maximum number (which may be greater than the number of instances
that may actually be implemented with existing platform hardware).
Instances are addressable units, and DM3 messages may be sent to
individual instances of a component. An instance generally
corresponds to an individual media stream, and when an instance is
active it is usually bound to a particular set of SCbus data timeslots
and to a SCSA Group.

Computer Telephony (CT) Adding computer intelligence to the making,
receiving, and managing of telephone calls.

Control Processor (CP) A processor that is present on the motherboard
of every DM3 platform for the management of the SCbus, for host
communication configuration, and to implement some of the features
of DM3 Resources. All current DM3 platforms use an Intel i960 as the
Control Processor.

CP See Control Processor

CT See Computer Telephony

DM3 address A bitmapped data structure that identifies a specific DM3
software entity and the processor, board, and/or node where the entity
resides. DM3 addresses are used to identify components, component
instances, clusters, and tasks, and partially specified addresses may be
used to identify the board or processor. Each DM3 message contains
source and destination component addresses, and many function calls
require one or more component addresses as arguments.

DM3 architecture A platform architecture for a family of high density,
high performance, call processing products. The architecture specifies
both the hardware platform and the firmware modules in such a way
that resources are highly portable across multiple platform
implementations, including VME, PCI, and CompactPCI variants.

DM3 kernel Firmware that is present on each processor on a DM3
platform to support configuration management, host communication,
inter processor communication and control, and SCSA firmware
services among others. There may be more than one version of the
DM3 kernel firmware depending on the type of processor (e.g. CP vs.
DSP or RISC signal processor) and the intended application of each
processor.

Glossary

129

DM3 load module A loadable block of executable firmware for a
particular processor on a DM3 platform. A DM3 Resource may be
packaged as one or more DM3 load modules.

DM3 message A formatted block of data that is passed between the host
and a DM3 component or between two DM3 components via the
global memory and MMA ASIC. All DM3 messages have a packed,
fixed-format header that contains transport information (source and
destination addresses, priority, amount of data in the message body,
etc.) and an arbitrary transaction ID number as well as the message
type, which is the primary content of the message. The DM3 software
environment provides macros to put values into and get values from
the packed message header independent of the processor word length
and endianness. In addition to the fixed-format header, messages may
optionally have a body that contains additional data in typed fields that
are accessed using macros or low-level function calls.

DM3 platform A specific DM3 hardware implementation (a board) for a
particular system bus, which includes a control processor (CP),
optional signal processors (SPs), and optional peripherals (e.g.
communication daughterboard for development or DNI daughterboard
for additional network interfaces).

DM3 signal computing resource Also “DM3 technology resource” or
simply “DM3 resource”. A software component which may be
deployed on compatible platforms based upon the DM3 architecture. A
resource is a logical entity that supports a number of instances of a
fixed set of features. The DM3 resource maps closely, though not
exactly, with the SCSA Resource paradigm. For example, a DM3
Player resource may be a DM3 resource providing playback capability;
it may carry out some or all of the functionality defined in the SCSA
Player API. A DM3 Resource is typically made up of a DM3 host-side
library and one or more DM3 firmware resource components (or
simply “DM3 components”).

DM3 task An executable entity which is managed and scheduled by the
DM3 kernel and underlying real-time operating system that is present
on all of the processors on the DM3 platform. Each task maintains its
own environment and has its own stack. Each DM3 task implements a
message queue that services one or more components or component
instances.

DM3 IPLink™ User’s Guide for Windows NT

130

DTMF See Dual-Tone Multi-Frequency

Dual-Tone Multi-Frequency A way of signaling consisting of a push-
button or touch-tone dial that sends out a sound consisting of two
discrete tones that are picked up and interpreted by telephone switches
(either PBXs or central offices).

Endpoint An H.323 Gateway, CMA client, LDAP server, or CMA
server. An endpoint can call and be called. It generates and/or
terminates information streams.

FCD file An ASCII file that lists any non-default parameter settings that
are necessary to configure a DM3 hardware/firmware product for a
particular feature set. The downloader utility reads this file, and for
each parameter listed generates and sends the DM3 message necessary
to set that parameter value.

Feature Configuration File See FCD file

Frame 1) A set of SCbus timeslots which are grouped together for
synchronization purposes. The period of a frame is fixed (at 125 µsec)
so that the number of time slots per frame depends on the SCbus data
rate.
2) In the context of DSP programming (e.g. DM3 component
development), the period defined by the sample rate of the signal data.

Gatekeeper An H.323 entity on the Internet that provides address
translation and control access to the network for H.323 Terminals and
Gateways. The Gatekeeper may also provide other services to the
H.323 terminals and Gateways, such as bandwidth management and
locating Gateways.

Gateway An H.323 Gateway (GW) is an endpoint on the Internet which
provides for real-time, two-way communications between H.323
Terminals on the Network and other ITU Terminals on a wide area
network, or to IP Telephony clients.

H.323 The specification that defines packet standards for terminals,
equipment, and services for multimedia communications over LANs.
Adopted by the Internet telephony community as the standard for
communicating over any packet network, including the Internet.

Glossary

131

International Telecommunications Union (ITU) An organization
established by the United Nations to set telecommunications standards,
allocate frequencies to various uses, and hold trade shows every four
years.

Internet An inter-network of networks interconnected by bridges or
routers. LANs described in H.323 may be considered part of such
inter-networks.

Internet Protocol (IP) The TCP/IP standard protocol that defines the IP
datagram as the unit of information passed across an internet and
provides the basis for connectionless, best-effort packet delivery
service.

Internet Service Provider (ISP) A vendor who provides direct access to
the Internet.

Internet Telephony Technology that lets you make voice phone calls
over the Internet or other packet networks using your PC, via gateways
and standard telephones.

IP See Internet Protocol

ISP See Internet Service Provider

ITU See International Telecommunications Union.

Parameter A type of datum that is passed to or from a component via a
DM3 message. Parameters generally have two elements, a type and a
specific value. Parameters passed to a component affects the
operational characteristics of the component, and parameters passed
from a component can be used to report the operating state of the
component. As an example, the standard Player component accepts a
parameter called ParmDuration, which specifies the length of the file
that is being played back, and can report its current state (e.g. playing,
paused, etc.) via a parameter called ParmState.

PCD file An ASCII text file that contains product or platform
configuration description information that is used by the DM3
downloader utility program. Each of these files identifies the hardware
configuration and firmware modules that make up a specific
hardware/firmware product. Each type of DM3-based product used in
a system requires a product-specific PCD file.

DM3 IPLink™ User’s Guide for Windows NT

132

Reliable Channel A transport connection used for reliable transmission
of an information stream from its source to one or more destinations.

Reliable Transmission Transmission of messages from a sender to a
receiver using connection-mode data transmission. The transmission
service guarantees sequenced, error-free, flow-controlled transmission
of messages to the receiver for the duration of the transport
connection.

Resource A conceptual entity defining a feature set, which can be
implemented by writing firmware components that run on one or more
processors on a DM3 platform. A simple example of a resource is a
player, which is composed of a player component, which runs on the
Control Processor of a DM3 platform and handles control and
communications functions, plus a decoder component which typically
runs on a Signal Processor and processes the encoded data stream that
is being played back.

RTCP Real Time Control Protocol

RTP Real Time Protocol

SCbus The standard bus for communication within a SCSA node. The
architecture of SCbus includes a 16-wire TDM data bus that operates
at 2, 4 or 8 Mbps and a serial message bus for control and signaling.
DM3 platforms provide an SCbus interface for interconnection of
multiple DM3 platforms, or connection to other SCSA-compatible
hardware. The DM3 platform supports timeslot bundling for high
bandwidth, and can access up to 256 of the 2048 SCbus timeslots via
two SC4000 ASICs.

Signal Processor (SP) An embedded processor on a DM3 platform that
is used to execute signal processing algorithms. The DM3 architecture
supports multiple types of SPs, including RISC processors (e.g.
PowerPC) as well as general purpose DSPs (e.g. Motorola 5630x), and
platforms may be configured with a mixed complement of SP types.

Standard message set A predefined set of DM3 messages which handle
functionality that is common to all DM3 component, such as setting
and getting parameters and managing RTC events. Each DM3
component should support all of the standard messages that are
relevant to the component's operation. Each component will generally

Glossary

133

supplement the standard message set with its own set of proprietary or
component-specific messages.

Synchronous mode An operating mode of certain DM3 kernel or host
library function calls. Synchronous mode is a blocking mode that is
typically used only when a function executes on the local processor
using data that is also local to the processor (i.e. that does not require
any data movement via the MMA).

TCP see Transmission Control Protocol

Terminal An H.323 Terminal is an endpoint on the local area network
which provides for real-time, two-way communications with another
H.323 terminal, Gateway, or Multipoint Control Unit. This
communication consists of control, indications, audio, moving color
video pictures, and/or data between the two terminals. A terminal may
provide speech only, speech and data, speech and video, or speech,
data, and video.

Transmission Control Protocol The TCP/IP standard transport level
protocol that provides the reliable, full duplex, stream service on
which many application protocols depend. TCP allows a process on
one machine to send a stream of data to a process on another. It is
connection-oriented in the sense that before transmitting data,
participants must establish a connection.

UDP see User Datagram Protocol

User Datagram Protocol The TCP/IP standard protocol that allows an
application program on one machine to send a datagram to an
application program on another machine. Conceptually, the important
difference between UDP datagrams and IP datagrams is that UDP
includes a protocol port number, allowing the sender to distinguish
among multiple destinations on the remote machine.

135

Index

A

Accepted (state), 34, 55, 60

Accepting a call, 34, 43, 55, 58

Alerting (state), 34

Allocating a cluster, 48

Answering a call, 43, 55, 56

Assigning timeslots, 49

B

Billing, 59

Boot kernel, 95

C

Call control, 21, 52, 109

Call failure, 34

Call identifier, 33, 44

Call offering, 35

Call setup, 86

Call states, 33, 68
Accepted, 34, 55, 60
Alerting, 34
Connected, 34, 61, 62, 64, 81
Disconnected, 34, 64
Failed, 34
Idle, 34, 65, 68, 70
Initiated, 34, 52, 54, 72, 81
Null, 33, 34, 52, 55, 57, 60, 63, 67
Offered, 33, 35, 55, 57, 60, 70
Proceeding, 35

Call statistics, 63, 67, 68

Cancel RTC requests, 42

Change a parameter value, 43

Cluster, 13, 17, 25, 129
Management, 30, 48

Coder, 26

Coder capabilities, 86

Coders, 18, 57, 61, 87
G.711, 18, 87
G.723.1, 18, 87

Compute call duration parameter, 81

Computer Telephony, 130

config.val, 86

Configuring the IPLink Platform, 75

Connected (state), 34, 61, 62, 64, 81

D

Data network, 107

Data structure, 30

DCM, 96

Debug print level parameter, 80

Debugging procedure
Download failed, 93
Download succeeded, 99

Debugging utilities, 93

Default coders, 87

Destination address, 44

Detecting events, 42, 45

Dialogic Configuration Drivers, 98

DM3 IPLink™ User’s Guide for Windows NT

136

Dialogic Configuration Manager, 96

Dialogic enable parameter, 79

Dialogic gateway, 80

Disconnected (state), 34, 64

Disconnecting a call, 43

DM3 components, 17

DM3 component, 131

DM3 Mediastream Architecture, 16

DM3 messages, 13, 41, 75, 131

DM3 technology resource, 17

DM3STDER utility, 102

DTMF tone detection, 27

E

Echo canceler, 27
Parameters, 76

Error detected, 42

Event detected, 42

Event label, 47

Event type, 47

Events, 31, 46, 47, 54, 60, 134
NetTSC Events

NetTSC_EvtH245Data_NonStd
Cmd, 47

NetTSC_EvtH245Data_UsrInp
utIndication, 48

NetTSC_EvtSystemFailed, 48
NetTSC_EvtThresholdAlarm,

48
Retrieving, 31
TSC Events

TSC_EvtCallInfo, 47
TSC_EvtCallState, 47

F

Failed (state), 34

Failed outbound call
Procedure, 71
State diagram, 70

FCD file, 75, 98, 100, 102

Feature Configuration Description file.
See FCD

FW download drivers, 98

G

G.711 coder, 18, 87, 110

G.723.1 coder, 18, 87, 110

Gatekeeper, 86, 88, 132
Enabling, 86, 88

Gateway, 107, 132

Getting call statistics, 67
Procedure, 68

getXmitSlot, 50

Global streams, 18

H

H.323 Parameters, 79
PrmDebugLevelMNTI, 80, 101
PrmDebugLevelMsg, 80, 101
PrmDebugLevelRVSTACK, 81,

102
PrmDebugLevelStack, 80, 101
PrmDebugLevelStates, 80, 101
PrmDebugLevelStream, 80, 101
PrmDebugLevelTimer, 80, 101
PrmDebugLevelUtil, 80, 101
PrmDialogicEnable, 79

H.323 Recommendation, 109, 132

Index

137

H.323 Stack, 22
Configuration file, 86

h323dbg.txt, 100

Host application, 29, 30
API, 30
Communication, 30
Guidelines, 29
Responsibilities, 29

Host controller, 17

I

I/O completion ports, 31

Idle (state), 34, 65, 68, 70

Inbound call
Procedure, 55, 57
State diagram, 38, 56

Initialize resource, 42

Initiated (state), 34, 52, 54, 72, 81

Initiating a call, 34, 44

Interim states, 55

Internet gateway, 58

Internet Protocol, 12, 17, 107, 133

Internet Telephony, 11, 29, 107, 133

IP address, 44, 89

IPLink platform, 15

IP-PSTN gateway, 12

ipt.fcd, 75

L

Line Administration component, 25

Log file, 100, 102
h323dbg.txt, 100

rvtsp1.log, 102

M

Making a call, 52

MCD, 97

Mediastream Message Block, 30

Message Summary
Accept Call, 61
Answer Call, 58
Terminate Call, 66

Messages
Standard Messages

Std_MsgCancelAllEvts, 42
Std_MsgCancelAllEvtsCmplt,

42
Std_MsgCancelEvt, 42
Std_MsgCancelEvtCmplt, 42
Std_MsgCancelxEvts, 42
Std_MsgCancelxEvtsCmplt, 42
Std_MsgComtest, 42
Std_MsgComtestCmplt, 42
Std_MsgDetectEvt, 36, 42
Std_MsgDetectEvtCmplt, 42
Std_MsgDetectxEvts, 42, 57
Std_MsgDetectxEvtsCmplt, 42
Std_MsgError, 42
Std_MsgEvtDetected, 35, 42,

57
Std_MsgExit, 42
Std_MsgExitCmplt, 42
Std_MsgGetParm, 42
Std_MsgGetParmCmplt, 42
Std_MsgInit, 42
Std_MsgInitCmplt, 42
Std_MsgSetAllParmsDef, 42
Std_MsgSetAllParmsDefCmplt,

42
Std_MsgSetParm, 43
Std_MsgSetParmCmplt, 43
Std_MsgSetParmDef, 43

DM3 IPLink™ User’s Guide for Windows NT

138

Std_MsgSetParmDefCmplt, 43
TSC Messages

TSC_MsgAcceptCall, 43, 55,
60

TSC_MsgAnswerCall, 43, 55,
57

TSC_MsgDisconnected, 65
TSC_MsgDropCall, 35, 43, 63,

73
TSC_MsgGetCallInfo, 43, 67
TSC_MsgGetCallInfoExt, 67
TSC_MsgGetCallState, 43
TSC_MsgMakeCall, 34, 44, 53,

72
TSC_MsgMakeCallCmplt, 72
TSC_MsgRejectCall, 44, 55, 70
TSC_MsgReleaseCall, 44, 55,

64, 73

Miscellaneous Parameters, 81
PrmCallDurationComput, 81, 82,

83, 84

MMB, 30

mntClusterActivate, 49, 51

mntClusterAllocate, 48

mntClusterCompbyAttribute, 48

mntClusterSlotInfo, 51

mntClusterTSAssign, 49, 51

MNTI, 30

MPD, 97

Multicast address, 90

N

Native Synchronization Methods, 31

NetTSC component, 22, 35, 54

NetTSC events, 47

NetTSC_EvtH245Data_NonStdCm
d, 47

NetTSC_EvtH245Data_UsrInputIn
dication, 48

NetTSC_EvtSystemFailed, 48
NetTSC_EvtThresholdAlarm, 48

NetTSC_EvtH245Data_NonStdCmd,
47

NetTSC_EvtH245Data_UsrInputIndicat
ion, 48

NetTSC_EvtSystemFailed, 48

NetTSC_EvtThresholdAlarm, 48

NetTSP resource, 21, 33

NSM, 31

Null (state), 33, 34, 52, 55, 57, 60, 63,
67

O

Offered (state), 33, 35, 55, 60, 70

Offered state, 57

Outbound call
Procedure, 52
State diagram, 37

P

Packet loss recovery, 27

Parameter configuration files, 75

PCD file, 85, 98

Ping message, 42

PLM, 85

Power level parameter, 77

PrmCallDurationComput, 81, 82, 83,
84

Index

139

PrmDebugLevelMNTI, 80, 101

PrmDebugLevelMsg, 80, 101

PrmDebugLevelRVSTACK, 81, 102

PrmDebugLevelStack, 80, 101

PrmDebugLevelStates, 80, 101

PrmDebugLevelStream, 80, 101

PrmDebugLevelTimer, 80, 101

PrmDebugLevelUtil, 80, 101

PrmDialogicEnable, 79

PrmECActive, 76

PrmECOrder, 76

PrmPwrLvlCtrl, 77, 78

Proceeding (state), 35

Processor Load Modules, 85

Product Configuration Description file,
85

Programming model, 33

PSTN, 107

Q

Quality of Service, 19, 109

Querying the NetTSP cluster, 51

Querying the PSTN card, 50

R

R4 events, 31

Read parameter value, 42

Real-Time Transport Control Protocol,
109

Real-Time Transport Protocol, 109

Receive timeslot, 49

Receiving a call, 55

Registering for event notification, 47

Reject incoming call, 44

Rejecting a call, 55
Procedure, 70
State Diagram, 69

Releasing a call, 34, 44

Request current state, 43

Request information, 43

Requesting a gatekeeper, 89

Routing, 29

RTCP, 18, 22, 111, 134

RTP, 18, 22, 26, 109, 111, 134

rvtsp1.log, 102

S

SCbus, 12, 13, 20, 26, 49, 50, 96, 97,
129, 132, 134

SCbus timeslots, 17

SCbusClockMaster, 96

Set parameter value, 43

Set parameter values to default, 42

Setting Parameters
H.323 Parameters

PrmDebugLevelMNTI, 80, 101
PrmDebugLevelMsg, 80, 101
PrmDebugLevelRVSTACK, 81,

102
PrmDebugLevelStack, 80, 101
PrmDebugLevelStates, 80, 101
PrmDebugLevelStream, 80, 101
PrmDebugLevelTimer, 80, 101

DM3 IPLink™ User’s Guide for Windows NT

140

PrmDebugLevelUtil, 80, 101
PrmDialogicEnable, 79

Miscellaneous Parameters
PrmCallDurationComput, 81,

82, 83, 84
SP Parameters

PrmECActive, 76
PrmECOrder, 76
PrmPwrLvlCtrl, 77, 78

Shut down an instance, 42

Silence suppression, 87

SP Parameters, 76
PrmECActive, 76
PrmECOrder, 76
PrmPwrLvlCtrl, 77, 78

SRAM protocol drivers, 98

SRL, 31

Standard Messages
Std_MsgCancelAllEvts, 42
Std_MsgCancelAllEvtsCmplt, 42
Std_MsgCancelEvt, 42
Std_MsgCancelEvtCmplt, 42
Std_MsgComtest, 42
Std_MsgComtestCmplt, 42
Std_MsgDetectEvt, 36, 42
Std_MsgDetectEvtCmplt, 42
Std_MsgDetectxEvts, 42, 57
Std_MsgDetectxEvtsCmplt, 42
Std_MsgError, 42
Std_MsgEvtDetected, 35, 42, 57
Std_MsgExitCmplt, 42
Std_MsgGetParm, 42
Std_MsgGetParmCmplt, 42
Std_MsgInit, 42
Std_MsgInitCmplt, 42
Std_MsgSetAllParmsDef, 42
Std_MsgSetAllParmsDefCmplt, 42
Std_MsgSetParm, 43
Std_MsgSetParmCmplt, 43
Std_MsgSetParmDef, 43

Std_MsgSetParmDefCmplt, 43

Standard Runtime Library, 31

State diagram, 36
Inbound call, 38
Outbound call, 37, 52

State transitions, 35

Std_MsgCancelAllEvts, 42

Std_MsgCancelAllEvtsCmplt, 42

Std_MsgCancelEvt, 42

Std_MsgCancelEvtCmplt, 42

Std_MsgCancelxEvts, 42

Std_MsgCancelxEvtsCmplt, 42

Std_MsgComtest, 42

Std_MsgComtestCmplt, 42

Std_MsgDetectEvt, 36, 42

Std_MsgDetectEvtCmplt, 42

Std_MsgDetectxEvts, 42, 57

Std_MsgDetectxEvtsCmplt, 42

Std_MsgError, 42

Std_MsgEvtDetected, 35, 42, 57

Std_MsgExitCmplt, 42

Std_MsgGetParm, 42

Std_MsgGetParmCmplt, 42

Std_MsgInit, 42

Std_MsgInitCmplt, 42

Std_MsgSetAllParmsDef, 42

Std_MsgSetAllParmsDefCmplt, 42

Std_MsgSetParm, 43

Index

141

Std_MsgSetParmCmplt, 43

Std_MsgSetParmDef, 43

Std_MsgSetParmDefCmplt, 43

T

TDM data, 17

Telephone network, 107

Terminating a call, 34
Procedure, 63
State diagram, 62

Timeslots, 49

Transmit timeslot, 49

TSC Events
TSC_EvtCallInfo, 47
TSC_EvtCallState, 47

TSC Messages, 43
TSC_MsgAcceptCall, 43, 55, 60
TSC_MsgAnswerCall, 43, 55, 57
TSC_MsgDisconnected, 65
TSC_MsgDropCall, 35, 43, 63, 73
TSC_MsgGetCallInfo, 43, 67
TSC_MsgGetCallInfoExt, 67
TSC_MsgGetCallState, 43
TSC_MsgMakeCall, 34, 44, 53, 72
TSC_MsgMakeCallCmplt, 72
TSC_MsgRejectCall, 44, 55, 70
TSC_MsgReleaseCall, 44, 55, 64,

73

TSC_EvtCallInfo, 47

TSC_EvtCallState, 47

TSC_MsgAcceptCall, 43, 55, 60

TSC_MsgAnswerCall, 43, 55, 57

TSC_MsgDisconnected, 65

TSC_MsgDropCall, 35, 43, 63, 73

TSC_MsgGetCallInfo, 43, 67

TSC_MsgGetCallInfoExt, 67

TSC_MsgGetCallState, 43

TSC_MsgMakeCall, 34, 44, 53, 72

TSC_MsgMakeCallCmplt, 72

TSC_MsgRejectCall, 44, 55, 70

TSC_MsgReleaseCall, 44, 55, 64, 73

TSP services, 25

U

UDP, 18, 109, 111, 135

V

VAD, 87

Valid state, 34

Voice coder, 26

Voice coders
G.711, 18
G.723.1, 18

VSR component, 22, 26

W

Windows NT, 30, 31

WinNT, 31

X

xx_listen, 51

NOTES

NOTES

NOTES

