
DM3 Direct Interface
Function Reference

for Windows NT

Copyright © 1998 Dialogic Corporation

PRINTED ON RECYCLED PAPER

05-0986-001

COPYRIGHT NOTICE

Copyright 1998 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment
on the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot
guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. No
warranties of any nature are extended by the information contained in these copyrighted materials.
Use or implementation of any one of the concepts, applications, or ideas described this document or
on Web pages maintained by Dialogic-may infringe one or more patents or other intellectual property
rights owned by third parties. Dialogic does not condone or encourage such infringement. Dialogic
makes no warranty with respect to such infringement, nor does Dialogic waive any of its own
intellectual property rights which may cover systems implementing one or more of the ideas contained
herein. Procurement of appropriate intellectual property rights and licenses is solely the responsibility
of the system implementer. The software referred to in this document is provided under a Software
License Agreement. Refer to the Software License Agreement for complete details governing the use
of the software.

All names, products, and services mentioned herein are the trademarks or registered trademarks of
their respective organizations and are the sole property of their respective owners. DIALOGIC
(including the Dialogic logo), DTI/124, SpringBoard, and Signal Computing System Architecture
(SCSA) are registered trademarks of Dialogic Corporation.

Publication Date: April, 1998

Part Number: 05-0986-001

Dialogic Corporation
1515 Route 10
Parsippany NJ 07054

Technical Support
Phone: 973-993-1443
Fax: 973-993-8387
BBS: 973-993-0864
Email: CustEng@dialogic.com

For Sales Offices and other contact information, visit our website at http://www.dialogic.com

iii

Table of Contents

1. Introduction .. 1
1.1. About this Guide .. 1
1.2. Documentation Conventions .. 1
1.3. Key DM3 Architecture Concepts ... 2
1.4. DM3 Direct Interface Overview... 3

1.4.1. DM3 Direct Interface Host Library ... 4
1.4.2. DM3 Device Drivers.. 5

1.5. DM3 Hardware... 5
1.6. DM3 Firmware ... 6

2. Function Summary.. 7
2.1. Naming Conventions .. 7
2.2. Calling Functions Asynchronously... 8

2.2.1. OVERLAPPED Structure.. 8
2.2.2. Handling Asynchronous Function Returns .. 9

2.3. Calling Functions Synchronously ... 11
2.3.1. Handling Synchronous Function Returns... 12

2.4. Function Categories.. 15
2.4.1. Cluster Management Functions.. 16
2.4.2. Component Management Functions... 17
2.4.3. Debug Support Functions .. 17
2.4.4. Stream I/O Functions ... 18
2.4.5. Message I/O Functions .. 18
2.4.6. Exit Notification Functions.. 20

3. Function Reference.. 21
mntAllocateMMB() - allocates and clears a Message Block............................... 22
mntAttachMercStream() - opens a stream and attaches it to a stream handle...... 25
mntClearMMB() - clears the command and reply message areas........................ 29
mntClusterActivate() - activates an OUT-port connection 30
mntClusterAllocate() - finds and allocates a cluster .. 34
mntClusterByComp() - finds the cluster that owns an instance 37
mntClusterCompByAttr() - finds a component with specific attributes............... 39
mntClusterConfigLock() - locks a specific cluster .. 42
mntClusterConfigUnlock() - unlocks a previously-locked cluster....................... 44
mntClusterConnect() - interconnects the ports of two instances.......................... 46
mntClusterCreate() - creates a new cluster .. 50

DM3 Direct Interface Function Reference for Windows NT

iv

mntClusterDeactivate() - deactivates connections... 53
mntClusterDestroy() - destroys an empty cluster... 56
mntClusterDisconnect() - breaks an existing connection between ports.............. 58
mntClusterFind() - finds a cluster that has specific attributes.............................. 61
mntClusterFree() - releases an allocated cluster .. 63
mntClusterSlotInfo() - finds the time slots assigned to a port.............................. 65
mntClusterTSAssign() - assigns time slots to a cluster’s SCbus resource 68
mntClusterTSUnassign() - unassigns a timeslot from an SCbus resource 71
mntCompAllocate() - reserves and locks a specific component instance 74
mntCompFind() - finds a component... 77
mntCompFindAll() – returns component addresses with specified attributes...... 81
mntCompFree() - releases an allocated component instance 86
mntCompUnuse() - marks component instances as not being in use 88
mntCompUse() - marks component instances as being in use 90
mntCompleteStreamIo() - completes pending stream I/O requests 92
mntCopyMMB() - copies the specified Message Block...................................... 93
mntDetachMercStream() - detaches a stream .. 94
mntEnumMpathDevice() - enumerates existing Mpath devices 96
mntEnumStrmDevice() - enumerates existing Stream devices 98
mntFreeMMB() - frees the specified Message Block.. 100
mntGetBoardsByAttr() - lists boards with matching attributes.......................... 101
mntGetDrvVersion() - retrieves the driver version string.................................. 105
mntGetLibVersion() - retrieves the Direct Interface library version string 106
mntGetMercStreamID() - returns the stream ID.. 107
mntGetMpathAddr() - returns the message path source address 109
mntGetStreamHeader() - gets the out-of-band stream attributes 111
mntGetStreamInfo() - gets global board-specific stream information 114
mntGetTLSmmb() - retrieves the thread-local storage MMB 116
mntNotifyRegister() – enables notification of sub-component failure............... 118
mntNotifyUnregister() – disables notification of sub-component failure 121
mntRegisterAsyncMessages() - enables receipt of asynchronous messages...... 123
mntRegisterAsyncStreams() - enables receipt of asynchronous stream data 126
mntSendMessage() - sends the message specified in the MMB 129
mntSendMessageWait() - builds an MMB, sends it, then synchronously waits

for I/O completion. .. 131
mntSetExitNotify() - enables notification of Mpath device failure.................... 133
mntSetStreamHeader() - sets the out-of-band stream attributes 135
mntSetStreamIOTimeout() - sets the stream I/O request timeout value 138
mntSetTraceLevel() - enables or disables trace statements 139

Table of Contents

v

mntTerminateStream() - cancels a persistent stream ... 141
mntTrace() - sends trace statements to a file ... 143
mntTransGen() - generates a message transaction ID.. 145
qMsgVarFieldGet() – gets typed fields from a message payload 146
qMsgVarFieldPut() – puts typed fields into a message payload........................ 150

4. Macro Reference ... 155
4.1. Multiple Message Block... 155
4.2. MMB Control Header Macros ... 156
4.3. DM3 Message Macros.. 163

4.3.1. DM3 Message Pointer Macros .. 163
4.3.2. DM3 Message Header Macros .. 164

4.4. DM3 Messages with Payloads.. 166
4.4.1. Messages With Fixed Payloads ... 166
4.4.2. Messages with Variable Payloads.. 167

5. Data Types, Structures, and Error Codes... 169
5.1. Data Types.. 169
5.2. Data Structures ... 170

5.2.1. MSB Stream Buffer Structure.. 170
5.2.2. STRM_HDR Stream Header Structure.. 171
5.2.3. STRM_INFO Stream Information Structure 172
5.2.4. QBoardAttr Board Attribute Structure... 173
5.2.5. QCompAttr Component Attribute Structure 173
5.2.6. QCompDesc Component Descriptor Structure.................................. 175
5.2.7. QValueAttr Board Attribute Specification Structure 177

5.3. Error Code Definitions ... 177
5.3.1. Windows NT Error Codes ... 177
5.3.2. Dialogic Library and Driver Error Codes .. 180

Index .. 183

vii

List of Tables

Table 1. Direct Interface Host Library Function Categories 15
Table 2. Cluster Management Functions ... 16
Table 3. Component Management Functions .. 17
Table 4. Debug Support Functions.. 17
Table 5. Stream I/O Functions... 18
Table 6. Message I/O Functions.. 19
Table 7. Exit Notification Functions ... 20
Table 8. Messages with Fixed Payloads .. 167
Table 9. Messages with Variable Payloads ... 168
Table 10. Data Type Definitions ... 169
Table 11. Component Attribute Values ... 174
Table 12. Windows NT General Error Codes ... 178
Table 13. Windows NT Stream Error Codes... 179
Table 14. Dialogic Error Codes... 180

ix

List of Figures

Figure 1. DM3 Direct Interface Components .. 4
Figure 2. Handling Asynchronous Function Returns... 10
Figure 3. Handling Synchronous Function Returns... 13
Figure 4. General MMB Structure... 156

1

1. Introduction

The DM3 Direct Interface host library functions, macros, and data structures that
provide access to the DM3 devices under Windows NT are described in this
document. Use the Direct Interface in conjunction with the Win32 API to
produce highly native DM3-based applications.

1.1. About this Guide

This guide, the DM3 Direct Interface Function Reference for Windows NT,
contains the following:

Chapter 1 provides a brief overview of the DM3 Direct Interface.

Chapter 2 summarizes the Direct Interface host library functions and describes
their syntax convention.

Chapter 3 provides complete details about all Direct Interface host library
functions, which are listed alphabetically.

Chapter 4 contains descriptions of macros provided with the Direct Interface.

Chapter 5 describes data structures, data types, parameters, and constants used by
the Direct Interface host library functions.

For information on creating applications with the Direct Interface, refer to the
guide Using the DM3 Direct Interface for Windows NT. For details on library
functions, macros, and data structures, refer to this guide, the DM3 Direct
Interface Function Reference for Windows NT.

1.2. Documentation Conventions

The following conventions are used throughout this guide:

� New terms are shown in italic text.
� Important words or phrases are shown in bold text.

DM3 Direct Interface Function Reference for Windows NT

2

� File names are shown in lowercase italic text, such as stddefs.h.
� Function names are shown in boldface with parentheses, such as

mntSendMessage().
� Data structure field names and function parameter names are shown in

boldface, as in timeout.

1.3. Key DM3 Architecture Concepts

This section offers a brief explanation of the concepts that you must be familiar
with before you begin working with DM3 products. For more information about
these concepts, see the DM3 Mediastream Architecture Overview.

� DM3 is an architecture on which a set of Dialogic products are built. The
DM3 architecture is open, layered, and flexible, encompassing hardware as
well as software components.

� A DM3 resource is a conceptual entity implemented in firmware that runs on
DM3 hardware. A resource contains a well defined interface or message set,
which the host application uses when accessing the resource. The message set
for each resource is described in a DM3 Resource User’s Guide.

Resource firmware consists of multiple components that run on the DM3 core
platform software. The DM3 GlobalCall resource is an example of such a
resource, providing all of the features and functionality necessary for
handling calls.

� A component is an entity that comprises a DM3 resource. A component runs
on a DM3 control processor or signal processor depending on its function.
Certain components handle configuration and management issues, while
others process stream data.

To access the features of a resource, the host exchanges messages and stream
data with certain components of that resource. During runtime, components
inside a resource communicate (via messages) with other components of that
resource, as well as with components of other resources.

� A component instance is a logical entity that represents a single thread of
control for the operations associated with a DM3 component. DM3
components generally support multiple instances so that a single component
on a single processor can be used to process multiple streams or channels.

1. Introduction

3

Instances are addressable units and DM3 messages may be sent to individual
instances of a component.

� A DM3 message is a formatted block of data exchanged between the host and
component instances, between component instances and the core platform
software, as well as between the DM3 component instances themselves.

The DM3 architecture implements different kinds of messages, based on the
functionality of the message sender and recipient. Messages can initiate
actions, handle configuration, affect operating states, and indicate that events
have occurred.

� A cluster is a collection of DM3 component instances that share specific
timeslots on the network interface or the Time Division Multiplexed (TDM)
bus, and which therefore operate on the same data stream. The cluster concept
in the DM3 architecture corresponds generally to the concept of a “group” in
S.100, or to a “channel” in conventional Dialogic architectural terminology.
Component instances are bound to a particular cluster and its assigned
timeslots in an allocation operation.

� A port is a logical entity that represents the point at which Pulse Code
Modulated (PCM) data can flow between component instances in a cluster.
Ports are classified and designated in terms of data flow direction and the
type of component instance that provides the port.

1.4. DM3 Direct Interface Overview

The DM3 Direct Interface is a low-level interface. By sending and receiving
messages, the Direct Interface provides access to the DM3-based embedded
system, and shields you from device driver specifics. You can use the Direct
Interface as the foundation from which you can build a higher-level API. Win32
file- and resource-management services are available to you when using the Direct
Interface.

The Direct Interface consists of the DM3 Host Library and DM3 Device Drivers
(a Class Driver and a Protocol Driver). Applications communicate with the host
library; the device drivers are not accessed directly.

Figure 1 illustrates the host and embedded portions of a generic DM3-based
system.

DM3 Direct Interface Function Reference for Windows NT

4

Protocol Driver(s)

Class Driver

W in32 API

W in32 Application

Host

Em bedded

DM 3 Host Library

Vis ible

Inv is ib le

m nti.dll

d lgcm cd.sys

d lgcm pd.sys

H ardw a re
F irm w are

C om po ne n t Ins ta nce s

M path & Strm
Devices

Board
Device(s)

Figure 1. DM3 Direct Interface Components

1.4.1. DM3 Direct Interface Host Library

The DM3 Direct Interface host library (mnti.lib) is the lowest-level interface for
accessing DM3 devices. Use the library in conjunction with the Win32 API to
produce native Windows NT applications. The DM3 Direct Interface provides
configuration management, message allocation, messaging, cluster and time slot
management, and data stream services.

All device handles used with the Direct Interface are native Win32 handles and
are passed directly to Win32 event functions. The host library protects shared data
structures from being overwritten when they are used by multiple threads.

An application built with the Direct Interface uses the Multiple Message Block
(MMB) as the primary data structure. The MMB is used to send messages to and
receive messages from the DM3 embedded system.

1. Introduction

5

1.4.2. DM3 Device Drivers

DM3 device drivers include the Dialogic Class Driver and Dialogic Protocol
Driver. Application developers do not need to access these drivers directly; the
Host Library is used to communicate with these drivers.

The Dialogic Class Driver (dlgcmcd.sys) is the highest-level driver that interacts
with the Dialogic Protocol Driver. The Class Driver recognizes DM3 device
names (Mpath for messages and Strm for streams) and supports all Win32 API I/O
function calls that perform bulk data transfers, including CreateFile(),
ReadFile(), and WriteFile() .

The Dialogic Protocol Driver (dlgcmpd.sys) is the lowest-level driver that handles
all I/O operations between a DM3 embedded system and the host machine. The
Protocol Driver communicates through shared memory (Shared RAM) that is
mapped to the system address space. For PCI devices, this mapping takes place
when the Protocol Driver loads and initializes. (More precisely, the PCI
configuration process is handled by Windows NT at boot time and later, the
Protocol Driver discovers and claims the DM3 boards.) The Protocol Driver
supports both PIO (Programmed Input/Output) and DMA (Direct Memory
Access).

1.5. DM3 Hardware

The hardware used in a DM3 embedded system is a modular and scaleable
implementation of the DM3 architecture. A DM3 product consists of one
baseboard, up to three signal-processing daughterboards, and other hardware
components.

The baseboard hardware is available in the following form factors:
� PCI (Peripheral Component Interconnect)
� CompactPCI (Compact Peripheral Component Interconnect)
� VME (Versa Module Europa)

A configured hardware assembly is installed in a chassis. For details about
installing a particular board assembly, refer to the Quick Install Card packaged
with the product.

DM3 Direct Interface Function Reference for Windows NT

6

1.6. DM3 Firmware

At system startup, binary code is downloaded to the DM3 board assembly. The
firmware on the assembly is the ultimate target of all I/O operations. It includes
components, kernels, and service managers.

For more information about these concepts, see the DM3 Mediastream
Architecture Overview.

7

2. Function Summary

Direct Interface host library functions are summarized and listed by category in
this chapter. Calling functions asynchronously and synchronously is also
described.

2.1. Naming Conventions

The following naming conventions are used throughout this manual:

� Function Names are shown in bold mixed case type, such as
mntSetTraceLevel(). Each function name begins with “mnt” followed by
one or more words describing that function. Each word within a function
name begins with a capital letter, there are no separator characters, and the
name ends with a set of parentheses.

� Macro Names are shown in one of two ways, depending on the macro type.
Macros used to access DM3 messages and Multiple Message Blocks (MMBs)
are shown in non-bold uppercase type, such as MNT_GET_CMD_QMSG.
Macros used to access DM3 structures are shown in non-bold mixed case
type, such as QResultError_get.

� Data Type Names (typedef) are shown in non-bold type, such as char, and
PQBoardAttr. Data type names can be uppercase, lowercase, or mixed case.

� Constant Definitions (#define) are shown in non-bold uppercase type, such
as MNTI_STATE_PRE_INIT and MNTI_STATE_INITIALIZED. Each
constant definition begins with “MNTI” followed by one or more words
describing that constant. Underscore separators between words aid
readability. Related constant definitions share the same first word.

� Parameter Names are shown in bold mixed case type, such as nTimeout.
Words within a parameter name begin with a capital letter, such as
nReplyCount. Pointer parameter names begin with either “p” or “lp,” such as
pAttr or lpMMB . Within each function syntax table in Chapter 3. Function
Reference, input parameter names are listed above output parameter names.

DM3 Direct Interface Function Reference for Windows NT

8

2.2. Calling Functions Asynchronously

All Direct Interface host library functions that accept the lpOverlapped parameter
can operate in either asynchronous or synchronous mode. If the lpOverlapped
parameter is non-NULL, the call is in an asynchronous (overlapped) I/O mode and
the function returns immediately before the actual I/O completes.

2.2.1. OVERLAPPED Structure

When calling a function asynchronously, you must set the lpOverlapped
parameter to a non-NULL value. The OVERLAPPED structure is a Win32 API
asynchronous I/O data structure. An application normally allocates and initializes
this structure, then passes it to the Win32 API functions, such as ReadFile() and
WriteFile() . An application can specify the hEvent field in the OVERLAPPED
structure to the Win32 API wait-for-object functions, such as
WaitForSingleObject(), to provide notification of asynchronous function
completion.

The application is responsible for managing the OVERLAPPED structure. If
multiple requests are outstanding on the same device, each request must be
associated with a unique OVERLAPPED structure.

If the message path handle, which is specified through the hDevice parameter, has
been opened with the FILE_FLAG_OVERLAPPED flag set in the
dwFlagsAndAttributes parameter in the CreateFile() function call, the
application can pass a valid lpOverlapped parameter with the request. The calling
thread can use any wait function to wait for the event object, a member of the
OVERLAPPED structure, to be signaled, then call the GetOverlappedResult()
function to determine the operation’s results.

If the specified message path handle has been opened without setting the
FILE_FLAG_OVERLAPPED flag, the lpOverlapped parameter should be set to
NULL. The function either completes the operation synchronously or times out. If
the function returns TRUE, it has completed successfully. Otherwise, it has failed
or timed out, and the calling thread must call the GetLastError() function to
retrieve the error.

2. Function Summary

9

2.2.2. Handling Asynchronous Function Returns

The operations detailed below and the flow chart in Figure 2 describe the steps to
follow when a function returns that was called asynchronously.
1. A Direct Interface function will always return FALSE when called

asynchronously. Call the Win32 GetLastError() function to retrieve an
error code. The error code may be one of three types: Windows NT (defined
in winerror.h), DM3 Direct Interface (defined in dllmnti.h), or DM3 Kernel
(defined in qkernerr.h).

2. If GetLastError() returns ERROR_IO_PENDING, it indicates the operation
has not completed. Wait for function completion using the Win32 wait-for-
object functions WaitForSingleObject() or WaitForMultipleObjects()
depending on the number of expected objects.
If GetLastError() returns a different error code, process it as either a
Windows NT error or DM3 Direct Interface error.

3. Upon function completion, call the GetOverlappedResult() function.
4. Call the MNT_GET_REPLY_QMSG() macro to find the reply message.
5. Use the QMSG_GET_MSGTYPE() macro on the reply message to

determine the reply message type.
6. If the message type is QResultError, call the QResultError_get() macro and

process the kernel error (defined in qkernerr.h).
7. If the message type is not QResultError, the function has completed

successfully and the result message contents may be processed.

DM3 Direct Interface Function Reference for Windows NT

10

Call
Remote Function
Asynchronously

Return=
FALSE

Yes

Yes

No

No

GetLastError()==
ERROR_ IO_PENDING

Process MNTI or
WindowsNT error

Process MNTI or
WindowsNT error

Wait for
Completion

GetOverlappedResult()
==TRUE

Call
MNT_GET_REPLY_QMSG()

macro

Call
QResultError_get()

macro

Yes No

Done; process
successful result

message

QMSG_GET_MSGTYPE()
==QResultError

Process
Kernel Error

Figure 2. Handling Asynchronous Function Returns

2. Function Summary

11

This code fragment provides a general example of handling a function return
asynchronously.

if (mntSendMessage(DevHandle, lpMMB, &Overlapped) == FALSE){
 // Call GetLastError to get the error code
 ErrorCode = GetLastError();
 if (ErrorCode == ERROR_IO_PENDING){
 // Now wait for operation to complete
 if ((WaitForSingleObject(DevHandle, INFINITE)) ==
 WAIT_FAILED) {
 // perform error handling
 return(FALSE);
 }
 if (GetOverlappedResult(DevHandle, &Overlapped,
 &RecvByteCount, FALSE) == FALSE){
 // Call GetLastError to get the error code
 ErrorCode = GetLastError();
 // perform error handling
 return(FALSE);
 }
 }

/* If send message is successful, retrieve results */
 MNT_GET_REPLY_QMSG(lpMMB, 1, &pMsg);

 /* Check for firmware error */
 QMSG_GET_MSGTYPE(pMsg, &ReplyType);

 if (ReplyType == QResultError) {
 /* Error, print error code */
 QResultError_t qr;

 QResultError_get(pMsg, &qr, Offset);
 printf("Error %x\n", qr.errorCode);
 goto cleanup;
 }
}

2.3. Calling Functions Synchronously

Some Direct Interface host library functions, such as mntAllocateMMB() , work
only in synchronous mode. As stated earlier, most functions can operate either
asynchronously or synchronously depending on the lpOverlapped parameter.

DM3 Direct Interface Function Reference for Windows NT

12

2.3.1. Handling Synchronous Function Returns

The operations detailed below and the flow chart in Figure 3 describe the steps to
follow when a function returns that was called synchronously.

If the function return value is TRUE, it indicates that the driver successfully
processed the arguments. Any expected function outputs will have valid contents.
For example, if the mntCompFind() function is called in synchronous mode and
valid arguments are sent and returned, when the TRUE return message is received,
the variable pointed to by the lpInstance argument will contain the returned
component descriptor.

If the function return value is FALSE, the function call has failed. Perform the
following steps to process the failure:
1. Call the Win32 GetLastError() function to retrieve an error code. The error

code may be one of three types: Windows NT (defined in winerror.h), DM3
Direct Interface (defined in dllmnti.h), or DM3 Kernel (defined in
qkernerr.h).

2. Logically AND the mask constant ERROR_MNT_BASE with the value
returned from GetLastError() to determine if the error is Windows NT or
Direct Interface.

3. If GetLastError() returns ERROR_MNT_MERCURY_KERNEL, it
indicates a DM3 Kernel error has occurred.
If GetLastError() returns a different error code, process it as either a
Windows NT error or DM3 Direct Interface error.

4. Call the mntGetTLSmmb() function, which returns a pointer to the reply
message contained in the thread-local-storage MMB.

5. Use the QMSG_GET_MSGTYPE() macro on the reply message to
determine the reply message type.

6. If the message type is QResultError, call the QResultError_get() macro and
process the kernel error (defined in qkernerr.h).

7. If the message type is not QResultError, the error is undefined.

2. Function Summary

13

Call MNTI Function
Synchronously

Done
Arguments are valid

ErrorCode=
GetLastError()

Call
mntGetTLSmmb()

to get MMB

Call
QResultError_get()

macro

Yes

Yes

No

No

Undefined error

QMSG_GET_MSGTYPE()
==QResultError

ErrorCode==
ERROR_MNT_MERCURY_KRNL

Process MNTI or
WindowsNT error

Process Kernel error

Return=
FALSE

Return=
TRUE

Figure 3. Handling Synchronous Function Returns

DM3 Direct Interface Function Reference for Windows NT

14

This code fragment provides a general example of handling a function return
synchronously.

/* Issue the command */
 if (mntClusterCompInfo(hMCD,
 mntTransGen(),
 &clusterAddr,
 &count,
 compDescs,
 DEF_TIMEOUT,
 NULL,
 NULL) == FALSE) {
 printf("mntClusterCompInfo failed %d", GetLastError());
 /* If send message is successful, retrieve results */
 mntGetTLSmmb(&lpMMB, NULL, &pMsg);

 /* Check for firmware error */
 QMSG_GET_MSGTYPE(pMsg, &ReplyType);

 if (ReplyType == QResultError) {
 /* Error, print error code */
 QResultError_t qr;

 QResultError_get(pMsg, &qr, Offset);
 printf("Error %x\n", qr.errorCode);
 goto cleanup;
 }
 return(1);
 }

/* Success! comp desc array is filled in by mntClusterCompInfo() */
 printf("mntClusterCompInfo successful count = %d\n", count);

2. Function Summary

15

2.4. Function Categories

The following sections divide the function calls in the DM3 Direct Interface for
Windows NT into categories. Categories are listed in Table 1. Each function call
in a category is related by the task that the function performs.

Table 1. Direct Interface Host Library Function Categories

Cluster management functions � Provide a set of tools to manage clusters
and time slots

Component management
functions

� Provide a set of configuration and
registration services for control of
firmware components and component
instances

Debug support functions � Provide a set of services that allow the
run-time collection of data for debug
tracing and the background verification of
application code and data.

Stream I/O functions � Provide access to bulk data transfers to
and from stream devices

Message I/O functions � Provide a set of services for generating,
transferring, and accessing messages
passed between the host and component
instances

Exit Notification functions � Provide on/off switching of exit
notification services

DM3 Direct Interface Function Reference for Windows NT

16

2.4.1. Cluster Management Functions

The Direct Interface host library cluster management functions provide a set of
tools to manage clusters and time slots.

Table 2. Cluster Management Functions

mntClusterActivate() � Activates an OUT-port connection

mntClusterAllocate() � Finds and allocates a cluster

mntClusterByComp() � Finds the cluster that owns an instance

mntClusterCompByAttr() � Finds a component with specific attributes

mntClusterConfigLock() � Locks a specific cluster

mntClusterConfigUnlock() � Unlocks a previously locked cluster

mntClusterConnect() � Interconnects the ports of two instances

mntClusterCreate() � Creates a new cluster

mntClusterDeactivate() � Deactivates connections

mntClusterDestroy() � Destroys an empty cluster

mntClusterDisconnect() � Breaks an existing connection between
ports

mntClusterFind() � Finds a cluster that has specific attributes

mntClusterFree() � Releases an allocated cluster

mntClusterSlotInfo() � Finds time slots assigned to a port

mntClusterTSAssign() � Assigns time slots to a cluster’s SCbus
resource

mntClusterTSUnassign() � Unassigns a time slot from a cluster’s
SCbus resource

2. Function Summary

17

2.4.2. Component Management Functions

The Direct Interface host library component management functions provide a set
of configuration and registration services for control of application firmware
components and component instances.

Table 3. Component Management Functions

mntCompAllocate() � Reserves and locks a specific component instance

mntCompFind() � Finds a component

mntCompFindAll() � Returns a list of component addresses matching
specified attributes

mntCompFree() � Releases an allocated component instance

mntCompUnuse() � Marks component instances as not being in use

mntCompUse() � Marks component instances as being in use

2.4.3. Debug Support Functions

The Direct Interface host library debug support functions provide a set of services
that allow the run-time collection of data for debug tracing and the background
verification of application code and data.

Table 4. Debug Support Functions

mntGetDrvVersion() � Retrieves the driver version string from the Class
Driver (DLGCMCD)

mntGetLibVersion() � Retrieves the host library version string from the
Class Driver (DLGCMCD)

mntSetTraceLevel() � Enables or disables trace statements

mntTrace() � Sends trace statements to a file

mntTransGen() � Generates a message transaction ID

DM3 Direct Interface Function Reference for Windows NT

18

2.4.4. Stream I/O Functions

The Direct Interface host library stream I/O functions provide access to bulk data
transfers to and from stream devices.

Table 5. Stream I/O Functions

mntAttachMercStream() � Opens a stream and attaches the stream
ID to a stream handle.

mntCompleteStreamIo() � Completes pending stream I/O requests

mntCheckStreamOrphans() � Checks for orphan bytes

mntDetachMercStream() � Deallocates a reference to a stream ID

mntGetMercStreamID() � Retrieves a stream ID

mntGetStreamHeader() � Gets the out-of-band stream attributes

mntGetStreamInfo() � Gets global board-specific stream
information

mntRegisterAsyncStreams() � Registers a number of stream buffers
for receipt of asynchronous stream data

mntSetStreamHeader() � Sets the out-of-band stream attributes

mntSetStreamIOTimeout() � Sets the stream read or write request
timeout value

mntTerminateStream() � Cancels a persistent stream

2.4.5. Message I/O Functions

The Direct Interface host library message I/O functions provide a set of services
for generating, transferring, and accessing messages passed between the host and
component instances.

2. Function Summary

19

Table 6. Message I/O Functions

mntAllocateMMB() � Allocates and clears an MMB (multiple
message block)

mntClearMMB() � Clears the command and reply message
areas

mntCopyMMB() � Copies the specified MMB (multiple
message block)

mntEnumMpathDevice() � Enumerates existing Mpath devices

mntEnumStrmDevice() � Enumerates existing Stream devices

mntFreeMMB() � Frees the specified MMB (multiple
message block)

mntGetBoardsByAttr() � Lists boards that match a list of caller-
supplied attributes

mntGetMpathAddr() � Gets the message path source address

mntGetTLSmmb() � Gets the thread-local storage MMB

mntRegisterAsyncMessages() � Registers a number of buffers for
receipt of asynchronous messages

mntSendMessage() � Asynchronously sends the message
specified in the MMB (multiple
message block)

mntSendMessageWait() � Builds and sends a message then
synchronously waits for the I/O
completion.

qMsgVarFieldGet() � Gets a number of typed fields from a
message payload

qMsgVarFieldPut() � Puts a number of typed fields into a
message payload

DM3 Direct Interface Function Reference for Windows NT

20

2.4.6. Exit Notification Functions

The Direct Interface host library exit notification functions allow messages to be
sent to registered addresses whenever an unexpected termination occurs. Two
types of exit notification are possible: messages sent to an application upon sub-
component failure and messages sent to the platform upon Mpath failure. The
functions listed in Table 7 provide on/off switching of exit notification.

Table 7. Exit Notification Functions

mntNotifyRegister() � Enables sub-component exit notification to
application

mntNotifyUnregister() � Disables sub-component exit notification to
application

mntSetExitNotify() � Enables/disables Mpath exit notification to
board

21

3. Function Reference

This chapter describes the Direct Interface functions and lists them alphabetically.

The following conventions are used throughout this chapter:

� New terms are shown in italic text.
� Important words or phrases are shown in bold text.
� Function names are shown in boldface with parentheses, such as

mntSendMessage().
� Data structure field names and function parameter names are shown in

boldface, as in timeout.
� Messages are shown in italic text, such as QResultComplete.

NOTE: In this manual, the terms MercMpath and Mpath are used
interchangeably. Similarly, the MercStrm and Strm device names are also
used interchangeably.

mntAllocateMMB() allocates and clears a Message Block

22

Name: LPMMB mntAllocateMMB(nCommandSize, nReplyCount,
nReplyMaxSize)

Inputs: ULONG nCommandSize � bytes required
ULONG nReplyCount � expected replies
ULONG nReplyMaxSize � size of replies

Outputs: None
Returns: LPMMB a pointer to an MMB

NULL when specified MMB could not be allocated
Includes: qhostlib.h
Category: message I/O function

Mode: synchronous

��Description

The mntAllocateMMB() function allocates and clears a Message Block, then
returns its pointer. All specified byte sizes are rounded up to the next word
boundary.

This function automatically sets the endian and version flags in the command
QMsg header and sets the default MATCH_ON_SRC_ADDR flag in the MMB
control block. This function also sets the command message payload size.

Parameter Description

nCommandSize number of bytes required for the command message. This
number is normally equal to the command message header
size plus the command message payload size. Maximum
value for this parameter is
MNT_MAX_COMMAND_SIZE. If set to zero, an empty
message with no command to send is indicated. In this
case, nReplyCount must be non-zero to receive
asynchronous event messages. Note that the actual size
recorded in the MMB is the command message payload
size minus the QMsg size.

nReplyCount expected number of replies from the DM3 platform.
Maximum value for this parameter is
MNT_MAX_REPLY_COUNT.

allocates and clears a Message Block mntAllocateMMB()

23

Parameter Description

nReplyMaxSize maximum size in bytes of all replies that might be
received by the host. Each reply size is equal to the QMsg
size plus the reply message (payload) size. For example, if
you expect two replies with sizes MSG_REPLYSIZE_1
and MSG_REPLYSIZE_2, set this parameter to the sum
of the two reply sizes. Maximum value for this parameter
plus the nCommandSize value is
MNT_MAX_CMD_PAYLOADSIZE.

Use the following macro to get the command QMsg message pointer:

MNT_GET_CMD_QMSG (LPMMB lpMMB, QMsgRef *pMsg)

Use the following macro to get the reply QMsg message pointer:

MNT_GET_REPLY_QMSG (LPMMB lpMMB, ULONG ReplyNumber,
QMsgRef *pMsg)

To access the first reply message, the macro requires the command QMsg payload
size to be defined.

To access reply messages other than the first reply message (ReplyCount > 1),
the macro requires that the previous reply message “message size” or “payload
size” be defined.

To create an MMB for an asynchronous event message, set the CommandSize
parameter equal to zero. The mntAllocateMMB() function allocates an MMB
consisting of a command QMsg with no payload and a reply section determined
by nReplyMaxSize. An empty message is indicated by using the macro
MNT_SET_MMB_EMPTY_MSG(lpMMB).

��Cautions

None.

��Errors

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

mntAllocateMMB() allocates and clears a Message Block

24

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

None.

��See Also

�� mntClearMMB()
�� mntFreeMMB()

opens a stream and attaches it to a stream handle mntAttachMercStream()

25

Name: BOOL mntAttachMercStream(hDevice, nBoardNumber,
nModeFlags, lpMercStreamID, lpStreamSize, nTimeout,
lpOverlapped)

Inputs: HANDLE hDevice � device handle
ULONG nBoardNumber � board number
USHORT nModeFlags � mode flags
PULONG lpMercStreamID � stream ID
PULONG lpStreamSize � stream size
USHORT nTimeout � time to wait
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: PULONG lpMercStreamID � stream ID
PULONG lpStreamSize � stream size

Returns: TRUE if successful, FALSE if error
Includes: qhostlib.h
Category: stream I/O function

Mode: asynchronous or synchronous

��Description

The mntAttachMercStream() function opens a stream and attaches it to a
stream handle. If this function passes a valid, non-zero stream ID, it will be
specified in the open-stream message to the DM3 board and that stream will be
attached to the specified stream handle. The nModeFlags and lpStreamSize
parameters specify the stream characteristics and nBoardNumber specifies the
DM3 board on which the stream will be opened. When called synchronously, the
locations pointed to by lpMercStreamID and lpStreamSize are filled in with the
stream ID of the opened stream and the actual size of the stream, respectively.

Set the nModeFlags parameter by logically ORing the flags. Set only one flag in
each of the following pairs:

� MNT_STREAM_FLAG_READ or MNT_STREAM_FLAG_WRITE
� MNT_STREAM_FLAG_NO_FLUSH or MNT_STREAM_FLAG_FLUSH

The lpStreamSize parameter requests the size of the stream buffer used by the
stream device to transfer data. Available stream sizes are configured when the
board is initialized. Therefore, the buffer size that the board allocates and actually
uses for this stream might not be the same as what was requested; however, the
actual size will always be greater than or equal to the requested size. Call the

mntAttachMercStream() opens a stream and attaches it to a stream handle

26

mntGetStreamHeader() function to obtain the actual stream buffer size (stored
in the actualSize field of the PSTRM_HDR structure).

Parameter Description

hDevice stream device handle

nBoardNumber board number

nModeFlags stream attributes for this stream:

MNT_STREAM_FLAG_READ: read stream

MNT_STREAM_FLAG_WRITE: write stream

MNT_STREAM_FLAG_NO_FLUSH: use existing data
in the read stream

MNT_STREAM_FLAG_FLUSH: flush the stream

MNT_STREAM_FLAG_IGNORE_HEADER: requests
that a DM3 GStream is opened. (GStreams contain no
header information.)

MNT_STREAM_FLAG_PERSISTENT: marks the
stream for persistent mode operation

lpMercStreamID points to an existing stream ID, or to zero if a new
stream is to be opened. Returns the open stream ID if the
call is synchronous.

lpStreamSize pointer to the stream size requested.
(Default = MNT_STREAMSIZE_NORMAL)
For the synchronous call, the actual size allocated is
returned.

nTimeout timeout (in seconds) to wait for a response

lpOverlapped pointer to an OVERLAPPED structure

��Cautions

1. The flush options, MNT_STREAM_FLAG_NO_FLUSH and
MNT_STREAM_FLAG_FLUSH, apply to the action taken on the board, not
by the host-side driver.

2. The application is responsible for managing the OVERLAPPED structure.
Refer to 2.2. Calling Functions Asynchronously for more details.

opens a stream and attaches it to a stream handle mntAttachMercStream()

27

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_FUNCTION � The stream handle specified is
of the wrong type.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_ALREADY_OPEN � The specified stream has been
opened already.

ERROR_MNT_BAD_STREAM_ID � An invalid stream ID was
specified in the argument list.

ERROR_PIPE_BUSY � A stream is already attached
to the specified handle OR the
specified stream is already
open.

��Result Messages

None.

��See Also

�� mntGetStreamHeader()
�� mntGetStreamInfo()
�� mntCheckStreamOrphans()

mntCheckStreamOrphans() checks for orphan bytes

28

Name: BOOL mntCheckStreamOrphans(hDevice, lpOrphanBytes)
Inputs: HANDLE hDevice � device handle

Outputs: PULONG lpOrphanBytes � pointer
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: stream I/O function

Mode: synchronous

��Description

The mntCheckStreamOrphans() function checks for orphan bytes associated
with the specified Stream device. Upon successful return, the location pointed to
by lpOrphanBytes is filled in with the actual byte count of any orphan bytes. If it
finds no orphan bytes, lpOrphanBytes will be zero.

During application development, you can use this function to clear the read stream
before read calls are made. Call mntCheckStreamOrphans() in a loop until it
returns a zero in lpOrphanBytes to empty the read stream buffers.

Parameter Description

hDevice handle to a Stream device

lpOrphanBytes orphan byte count

��Cautions

None.

��Errors

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

��Result Messages - None.

��See Also
None.

clears the command and reply message areas mntClearMMB()

29

Name: BOOL mntClearMMB(lpMMB)
Inputs: LPMMB lpMMB � pointer to MMB to cleared

Outputs: None
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: message I/O function

Mode: synchronous

��Description

The mntClearMMB() function clears the command and reply message areas in
the specified Message Block, but leaves some of the MMB header fields intact.
This function should be called before the MMB is filled with command messages.

This function sets the endian and version flags in the command QMsg. This
function sets the MATCH_ON_SRC_ADDR flag in the MMB control block. This
function also sets the command payload size in the command QMsg.

Parameter Description

lpMMB pointer to the MMB to be cleared

��Cautions

None.

��Errors

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

��Result Messages

None.

��See Also
�� mntAllocateMMB()
� mntFreeMMB()

mntClusterActivate() activates an OUT-port connection

30

Name: BOOL mntClusterActivate(hDevice, nTransID,
ClusterDesc, SCDesc, SCPortID, ClientDesc, nOptions,
nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � cluster instance
QCompDesc SCDesc � SCbus resource
QPortDef SCPortID � flow direction
QCompDesc ClientDesc � client
UCHAR nOptions � behavior
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
mercdefs.h

Category: cluster management function
Mode: asynchronous or synchronous

��Description

The mntClusterActivate() function activates an OUT-port connection in a
cluster. The main use of this function, from the host, is to activate an SCbus OUT-
port in the SCbus resource. This allows data to flow from the TDM bus into any
IN-port in the cluster that is connected to the SCbus OUT-port. If you call this
function synchronously and it finds a standard error message with a QResultError
type, it returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

This function’s parameters define a cluster’s address, an SCbus resource address,
and a default behavior for Simple Talker protocol. The combination of cluster
address, SCbus resource address, and port ID, uniquely identify the SCbus port.

This function allows the host to provide for the full Talker Protocol. Support for
this protocol allows IN-ports inside the cluster to switch between the SCbus OUT-
ports and the OUT-ports within the cluster. The ClientDesc parameter specifies
the address to which to send any connection management messages. The
ClientDesc parameter also models a component. The primary purpose of this
parameter is to provide an address for the Talker Protocol messages needed to

activates an OUT-port connection mntClusterActivate()

31

manage the connection. If the client cannot support the Talker Protocol, you must
set the ClientDesc parameter to NULL.

When the ClientDesc parameter is NULL, the nOptions parameter supports a
simple Talker Protocol for the connection. If the QCLUST_AutoReject option is
set, and another OUT-port within the cluster requests to interrupt the SCbus’s
OUT-port connection to an IN-port within the cluster, the request is rejected. If
the QCLUST_AutoAccept option is set and another cluster OUT-port requests to
interrupt the connection, the connection is broken and the interrupting port is
activated. When the interrupting cluster port ends the interruption, the client’s
connection is reactivated.

If the activation fails (such as when another connection to the port is already
active and cannot be interrupted) and the QCLUST_AutoReject option is set, the
connection is not activated, and the operation fails with an
ERROR_MNT_CLUSTER_BUSY error code.

The mntClusterActivate() function integrates the DM3 cluster switching model
with non-DM3 switching systems.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc cluster instance that owns the SCbus resource to activate

SCDesc address of the SCbus resource that has the OUT-port

SCPortID SCbus resource port specifications. Use this to specify
port direction:

QPORT_DIR_IN: data transmitted to the TDM bus

QPORT_DIR_OUT: data received from the TDM bus

ClientDesc address of the client that owns and manages the time slots
to be connected. This is the address to which all Talker
protocol messages are sent. Specify as NULL if you use
the Option parameter to determine connection behavior
relative to the Talker Protocol.

mntClusterActivate() activates an OUT-port connection

32

Parameter Description

nOptions connection behavior for the Talker Protocol. Specify
either of the following:

QCLUST_AutoReject: automatically reject suspend
requests. The connection cannot be interrupted by another
resource.

QCLUST_AutoAccept: never reject suspend requests.
The connection can be interrupted by another resource.

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterActivate() function causes the QClusterActivate kernel message
(defined in mercdefs.h) to be sent. The QClusterActivate message size is defined
as QClusterActivate_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

activates an OUT-port connection mntClusterActivate()

33

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

�� mntClusterDeactivate()

mntClusterAllocate() finds and allocates a cluster

34

Name: BOOL mntClusterAllocate(hDevice, nTransID,
lpClusterDesc, lpAttr, nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
PQCompDesc lpClusterDesc� cluster pointer
PQCompAttr lpAttr � attributes list
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: PQCompDesc lpClusterDesc� cluster pointer
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterAllocate() function finds and allocates a cluster that has specific
attributes. This function searches for a cluster that is partially specified by
lpClusterDesc parameter and matches the attributes specified in the lpAttr list
parameter. When the function returns (synchronously), the location pointed to by
lpClusterDesc is filled in with the identifier of the cluster that was just allocated.
If you call this function synchronously and it finds a standard error message with a
QResultError type, it returns FALSE with an ERROR_MNT_MERCURY_KRNL
error code.

The lpClusterDesc and lpAttrs parameters together provide the information
needed by the Resource Manager for allocating the desired cluster.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

lpClusterDesc on input, partial cluster descriptor (must contain the
destination board address);
on output, cluster allocated.

lpAttrs an array of attributes, a key/value set.

nTimeout time (in seconds) to wait for a response

finds and allocates a cluster mntClusterAllocate()

35

Parameter Description

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterAllocate() function causes the QClusterAllocate kernel message
(defined in mercdefs.h) to be sent. The QClusterAllocate message size is defined
as QClusterAllocate_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QClusterResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QClusterResult_get() macro:
theInstance (type QCompDesc): descriptor of the allocated cluster

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:

mntClusterAllocate() finds and allocates a cluster

36

errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntClusterFree()

finds the cluster that owns an instance mntClusterByComp()

37

Name: BOOL mntClusterByComp(hDevice, nTransID, CompDesc,
lpClusterDesc, nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc CompDesc � instance in cluster
PQCompDesc lpClusterDesc � cluster pointer
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: PQCompDesc lpClusterDesc � cluster pointer
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterByComp() function finds the cluster that owns an instance. This
function finds which cluster is bound with the instance specified in the CompDesc
parameter. If you call this function synchronously, upon successful return it fills in
the location pointed to by lpClusterDesc with the address of the bound cluster.
However, if this function finds a standard error message with a QResultError type,
it returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

CompDesc instance in a cluster

lpClusterDesc pointer to the cluster found

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterByComp() function causes the QClusterByComp kernel message
(defined in mercdefs.h) to be sent. The QClusterByComp message size is defined
as QClusterByComp_Size.

mntClusterByComp() finds the cluster that owns an instance

38

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QClusterResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QClusterResult_get() macro:
theInstance (type QCompDesc): descriptor of the allocated cluster

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntClusterFind()

finds a component with specific attributes mntClusterCompByAttr()

39

Name: BOOL mntClusterCompByAttr(hDevice, nTransID,
ClusterDesc, lpAttr, lpCompDesc, nTimeout, lpMMB,
lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � cluster to search
PQCompAttr lpAttr � attributes list
PQCompDesc lpCompDesc � component instance ptr
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: PQCompDesc lpCompDesc � component instance ptr
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterCompByAttr() function finds a component with specific
attributes. This function searches the cluster specified in the ClusterDesc
parameter for a component that matches the attributes specified in the lpAttr
parameter. If you call this function synchronously, upon successful return it fills in
the location pointed to by lpCompDesc with the descriptor of the component
instance that matches the specified attributes. However, if this function finds a
standard error message with a QResultError type, it returns FALSE with an
ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc cluster that owns the component instance

lpAttr an array of attributes, a key/value set. If you specify only
the Std_ComponentType attribute in the lpAttr
parameter, this function finds a specific type of
component instance in a cluster.

lpCompDesc pointer to the component instance that matches lpAttr

mntClusterCompByAttr() finds a component with specific attributes

40

Parameter Description

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterCompByAttr() function causes the QClusterCompByAttr kernel
message (defined in mercdefs.h) to be sent. The QClusterCompByAttr message
size is defined as QClusterCompByAttr_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QComponentResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QComponentResult_get() macro:
theInstance (type QCompDesc): the fully qualified address of the
component instance that has the specified attributes

finds a component with specific attributes mntClusterCompByAttr()

41

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

�� mntClusterByComp()

mntClusterConfigLock() locks a specific cluster

42

Name: BOOL mntClusterConfigLock(hDevice, nTransID,
ClusterDesc, nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � target cluster
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterConfigLock() function locks a specific cluster to disable the
automatic deallocation of its components in case the host address, such as the
source address of the Mpath device, goes away. If you call this function
synchronously and it finds a standard error message with a QResultError type, it
returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc cluster to lock

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure that is large enough for the
required command message

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterConfigLock() function causes the QClusterLock kernel message
(defined in mercdefs.h) to be sent. The QClusterLock message size is defined as
QClusterLock_Size.

locks a specific cluster mntClusterConfigLock()

43

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

None.

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

�� mntClusterConfigUnlock()

mntClusterConfigUnlock() unlocks a previously-locked cluster

44

Name: BOOL mntClusterConfigUnlock(hDevice, nTransID,
ClusterDesc, nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � target cluster
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterConfigUnlock() function unlocks a previously-locked cluster to
re-enable the automatic deallocation of its components in case the host address,
such as the source address of the Mpath device, goes away. If you call this
function synchronously and it finds a standard error message with a QResultError
type, it returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc cluster to unlock

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure that is large enough for the
required command message

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterConfigUnlock() function causes the QClusterUnlock kernel
message (defined in mercdefs.h) to be sent. The QClusterUnlock message size is
defined as QClusterUnlock_Size.

unlocks a previously-locked cluster mntClusterConfigUnlock()

45

��Cautions

1. If you call this function synchronously, you must retrieve the passed
parameters via a call to mntGetTLSmmb().

2. The application is responsible for managing the OVERLAPPED structure.
Refer to 2.2. Calling Functions Asynchronously for more details.

��Errors

None.

��Result Messages

QClusterUnlockCmplt
Successful completion. The reply message payload contains two data
fields which may be retrieved via the QClusterUnlockCmplt_get()
macro:
clusterUnlocked (type UInt8): flag indicating cluster was unlocked
count (type UInt8): the number of instances unlocked

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

�� mntClusterConfigLock()

mntClusterConnect() interconnects the ports of two instances

46

Name: BOOL mntClusterConnect(hDevice, nTransID, ClusterDesc,
InstDesc1, PortID1, InstDesc2, PortID2, nTimeout, lpMMB,
lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � cluster instance
QCompDesc InstDesc1 � component instance
QPortDef PortID1 � type and port
QCompDesc InstDesc2 � component instance
QPortDef PortID2 � type and port
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterConnect() function interconnects the ports of two instances. The
primary purpose of this function is to allow the reconfiguration of a cluster.

This function connects the ports bound with the instance specified in the
InstDesc1 parameter to the ports bound with the instance specified in the
InstDesc2 parameter. If no types are specified, the port of each instance is
connected as follows:

� If each instance has a primary IN- and OUT- port, the OUT-port of each
instance is connected with the IN-port of the other, forming a full-duplex
connection.

� If an instance has only one primary port, it is connected to the primary port of
the other instance to create a half-duplex connection. Half-duplex connections
are always OUT-port to IN-port.

You can use the PortID1 and PortID2 parameters to specify the type of
connection to make. This is necessary if you need to make the connection between
non-primary ports. The type parameter can specify any or all of the following port
attributes:

interconnects the ports of two instances mntClusterConnect()

47

� Port type:
� QPORT_TYPE_ECHO
� QPORT_TYPE_RESOURCE
� QPORT_TYPE_NETWORK
� QPORT_TYPE_SCBUS
� QPORT_TYPE_PRIMARY (default)

� Port direction:
� QPORT_DIR_IN
� QPORT_DIR_OUT (Specifying both IN and OUT results in full-duplex

connection.)

� Port instance. Use if there are multiple instances of ports that have the same
type and the same direction. The instance is a number in the range, 1 through
255.

NOTE: If the type parameter resolves to more than one port, as many
connections as possible are made. For example this function makes a
full-duplex connection if PortID1 is a resource, InstDesc1 has both IN-
and OUT-port resources, and InstDesc2 has a pair of IN- and OUT-
ports.

For the host, this function can be used to interconnect:

� Ports in the same cluster
� Ports in separate clusters on the same board
� Ports in separate clusters on separate boards (future use)

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc cluster instance that InstDesc1 occupies

InstDesc1 component instance connected to InstDesc2

PortID1 type of port(s) to connect in InstDesc1. This can be
NULL for simple default connections.

InstDesc2 component instance connected to InstDesc1

PortID2 type of port(s) to connect in InstDesc2. This can be
NULL for simple default connections.

nTimeout time (in seconds) to wait for a response

mntClusterConnect() interconnects the ports of two instances

48

Parameter Description

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterConnect() function causes the QClusterConnect kernel message
(defined in mercdefs.h) to be sent. The QClusterConnect message size is defined
as QClusterConnect_Size.

��Cautions

1. The application is responsible for managing the OVERLAPPED structure.
Refer to 2.2. Calling Functions Asynchronously for more details.

2. There are restrictions on how this function interconnects ports if used from
the host.

Ports in the same cluster No restrictions.

Ports in separate clusters,
same board

Might fail if internal routing is not available.
and board is not configured to use a Timeslot
Broker to request external connections.

Ports in separate clusters,
separate boards

Fails if system is not configured to use a
Timeslot Broker.

The connections parameters PortID1 and PortID2 can be specified as
NULL. This results in the default connection between the primary ports of
each instance.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

interconnects the ports of two instances mntClusterConnect()

49

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntClusterDisconnect()

mntClusterCreate() creates a new cluster

50

Name: BOOL mntClusterCreate(hDevice, nTransID, BrdAddr,
lpAttr, lpClusterDesc, nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc BrdAddr � board address
PQCompAttr lpAttr � cluster attributes
PQCompDesc lpClusterDesc � ID of cluster created
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: PQCompDesc lpClusterDesc � ID of cluster created
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterCreate() function creates a new cluster and returns the cluster
identifier. The null-terminated list of attributes specified in the lpAttrs parameter
associates the attributes with the cluster. If you call this function synchronously,
upon successful return it fills in the location pointed to by lpClusterDesc with the
descriptor of the newly created cluster. However, if this function finds a standard
error message with a QResultError type, it returns FALSE with an
ERROR_MNT_MERCURY_KRNL error code.

The cluster is created on the board specified in the board field of the component
descriptor defined in the BrdAddr parameter.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

BrdAddr component descriptor address of board on which to create
this cluster

lpAttr null-terminated list of attributes to assign to the new
cluster

creates a new cluster mntClusterCreate()

51

Parameter Description

lpClusterDesc upon return, pointer to the cluster instance that has been
created

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterCreate() function causes the QClusterCreate kernel message
(defined in mercdefs.h) to be sent. The QClusterCreate message size is defined as
QClusterCreate_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QClusterResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QClusterResult_get() macro:
theInstance (type QCompDesc): descriptor of the created cluster

mntClusterCreate() creates a new cluster

52

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntClusterDestroy()

deactivates connections mntClusterDeactivate()

53

Name: BOOL mntClusterDeactivate(hDevice, nTransID,
ClusterDesc, SCDesc, SCPortID, nTimeout, lpMMB,
lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � cluster instance
QCompDesc SCDesc � SCbus component
QPortDef SCPortID � ID of resource port
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterDeactivate() function deactivates connections that have
specified OUT-ports. The main use of this function from the host is to disable data
flowing from an SCbus OUT-port to IN-ports inside a cluster. This function
informs the kernel that the TDM data flowing out of the SCbus OUT-port has
stopped, and that the Talker protocol should be disabled for this port.

This function’s parameters define a cluster address and an SCbus resource
address. This function disables any Simple Talker protocol default behavior that
had been previously enabled through the mntClusterActivate() function. The
SCbus port is uniquely identified by the combination of cluster address, SCbus
resource address, and SCbus resource port.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc cluster instance that owns the SCbus resource to
deactivate

SCDesc address of the SCbus resource in the cluster

mntClusterDeactivate() deactivates connections

54

Parameter Description

SCPortID specific SCbus resource port (type and direction)

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterDeactivate() function causes the QClusterDeactivate kernel
message (defined in mercdefs.h) to be sent. The QClusterDeactivate message size
is defined as QClusterDeactivate_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

deactivates connections mntClusterDeactivate()

55

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntClusterActivate()

mntClusterDestroy() destroys an empty cluster

56

Name: BOOL mntClusterDestroy(hDevice, nTransID, ClusterDesc,
nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � cluster to delete
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterDestroy() function destroys an empty cluster.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc address of the cluster to delete

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterDestroy() function causes the QClusterDestroy kernel message
(defined in mercdefs.h) to be sent. The QClusterDestroy message size is defined
as QClusterDestroy_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

destroys an empty cluster mntClusterDestroy()

57

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntClusterCreate()

mntClusterDisconnect() breaks an existing connection between ports

58

Name: BOOL mntClusterDisconnect(hDevice, nTransID,
ClusterDesc, InstDesc1, PortID1, InstDesc2, PortID2,
nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � cluster instance
QCompDesc InstDesc1 � component instance
QPortDef PortID1 � type and port
QCompDesc InstDesc2 � component instance
QPortDef PortID2 � type and port
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterDisconnect() function breaks an existing connection between
ports that are bound with the instances specified in the InstDesc1 and InstDesc2
parameters. If no types are specified, each primary port that is connected to the
instance specified in the InstDesc2 parameter is disconnected.

You can use the PortID1 and PortID2 parameters to specify the types of
connections to break. The PortID1 parameter specifies the type of ports defined
in the InstDesc1 parameter. The PortID2 parameter specifies the type of ports
defined in InstDesc2 parameter. You should set both of these to NULL.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc cluster instance to which to send the disconnect message

InstDesc1 component instance to disconnect from InstDesc2

breaks an existing connection between ports mntClusterDisconnect()

59

Parameter Description

PortID1 type of port(s) to disconnect in InstDesc1. This should be
NULL.

InstDesc2 component instance to disconnect from InstDesc1

PortID2 type of port(s) to disconnect in InstDesc2. This should be
NULL.

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterDisconnect() function causes the QClusterDisconnect kernel
message (defined in mercdefs.h) to be sent. The QClusterDisconnect message
size is defined as QClusterDisconnect_Size.

��Cautions

1. You should specify the PortID1 and PortID2 parameters as NULL.

2. The application is responsible for managing the OVERLAPPED structure.
Refer to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

mntClusterDisconnect() breaks an existing connection between ports

60

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

�� mntClusterConnect()

finds a cluster that has specific attributes mntClusterFind()

61

Name: BOOL mntClusterFind(hDevice, nTransID, lpClusterDesc,
lpAttr, nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
PQCompDesc lpClusterDesc � cluster pointer
PQCompAttr lpAttr � attributes list
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: PQCompDesc lpClusterDesc � cluster pointer
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterFind() function finds a cluster that has specific attributes. If you
call this function synchronously, upon successful return it fills in the location
pointed to by lpClusterDesc with the descriptor of the cluster that matches the
specified attributes.If you call this function synchronously and it finds a standard
error message with a QResultError type, it returns FALSE with an
ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

lpClusterDesc on input, cluster descriptor through which to search (must
contain the destination board address);
on output, descriptor of the found cluster.

lpAttrs an array of attributes, a key or value set

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure that is large enough for the
required command message

lpOverlapped pointer to an OVERLAPPED structure

mntClusterFind() finds a cluster that has specific attributes

62

The mntClusterFind() function causes the QClusterFind kernel message
(defined in mercdefs.h) to be sent. The QClusterFind message size is defined as
QClusterFind_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

None.

��Result Messages

QClusterResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QClusterResult_get() macro:
theInstance (type QCompDesc): descriptor of the allocated cluster

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

�� mntClusterByComp()

releases an allocated cluster mntClusterFree()

63

Name: BOOL mntClusterFree(hDevice, nTransID, ClusterDesc,
nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � cluster to free
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterFree() function releases an allocated cluster. If you call this
function synchronously and it finds a standard error message with a QResultError
type, it returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc cluster to be freed

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterFree() function causes the QClusterFree kernel message
(defined in mercdefs.h) to be sent. The QClusterFree message size is defined as
QClusterFree_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

mntClusterFree() releases an allocated cluster

64

��Errors

None.

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntClusterAllocate()

finds the time slots assigned to a port mntClusterSlotInfo()

65

Name: BOOL mntClusterSlotInfo(hDevice, nTransID, ClusterDesc,
SCDesc, SCPortID, lpClusterInfo, nSlots, lpSlots, nTimeout,
lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � cluster instance
QCompDesc SCDesc � SCbus resource
QPortDef SCPortID � port type
QClusterSlotInfoResult_t

*lpClusterInfo � cluster data
BYTE nSlots � time slots number
PUSHORT lpSlots � time slots array
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterSlotInfo() function finds the time slots assigned to a port. The
SCDesc and SCPortID parameters define the port. If you call this function
synchronously and it finds a standard error message with a QResultError type, it
returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc cluster instance that owns the port to which the time slots
have been assigned

SCDesc SCbus resource that owns the SCbus ports

SCPortID SCbus resource port type and direction:

QSCBUS_PORT_IN

QSCBUS_PORT_OUT

mntClusterSlotInfo() finds the time slots assigned to a port

66

Parameter Description

lpClusterInfo returned cluster information returned (by a synchronous
call only). The structure includes the width that indicates
the actual number of time slots allocated to this resource.

nSlots number of time slots allocated in the array specified by
the lpSlots parameter

lpSlots array of time slots allocated to the SCbus resource (by a
synchronous call only)

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterSlotInfo() function causes the QClusterSlotInfo kernel message
(defined in mercdefs.h) to be sent. The QClusterSlotInfo message size is defined
as QClusterSlotInfo_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

finds the time slots assigned to a port mntClusterSlotInfo()

67

��Result Messages

QClusterSlotInfoResult
Successful completion. The body of this message contains a variable-size
payload which includes five fixed data fields followed by a
variable-length list of data items. The QClusterSlotInfoResult_get()
macro is used to extract the fixed fields into a data structure of type
QClusterSlotInfoResult_t, which contains the following elements:

instDesc (type QCompDesc): descriptor of the cluster
portId (type Uint24): port ID the information pertains to
width (type UInt8): number of timeslots used; this value also indicates
the number of SlotId fields in the variable-length list.
encoding (type UInt8): type of encoding used on this port
idlePattern (type UInt8): type of idle pattern used on this port

The remainder of the message body contains a variable-length list of data
fields with width members. Use qMsgVarFieldGet() with an initial
offset of QClusterSlotInfoResult_Size to retrieve these values.

SlotId (type Uint16): an SCbus timeslot number

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntClusterTSAssign()
� mntClusterTSUnassign()

mntClusterTSAssign() assigns time slots to a cluster’s SCbus resource

68

Name: BOOL mntClusterTSAssign(hDevice, nTransID,
ClusterDesc, SCDesc, SCPortID, nWidth, nEncoding, nIdle,
lpSlotId, nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � cluster instance
QCompDesc SCDesc � SCbus resource
QPortDef SCPortID � port type
UCHAR nWidth � time slots number
UCHAR nEncoding � PCM encoding
UCHAR nIdle � PCM idle pattern
PUSHORT lpSlotId � timeslot list pointer
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterTSAssign() function assigns time slots to a cluster’s SCbus
resource. This function allows Resource and Network OUT-ports to transmit
TDM data to the SCbus, and it allows Resource and Network IN-ports to receive
data from the TDM bus. This function finds which cluster is bound with the
instance specified in the ClusterDesc parameter.

This function’s parameters define a cluster, an SCbus resource, and a set time
slots. This function establishes a logical link between the logical SCbus IN or
OUT-ports and a set of TDM time slots. Ports in the cluster that are transmitting
data to the SCbus IN-port have data transmitted to the SCbus after this function
has been called. (The connections are activated within the cluster through Talker
Protocol.). Ports in the cluster that are connected to the SCbus OUT-port receive
data from that port after the mntClusterActivate() function has been called to
activate the connection. The SCbus OUT-ports need the host to control Talker
Protocol for the port.

assigns time slots to a cluster’s SCbus resource mntClusterTSAssign()

69

You can use the mntClusterTSUnassign() function to unassign a time slot and
stop transmission to and reception from the TDM bus.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc cluster instance that owns the port to which to connect the
time slots

SCDesc SCbus resource that owns the SCbus ports

SCPortID SCbus resource port type and direction

QSCBUS_PORT_IN: data transmitted to the TDM bus

QSCBUS_PORT_OUT: data received from the TDM bus

nWidth number of time slots with which to link. This must match the
width of the SCbus resource width attribute.

nEncoding PCM encoding used for data on the time slots:

QSCBUS_ENCODING_ALAW: sets A-Law encoding

QSCBUS_ENCODING_MULAW: sets �-Law encoding

nIdle idle pattern used on the time slots:

QSCBUS_IDLE_ALAW: sets A-Law idle pattern

QSCBUS_IDLE_MULAW: sets �-Law idle pattern

lpSlotId list of time slots numbers that identify the time slots to be
connected. Use the nWidth parameter to specify the number
of time slots.

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterTSAssign() function causes the QClusterSlotAssign kernel
message (defined in mercdefs.h) to be sent. The QClusterSlotAssign message size
is defined as QClusterSlotAssign_Size.

mntClusterTSAssign() assigns time slots to a cluster’s SCbus resource

70

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntClusterTSUnassign()

unassigns a timeslot from an SCbus resource mntClusterTSUnassign()

71

Name: BOOL mntClusterTSUnassign(hDevice, nTransID,
ClusterDesc, SCDesc, SCPortID, nTimeout, lpMMB,
lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc ClusterDesc � cluster instance
QCompDesc SCDesc � SCbus resource
QPortDef SCPortID � port type
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: cluster management function

Mode: asynchronous or synchronous

��Description

The mntClusterTSUnassign() function unassigns a timeslot from an SCbus
resource. This removes the ability of a resource to transmit to or receive from the
TDM bus.

This function’s parameters define a cluster and an SCbus resource. The function
removes the link between the logical SCbus In or OUT ports and a set of physical
TDM bus time slots. Ports in the cluster that are transmitting data to the SCbus
IN-port no longer have data transmitted to the TDM bus after this function is
called. Ports in the cluster that are connected to the SCbus OUT-port no longer
receive data from that port. Unassigning the SCbus OUT-port has the effect of
calling the mntClusterDeactivate() function before the unassignment takes
place.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc cluster instance that owns the port from which to
disconnect the time slots

SCDesc SCbus resource that owns the SCbus ports

mntClusterTSUnassign() unassigns a timeslot from an SCbus resource

72

Parameter Description

SCPortID SCbus resource port specifications. Use this to specify
port direction:

QPORT_DIR_IN: data transmitted to the TDM bus

QPORT_DIR_OUT: data received from the TDM bus

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntClusterTSUnassign() function causes the QClusterSlotUnassign kernel
message (defined in mercdefs.h) to be sent. The QClusterSlotUnassign message
size is defined as QClusterSlotUnassign_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

unassigns a timeslot from an SCbus resource mntClusterTSUnassign()

73

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntClusterTSAssign()

mntCompAllocate() reserves and locks a specific component instance

74

Name: BOOL mntCompAllocate(hDevice, nTransID, lpInstance,
pAttrs, ClusterDesc, nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
PQCompDesc lpInstance � component instance
PQCompAttr pAttrs � attributes array
QCompDesc ClusterDesc � cluster to allocate into
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: QCompDesc lpInstance � component instance
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: component management function

Mode: asynchronous or synchronous

��Description

The mntCompAllocate() function reserves and locks a specific component
instance. This function allocates a component instance that matches the
requirements specified in the lpInstance and lpAttrs parameters.

If you call this function asynchronously, the fully qualified and allocated
component instance is returned in the MMB reply message.

If you call this function synchronously, upon successful return it fills in the
location pointed to by lpInstance with the descriptor of the allocated component
instance. However, if this function receives a standard error message with a
QResultError type, it returns FALSE with the
ERROR_MNT_MERCURY_KRNL error code.

The lpInstance and lpAttrs parameters together provide the information needed
for the Resource Manager to select an instance of the desired component.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

reserves and locks a specific component instance mntCompAllocate()

75

Parameter Description

lpInstance on input, desired component instance to reserve and lock;

on output, descriptor of the allocated component instance.

pAttrs an array of component attributes, a key/value set.

ClusterDesc cluster in which to allocate the component

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntCompAllocate() function causes the QCompInstAllocate kernel message
(defined in mercdefs.h) to be sent. The QCompInstAllocate message size is
defined as QCompInstAllocate_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

mntCompAllocate() reserves and locks a specific component instance

76

��Result Messages

If you call this function synchronously, it first examines the reply message to
check for successful component allocation. If it returns TRUE, it then returns the
component address in the lpInstance parameter.

If you call this function asynchronously, and it returns FALSE, the
GetLastError() function should retrieve the ERROR_IO_PENDING code. In
this case, you need to call one of the Win32 API wait functions, such as
WaitForMultipleObjects() . After the wait function returns, call the
GetOverlappedResult() function to get the results of the operation.

QComponentResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QComponentResult_get() macro:
theInstance (type QCompDesc): the fully qualified address of the
component instance that has the specified attributes

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntCompFree()

finds a component mntCompFind()

77

Name: BOOL mntCompFind(hDevice, nTransID, lpInstance, pAttrs,
nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
PQCompDesc lpInstance � instance pointer
PQCompAttr pAttrs � attributes array
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: PQCompDesc lpInstance � instance pointer
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: component management function

Mode: asynchronous or synchronous

��Description

The mntCompFind() function finds a component. The function returns a
component address that matches the requirements specified in the lpInstance and
pAttrs parameters.

If you call this function asynchronously, you need to examine the reply message
contained in the MMB. If no qualified component is found, an error is indicated in
the message.

If you call this function synchronously, upon successful return it fills in the
location pointed to by lpInstance with the descriptor of the component instance
that matches the specified attributes. However, if this function finds a standard
error message with a QResultError type, it returns FALSE with an
ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

pAttrs an array of component attributes, a key/value set.

lpInstance on input, desired component instance
on output, component instance that was found.

mntCompFind() finds a component

78

Parameter Description

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntCompFind() function causes the QCompFind kernel message (defined
in mercdefs.h) to be sent. The QCompFind message size is defined as
QCompFind_Size.

A component instance descriptor has the following format:

typedef struct
{
 UInt16 node; /* reserved for node address Not currently used*/
 UInt8 board; /* board ID within host */
 UInt8 processor; /* processor identifier */
 UInt8 component; /* component identifier */
 UInt8 instance; /* instance number (or task id) */
} QCompDesc;

A fully specified component instance contains non-nil values in the processor,
component, and instance fields. The node and board fields are always ignored.
lpInstance should contain only a partially specified address with at least the
processor and possibly the component specified.

lpInstance should be partially specified so the instance field is set to
QCOMP_I_NIL; if it is not set to nil, it is ignored. The component field is
normally set to QCOMP_C_NIL if the request is intended to find a component
matching the specified attributes, but it can contain a component identifier. If the
component field is non-nil, the function completes successfully if the specified
component has the attributes specified; otherwise, an error is returned. The
processor field also can be set to its nil value (QCOMP_P_NIL). If lpInstance is
not specified, the selection is based completely on the attribute defined in pAttrs .

The pAttrs argument references an array of QCompAttr structures. Attributes are
used to identify the capabilities available in components. They can be used to
differentiate components that perform the same type of function, such as audio
coders which support different coding algorithms.

finds a component mntCompFind()

79

A value of type QCompAttr is a structure of the format:

typedef struct
{
 UInt32 key; /* A key defining the type of attribute */
 Int32 value; /* the value of this attribute */
} QCompAttr;

The list of attributes returned is terminated by an entry with a null key,
QATTR_NULL. The use of attributes to select among components is
accomplished by providing a list of attributes. A component instance qualifies if
its component is registered with attributes that match the attributes supplied in the
pAttrs array. A match is indicated if the specified attribute and the registered
attribute have the same key and value. If the attribute is specified in the pAttrs
array with the value QATTR_ANY, it matches any occurrence of any registered
attribute with the same key.

If the pAttrs array is a simple list of attributes, a component instance qualifies for
selection if it matches all of the attributes listed, as well as the non-wild card
fields of the lpInstance argument.

This selection mechanism can be modified by the use of two special keys:
QATTR_OR and QATTR_NOT. These are not actual attributes, but act as
operators in the pAttrs attribute list. The presence of a QATTR_OR attribute (the
value is ignored) has the effect of logically ORing the match results of the two
attributes following QATTR_OR attribute. For example, the list (A, B,
QATTR_OR, C, D) qualifies a component that has the attributes which match A
and B and (C or D).

The QATTR_NOT operator attribute key inverts the match of the attribute
following it in the list. For example, the list (A, B, QATTR_NOT, C) qualifies a
component that has the attributes which match A and B and does not have an
attribute which matches C.

Note that attribute matching follows the order of the elements in the pAttrs array
and makes a single pass without any backtracking. A component fails to qualify
for allocation as soon as the first non-matching attribute is found.

mntCompFind() finds a component

80

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QComponentResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QComponentResult_get() macro:
theInstance (type QCompDesc): the fully qualified address of the
component instance that has the specified attributes

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

�� mntCompFindAll()

returns component addresses with specified attributes mntCompFindAll()

81

Name: BOOL mntCompFindAll (hDevice, nTransID, startMask,
endMask, lpAttr, nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc startMask � starting address
QCompDesc endMask � ending address
PQCompAttr lpAttr � attribute list
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: Component Management

Mode: Asynchronous

��Description

The mntCompFindAll() function returns component addresses with specified
attributes.

This function returns a list of addresses and associated attributes for components
on the board specified in startMask that match the requirements specified in the
lpAttr array. The component addresses and attributes are returned in the body of
a QCompMultipleResult message. If no qualified components are found, a
QResultError message is returned. The search begins with the processor and
component specified in startMask and continues sequentially through all
components up to the processor and component specified in endMask.

This function may find more matching components than can be returned in a
single result message, in which case the address of the next matching component
is returned in the nextComponent field of the QCompMultipleResult message.
To retrieve the addresses and attributes of the additional matching components,
call mntCompFindAll() again with startMask set to nextComponent. This
process can be repeated until nextComponent is NIL, which indicates that the
result message contains all valid results for the specified search.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

mntCompFindAll() returns component addresses with specified attributes

82

Parameter Description

nTransID transaction identifier to be used for all messages
generated by this function

startMask component descriptor that specifies the starting point
for the search; this descriptor must specify the board,
but may use NIL values for the processor and
component to start at the first component on the board.

endMask component descriptor that specifies the processor and
component at which to stop the search; setting these
descriptor fields to NIL values searches to the last
component on the board.

lpAttr array containing a null-terminated list of attributes that
the components must match

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

A component instance descriptor has the following format:

typedef struct
{
 UInt16 node; /* reserved for node address Not currently used*/
 UInt8 board; /* board ID within host */
 UInt8 processor; /* processor identifier */
 UInt8 component; /* component identifier */
 UInt8 instance; /* instance number (or task id) */
} QCompDesc;

This function ignores the node and instance fields in the startMask and
endMask arguments (the node field is currently always ignored). The board
field in the startMask descriptor must specify the board to be searched. The
processor and component fields in the startMask and endMask descriptors may
be specified in order to limit the search to a specific range. Setting
startMask.processor to the nil value, QCOMP_P_NIL, starts the search with the
first processor on the board; setting endMask.processor to the nil value ends the
search on the last processor on the board. Setting startMask.component to the
nil value, QCOMP_C_NIL, starts the search with the first component on the
specified starting processor; setting a nil value for endMask.component ends the
search on the last component on the specified ending processor.

returns component addresses with specified attributes mntCompFindAll()

83

The lpAttr argument references an array of QCompAttr structures which have the
format:

typedef struct
{
 UInt32 key; /* A key defining the type of attribute */
 Int32 value; /* the value of this attribute */
} QCompAttr;

The list of attributes in the lpAttr array is terminated by an entry with a null key,
QATTR_NULL (the value is ignored). A component qualifies if it is registered
with attributes which match the attribute(s) supplied in the lpAttr array. A match
is indicated if the specified attribute and the registered attribute have the same key
and value. An attribute that is specified in the lpAttr array with the value
QATTR_ANY matches any occurrence of any registered attribute with the
specified key.

If the lpAttr array is a simple list of attributes, a component qualifies for selection
if it matches all of the attributes listed. This selection mechanism may be
modified by the use of two special attribute keys: QATTR_OR and QATTR_NOT
(the attribute value is ignored for these special keys). These are not actual
attributes but act as operators in the attribute list.

The presence of a QATTR_OR attribute has the effect of OR’ing the match results
of the two attributes following QATTR_OR attribute. For example, the list (A, B,
QATTR_OR, C, D) qualifies a component that has attributes that match A and B
and (C or D).

The QATTR_NOT operator attribute key inverts the match of the attribute
following it in the list. For example, the list (A, B, QATTR_NOT, C) qualifies a
component which has attributes that match A and B and which does not have an
attribute that matches C.

Note that the matching of attributes follows the order of the elements in the lpAttr
array and makes a single pass without any backtracking. A component fails to
qualify for allocation as soon as the first non-matching attribute is found.

The mntCompFindAll() function causes the QCompFindAll kernel message
(defined in mercdefs.h) to be sent. The QCompFindAll message size is defined as
QCompFindAll_Size.

mntCompFindAll() returns component addresses with specified attributes

84

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QCompMultipleResult
Successful completion. The body of this message contains a variable-
size payload which includes two fixed data fields followed by a variable-
length list of data items. The QCompMultipleResult_get() macro is used
to extract the fixed fields into a data structure of type
QCompMultipleResult_t , which contains the following elements:

count (type UInt8): value representing the number of component
descriptors in the variable part of the message body.
NextComponent (type QCompDesc): if the search specification yielded
more results than can fit in this result message, this field contains the
component descriptor of the next matching component; if the body of this
result message contains all of the results for the specified search, this
field is set to NIL.

The remainder of the message body contains a variable-length list of data
fields with count members. Each component descriptor is followed by a
variable number of attributes associated with the component in a null-

returns component addresses with specified attributes mntCompFindAll()

85

terminated list. Use qMsgVarFieldGet() with an initial offset of
QCompMultipleResult_Size to retrieve these values.

theComponent (type QCompDesc): the component instance descriptor
of a component that satisfies the search criteria. The message may
contain one or more component addresses, as indicated by count, each of
which is followed by a variable-length attribute list.
lpAttr (type QCompAttr): associated with the preceding component
descriptor; the number of attributes is variable, and the end of the
attribute list is indicated by a null attribute.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntCompFind()

mntCompFree() releases an allocated component instance

86

Name: BOOL mntCompFree(hDevice, nTransID, theInstance,
nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc theInstance � instance to be freed
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: component management function

Mode: asynchronous or synchronous

��Description

The mntCompFree() function releases an allocated component instance back
into a pool of available component instances. If you call this function
synchronously and it finds a standard error message with a QResultError type, it
returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

theInstance specifies the desired component instance to be freed

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntCompFree() function causes the QCompInstFree kernel message
(defined in mercdefs.h) to be sent. The QCompInstFree message size is defined
as QCompInstFree_Size.

releases an allocated component instance mntCompFree()

87

��Cautions

The application is responsible for managing the OVERLAPPED structure Refer to
2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntCompAllocate()

mntCompUnuse() marks component instances as not being in use

88

Name: BOOL mntCompUnuse(hDevice, nTransID, nCount,
lpCompList, nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
ULONG nCount � instances count
PQCompDesc lpCompList � instances array
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: component management function

Mode: asynchronous or synchronous

��Description

The mntCompUnuse() function marks component instances as not being in use
by the source address assigned to the device handle. This applies only to
component instances that have previously been marked, through the
mntCompUse() function, as being in use by the source address. If you call the
mntCompUnuse() function synchronously and it finds a standard error message
with a QResultError type, it returns FALSE with an
ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

nCount number of instances in an array

lpCompList array of component instances to mark as not in use

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntCompUnuse() function causes the QCompUnuse kernel message
(defined in mercdefs.h) to be sent. The QCompUnuse message size is defined as
QCompUnuse_Size.

marks component instances as not being in use mntCompUnuse()

89

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

� mntCompUse()

mntCompUse() marks component instances as being in use

90

Name: BOOL mntCompUse(hDevice, nTransID, nCount,
lpCompList, lpPayload, nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
ULONG nCount � instances count
PQCompDesc lpCompList � instances array
PULONG lpPayload � instance payload
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: component management function

Mode: asynchronous or synchronous

��Description

The mntCompUse() function marks component instances as being in use by the
source address assigned to the device handle. If you call this function
synchronously and it finds a standard error message with a QResultError type, it
returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Each source address is assigned to an Mpath device name. When a device handle
is closed after using component instances, the driver notifies the DM3 board that
the application with this source address has terminated. The DM3 board forwards
this notification to the MercPath’s in-use component instances so they can
perform appropriate cleanup tasks.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

nCount number of instances in an array

lpCompList an array of component instances to mark as in use

lpPayload An array of nCount size, representing a payload for the
corresponding component instance in lpCompList .

nTimeout time (in seconds) to wait for a response

marks component instances as being in use mntCompUse()

91

Parameter Description

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntCompUnuse() function causes the QCompUse kernel message (defined
in mercdefs.h) to be sent. The QCompUse message size is defined as
QCompUse_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also - mntCompUnuse()

mntCompleteStreamIo() completes pending stream I/O requests

92

Name: BOOL mntCompleteStreamIo(hDevice)
Inputs: HANDLE hDevice � device handle

Outputs: None
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: stream I/O function

Mode: synchronous

��Description

The mntCompleteStreamIo() function completes pending stream I/O requests
on the stream currently attached to the specified device.

NOTE: While the mntCompleteStreamIo() function itself works in the
synchronous mode, the actual reads or writes complete asynchronously.
Therefore, you need to be prepared for these premature I/O completions.
Each premature I/O completion returns as successful with the actual
number of bytes transferred.

Parameter Description

hDevice stream device handle

��Cautions - None.

��Errors

ERROR_BAD_COMMAND � The specified handle does not have
an attached stream.

ERROR_INVALID_FUNCTION � The stream handle specified is of the
wrong type.

ERROR_INVALID_HANDLE � An invalid handle was specified in
the argument list.

��Result Messages - None.

��See Also - None.

copies the specified Message Block mntCopyMMB()

93

Name: LPMMB mntCopyMMB(lpMMB)
Inputs: LPMMB lpMMB � pointer to MMB to be copied

Outputs: None
Returns: LPMMB a pointer to a new MMB

NULL when the new MMB could not be allocated
Includes: qhostlib.h
Category: message I/O function

Mode: synchronous

��Description

The mntCopyMMB() function copies the specified Message Block to a newly
created MMB.

Parameter Description

lpMMB pointer to the MMB from which to copy

��Cautions

None.

��Errors

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument
list.

��Result Messages

None.

��See Also

mntAllocateMMB()

mntDetachMercStream() detaches a stream

94

Name: BOOL mntDetachMercStream(hDevice, nTimeout,
lpOverlapped)

Inputs: HANDLE hDevice � device handle
USHORT nTimeout � time to wait for response
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: stream I/O function

Mode: asynchronous or synchronous

��Description

The mntDetachMercStream() function detaches a stream from the specified
stream device. If all references to a particular stream ID have been detached, the
stream is closed. You can no longer read from or write to that stream.

Parameter Description

hDevice stream device handle

nTimeout time (in seconds) to wait for a response

lpOverlapped pointer to an OVERLAPPED structure

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to
be initialized.

ERROR_BAD_COMMAND � The specified handle does
not have an attached
stream.

ERROR_INVALID_FUNCTION � The stream handle
specified is of the wrong
type.

detaches a stream mntDetachMercStream()

95

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument
list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument
list.

ERROR_MNT_STRM_ALREADY_CLOSED � The specified stream ID
has been closed.

ERROR_MNT_STRM_NOT_OPEN � The specified stream ID is
not open.

��Result Messages

None.

��See Also

None.

mntEnumMpathDevice() enumerates existing Mpath devices

96

Name: BOOL mntEnumMpathDevice(Mode, lpDeviceName,
lpDeviceNameSize, lpDevStatus)

Inputs: ULONG Mode � request mode
Outputs: LPCSTR lpDeviceName � device name pointer

PULONG lpDeviceNameSize � length of device name
PULONG lpDevStatus � current device status

Returns: TRUE if successful, FALSE if error
Includes: qhostlib.h
Category: message I/O function

Mode: synchronous

��Description

The mntEnumMpathDevice() function enumerates existing Mpath devices.
Upon successful return, the function fills in the locations pointed to by
lpDeviceName, lpDeviceNameSize, and lpDevStatus with the device name,
device name length, and current device status.

Parameter Description

Mode enumeration method:

MNT_FIRST_AVAILABLE: the lpDeviceName
parameter contains the first unused Mpath device.

MNT_GET_FIRST: function returns the first device
currently defined in the system.

MNT_GET_NEXT: function returns the next device in
the list.

lpDeviceName pointer to the device name

lpDeviceNameSize device name length

enumerates existing Mpath devices mntEnumMpathDevice()

97

Parameter Description

lpDevStatus current status of the device returned in the
lpDeviceName parameter. This status can be any of the
following:

MERC_DEVICE_STATUS_FREE: Device has not
been opened.

MERC_DEVICE_STATUS_INUSE_EXCLUSIVE:
Device has been opened by an application that specified
exclusive access.

MERC_DEVICE_STATUS_INUSE_SHARED:
Device has been opened by an application that specified
shared access (for read, write, or both).

��Cautions

There is no guarantee that any subsequent call to the CreateFile() function will
succeed. As always, the caller must be prepared to handle an error return.

��Errors

ERROR_MNT_SYSTEM_ERR � Direct Interface system error.
(An internal error occurred
within the MNTI DLL.)

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_FILE_NOT_FOUND � No device was found that
matches the specified criteria.

��Result Messages

None.

��See Also

mntEnumStrmDevice()

mntEnumStrmDevice() enumerates existing Stream devices

98

Name: BOOL mntEnumStrmDevice(Mode, lpDeviceName,
lpDeviceNameSize, lpDevStatus)

Inputs: ULONG Mode � request mode
Outputs: LPCSTR lpDeviceName � device name pointer

PULONG lpDeviceNameSize � length of device name
PULONG lpDevStatus � current device status

Returns: TRUE if successful, FALSE if error
Includes: qhostlib.h
Category: message I/O function

Mode: synchronous

��Description

The mntEnumStrmDevice() function enumerates existing Stream devices. Upon
successful return, the function fills in the locations pointed to by lpDeviceName,
lpDeviceNameSize, and lpDevStatus with the device name, device name length,
and current device status.

Parameter Description

Mode enumeration method:

MNT_FIRST_AVAILABLE: the lpDeviceName
parameter contains the first unused Stream device.

MNT_GET_FIRST: function returns the first device
currently defined in the system.

MNT_GET_NEXT: function returns the next device in
the list.

lpDeviceName pointer to the device name

lpDeviceNameSize device name length

enumerates existing Stream devices mntEnumStrmDevice()

99

Parameter Description

lpDevStatus current status of the device returned in the
lpDeviceName parameter. This status can be any of the
following:

MERC_DEVICE_STATUS_FREE: Device has not
been opened.

MERC_DEVICE_STATUS_INUSE_EXCLUSIVE:
Device has been opened by an application that specified
exclusive access.

MERC_DEVICE_STATUS_INUSE_SHARED:
Device has been opened by an application that specified
shared access (for read, write, or both).

��Cautions

There is no guarantee that any subsequent call to the CreateFile() function will
succeed. As always, the caller must be prepared to handle an error return.

��Errors

ERROR_MNT_SYSTEM_ERR � Direct Interface system error.
(An internal error occurred
within the MNTI DLL.)

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_FILE_NOT_FOUND � No device was found that
matches the specified criteria.

��Result Messages

None.

��See Also

mntEnumMpathDevice()

mntFreeMMB() frees the specified Message Block

100

Name: BOOL mntFreeMMB(lpMMB)
Inputs: LPMMB lpMMB � pointer to MMB to be freed

Outputs: None
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: message I/O function

Mode: synchronous

��Description

The mntFreeMMB() function frees the specified Message Block.

Parameter Description

lpMMB pointer that was returned from a successful call to the
mntAllocateMMB() function

��Cautions

None.

��Errors

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

��Result Messages

None.

��See Also

mntAllocateMMB()

lists boards with matching attributes mntGetBoardsByAttr()

101

Name: BOOL mntGetBoardsByAttr(pAttr, MaxAttrs, pBoardAttr,
pTotalEntries, pBoardsFound)

Inputs: PQValueAttr pAttr � board attributes list
ULONG MaxAttrs � maximum attributes
PULONG pTotalEntries � number of entries

specified in the attributes
array

Outputs: PQBoardAttr pBoardAttr � matching boards
PULONG pBoardsFound � boards found

Returns: TRUE if successful, FALSE if error
Includes: qhostlib.h
Category: message I/O function

Mode: synchronous

��Description

The mntGetBoardsByAttr() function lists boards with matching attributes. This
function accesses the NT registry and reads the attributes of each board
configured on the system. It then compares the listed attributes against the
attributes provided by the caller in pAttr . Upon successful return, the function
fills in the locations pointed to by pBoardAttr and pBoardsFound with an array
of board attributes matching the specified pAttr values and the number of boards
with matching attributes.

Parameter Description

pAttr array of Registry value attributes to be matched

MaxAttrs maximum number of attributes that can be stored in the
array pointed to by the pBoardAttr parameter

pBoardAttr array of board attributes that matched the specifications in
pAttr

pTotalEntries number of entries in pBoardAttr used for input and output

pBoardsFound number of boards found

The pAttr argument references an array of QValueAttr structures. These
attributes identify available board capabilities. A value of type QValueAttr is a
structure of the format:
typedef struct
{
 char ValueName[MNT_MAX_VALUE_NAME_SIZE];

mntGetBoardsByAttr() lists boards with matching attributes

102

 ULONG ValueType;
 BYTE ValueFlag;
 char Value[MNT_MAX_VALUE_SIZE];
}

Where:

ValueName: contains a NULL terminated string specifying the name of
the value to find or the wild card “*” can be used to
indicate a match on any value name.

ValueType: is one of the Win32 registry types; REG_DWORD,
REG_SZ, or REG_MULTISZ.

ValueFlag: may be NULL to indicate a match on the value specified
in Value or MNT_MATCH_ANY_VALUE to match on
any value.

Value: is the value to match.

The list of attributes returned is terminated by the entry with a null key,
QATTR_NULL. A match is indicated if the specified attribute and the registered
attribute have the same name and value.

The pBoardAttr parameter references an array of QBoardAttr structures. These
attributes identify available board capabilities. A value of type QBoardAttr is a
structure of the format:
typedef struct
{
 charValueName[MNT_MAX_VALUE_NAME_SIZE];
 ULONG ValueType;
 charValue[MNT_MAX_VALUE_SIZE];
 ULONG BoardNo;
}

Where:

ValueName: contains a NULL terminated string specifying the name of
the value which matched.

ValueType: is one of the Win32 registry types; REG_DWORD,
REG_SZ, or REG_MULTISZ.

lists boards with matching attributes mntGetBoardsByAttr()

103

Value: is the current value of the value named in ValueName.

BoardNo: contains the logical board ID of the board which
contained the matching attribute.

The mntGetBoardsByAttr() function lists each board and the attribute that the
board matched in the attribute list. Multiple listings of one board are possible if
the board matches various attributes provided in the pAttr parameter.

The attributes list is terminated by the entry with a null key, QATTR_NULL, if
there is enough space in the attribute list to list all the boards and the null key. If
the null key is absent, the mntGetBoardsByAttr() function did not completely
list all the boards matching the attributes. A match is indicated if the specified
attribute and the registered attribute have the same name and value.

��Cautions

None.

��Errors

ERROR_CANTOPEN � Cannot open registry key.

ERROR_CANTREAD � Cannot read registry key.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_CANTCLOSE � Cannot close registry key.

ERROR_MNT_INVALID_VALUE_TYPE � An invalid value type was
specified in the attribute list.

ERROR_MNT_NO_BOARDS_BY_ATTR � No boards match the specified
criteria.

ERROR_MNT_NO_MEM � The attribute list does not have
enough space to list any
matches.

mntGetBoardsByAttr() lists boards with matching attributes

104

��Result Messages

None.

��See Also

None.

retrieves the driver version string mntGetDrvVersion()

105

Name: BOOL mntGetDrvVersion(lpVersion)
Inputs: None

Outputs: LPCSTR lpVersion � driver version string
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: debug support function

Mode: synchronous

��Description

The mntGetDrvVersion() function retrieves the driver version string from the
Class Driver (DLGCMCD). Upon successful return, the function fills in the
location pointed to by lpVersion with the driver version string.

Parameter Description

lpVersion driver version

��Cautions

The lpVersion version string must be the same size as
MNT_VERSION_STRING_SIZE.

��Errors

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_INSUFFICIENT_BUFFER � The version string buffer is
too small.

��Result Messages

None.

��See Also

�� mntGetLibVersion()

mntGetLibVersion() retrieves the Direct Interface library version string

106

Name: BOOL mntGetLibVersion(lpVersion)
Inputs: None

Outputs: LPCSTR lpVersion � Direct Interface host library
version

Returns: TRUE if successful, FALSE if error
Includes: qhostlib.h
Category: debug support function

Mode: synchronous

��Description

The mntGetLibVersion() function retrieves the Direct Interface library version
string from the Class Driver (DLGCMCD). Upon successful return, the function
fills in the location pointed to by lpVersion with the Direct Interface library
version string.

Parameter Description

lpVersion Direct Interface library version string

��Cautions

The lpVersion version string must be the same size as
MNT_VERSION_STRING_SIZE.

��Errors

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

��Result Messages

None.

��See Also

� mntGetDrvVersion()

returns the stream ID mntGetMercStreamID()

107

Name: BOOL mntGetMercStreamID(hDevice, lpMercStreamID,
lpBoardNumber)

Inputs: HANDLE hDevice � device handle
Outputs: PULONG lpMercStreamID � pointer to stream ID

PULONG lpBoardNumber � pointer to board number
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: stream I/O function

Mode: synchronous

��Description

The mntGetMercStreamID() function returns the stream ID currently associated
with the specified Stream device handle. Upon successful return, the function fills
in the locations pointed to by lpMercStreamID and lpBoardNumber with the
stream identifier and the board number.

Parameter Description

hDevice Stream device handle

lpMercStreamID on return, contains the stream ID

lpBoardNumber on return, contains the board number

��Cautions -

None.

��Errors

ERROR_BAD_COMMAND � The specified handle does not
have an attached stream.

ERROR_INVALID_FUNCTION � The stream handle specified is of
the wrong type.

ERROR_INVALID_HANDLE � An invalid handle was specified in
the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

mntGetMercStreamID() returns the stream ID

108

��Result Messages

None.

��See Also

None.

returns the message path source address mntGetMpathAddr()

109

Name: BOOL mntGetMpathAddr(hDevice, lpSrcAddr, lpDestAddr)
Inputs: HANDLE hDevice � device handle

Outputs: PQCompDesc lpSrcAddr � source pointer
PQCompDesc lpDestAddr � destination pointer

Returns: TRUE if successful, FALSE if error
Includes: qhostlib.h
Category: Message I/O function

Mode: synchronous

��Description

The mntGetMpathAddr() function returns the message path source address
bound to the specified device. Upon successful return, the function fills in the
locations pointed to by lpSrcAddr and lpDestAddr with the source address
assigned to the specified Mpath device and the destination address used in the
most recent I/O request, if any.

Parameter Description

hDevice Mpath device handle

lpSrcAddr pointer to the source address assigned to the specified Mpath
device

lpDestAddr pointer to the destination address used in the most recent I/O
request

��Cautions

None.

��Errors

ERROR_INVALID_HANDLE � An invalid handle was specified in
the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

mntGetMpathAddr() returns the message path source address

110

��Result Messages

None.

��See Also

None.

gets the out-of-band stream attributes mntGetStreamHeader()

111

Name: BOOL mntGetStreamHeader(hDevice, lpHeader)
Inputs: HANDLE hDevice � device handle

PSTRM_HDR lpHeader � pointer to local memory area
Outputs: PSTRM_HDR lpHeader � pointer to stream header info
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: stream I/O function

Mode: synchronous

��Description

The mntGetStreamHeader() function gets the out-of-band stream attributes that
are defined by the structure pointed to by the lpHeader parameter. Upon
successful return, the function fills in the location pointed to by lpHeader with
stream header information.

Parameter Description

hDevice Stream device handle

lpHeader pointer to a local memory area containing out-of-band
stream attributes

The underlying bulk data stream is passed in blocks between the host and the
DM3 platform. These blocks carry attribute data that can control data transfer and
provide out-of-band data associated with the stream and the blocks.

The lpHeader structure is as follows:

typedef struct {
 ULONG sequence;
 UCHAR bufFlags; // MNT_EOD - End of Data = 0x01
 // MNT_EOT - End of Transmission = 0x02
 // MNT_EOF - End of File = 0x04 (equivalent to EOS)
 // MNT_USER1 - User specified flag = 0x08
 // MNT_USER2 - User specified flag = 0x10
 // MNT_USER3 - User specified flag = 0x20
 // MNT_USER4 - User specified flag = 0x40
 // MNT_USER5 - User specified flag = 0x80
 UCHAR encoding;
 UCHAR pad1; // reserved for future use
 UCHAR sysFlags; // read-only
 // STREAM_CLOSED = 0x01
 // STREAM_BROKEN = 0x02
 ULONG canTakeLimit; // read-only
 ULONG initialCanTake; // read-only

mntGetStreamHeader() gets the out-of-band stream attributes

112

 ULONG currentCanTake; // read-only
 ULONG requestedSize; // read-only
 ULONG actualSize; // read-only
} STRM_HDR, *PSTRM_HDR;

The sequence field is used as an incrementing counter as blocks are written. This
field is automatically filled by the lower level stream data block transport code.

The bufFlags field indicates the out-of-band stream attributes as defined below:

� The MNT_EOD flag indicates the end of a valid grouping of data blocks. It
terminates an operation, such as a data transfer, without closing the stream.

� The MNT_EOT flag indicates the end of a collection of groupings that have
been delineated by MNT_EOD flags. Without closing the stream, it marks
such operations as a forced termination of a grouping of operations in which
the data transfer groupings were buffered onto a stream, but were not yet
processed at the time of termination.

� The MNT_EOF flag indicates the end of a stream. It is normally set in the
last block of a stream when the writer closes its end of the stream.

� The MNT_USERn flags can be used for any application-level purpose.

The encoding field indicates the calling processor byte ordering convention (big-
endian or little-endian).

The sysFlags are read-only flags as defined below:

� The STREAM_CLOSED flag is set when EOS is detected on an incoming
data node.

� The STREAM_BROKEN flag is set when the stream device has been
closed. All write requests fail with a broken stream error.

��Cautions

None.

��Errors

ERROR_BAD_COMMAND � The specified handle does not
have an attached stream.

gets the out-of-band stream attributes mntGetStreamHeader()

113

ERROR_INVALID_FUNCTION � The stream handle specified is of
the wrong type.

ERROR_INVALID_HANDLE � An invalid handle was specified in
the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

��Result Messages

None.

��See Also

� mntGetStreamInfo()
� mntSetStreamHeader()

mntGetStreamInfo() gets global board-specific stream information

114

Name: BOOL mntGetStreamInfo(BoardNumber, lpStrmInfos)
Inputs: ULONG BoardNumber � board number

PSTRM_INFO lpStrmInfos � STRM_INFO pointer
Outputs: PSTRM_INFO lpStrmInfos � pointer to stream info
Returns: TRUE if successful, FALSE if error

Includes: qstream.h
Category: stream I/O function

Mode: synchronous

��Description

The mntGetStreamInfo() function gets global board-specific stream
information, such as the available stream sizes. The qstream.h include file
contains the STRM_INFO structure. Upon successful return, the function fills in
the location pointed to by lpStreamInfos with global board-specific stream
information.

Parameter Description

BoardNumber DM3 board number

lpStrmInfos pointer to an array that contains stream information

The STRM_INFO structure is defined in qstream.h as follows:

typedef struct {
 int NumStrmGroups;
 int DataBlockSize;
 STRM_GROUP_CFG StrmGroups[MNT_STREAM_MAX_NUM_GROUPS];
}STRM_INFO, *PSTRM_INFO;

The NumStrmGroups field defines the number of stream groups available. A
stream group is used for defining a number of streams with different stream size.
(Maximum value is 20.)

The DataBlockSize field defines the default data block size, currently set at 4032
bytes.

��Cautions

None.

gets global board-specific stream information mntGetStreamInfo()

115

��Errors

ERROR_GEN_FAILURE � Direct Interface internal error has
occurred.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

��Result Messages

None.

��See Also

� mntGetStreamHeader()

mntGetTLSmmb() retrieves the thread-local storage MMB

116

Name: BOOL mntGetTLSmmb(lppMMB, cmdMsg, replyMsg)
Inputs: None.

Outputs: LPMMB *lppMMB � TLS MMB pointer
QMsgRef *cmdMsg � command pointer
QMsgRef *replyMsg � reply pointer

Returns: TRUE if successful, FALSE if error
Includes: qhostlib.h
Category: Message I/O function

Mode: synchronous

��Description

The mntGetTLSmmb() function retrieves the thread-local storage MMB
maintained by the Direct Interface host library. Thread-local storage enables data
to be associated with a specific program thread. You will typically use this
function if a synchronous function call has failed, and you need to examine the
firmware reply message. Upon successful return, this function fills in the locations
pointed to by lppMMB , cmdMsg, and replyMsg.

Parameter Description

lppMMB pointer to the thread-local storage MMB

cmdMsg pointer to the command message within the MMB

replyMsg pointer to the reply message, if any, within the MMB

��Cautions

Check for NULLs before using these pointers.

��Errors

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_NO_MEM � No thread-local storage MMB was
found.

retrieves the thread-local storage MMB mntGetTLSmmb()

117

��Result Messages

None.

��See Also

None.

mntNotifyRegister() enables notification of sub-component failure

118

Name: BOOL mntNotifyRegister (hDevice, nTransID, compDesc,
nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc compDesc � partially specified component

address
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Returns: TRUE if successful, FALSE if error
Includes: qhostlib.h
Category: exit notification services

Mode: asynchronous

��Description

The mntNotifyRegister() function enables notification of sub-component failure.
Once completed, the caller will receive notification once any sub-components
have terminated unexpectedly.

This function registers the address of the message path device to be notified when
a sub-component on an SP on the DM3 board specified by compDesc terminates
due to a catastrophic failure. After this function has been called, a QFailureNotify
message is sent to the registered address whenever an unexpected termination of
any SP sub-component occurs. The registration performed by this function
remains in effect until the target board is restarted or until the registration is
cancelled with a call to mntNotifyUnregister(). While the registration is in
effect, any number of QFailureNotify messages (including none) may be sent to
the registered address.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID to be used in all messages generated by this
function

compDesc partially specified component address. The board address
in this descriptor indicates the location of the SP sub-
component that has terminated.

enables notification of sub-component failure mntNotifyRegister()

119

Parameter Description

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

The mntNotifyRegister() function causes the QRegisterNotify kernel message
(defined in mercdefs.h) to be sent. The QRegisterNotify message size is defined
as QRegisterNotify_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QResultComplete
Successful registration. The message body contains no data fields.

QFailureNotify
Sub-component failure notification message. This message is only sent
in the event that an SP sub-component on the specified board terminates

mntNotifyRegister() enables notification of sub-component failure

120

unexpectedly. Any number of these messages may be sent following a
single call to mntNotifyRegister().

The body of the QFailureNotify message contains a variable-size payload
which includes a single fixed data field followed by a variable-length list
of data items. Use the QFailureNotify_get() macro to extract the fixed
field into a data structure of type QFailureNotify_t, which contains the
following element:

count (type Uint8): the number of component descriptors contained in
the variable part of the message body.

The remainder of the message body contains a variable-length list of data
fields with count members. Each component descriptor is followed by a
variable number of attributes associated with the component in a null-
terminated list. Use qMsgVarFieldGet() with an initial offset of
QFailureNotify_Size to retrieve these values.

component (type QCompDesc): the component address of an SP
component that terminated. The message may contain one or more of
these failed component addresses, as indicated by count, each of which
is followed by a variable-length attribute list.
attr (type QCompAttr): an attribute associated with the preceding
component. The number of such attributes is variable and the end of the
list is indicated by a null attribute.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

�� mntNotifyUnregister()
�� mntSetExitNotify()

disables notification of sub-component failure mntNotifyUnregister()

121

Name: BOOL mntNotifyUnregister (hDevice, nTransID, compDesc,
nTimeout, lpMMB, lpOverlapped)

Inputs: HANDLE hDevice � device handle
QTrans nTransID � transaction ID
QCompDesc compDesc � partially specified component

address
USHORT nTimeout � time to wait
LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Returns: TRUE if successful, FALSE if error
Includes: qhostlib.h
Category: exit notification services

Mode: asynchronous

��Description

The mntNotifyUnregister() function disables notification of sub-component
failure.

This function cancels the exit notification registration of the address in hDevice.
After this function has been called, the specified device no longer receives a
notification message when an unexpected termination of any SP sub-component
occurs.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID to be used in all messages generated by this
function

compDesc partially specified component address. The board address
in this descriptor indicates the location of the SP sub-
component that has terminated.

nTimeout time (in seconds) to wait for a response

lpMMB pointer to an MMB structure

lpOverlapped pointer to an OVERLAPPED structure

mntNotifyUnregister() disables notification of sub-component failure

122

The mntNotifyUnregister() function causes the QUnregisterNotify kernel
message (defined in mercdefs.h) to be sent. The QUnregisterNotify message size
is defined as QUnregisterNotify_Size.

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL � See result message
QResultError for details.

ERROR_MNT_MMB_ALLOC_FAILED � The MMB could not be
allocated.

��Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

��See Also

�� mntNotifyRegister()
�� mntSetExitNotify()

enables receipt of asynchronous messages mntRegisterAsyncMessages()

123

Name: BOOL mntRegisterAsyncMessages(hDevice, nCount,
lpEvents, lpMMBs)

Inputs: HANDLE hDevice � device handle
ULONG nCount � number of array elements
HANDLE *lpEvents � event array pointer
LPMMB *lpMMBs � MMB array pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: message I/O function

Mode: synchronous

��Description

The mntRegisterAsyncMessages() function enables receipt of asynchronous
messages through a set of MMB structures and corresponding event object
handles. As with the mntSendMessage() function, make sure that you prepare the
MMBs properly so that they are ready to be sent to the DM3 board. As each
MMB completes, its associated event is set by the driver and the MMB is already
filled with the reply message. The calling application must reset the event as soon
as the MMB is free for reuse. Until the event is reset, the driver cannot use the
associated MMB to repost the I/O request. This also means that the event must be
a manual-reset type.

For each low-latency asynchronous message, you should specify two or more
MMBs and associated events to ensure that no events will be missed. Otherwise,
the driver resorts to a coarse one-second-resolution timer in checking whether the
MMB is ready for reuse as indicated by its event object being in the non-signaled
state.

Unlike the MMBs that you use with the mntSendMessage() function, you can set
an infinite time out through the mntRegisterAsyncMessages() function. Use the
defined constant MNT_NO_TIMEOUT to wait indefinitely. You can use an
infinite timeout, for instance, if a network alarm is expected. Otherwise, if an
MMB times out, the event is signaled, and you must examine the
actualReplyCount field in the MMB structure before you process any reply
messages.

mntRegisterAsyncMessages() enables receipt of asynchronous messages

124

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nCount number of entries in either the lpEvents or lpMMBs
parameter. If set to zero, any previous registration is
nullified. Arrays specified in both the lpEvents and
lpMMBs parameters must have at least the number of
entries specified in the nCount parameter. Maximum
value for this parameter is MNT_MAX_ASYNC_MSGS.

lpEvents pointer to the event handle array. Each event in this array
is associated sequentially with the corresponding MMB in
the array specifed in the lpMMBs parameter. All events
must be the manual-reset type.

lpMMBs pointer to the LPMMB array. Each element in this array
must point an MMB that has been properly initialized and
set up just as if it were to be passed to the
mntSendMessage() function.

��Cautions

Each mntRegisterAsyncMessages() function call cancels and overrides any
previous registration. Specifying a zero in the nCount parameter effectively
cancels all notifications. Furthermore, you must not free any buffers described in
the MMBs until after you specifically un-register by calling the routine with an
nCount of 0. Use this function judiciously and only as necessary because it results
in additional resources and workload in the driver space. Before exiting the
process or thread, remember to deregister by calling this function with its nCount
parameter set to zero.

Please note that the MMB’s that you submit to this call must be all empty
messages; that is, you cannot send any command messages. They can only be used
to receive messages.

enables receipt of asynchronous messages mntRegisterAsyncMessages()

125

��Errors

ERROR_BAD_COMMAND � The specified handle does not
have an attached stream.

ERROR_INVALID_HANDLE � An invalid handle was specified in
the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_NOACCESS � A bad (non-NULL) pointer was
passed OR unable to lock down
memory.

ERROR_NOT_ENOUGH_MEMORY � The driver cannot allocate the
required memory for this function.

��Result Messages

None.

��See Also

mntSendMessage()

mntRegisterAsyncStreams() enables receipt of asynchronous stream data

126

Name: BOOL mntRegisterAsyncStreams (hDevice, nCount,
lpEvents, lpBuffers, lpMSBs)

Inputs: HANDLE hDevice � device handle
ULONG nCount � number of array elements
HANDLE *lpEvents � event array pointer
PVOID *lpBuffers � buffer array pointer
LPMSB *lpMSBs � MSB array pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: stream I/O function

Mode: synchronous

��Description

The mntRegisterAsyncStreams() function enables receipt of asynchronous
stream data through a set of Stream Buffer (MSB) structures and corresponding
event object handles. As a stream read operation completes, its associated event is
set by the driver and the buffer is already filled with the stream data. The calling
application must reset the event as soon as the buffer is free for reuse. Until the
event is reset, the driver cannot use the associated buffer and MMB to repost the
I/O request. This also means that the event must be a manual-reset type.

For each low-latency asynchronous read operation, you should specify two or
more MSBs and associated events to ensure that no data will be missed.
Otherwise, the driver resorts to a coarse one-second-resolution timer in checking
whether the MSB and buffer are ready for reuse as indicated by its event object
being in the non-signaled state.

To cancel notification, specify zero (0) in the nCount parameter.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

enables receipt of asynchronous stream data mntRegisterAsyncStreams()

127

Parameter Description

nCount number of entries in either the lpEvents, lpBuffers, or
lpMSBs parameter. If set to zero, any previous registration
is nullified. Arrays specified in the lpEvents, lpBuffers, or
lpMSBs parameters must have at least the number of entries
specified in the nCount parameter. Maximum value for this
parameter is MNT_MAX_ASYNC_STRMS.

lpEvents pointer to the event handle array. Each event in this array is
associated sequentially with the corresponding MSB in the
array specifed in the lpMSBs parameter. All events must be
the manual-reset type.

lpBuffers pointer to the buffer array. Each element in this array will
hold the data associated with read from the stream.

lpMSBs pointer to the LPMSB array. Each element in this array must
point to an MSB that has been properly initialized with a
timeout and transfer length.

The Stream Buffer (MSB) structure is defined as follows:

typedef struct {
 STRM_HDR strmHdr;
 ULONG readCompletionMask;
 USHORT timeout;
 ULONG xferLen;
 ULONG xferDone;
} MSB, *PMSB, *LPMSB;

Where:

strmHdr stream header returned from mntGetStreamHeader()

ReadCompletionMask mask set in mntSetStreamHeader()

Timeout same value as set in mntSetIOTimeout()

xferLen size of the buffer corresponding to this MSB

xferDone returned size from the read

mntRegisterAsyncStreams() enables receipt of asynchronous stream data

128

��Cautions

Each mntRegisterAsyncStreams() function call cancels and overrides any
previous registration. Specifying a zero in the nCount parameter effectively
cancels all notifications. Furthermore, you must not free any buffers or MSBs until
after you specifically un-register by calling the routine with an nCount of 0. Use
this function judiciously and only as necessary because it results in additional
resources and workload in the driver space. Before exiting the process or thread,
remember to deregister by calling this function with its nCount parameter set to
zero.

Please note that the MMB’s that you submit to this call must be all empty
messages; that is, you cannot send any command messages. They can only be used
to receive messages.

��Errors

ERROR_BAD_COMMAND � The specified handle does not
have an attached stream.

ERROR_INVALID_FUNCTION � The stream handle specified is of
the wrong type.

ERROR_INVALID_HANDLE � An invalid handle was specified in
the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_NOACCESS � A bad (non-NULL) pointer was
passed OR unable to lock down
memory.

ERROR_NOT_ENOUGH_MEMORY � The driver cannot allocate the
required memory for this function.

��Result Messages

None.

��See Also

mntRegisterAsyncMessages()

sends the message specified in the MMB mntSendMessage()

129

Name: BOOL mntSendMessage(hDevice, lpMMB, lpOverlapped)
Inputs: HANDLE hDevice � device handle

LPMMB lpMMB � MMB pointer
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: message I/O function

Mode: synchronous or asynchronous

��Description

The mntSendMessage() function sends the message specified in the MMB.
Whether or not the call blocks depends on how the hDevice parameter was
created. If the FILE_FLAG_OVERLAPPED flag was specified in the
CreateFile() function call, this call blocks immediately, but returns with FALSE.
If the user then calls the GetLastError() function and it returns
ERROR_IO_PENDING, the message has been sent successfully, but it will
complete at a later time when a reply is received.

If this function is called synchronously, it will not return until all operations are
completed. For example, if two reply messages are expected and one is received
immediately, the function blocks until the second reply message is received.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

lpMMB pointer that was returned from a successful call to the
mntAllocateMMB() function

lpOverlapped pointer to an OVERLAPPED structure

��Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronously for more details.

mntSendMessage() sends the message specified in the MMB

130

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was
specified in the argument
list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument
list.

ERROR_MNT_MMB_INVALID_CMDSIZE � Command size is too large.

��Result Messages

None.

��See Also

� mntAllocateMMB()

�� mntFreeMMB()

builds an MMB, sends it, then synchronously waits for I/O completion.mntSendMessageWait()

131

Name: BOOL mntSendMessageWait(hDevice, nMsgType,
bEmptyMsg, nPayloadSize, lpPayload, nReplyCount,
lpDestAddr, lpReplyType, lppReply)

Inputs: HANDLE hDevice � device handle
ULONG nMsgType � type of message to send
BOOL bEmptyMsg � empty message flag
ULONG nPayloadSize � message payload size
PVOID lpPayload � payload pointer
ULONG nReplyCount � replies expected
PQCompDesc lpDestAddr � destination address

Outputs: PULONG lpReplyType � reply message type
QMsgRef *lppReply � reply message pointer

Returns: TRUE if successful, FALSE if error
Includes: qhostlib.h
Category: message I/O function

Mode: synchronous

��Description

The mntSendMessageWait() function builds an MMB, sends it, then
synchronously waits for I/O completion. Upon successful return, the function fills
in the locations pointed to by lpReplyType and lppReply.

The mntSendMessageWait() function is provided as a convenience; it allocates
the required MMB, fills in the MMB and command message header information,
sends the message to its destination, and waits for reply message(s). You can
achieve the same results by calling mntAllocateMMB() , using the message
macros described in Chapter 4. Macro Reference to fill in the message header
fields, and then calling mntSendMessage().

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nMsgType type of message. Typically defined in a header file, such
as stddefs.h.

bEmptyMsg if TRUE, indicates an empty message, which is expected
rather than sent.

nPayloadSize message payload size

mntSendMessageWait()builds an MMB, sends it, then synchronously waits for I/O completion.

132

Parameter Description

lpPayload pointer to the message payload structure

nReplyCount number of replies expected. The call completes only if the
destination address of the reply messages matches the host
source address assigned to the device specified in the
hDevice parameter.

lpDestAddr pointer to the destination component instance address

lpReplyType pointer to the reply message type

*lppReply pointer to a reply message. Upon return, the caller can
examine and access the reply message as needed.

��Cautions - None.

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_HANDLE � An invalid handle was specified
in the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_NO_MEM � Not enough memory is available
for the MMB.

ERROR_MNT_MERCURY_STD_MSG � The message reply type is
StdMsgError. Check the reply
message payload for details.

��Result Messages

None.

��See Also

None.

enables notification of Mpath device failure mntSetExitNotify()

133

Name: BOOL mntSetExitNotify (hDevice, board, enable)
Inputs: HANDLE hDevice � device handle

ULONG board � board to be notified of failure
BOOL enable � on/off mechanism

Outputs: None
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: exit notification services

Mode: synchronous

��Description

The mntSetExitNotify() function enables notification of Mpath device failure.
This function enables the driver to send exit notification to the DM3 board upon
failure of the specified Mpath device. To avoid an extraneous notification, you
must disable this capability by calling mntSetExitNotify() and setting enable to
FALSE. Otherwise, these notifications can affect system performance and
behavior.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

board identifies the DM3 board to which the exit notification
should be sent

enable on/off toggle for exit notification. Set to TRUE to enable
exit notification; set to FALSE to disable exit notification.

��Cautions

None.

��Errors

ERROR_BAD_COMMAND � The specified handle does not have an
attached stream.

ERROR_INVALID_HANDLE � An invalid handle was specified in
the argument list.

mntSetExitNotify() enables notification of Mpath device failure

134

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument, such as
an invalid board number.

��Result Messages

None.

��See Also

�� mntNotifyRegister()
�� mntNotifyUnregister()

sets the out-of-band stream attributes mntSetStreamHeader()

135

Name: BOOL mntSetStreamHeader(hDevice, pHeader,
ReadCompletionMask)

Inputs: HANDLE hDevice � device handle
PSTRM_HDR pHeader � header pointer
ULONG ReadCompletionMask � mask

Outputs: None
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: stream I/O function

Mode: synchronous

��Description

The mntSetStreamHeader() function sets the out-of-band stream attributes that
are defined by the structure pointed to by the pHeader parameter. The underlying
bulk data stream is passed in blocks between the host and the DM3 platform.
These blocks carry attribute data that can control data transfer and provide out-of-
band data associated with the stream blocks.

Parameter Description

hDevice Stream device handle

pHeader pointer to the stream header

ReadCompletionMask an optional mask that determines when the read
is completed. The user selects when the read is
completed by setting the flags defined below:

COMPLETE_ON_EOD: 0x01

COMPLETE_ON_EOT: 0x02

COMPLETE_ON_EOF: 0x04

COMPLETE_ON_USR1: 0x08

COMPLETE_ON_USR2: 0x10

COMPLETE_ON_USR3: 0x20

COMPLETE_ON_USR4: 0x40

COMPLETE_ON_USR5: 0x80

The ReadCompletionMask as defined below, specifies the out-of-band stream
attributes expected after a call to the ReadFile() function:

mntSetStreamHeader() sets the out-of-band stream attributes

136

� The COMPLETE_ON_EOD flag indicates the end of a valid grouping of
data blocks. It terminates an operation, such as a data transfer, without closing
the stream.

� The COMPLETE_ON_EOT flag indicates the end of a collection of
groupings that have been delineated by COMPLETE_ON_EOT flags.
Without closing the stream, it marks such operations as a forced termination
of a grouping of operations in which the data transfer groupings were
buffered onto a stream, but were not yet processed at the time of termination.

� The COMPLETE_ON_EOF flag indicates the end of a file or stream. It is
normally set in the last block of a stream when the writer closes the end of
that stream.

� The COMPLETE_ON_USERn flags can be used for any application-level
purpose.

The pHeader structure is defined as follows:

typedef struct {
 ULONG sequence;
 UCHAR bufFlags; // MNT_EOD - End of Data = 0x01
 // MNT_EOT - End of Transmission = 0x02
 // MNT_EOF - End of File = 0x04 (equivalent to EOS)
 // MNT_USER1 - User specified flag = 0x08
 // MNT_USER2 - User specified flag = 0x10
 // MNT_USER3 - User specified flag = 0x20
 // MNT_USER4 - User specified flag = 0x40
 // MNT_USER5 - User specified flag = 0x80
 UCHAR encoding;
 UCHAR pad1; // reserved for future use
 UCHAR sysFlags; // read-only
 // STREAM_CLOSED = 0x01
 // STREAM_BROKEN = 0x02
 ULONG canTakeLimit; // read-only
 ULONG initialCanTake; // read-only
 ULONG currentCanTake; // read-only
 ULONG requestedSize; // read-only
 ULONG actualSize; // read-only
} STRM_HDR, *PSTRM_HDR;

The sequence field is used as an incrementing counter as blocks are written. This
field is automatically filled by the lower level stream data block transport code.

The bufFlags field indicates the out-of-band stream attributes as defined below:

� The MNT_EOD flag indicates the end of a valid grouping of data blocks. It
terminates an operation, such as a data transfer, without closing the stream.

sets the out-of-band stream attributes mntSetStreamHeader()

137

� The MNT_EOT flag indicates the end of a collection of groupings that have
been delineated by MNT_EOD flags. Without closing the stream, it marks
such operations as a forced termination of a grouping of operations in which
the data transfer groupings were buffered onto a stream, but were not yet
processed at the time of termination.

� The MNT_EOF flag indicates the end of a file or stream. It is normally set in
the last block of a stream when the writer closes its end of the stream.

� The MNT_USERn flags can be used for any application-level purpose.

The encoding field is set to the calling processor byte ordering convention (big-
endian or little-endian).

��Cautions

None.

��Errors

ERROR_BAD_COMMAND � The specified handle does not
have an attached stream.

ERROR_INVALID_FUNCTION � The stream handle specified is of
the wrong type.

ERROR_INVALID_HANDLE � An invalid handle was specified in
the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

��Result Messages

None.

��See Also

�� mntGetStreamHeader()

mntSetStreamIOTimeout() sets the stream I/O request timeout value

138

Name: BOOL mntSetStreamIOTimeout(hDevice, nTimeout)
Inputs: HANDLE hDevice � device handle

USHORT nTimeout � timeout
Outputs: None
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: stream I/O function

Mode: synchronous

��Description

The mntSetStreamIOTimeout() function sets the stream I/O request timeout
value (in seconds). If you set the Timeout parameter to 0, the driver uses a default
timeout of 30 seconds.

Parameter Description

hDevice Stream device handle

nTimeout timeout value (in seconds) of each stream read or
write request

��Cautions - None.

��Errors

ERROR_BAD_COMMAND � The specified handle does not
have an attached stream.

ERROR_INVALID_HANDLE � An invalid handle was specified in
the argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

��Result Messages - None.

��See Also - None.

enables or disables trace statements mntSetTraceLevel()

139

Name: BOOL mntSetTraceLevel(TraceLevel,
lpTraceDeviceName)

Inputs: ULONG TraceLevel � trace status
LPSTR lpTraceDeviceName � trace device name

Outputs: None
Returns: None

Includes: qhostlib.h
Category: debug support function

Mode: synchronous

��Description

The mntSetTraceLevel() function enables or disables trace statements. Once this
function returns, call mntTrace() to send trace statements to a file. Trace
information gathered via this function is for program debugging only; use the
board-level trace utility for board debugging.

Parameter Description

dwTraceLevel trace level. This can be either of the following:

MNTI_TRACE_LEVEL0: Level 0 disables tracing

MNTI_TRACE_LEVEL1: Level 1 enables tracing

lpTraceDeviceName device name to which tracing information is sent.
This can be a file, printer, or serial port. Can be set
to NULL if tracing is being disabled.

Because the mntSetTraceLevel() function internally calls the Windows
CreateFile(), WriteFile() , and CloseHandle(), functions, the trace output can
go to any native Win32 API I/O device. If you are disabling tracing by setting the
dwTraceLevel parameter to MNTI_TRACE_LEVEL0, you can set the
lpTraceDeviceName parameter to NULL.

The Direct Interface uses the critical section and lock file commands to serialize
writing trace statements to the file. Therefore, the trace statements do not interfere
with each other in the trace file for multi-threaded and multi-process applications.
The DLL creates and initializes a critical section for the trace control block shown
below. By default, the DLL initializes the trace level to MNTI_TRACE_LEVEL0.

mntSetTraceLevel() enables or disables trace statements

140

If the dwTraceLevel parameter is set to MNTI_TRACE_LEVEL0 and the
current level is MNTI_TRACE_LEVEL1, tracing is disabled.

If the dwTraceLevel parameter is set to MNTI_TRACE_LEVEL1, tracing varies
according to the current trace level:

� If the current trace level is MNTI_TRACE_LEVEL0 (trace disabled), the
mntSetTraceLevel() function opens a new trace device by calling the
CreateFile() function with the name specified in the dwTraceDeviceName
parameter.

� If the current trace level is MNTI_TRACE_LEVEL1 (trace enabled), the
mntSetTraceLevel() function first closes the current trace device, then
opens a new trace device by calling the CreateFile() function with the name
specified in the dwTraceDeviceName parameter.

When viewing the debug file, use Write or Wordpad for best results.

��Cautions

None.

��Errors

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

ERROR_MNT_NO_TRACE_HANDLE � The specified trace device could
not be opened.

��Result Messages

None.

��See Also

� mntSetTrace()

cancels a persistent stream mntTerminateStream()

141

Name: mntTerminateStream (hDevice, nBoardNumber,
nModeFlags, nMercStreamID, nTimeout, lpOverlapped)

Inputs: HANDLE hDevice � device handle
ULONG nBoardNumber � board number
USHORT nModeFlags � mode flags
ULONG nMercStreamID � stream ID
USHORT nTimeout � timeout value
LPOVERLAPPED lpOverlapped � overlapped pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h
Category: stream I/O function

Mode: synchronous or asynchronous

��Description

The mntTerminateStream() function cancels a persistent stream identified by
nMercStreamID. The specified stream must have been opened using
mntAttachMercStream() with nModeFlags set to
MNT_STREAM_FLAG_PERSISTENT. Before you call the
mntTerminateStream() function, you should close the stream by calling
mntDetachStream().

Parameter Description

hDevice stream device handle

nBoardNumber board number

nModeFlags stream attributes for this stream:

MNT_STREAM_FLAG_READ read stream

MNT_STREAM_FLAG_WRITE write stream

nMercStreamID identifies an existing stream

nTimeout time (in seconds) to wait for a response

lpOverlapped pointer to an OVERLAPPED structure

��Cautions - None.

mntTerminateStream() cancels a persistent stream

142

��Errors

ERROR_ADAP_HDW_ERROR � Board is not available to be
initialized.

ERROR_INVALID_FUNCTION � The stream handle specified is of the
wrong type.

ERROR_INVALID_HANDLE � An invalid handle was specified in the
argument list.

ERROR_INVALID_PARAMETER � An invalid parameter was specified in
the argument list.

��See Also
�� mntAttachMercStream()
�� mntDetachMercStream()

sends trace statements to a file mntTrace()

143

Name: VOID mntTrace (pszFmt, … /* args */)
Inputs: char pszFmt � format string

int /* args */ � format string arguments
Outputs: None
Returns: None

Includes: qhostlib.h
Category: debug support function

Mode: synchronous

��Description

The mntTrace() function sends trace statements to a file, following printf()
conventions. You must first call the mntSetTraceLevel() function to enable
tracing and specify the trace output type. Trace information gathered via this
function is for program debugging only; use the board-level trace utility for board
debugging.

Because each trace statement is prefixed with process and thread IDs, the user can
identify the invoking thread in a multi-threaded program. The Direct Interface
uses the critical section and lock file commands to serialize writing trace
statements to the file. Therefore, the trace statements do not interfere with each
other in the trace file for multi-threaded and multi-process applications.

Each trace statement should include the function from which it is invoked and
other information that can help the user debug the problem. Once the format string
size is expanded (filled in), it should be less than than 200 characters.

Parameter Description

pszFmt format string. Expanded string size should be less than 200
characters.

/* args */ arguments to be embedded into the format string

��Cautions

None.

mntTrace() sends trace statements to a file

144

��Errors

None.

��Result Messages

None.

��See Also

� mntSetTraceLevel()

generates a message transaction ID mntTransGen()

145

Name: QTrans mntTransGen(void)
Inputs: None

Outputs: None
Returns: QTrans TransactionID � transaction identifier

Includes: qhostlib.h
Category: debug support function

Mode: synchronous

��Description

The mntTransGen() function generates a message transaction ID. This function
returns a pseudo-unique transaction identifier for use in messages. This ID is
unique within the QTrans type range until the mntTransGen() function has
generated all IDs, at which time they begin to be repeated.

Parameter Description

TransactionID message transaction identifier

��Cautions

None.

��Errors

None.

��Result Messages

None.

��See Also

None.

qMsgVarFieldGet() gets typed fields from a message payload

146

Name: BOOL qMsgVarFieldGet (msg, count, pOffset, fieldDef,
pTarget, ...)

Inputs: QMsgRef msg � referenced message
UInt32 count � number of fields to get
UInt32 *pOffset � offset
QMsgField fieldDef � data element

Outputs: void *pTarget � referenced variable
Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h

Category: message I/O function

Mode: synchronous

��Description

The qMsgVarFieldGet() function gets typed fields from a message payload.

This function performs a structured copy of the contents of the number of fields
specified by count from the message referenced by msg into locally defined
variables.

Parameter Description

msg reference to a message that contains fields to be copied

count number of fields to copy from the message; must match the
number of (fieldDef, pTarget) pairs specified in the
function call

pOffset pointer to a variable that contains the offset of a field within
the message body. When the function is called, the variable
specifies the offset of the first data field to copy; if zero,
fields are copied according to the offsets contained in the
field definitions. When the function completes, the variable
is updated to reference the next field that has not been
copied.

fieldDef field definition of a data field to copy; always paired with a
pTarget. Field definitions contain the data type, size, and
offset within the buffer of the field. If the variable
referenced by pOffset is non-zero, the offset is ignored and
the function copies successive fields starting at the specified
offset.

gets typed fields from a message payload qMsgVarFieldGet()

147

Parameter Description

pTarget pointer to the variable where the copied contents of a field is
placed; always paired with a fieldDef which defines the data
type of the result.

The count argument specifies the number of (fieldDef, pTarget) argument pairs
that follow the pOffset argument. For each pair, the data element in the message
data defined by the fieldDef is copied into the variable referenced by the
associated pTarget. The data being copied is interpreted as a particular data type
defined by fieldDef. The message data is converted from a standard message
format into the native format of the specified data type of the executing processor.

After all fields have been copied, the variable referenced by the pOffset argument
is updated to reference the next uncopied field in the message.

If the variable referenced by the pOffset argument is non-zero when
qMsgVarFieldGet() is called, the list of (fieldDef, pTarget) pairs is interpreted
as containing only generic field definitions. A field definition normally contains
the data type, number of elements, and offset within the buffer of the field. A
generic field definition contains only the data type and number of elements. If a
non-zero offset is specified, the copy from the buffer begins at the offset and
proceeds using the list of field definitions to perform the copies and translations.

If the variable referenced by the pOffset argument is zero when
qMsgVarFieldGet() is called, all (fieldDef, pTarget) pairs containing absolute
field definitions must precede any generic definitions because the first generic
definition is interpreted as a field immediately following the last absolute
definition.

Field definitions are message-specific values which encode the data type, number
of elements, and offset within a message. They are normally created by an off-line
tool (the MMDL translator) which generates a header file containing the field
definitions for a message or group of messages.

This function provides a mechanism that can read an entire message data structure
from the message into a local structure and also provides support for variable-
length message data. The MMDL tool which generates the message field
definitions also generates local structure definitions and data access macros that
call this library function to copy the entire body of the message.

qMsgVarFieldGet() gets typed fields from a message payload

148

The following types can be encoded within field definitions:

QDataType Description (typedef)
QT_INT8 8-bit signed integer (Int8)
QT_INT16 16-bit signed integer (Int16)
QT_INT24 24-bit signed integer (Int24)
QT_INT32 32-bit signed integer (Int32)
QT_UINT8 8-bit unsigned integer (UInt8)
QT_UINT16 16-bit unsigned integer (UInt16)
QT_UINT24 24-bit unsigned integer (UInt24)
QT_UINT32 32-bit unsigned integer (UInt32)
QT_CHAR 1 Character in native format (Char)
QT_MEMREF Reference to allocated global memory (QMemRef)
QT_STREAMREF Processor independent open stream reference

(QStreamRef)
QT_ATTR Reference to component attribute (QAttr)
QT_PARM Reference to parameter (QParm)
QT_COMPDESC Reference to component descriptor (QCompDesc)
QT_BUFREF Reference to a buffer (QBufRef)

1
Native format character strings are converted one character per addressable location; packed strings
are converted with the characters packed within a word in the order supported by the processor.

NOTE: If an integer or unsigned integer type is converted from a wider format
(for example, QT_INT16 on a 24-bit word processor), the high-order bits
beyond the width of the target type are ignored, which can cause
unexpected results if the value is out of the range of the target type. If the
conversion is to a wider format, the value is sign-extended if it is an
integer type or zero-extended if it is an unsigned integer type.

��Cautions

qMsgVarFieldGet() performs conversions from a DM3 standard representation
of a data type into a processor-specific version of the type. If the type cannot be
converted to a valid representation—for example, a 32-bit integer type on a 24-bit
processor—the results are undefined.

gets typed fields from a message payload qMsgVarFieldGet()

149

��Errors

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

��See Also

� qMsgVarFieldPut()

qMsgVarFieldPut() puts typed fields into a message payload

150

Name: BOOL qMsgVarFieldPut (msg, count, pOffset, fieldDef,
pSource,…)

Inputs: QMsgRef msg � referenced message
UInt32 count � number of fields
UInt32 *pOffset � offset
QMsgField fieldDef � data element
void *pSource � referenced variable

Outputs: None

Returns: TRUE if successful, FALSE if error

Includes: qhostlib.h

Category: Messaging Services

Mode: Synchronous

��Description

The qMsgVarFieldPut() function puts typed fields into a message payload.

This function performs a structured copy of the contents of the number of fields
specified by count into the message referenced by msg from locally defined
variables.
Parameter Description

msg reference to a message that contains fields to be filled

count number of fields to fill in the message; must match the
number of (fieldDef, pSource) pairs specified in the
function call

pOffset pointer to a variable that contains the offset of a field within
the message body. When the function is called, the variable
specifies the offset of the first data field to fill; if zero, fields
are filled according to the offsets contained in the field
definitions. When the function completes, the variable is
updated to reference the next field that has not been filled.

fieldDef field definition of a message data field to fill; always paired
with a pSource. Field definitions contain the data type, size,
and offset within the buffer of the field. If the variable
referenced by pOffset is non-zero, the offset is ignored and
the function fills successive fields starting at the specified
offset.

puts typed fields into a message payload qMsgVarFieldPut()

151

Parameter Description

pSource pointer to the variable that contains the data to be copied
into a field; always paired with a fieldDef which defines the
size and type of the source data.

The count argument specifies the number of (fieldDef, pSource) argument pairs
that follow the pOffset argument. For each pair, the data element in the message
defined by the fieldDef is copied from the variable referenced by the associated
pSource into the message. The data being copied is interpreted as a particular
data type defined by fieldDef. The message data is converted into a standard
message format from the native format of the specified data type of the executing
processor. After all fields have been copied, the variable referenced by the
pOffset argument is updated to reference the next uncopied field in the message.

If the variable referenced by the pOffset argument is non-zero when
qMsgVarFieldPut() is called, the list of (fieldDef, pSource) pairs are
interpreted as containing only generic field definitions. A field definition normally
contains the data type, number of elements, and offset with buffer of the field. A
generic field definition contains only the data type and number of elements. If a
non-zero offset is specified, the copy into the buffer begins at the offset and
proceeds using the list of field definitions to perform the copies and translations.

If the variable referenced by the pOffset argument is zero when
qMsgVarFieldPut() is called, all (fieldDef, pSource) pairs containing absolute
field definitions must precede any generic definitions because the first generic
definition is interpreted as a field immediately following the last absolute
definition.

Field definitions are message-specific values which encode the data type, number
of elements, and offset within a message for a field of the message data area. They
are normally created by an off-line tool (the MMDL translator) which generates a
header file containing the field definitions for a message or group of messages.

This function provides a mechanism that can write an entire message data
structure to the message from a local structure and also provides support for
variable-length message data. The MMDL tool which generates the message data
field definitions also generates local structure definitions and data access macros
that call this library function to copy the entire message data area.

The following types can be encoded within field definitions:

qMsgVarFieldPut() puts typed fields into a message payload

152

QDataType Description (typedef)
QT_INT8 8-bit signed integer (Int8)
QT_INT16 16-bit signed integer (Int16)
QT_INT24 24-bit signed integer (Int24)
QT_INT32 32-bit signed integer (Int32)
QT_UINT8 8-bit unsigned integer (UInt8)
QT_UINT16 16-bit unsigned integer (UInt16)
QT_UINT24 24-bit unsigned integer (UInt24)
QT_UINT32 32-bit unsigned integer (UInt32)
QT_CHAR 1 Character in native format (Char)
QT_MEMREF Reference to allocated global memory (QMemRef)
QT_STREAMREF Processor independent open stream reference

(QStreamRef)
QT_ATTR Reference to component attribute (QAttr)
QT_PARM Reference to parameter (QParm)
QT_COMPDESC Reference to component descriptor (QCompDesc)
QT_BUFREF Reference to a buffer (QBufRef)

1
Native format character strings are converted one character per addressable location; packed strings
are converted with the characters packed within a word in the order supported by the processor.

NOTE: If an integer or unsigned integer type is converted from a wider format
(for example, QT_INT16 on a 24-bit word processor), the high-order bits
beyond the width of the target type are ignored, which can cause
unexpected results if the value is out of the range of the target type. If the
conversion is to a wider format, the value is sign-extended if it is an
integer type or zero-extended if it is an unsigned integer type.

��Cautions

qMsgVarFieldPut() performs conversions to a DM3 standard representation of a
data type from a processor-specific version of the type. Conversions to data types
which are not supported by the processor may have unexpected results.

��Errors

ERROR_INVALID_PARAMETER � An invalid parameter was
specified in the argument list.

puts typed fields into a message payload qMsgVarFieldPut()

153

��See Also

� qMsgVarFieldGet()

155

4. Macro Reference

The DM3 Direct Interface includes macros which allow you to easily set and
retrieve message fields. This chapter contains a brief description of DM3
messages, Multiple Message Block (MMB) contents, and information on the
message-related macros in the DM3 Direct Interface.

A DM3 message has a fixed-format header and may optionally have a body that
contains additional data in typed fields. A DM3 message body is also called a
message payload. All DM3 messages that are sent and received are carried or
contained in an MMB “wrapper” structure.

The following types of macros are part of the DM3 Direct Interface:
� MMB control header macros
� DM3 message pointer macros
� DM3 message header macros
� DM3 message payload macros

4.1. Multiple Message Block

All DM3 messages that are sent and received are carried or contained in a
multiple message block (MMB) “wrapper” structure, which is acquired by calling
the mntAllocateMMB() function. As shown in Figure 4, an MMB structure
consists of two or three sections in sequence: MMB control header, command
message header and command message payload (optional). An MMB can also
contain one or more reply messages, each of which is a complete structure of type
QMsg with a possible payload attached.

The header and payload information in an MMB is in processor-specific format,
based on the processor’s endian-type. Although the MMB structure is defined in
an include file, it should be treated opaquely. Use the Direct Interface macros to
resolve the endian-type issues; do not access the MMB structure directly.

DM3 Direct Interface Function Reference for Windows NT

156

 .
 .
 .

MMB Header

Command
QMsg

Payload for Command Msg

First Reply QMsg

Second Reply QMsg

 .
 .
 .

nth Reply QMsg

First Reply Payload

Second Reply Payload

nth Reply Payload

Act Reply Cnt

flagsCommand Msg Size

Reply Max Size

Current Reply OffsetTimeout

Exp Reply Cnt

payload size

flags transaction

type

srcNode srcProcessorsrcBoard

destNode destBoard destProcessor

srcInstance srcComponent destComponendestInstance

Figure 4. General MMB Structure

4.2. MMB Control Header Macros

This section contains an alphabetical listing of the multiple message block (MMB)
control header macros defined in dllmnti.h. These macros allow you to get and set
the control header fields in an MMB.

4. Macro Reference

157

MNT_GET_MMB_ACTUAL_REPLY_COUNT(lpMMB, UCHAR
*ActualReplyCount)

This macro retrieves the actual reply messages contained in the specified MMB.
(The number of actual reply messages may be different from the number of
expected reply messages.)

lpMMB is a pointer to the desired multiple message block (MMB).

*ActualReplyCount is the number of reply messages.

MNT_GET_MMB_CMD_SIZE(lpMMB, USHORT *CmdSize)

This macro retrieves the command message size contained in the specified MMB.

lpMMB is a pointer to the desired multiple message block (MMB).

*CmdSize is the size of the command message.

MNT_GET_MMB_CMD_TIMEOUT(lpMMB, USHORT *Timeout)

This macro retrieves the timeout that was set for the command message in the
specified MMB.

lpMMB is a pointer to the desired multiple message block (MMB).

*Timeout is the timeout value (in seconds).

MNT_GET_MMB_CURRENT_REPLY_OFFSET(lpMMB, USHORT
*ReplyOffset)

This macro retrieves the offset for the first reply message in the specified MMB.

lpMMB is a pointer to the desired multiple message block (MMB).

DM3 Direct Interface Function Reference for Windows NT

158

*ReplyOffset is the offset location of the first reply message.

MNT_GET_MMB_EMPTY_MSG (lpMMB, *value)

This macro retrieves a particular I/O completion flag setting in the specified
message block. EMPTY_MSG is an optional flag setting used to identify an empty
message MMB.

lpMMB is a pointer to the desired multiple message block (MMB).

*value is the completion flag setting, where 1 indicates the flag is set and 0
indicates the flag is not set.

MNT_GET_MMB_EXPECTED_REPLY_COUNT(lpMMB, UCHAR
*ExpectedReplyCount)

This macro retrieves the number of expected reply messages in the specified
MMB. (The number of actual reply messages may be different from the number of
expected reply messages.)

lpMMB is a pointer to the desired multiple message block (MMB).

*ExpectedReplyCount is the number of reply messages that were expected.

MNT_GET_MMB_MATCH_ON_DEST_ADDR(lpMMB, *value)

This macro retrieves a particular I/O completion flag setting in the specified
message block. MATCH_ON_DEST_ADDR is an optional flag setting that
enables you to receive reply messages only from the same component instance
specified in the command message of the MMB.

lpMMB is a pointer to the desired multiple message block (MMB).

*value is the completion flag setting, where 1 indicates the flag is set and 0
indicates the flag is not set.

4. Macro Reference

159

MNT_GET_MMB_MATCH_ON_MSGTYPE (lpMMB, *value)

This macro retrieves a particular I/O completion flag setting in the specified
message block. MATCH_ON_MSGTYPE is an optional flag setting that enables
you to receive reply messages returned with the same message type as in the
message sent.

lpMMB is a pointer to the desired multiple message block (MMB).

*value is the completion flag setting, where 1 indicates the flag is set and 0
indicates the flag is not set.

MNT_GET_MMB_MATCH_ON_SRC_ADDR (lpMMB, *value)

This macro retrieves a particular I/O completion flag setting in the specified
message block. MATCH_ON_SRC_ADDR is a required flag that is set by
default. When this flag is set, messages will not complete unless the destination
address of the incoming message matches the source address of the command
message in the message block.

lpMMB is a pointer to the desired multiple message block (MMB).

*value is the completion flag setting, where 1 indicates the flag is set and 0
indicates the flag is not set.

MNT_GET_MMB_MATCH_ON_TRANS_ID (lpMMB, *value)

This macro retrieves a particular I/O completion flag setting in the specified
message block. MATCH_ON_TRANSACTION_ID is an optional flag setting
that enables you to receive reply messages returned with the same transaction ID
as in the message sent.

lpMMB is a pointer to the desired multiple message block (MMB).

*value is the completion flag setting, where 1 indicates the flag is set and 0
indicates the flag is not set.

DM3 Direct Interface Function Reference for Windows NT

160

MNT_GET_MMB_REPLY_MAX_SIZE(lpMMB, USHORT *ReplySize)

This macro retrieves the reply message size allocation for the specified message
block.

lpMMB is a pointer to the desired multiple message block (MMB).

*ReplySize is the size allocated for reply messages.

MNT_SET_MMB_CMD_SIZE(lpMMB, USHORT CmdSize)

This macro sets the command message size contained in the specified MMB.

lpMMB is a pointer to the desired multiple message block (MMB).

CmdSize is the size of the command message.

MNT_SET_MMB_CMD_TIMEOUT(lpMMB, USHORT Timeout)

This macro sets the length of time to wait before indicating failure for the
command message in the specified MMB.

lpMMB is a pointer to the desired multiple message block (MMB).

Timeout is the timeout value (in seconds).

MNT_SET_MMB_EMPTY_MSG (lpMMB)

This macro sets a particular I/O completion flag in the specified message block.
EMPTY_MSG is an optional flag setting that identifies an empty message MMB
that has no command message but has room for a specified number of reply
messages. Empty message MMBs are used in conjunction with the optional

4. Macro Reference

161

MATCH_ON_MSG_TYPE flag to receive asynchronous messages such as alarms
or events.

lpMMB is a pointer to the desired multiple message block (MMB).

MNT_SET_MMB_EXPECTED_REPLY_COUNT(lpMMB, UCHAR
ExpectedReplyCount)

This macro sets the number of expected reply messages in the specified MMB and
is typically used for empty message MMBs. (The number of actual reply messages
may be different from the number of expected reply messages.)

lpMMB is a pointer to the desired multiple message block (MMB).

ExpectedReplyCount is the number of reply messages that were expected.

MNT_SET_MMB_MATCH_ON_DEST_ADDR (lpMMB)

This macro sets a particular I/O completion flag in the specified message block.
MATCH_ON_DEST_ADDR is an optional flag setting that enables you to
receive reply messages only from the same component instance specified in the
command message of the MMB. When this flag is set, messages will not complete
unless the source address of the incoming message matches the destination
address of the command message in the message block.

lpMMB is a pointer to the desired multiple message block (MMB).

MNT_SET_MMB_MATCH_ON_MSGTYPE (lpMMB)

This macro sets a particular I/O completion flag in the specified message block.
MATCH_ON_MSGTYPE is an optional flag setting that enables you to receive
reply messages returned with the same message type as in the message sent. When
this flag is set, messages will not complete unless the message type of the
incoming message matches the message type of the command message in the

DM3 Direct Interface Function Reference for Windows NT

162

message block. Use this flag in conjunction with an empty message to receive
asynchronous messages such as alarms or events.

lpMMB is a pointer to the desired multiple message block (MMB).

MNT_SET_MMB_MATCH_ON_SRC_ADDR (lpMMB)

This macro sets a particular I/O completion flag in the specified message block.
MATCH_ON_SRC_ADDR is a required flag that is set by default. When this flag
is set, messages will not complete unless the destination address of the incoming
message matches the source address of the command message in the message
block.

lpMMB is a pointer to the desired multiple message block (MMB).

MNT_SET_MMB_MATCH_ON_TRANS_ID (lpMMB)

This macro sets a particular I/O completion flag in the specified message block.
MATCH_ON_TRANSACTION_ID is an optional flag setting that enables you to
receive reply messages returned with the same transaction ID as in the message
sent. When this flag is set, messages will not complete unless the transaction ID of
the incoming message matches the transaction ID of the command message in the
message block.

lpMMB is a pointer to the desired multiple message block (MMB).

MNT_SET_MMB_REPLY_MAX_SIZE(lpMMB, USHORT ReplySize)

This macro sets the reply message size allocation contained in the specified
message block.

lpMMB is a pointer to the desired multiple message block (MMB).

ReplySize is the size allocated for reply messages in the MMB.

4. Macro Reference

163

4.3. DM3 Message Macros

An MMB consists of two or three sections in sequence: MMB control header,
command message header, and command message payload (optional). An MMB
can also contain one or more reply messages, each of which is a complete
structure of type QMsg with a possible payload attached. The macros in the
following sections are used to find, set, and retrieve the message headers of both
command and reply messages from within the MMB structure.

4.3.1. DM3 Message Pointer Macros

This section contains an alphabetical listing of the DM3 message pointer macros
defined in dllmnti.h. Use the following macros on a specified multiple message
block (MMB) to get the pointer to the command or reply QMsg structures that it
contains. After you have the pointer to the QMsg structure, use the information
described in 4.3.2. DM3 Message Header Macros and 4.4. DM3 Messages with
Payloads to access the message header and payload data.

MNT_GET_CMD_QMSG(LPMMB lpMMB, QMsgRef *pMsg)

This macro retrieves a pointer to the command message contained in the specified
MMB.

lpMMB is a pointer to the desired multiple message block (MMB).

*pMsg identifies the location of the command message in the specified
MMB.

MNT_GET_REPLY_QMSG(LPMMB lpMMB, ULONG ReplyNumber,
QMsgRef *pMsg)

This macro retrieves a pointer to a designated reply message contained in the
specified MMB. (Use the MNT_GET_MMB_REPLY_MAX_SIZE macro first to
determine the number of reply messages in the MMB.)

lpMMB is a pointer to the desired multiple message block (MMB).

DM3 Direct Interface Function Reference for Windows NT

164

ReplyNumber identifies the reply message for which a pointer is desired.

*pMsg identifies the location of the reply message in the specified MMB.

4.3.2. DM3 Message Header Macros

This section contains an alphabetical listing of the DM3 message header macros
defined in qmsg.h. Use the macros to set and retrieve header information from
command and reply messages contained in an MMB wrapper.

QMSG_GET_DESTADDR (QMsgRef pMsg, QCompDesc *pDestAddress)

This macro retrieves the destination address of the specified message.

pMsg is a pointer to the desired message.

*pDestAddress is the message destination’s address.

QMSG_GET_MSGSIZE (QMsgRef pMsg, ULONG *MsgSize)

This macro retrieves the size of the specified message.

pMsg is a pointer to the desired message.

*MsgSize is the size of the specified message (in bytes).

QMSG_GET_MSGTYPE (QMsgRef pMsg, ULONG *MessageType)

This macro retrieves the type of the specified message.

pMsg is a pointer to the desired message.

*MessageType is the message type.

4. Macro Reference

165

QMSG_GET_SRCADDR (QMsgRef pMsg, QCompDesc *pSourceAddress)

This macro retrieves the source address of the specified message.

pMsg is a pointer to the desired message.

*pSourceAddress is the message originator’s address.

QMSG_GET_TRANS (QMsgRef pMsg, QTrans *TransactionID)

This macro retrieves the transaction identifier of the specified message.

pMsg is a pointer to the desired message.

*TransactionID is the message’s transaction identifier.

QMSG_SET_DESTADDR (QMsgRef pMsg, QCompDesc pDestAddress)

This macro sets the destination address of the specified message.

pMsg is a pointer to the desired message.

pDestAddress is the message destination’s address.

QMSG_SET_MSGSIZE (QMsgRef pMsg, ULONG MsgSize)

This macro sets the size of the specified message.

pMsg is a pointer to the desired message.

MsgSize is the size of the specified message (in bytes).

DM3 Direct Interface Function Reference for Windows NT

166

QMSG_SET_MSGTYPE (QMsgRef pMsg, ULONG MessageType)

This macro sets the type of the specified message.

pMsg is a pointer to the desired message.

MessageType is the message type.

QMSG_SET_SRCADDR (QMsgRef pMsg, QCompDesc pSourceAddress)

This macro sets the source address of the specified message.

pMsg is a pointer to the desired message.

pSourceAddress is the message originator’s address.

QMSG_SET_TRANS (QMsgRef pMsg, QTrans TransactionID)

This macro sets the transaction identifier of the specified message.

pMsg is a pointer to the desired message.

TransactionID is the message’s transaction identifier.

4.4. DM3 Messages with Payloads

This section contains tables listing DM3 messages that require the use of payload
macros defined in qmsg.h. Use the macros to set and retrieve payload information
from command and reply messages contained within an MMB structure.

4.4.1. Messages With Fixed Payloads

DM3 messages may have a body with a known, predefined size, called a fixed
payload. Table 8 lists messages containing fixed payload information and maps

4. Macro Reference

167

them to the Direct Interface functions that can receive these messages. Refer to the
specific function description for details on extracting the payload contents.

Table 8. Messages with Fixed Payloads

Message Name Received by:

QClusterResult mntClusterAllocate(), mntClusterByComp(),
mntClusterCreate(), mntClusterFind()

QClusterUnlockCmplt mntClusterConfigUnlock()

QComponentResult mntClusterCompByAttr(), mntCompAllocate(),
mntCompFind()

QResultError mntClusterActivate(), mntClusterAllocate(),
mntClusterByComp(),
mntClusterCompByAttr(),
mntClusterConfigLock(), mntClusterConnect(),
mntClusterCreate(), mntClusterDeactivate(),
mntClusterDestroy(), mntClusterDisconnect(),
mntClusterFind(), mntClusterFree(),
mntClusterSlotInfo(), mntClusterTSAssign(),
mntClusterTSUnassign(), mntCompAllocate(),
mntCompFind(), mntCompFindAll(),
mntCompFree(), mntCompUnuse(),
mntCompUse(), mntNotifyRegister(),
mntNotifyUnregister()

4.4.2. Messages with Variable Payloads

A variable payload is the body of a DM3 message that includes one or more
variable fields. The qMsgVarFieldGet() and qMsgVarFieldPut() functions
must be used to access the variable portion of a message payload. Table 9 lists
messages containing variable payloads and maps them to the Direct Interface
functions that can receive these messages. Refer to the specific function
description for details on extracting the variable payload contents.

DM3 Direct Interface Function Reference for Windows NT

168

Table 9. Messages with Variable Payloads

Message Name Received by:

QClusterSlotInfoResult mntClusterSlotInfo()

QComponentMultipleResult mntCompFindAll()

QFailureNotify mntNotifyRegister()

169

5. Data Types, Structures, and Error
Codes

This chapter contains information on:

� Data types
� Data structures
� Error code definitions

5.1. Data Types

The Direct Interface host library is distributed with a number of include files. For
DM3 Kernel-related data types, consult mercdefs.h. For standard DM3 messages
and parameters, consult stddefs.h. Component-related structures are defined in
qcomplib.h. Some of the most common data types are listed in the following table.

Table 10. Data Type Definitions

Data Type Definition

struct QCompAttr Structure that contains a component attribute
identifier (the key) and a specific attribute value
associated with that key.

struct QCompDesc Structure that defines a component instance. It is a
record that contains board, processor, and component
type identifiers; and the instance number. It is the
component instance address for all messages.

struct QMsg Local representation of the standard DM3 message
structure. You should access this structure only
through the access macros described in Chapter
4. Macro Reference.

DM3 Direct Interface Function Reference for Windows NT

170

Data Type Definition

UInt24 QTrans Transaction identifier that is a standard element of a
DM3 message. Use it as a parameter in a function call
that returns an asynchronous message as a result. The
transaction ID is returned in the reply message.
Transaction identifiers should be unique within each
process.

5.2. Data Structures

This section alphabetically lists the data structures used by the Direct Interface
functions and discusses the fields they contain.

5.2.1. MSB Stream Buffer Structure

This data structure is used by the mntRegisterAsyncStreams() function and is
defined in mmb.h.

typedef struct {
 STRM_HDR strmHdr;
 ULONG readCompletionMask;
 USHORT timeout;
 ULONG xferLen;
 ULONG xferDone;
} MSB, *PMSB, *LPMSB;

strmHdr stream header returned from mntGetStreamHeader()

readCompletionMask mask set in mntSetStreamHeader()

timeout same timeout value as set in mntSetIOTimeout()

xferLen size of the buffer corresponding to the MSB

xferDone returned size from the read

5. Data Types, Structures, and Error Codes

171

5.2.2. STRM_HDR Stream Header Structure

This data structure is defined in mmb.h.

typedef struct {
 ULONG sequence;
 UCHAR bufFlags; // MNT_EOD - End of Data = 0x01
 // MNT_EOT - End of Transmission = 0x02
 // MNT_EOF - EndofFile=0x04(equivalent to EOS)
 // MNT_USER1 - User specified flag = 0x08
 // MNT_USER2 - User specified flag = 0x10
 // MNT_USER3 - User specified flag = 0x20
 // MNT_USER4 - User specified flag = 0x40
 // MNT_USER5 - User specified flag = 0x80
 UCHAR encoding;
 UCHAR pad1; // reserved for future use
 UCHAR sysFlags; // read-only
 // STREAM_CLOSED = 0x01
 // STREAM_BROKEN = 0x02
 ULONG canTakeLimit; // read-only
 ULONG initialCanTake; // read-only
 ULONG currentCanTake; // read-only
 ULONG requestedSize; // read-only
 ULONG actualSize; // read-only
} STRM_HDR, *PSTRM_HDR;

sequence used as an incrementing counter as blocks are written. This field is
automatically filled by the lower level stream data block transport
code.

DM3 Direct Interface Function Reference for Windows NT

172

bufFlags indicates the out-of-band stream attributes as defined below:

� The MNT_EOD flag indicates the end of a valid grouping of
data blocks. It terminates an operation, such as a data transfer,
without closing the stream.

� The MNT_EOT flag indicates the end of a collection of
groupings that have been delineated by MNT_EOD flags.
Without closing the stream, it marks such operations as a forced
termination of a grouping of operations in which the data
transfer groupings were buffered onto a stream, but were not yet
processed at the time of termination.

� The MNT_EOF flag indicates the end of a file or stream. It is
normally set in the last block of a stream when the writer closes
its end of the stream.

� The MNT_USERn flags can be used for any application-level
purpose.

encoding set to the calling processor byte ordering convention (big-endian
or little-endian)

5.2.3. STRM_INFO Stream Information Structure

This data structure is defined in qstream.h.

typedef struct {
 int NumStrmGroups;
 int DataBlockSize;
 STRM_GROUP_CFG StrmGroups[MNT_STREAM_MAX_NUM_GROUPS];
} STRM_INFO, *PSTRM_INFO;

typedef struct {
 UInt32 GroupID;
 UInt32 NumStreams;
 UInt32 StreamSize;
} STRM_GROUP_CFG;

NumStrmGroups defines the number of stream groups available. A stream
group is used for defining a number of streams with
different stream size. (Maximum value is 20.)

5. Data Types, Structures, and Error Codes

173

DataBlockSize defines the default data block size, currently set at 4032
bytes.

5.2.4. QBoardAttr Board Attribute Structure

This data structure is used by the mntGetBoardsByAttr() function and is
defined in qmsg.h.

typedef struct {
 char ValueName[MNT_MAX_VALUE_NAME_SIZE];
 ULONG ValueType;
 char Value[MNT_MAX_VALUE_SIZE];
 ULONG BoardNo;
} QBoardAttr, *PQBoardAttr;

ValueName contains a NULL terminated string specifying the name of the
value which matched.

ValueType one of the Win32 registry types; REG_DWORD, REG_SZ, or
REG_MULTISZ.

Value current value of the value named in ValueName.

BoardNo contains the logical board ID of the board which contained the
matching attribute.

5.2.5. QCompAttr Component Attribute Structure

A value of type QCompAttr (defined in qcomplib.h) is a structure of the format:

typedef struct {
 ULONG key;
 LONG value;
}QCompAttr, *PQCompAttr;

The key / value pairs described below always occur in arrays. The end of the array
is marked with special null values.

DM3 Direct Interface Function Reference for Windows NT

174

key Uniquely identifies component attribute type. Each identifier key
is defined as either unique (only one QCompAttr structure and
hence only one value associated with key) or shared (multiple
QCompAttr structures with different values may be associated
with key). Two standard keys are defined which identify
attributes that should be defined for every component. These
required attribute keys are:

SysAttrCompType Generic component type attribute

SysAttrCompId Unique component ID attribute

Additionally, there are four special values defined for the key
field which function as operators in a list of QCompAttr
structures:

QATTR_NOT Used to effect a non-match in selection by
attribute

QATTR_OR Used to logically OR two attributes in selection
by attribute

QATTR_AND Used to logically AND two attributes in
selection by attribute

QATTR_NULL Null key

value Encoded value of attribute. If no specific value is to be specified
for the attribute, the canonical value QATTR_ANY should be set
in the value field; this value is equal to the most negative 32-bit
integer, which is unavailable as an attribute value. Refer to Table
11 for a list of possible key / value pairs.

Table 11. Component Attribute Values

Attribute Key Value Description

SysAttrCompType StdPlayer A standard player component

SysAttrCompType StdRecorder A standard recorder component

SysAttrCompType StdCoder A standard coder component

5. Data Types, Structures, and Error Codes

175

Attribute Key Value Description

SysAttrCompType SysComponent A standard DM3 system service

SysAttrCompId MercConfigMgr The configuration manager

SysAttrCompId MercHostDriver The host interface driver

SysAttrCompId MercIPCDriver The CP-SP interface driver

SysAttrCompId MercResourceMgr The resource manager

SysAttrCompId MercSlotMgr The timeslot manager

SysAttrCompId MercStreamMgr The global memory stream manager

Any Key QATTR_ANY Matches any value

5.2.6. QCompDesc Component Descriptor Structure

The data type QCompDesc is a structure which is the local representation of a
DM3 component descriptor. This data structure is defined in qcomplib.h .A
component descriptor has the following format:

typedef struct{
 USHORT node;
 UCHAR board;
 UCHAR pad1;
 UCHAR processor;
 UCHAR component;
 UCHAR instance;
 UCHAR pad2;
}QCompDesc, *PQCompDesc;

node Currently unused

board Identifies a specific board within the system. The following
standard identifiers are currently defined:

QCOMP_B_SELF
QCOMP_B_HOST
QCOMP_B_NIL

DM3 Direct Interface Function Reference for Windows NT

176

processor Identifies the processor where an instance resides. The following
standard identifiers are currently defined:

QCOMP_P_HOST
QCOMP_P_CP
QCOMP_P_SP
QCOMP_P_SELF
QCOMP_P_NIL

component Identifies the type of component being addressed. The following
standard identifiers are currently defined:

QCOMP_C_SYS_SERVICE
QCOMP_C_TASK
QCOMP_C_STREAM
QCOMP_C_INVALID
QCOMP_C_NIL

instance Identifies the type of instance being addressed. The following
standard identifiers are currently defined:

QCOMP_I_COMPONENT
QCOMP_I_HMSGDRIVER
QCOMP_I_HSTREAMDRV
QCOMP_I_IPCDRIVER
QCOMP_I_CONFIGMGR
QCOMP_I_RESOURCEMGR
QCOMP_I_SMP
QCOMP_I_BSTREAM_TSK
QCOMP_I_CLUSTERMGR
QCOMP_I_SRAM
QCOMP_I_IDLE_TSK
QCOMP_I_FTIMER
QCOMP_I_QAGENT
QCOMP_I_NIL

To partially specify a component instance, the instance field must be set to
QCOMP_I_NIL. The processor and component fields may also optionally be set
to their null values (QCOMP_P_NIL and QCOMP_C_NIL) as wild card values.

5. Data Types, Structures, and Error Codes

177

5.2.7. QValueAttr Board Attribute Specification Structure

The QValueAttr data structure is used by the mntGetBoardsByAttr() function
and is defined in qmsg.h.

typedef struct {
 char ValueName[MNT_MAX_VALUE_NAME_SIZE];
 ULONG ValueType;
 BYTE ValueFlag;
 char Value[MNT_MAX_VALUE_SIZE];
} QValueAttr, *PQValueAttr;

ValueName a NULL terminated string specifying the name of the value to find
or the wild card “*” which can be used to indicate a match on any
value name.

ValueType one of the Win32 registry types; REG_DWORD, REG_SZ, or
REG_MULTISZ.

ValueFlag may be NULL to indicate a match on the value specified in Value
or MNT_MATCH_ANY_VALUE to match on any value.

Value the value to match.

5.3. Error Code Definitions

If any Direct Interface host library function returns FALSE, you should call the
GetLastError() function to retrieve the error. This is a Win32 API convention
that the Direct Interface host library observes. There are two error-code classes:
Dialogic and Windows NT. To determine if it’s a Direct Interface host library
error, use the ERROR_MNT_BASE as a mask.

5.3.1. Windows NT Error Codes

Window NT provides error codes that can occur during general Win32 API
function calls and during stream I/O operations. Table 12 lists some of the
possible Windows NT general error codes. Refer to winerror.h for details.

DM3 Direct Interface Function Reference for Windows NT

178

Table 12. Windows NT General Error Codes

Error
Code

Name Description

2 ERROR_FILE_NOT_FOUND System cannot find specified file.

6 ERROR_INVALID_HANDLE Handle is incorrect.

8 ERROR_NOT_ENOUGH_MEMORY Not enough storage available to
process this command.

31 ERROR_GEN_FAILURE Device attached to the system is
not functioning.

87 ERROR_INVALID_PARAMETER Parameter is incorrect.

122 ERROR_INSUFFICIENT_BUFFER Data area passed to a system call is
too small.

997 ERROR_IO_PENDING Overlapped I/O operation is in
progress

998 ERROR_NOACCESS Invalid access to memory location.

1011 ERROR_CANTOPEN Configuration registry could not be
opened.

1012 ERROR_CANTREAD Configuration registry key could
not be read.

If a stream I/O operation fails, the Class Driver (DLGCMCD) and Protocol Driver
(DLGCMPD) can return a Windows NT stream error code. Table 13 lists some of
the possible Windows NT stream error codes.

5. Data Types, Structures, and Error Codes

179

Table 13. Windows NT Stream Error Codes

Error
Code

Name Stream
Type

Description

0 NO_ERROR

or

ERROR_SUCCESS

Read Three possible cases:

� Stream header matches user-
specified completion mask,
and request completes with
current transfer count.

� Sender has closed stream. All
pending reads completed.

� Requested bytes have been
read.

1 ERROR_INVALID_FUNCTION Read or
Write

Handle passed does not belong
to the Stream device, or the
requested action is inconsistent,
such as a write request for a
read stream.

21 ERROR_NOT_READY Read or
Write

The board is not in a ready
state.

22 ERROR_BAD_COMMAND Read or
Write

There is no open or attached
stream on the device handle
passed.

57 ERROR_ADAP_HDW_ERR Read or
Write

There is a hardware error on the
board.

71 ERROR_REQ_NOT_ACCEP Read or
Write

The board has rejected the
close- or open-stream request
made by the host driver.

109 ERROR_BROKEN_PIPE Write The reader has closed the
stream. Your application should
properly close the stream.

DM3 Direct Interface Function Reference for Windows NT

180

Error
Code

Name Stream
Type

Description

121 ERROR_SEM_TIMEOUT Read or
Write

The I/O request has timed out.
If the timeout value is set
through through the
mntSetStreamIOTimeout()
function, a 30-second default is
used.

170 ERROR_BUSY Read or
Write

The stream cannot be closed
due to its non-zero reference
count.

231 ERROR_PIPE_BUSY Read or
Write

The stream cannot be closed
due to outstanding I/O requests.

997 ERROR_IO_PENDING Read or
Write

The I/O request has been
accepted and is pending.
Normal in asynchronous I/O.

1117 ERROR_IO_DEVICE Read Stream’s orphan buffer has
overrun. The application is not
reading quickly enough. Can be
due to heavy system load.

5.3.2. Dialogic Library and Driver Error Codes

If error checking in either the host library or driver layer detects a problem, error
checking returns a Dialogic error code. Table 14 lists some of the possible
Dialogic error codes. Please refer to dllmnti.h for details.

Table 14. Dialogic Error Codes

Error Code Name Description

0xE0000000 ERROR_MNT_MMB_ALLOC_FAILED Unable to allocate
MMB

0xE0000001 ERROR_MNT_INVALID_VALUE_TYPE Invalid Registry value
type encountered

5. Data Types, Structures, and Error Codes

181

Error Code Name Description

0xE0000002 ERROR_MNT_NO_MCD_VERSION_ID Unable to retrieve
DLGCMCD version
ID

0xE0000003 ERROR_MNT_NO_TRACE_HANDLE Unable to open trace
handle

0xE0000004 ERROR_MNT_CANTCLOSE Unable to close
registry key

0xE0000005 ERROR_MNT_INVALID_ATTR_KEY Invalid attribute key

0xE0000006 ERROR_MNT_NO_BOARDS_BY_ATTR Unable to get boards
by attributes

0xE0000007 ERROR_MNT_NO_MEM Unable to allocate
memory for thread-
local-storage MMB.

0xE0000008 ERROR_MNT_SYSTEM_ERR Direct Interface
system error

0xE0000009 ERROR_MNT_MERCURY_STD_MSG Standard error
message received

0xE000000A ERROR_MNT_MERCURY_KRNL DM3 Kernel error
message received

0xE000000B ERROR_MNT_HEAP_FREE_FAILED Not used

0xE000000C ERROR_MNT_HEAP_ALLOC_FAILED Not used

0xE000000D ERROR_MNT_INVALID_CMDSIZE Invalid command size
specified

183

Index

A

Architecture, DM3
definition, 2

asynchronous function calls, 8

asynchronous function returns, 9

asynchronous functions
OVERLAPPED structure, 8

C

calling functions
asynchronously, 8
synchronously, 11

Class Driver, 5

cluster management functions, 16
mntClusterActivate(), 30
mntClusterAllocate(), 34
mntClusterByComp(), 37
mntClusterCompByAttr(), 39
mntClusterConfigLock(), 42
mntClusterConfigUnlock(), 44
mntClusterConnect(), 46
mntClusterCreate(), 50
mntClusterDeactivate(), 53
mntClusterDestroy(), 56
mntClusterDisconnect(), 58
mntClusterFind(), 61
mntClusterFree(), 63
mntClusterSlotInfo(), 65
mntClusterTSAssign(), 68
mntClusterTSUnassign(), 71

CompactPCI, 5

Component
definition, 2

component management functions, 17

mntCompAllocate(), 74
mntCompFind(), 77
mntCompFree(), 86
mntCompUnuse(), 88
mntCompUse(), 90

CreateFile(), 5

D

data structures
Direct Interface, 170
MSB, 170
QBoardAttr, 173
QCompAttr, 173
QCompDesc, 175
QValueAttr, 177
STRM_HDR, 171
STRM_INFO, 172

data types
Direct Interface, 169

debug support functions, 17
mntGetDrvVersion(), 105
mntGetLibVersion(), 106
mntSetTraceLevel(), 139
mntTrace(), 143
mntTransGen(), 145

Dialogic Class Driver, 5

Dialogic error codes, 180

Dialogic Protocol Driver, 5

Direct Interface
cluster management functions, 16
component management functions,

17
data structures, 170
data types, 169
debug support functions, 17
error codes, 177

DM3 Direct Interface Function Reference for Windows NT

184

exit notification functions, 20
message I/O functions, 18
stream I/O functions, 18

DLGCMCD, 5

DLGCMPD, 5

DM3 architecture
key concepts, 2

DM3 Direct Interface host library, 4

DM3 Direct Interface Overview, 3

DM3 embedded system, 5

DM3 firmware, 6

DM3 Hardware, 5

DM3 host library, 4

DM3 message header macros, 164
QMSG_GET_DESTADDR, 164
QMSG_GET_MSGSIZE, 164
QMSG_GET_MSGTYPE, 164
QMSG_GET_SRCADDR, 165
QMSG_GET_TRANS, 165
QMSG_SET_DESTADDR, 165
QMSG_SET_MSGSIZE, 165
QMSG_SET_MSGTYPE, 166
QMSG_SET_SRCADDR, 166
QMSG_SET_TRANS, 166

DM3 message pointer macros, 163
MNT_MNT_GET_CMD_QMSG,

163
MNT_MNT_GET_REPLY_QMSG,

163

DM3 messages with payloads, 166

DMA, 5

E

error codes
definitions, 177
Dialogic, 180

Windows NT, 177

error handling
asynchronous, 9
asynchronous code example, 11
synchronous, 12
synchronous code example, 14

exit notification functions, 20

F

functions
asynchronous, 8
cluster mangement

mntClusterActivate(), 30
mntClusterAllocate(), 34
mntClusterByComp(), 37
mntClusterCompByAttr(), 39
mntClusterConfigLock(), 42
mntClusterConfigUnlock(), 44
mntClusterConnect(), 46
mntClusterCreate(), 50
mntClusterDeactivate(), 53
mntClusterDestroy(), 56
mntClusterDisconnect(), 58
mntClusterFind(), 61
mntClusterFree(), 63
mntClusterSlotInfo(), 65
mntClusterTSAssign(), 68
mntClusterTSUnassign(), 71

component mangement
mntCompAllocate(), 74
mntCompFind(), 77
mntCompFree(), 86
mntCompUnuse(), 88
mntCompUse(), 90

debug support
mntGetDrvVersion(), 105
mntGetLibVersion(), 106
mntSetTraceLevel(), 139
mntTrace(), 143
mntTransGen(), 145

message I/O
mntAllocateMMB(), 22

Index

185

mntCheckStreamOrphans(), 28
mntClearMMB(), 29
mntCopyMMB(), 93
mntEnumMpathDevice(), 96
mntEnumStrmDevice(), 98
mntFreeMMB(), 100
mntGetBoardsByAttr(), 101
mntGetMpathAddr(), 109
mntGetTLSmmb(), 116
mntRegisterAsyncMessages(),

123
mntRegisterAsyncStreams(),

126
mntSendMessage(), 129
mntSendMessageWait(), 131
qMsgVarFieldGet(), 146
qMsgVarFieldPut(), 150

stream I/O
mntAttachMercStream(), 25
mntCompleteStreamIo(), 92
mntDetachMercStream(), 94
mntGetMercStreamID(), 107
mntGetStreamHeader(), 111
mntGetStreamInfo(), 114
mntSetStreamHeader(), 135
mntSetStreamIOTimeout(), 138

synchronous, 11

H

Hardware, 5

I

Introduction to DM3 architecture
definition, 2

M

macros
DM3 message header, 164
DM3 message pointer, 163
DM3 messages with payloads, 166
MMB control header, 156

Message

definition, 3

message I/O functions, 18
mntAllocateMMB(), 22
mntCheckStreamOrphans(), 28
mntClearMMB(), 29
mntCopyMMB(), 93
mntEnumMpathDevice(), 96
mntEnumStrmDevice(), 98
mntFreeMMB(), 100
mntGetBoardsByAttr(), 101
mntGetMpathAddr(), 109
mntGetTLSmmb(), 116
mntRegisterAsyncMessages(), 123
mntRegisterAsyncStreams(), 126
mntSendMessage(), 129
mntSendMessageWait(), 131
qMsgVarFieldGet(), 146
qMsgVarFieldPut(), 150

MMB, 155

MMB control header macros, 156
MNT_GET_MMB_ACTUAL_REP

LY_COUNT, 157
MNT_GET_MMB_CMD_SIZE,

157
MNT_GET_MMB_CMD_TIMEO

UT, 157
MNT_GET_MMB_CURRENT_RE

PLY_OFFSET, 157
MNT_GET_MMB_EMPTY_MSG,

158
MNT_GET_MMB_EXPECTED_R

EPLY_COUNT, 158
MNT_GET_MMB_MATCH_ON_

DEST_ADDR, 158
MNT_GET_MMB_MATCH_ON_

MSGTYPE, 159
MNT_GET_MMB_MATCH_ON_S

RC_ADDR, 159
MNT_GET_MMB_MATCH_ON_

TRANS_ID, 159
MNT_GET_MMB_REPLY_MAX_

SIZE, 160

DM3 Direct Interface Function Reference for Windows NT

186

MNT_SET_MMB_CMD_SIZE,
160

MNT_SET_MMB_CMD_TIMEOU
T, 160

MNT_SET_MMB_EMPTY_MSG,
160

MNT_SET_MMB_EXPECTED_R
EPLY_COUNT, 161

MNT_SET_MMB_MATCH_ON_D
EST_ADDR, 161

MNT_SET_MMB_MATCH_ON_
MSGTYPE, 161

MNT_SET_MMB_MATCH_ON_S
RC_ADDR, 162

MNT_SET_MMB_MATCH_ON_T
RANS_ID, 162

MNT_SET_MMB_REPLY_MAX_
SIZE, 162

MMB structure, 156

MNT_GET_CMD_QMSG, 163

MNT_GET_MMB_ACTUAL_REPLY_
COUNT, 157

MNT_GET_MMB_CMD_SIZE, 157

MNT_GET_MMB_CMD_TIMEOUT,
157

MNT_GET_MMB_CURRENT_REPL
Y_OFFSET, 157

MNT_GET_MMB_EMPTY_MSG, 158

MNT_GET_MMB_EXPECTED_REPL
Y_COUNT, 158

MNT_GET_MMB_MATCH_ON_DES
T_ADDR, 158

MNT_GET_MMB_MATCH_ON_MSG
TYPE, 159

MNT_GET_MMB_MATCH_ON_SRC
_ADDR, 159

MNT_GET_MMB_MATCH_ON_TRA
NS_ID, 159

MNT_GET_MMB_REPLY_MAX_SIZ
E, 160

MNT_GET_REPLY_QMSG, 163

MNT_SET_MMB_CMD_SIZE, 160

MNT_SET_MMB_CMD_TIMEOUT,
160

MNT_SET_MMB_EMPTY_MSG, 160

MNT_SET_MMB_EXPECTED_REPL
Y_COUNT, 161

MNT_SET_MMB_MATCH_ON_DES
T_ADDR, 161

MNT_SET_MMB_MATCH_ON_MSG
TYPE, 161

MNT_SET_MMB_MATCH_ON_SRC
_ADDR, 162

MNT_SET_MMB_MATCH_ON_TRA
NS_ID, 162

MNT_SET_MMB_REPLY_MAX_SIZ
E, 162

mntAllocateMMB(), 22

mntAttachMercStream(), 25

mntCheckStreamOrphans(), 28

mntClearMMB(), 29

mntClusterActivate(), 30

mntClusterAllocate(), 34

mntClusterByComp(), 37

mntClusterCompByAttr(), 39

mntClusterConfigLock(), 42

mntClusterConfigUnlock(), 44

Index

187

mntClusterConnect(), 46

mntClusterCreate(), 50

mntClusterDeactivate(), 53

mntClusterDestroy(), 56

mntClusterDisconnect(), 58

mntClusterFind(), 61

mntClusterFree(), 63

mntClusterSlotInfo(), 65

mntClusterTSAssign(), 68

mntClusterTSUnassign(), 71

mntCompAllocate(), 74

mntCompFind(), 77

mntCompFree(), 86

mntCompleteStreamIo(), 92

mntCompUnuse(), 88

mntCompUse(), 90

mntCopyMMB(), 93

mntDetachMercStream(), 94

mntEnumMpathDevice(), 96

mntEnumStrmDevice(), 98

mntFreeMMB(), 100

mntGetBoardsByAttr(), 101

mntGetDrvVersion(), 105

mntGetLibVersion(), 106

mntGetMercStreamID(), 107

mntGetMpathAddr(), 109

mntGetStreamHeader(), 111

mntGetStreamInfo(), 114

mntGetTLSmmb(), 116

mntRegisterAsyncMessages(), 123

mntRegisterAsyncStreams(), 126

mntSendMessage(), 129

mntSendMessageWait(), 131

mntSetStreamHeader(), 135

mntSetStreamIOTimeout(), 138

mntSetTraceLevel(), 139

mntTerminateStream(), 141

mntTrace(), 143

mntTransGen(), 145

MSB, 170

multiple message block, 155

P

PCI, 5

PIO, 5

Protocol Driver, 5

Q

QBoardAttr, 173

QClusterResult message, 35, 38, 51, 62

QClusterSlotInfoResult message, 67

QClusterUnlockCmplt message, 45

QCompAttr, 173

QCompDesc, 175

QCompMultipleResult message, 84

QComponentResult message, 40, 76, 80

QFailureNotify message, 119

QMSG_GET_DESTADDR, 164

DM3 Direct Interface Function Reference for Windows NT

188

QMSG_GET_MSGSIZE, 164

QMSG_GET_MSGTYPE, 164

QMSG_GET_SRCADDR, 165

QMSG_GET_TRANS, 165

QMSG_SET_DESTADDR, 165

QMSG_SET_MSGSIZE, 165

QMSG_SET_MSGTYPE, 166

QMSG_SET_SRCADDR, 166

QMSG_SET_TRANS, 166

qMsgVarFieldGet(), 146

qMsgVarFieldPut(), 150

QResultComplete message, 33, 43, 49,
54, 57, 60, 64, 70, 72, 87, 89,
91, 119, 122

QValueAttr, 177

R

ReadFile(), 5

Resource
definition, 2

Result messages
QClusterResult, 35, 38, 51, 62
QClusterSlotInfoResult, 67
QClusterUnlockCmplt, 45
QCompMultipleResult, 84
QComponentResult, 40, 76, 80
QFailureNotify, 119
QResultComplete, 33, 43, 49, 54,

57, 60, 64, 70, 72, 87, 89,
91, 119, 122

S

stream I/O functions, 18
mntAttachMercStream(), 25
mntCompleteStreamIo(), 92

mntDetachMercStream(), 94
mntGetMercStreamID(), 107
mntGetStreamHeader(), 111
mntGetStreamInfo(), 114
mntSetStreamHeader(), 135
mntSetStreamIOTimeout(), 138
mntTerminateStream(), 141

STRM_HDR, 171

STRM_INFO, 172

synchronous function calls, 11

synchronous function returns, 12

V

VME, 5

W

Windows NT
error codes, 177

WriteFile(), 5

NOTES

NOTES

NOTES

