DM3 Direct Interface
Function Reference

for Windows NT

Copyright © 1998 Dialogic Corporation

PRINTED ON RECYCLED PAPER

05-0986-001

COPYRIGHT NOTICE

Copyright 1998 Dialogic Corporation. All Rights Reserved.

All contents of this document are subject to change without notice and do not represent a commitment
on the part of Dialogic Corporation. Every effort is made to ensure the accuracy of this information.
However, due to ongoing product improvements and revisions, Dialogic Corporation cannot
guarantee the accuracy of this material, nor can it accept responsibility for errors or omissions. No
warranties of any nature are extended by the information contained in these copyrighted materials.
Use or implementation of any one of the concepts, applications, or ideas described this document or
on Web pages maintained by Dialogic-may infringe one or more patents or other intellectual property
rights owned by third parties. Dialogic does not condone or encourage such infringement. Dialogic
makes no warranty with respect to such infringement, nor does Dialogic waive any of its own
intellectual property rights which may cover systems implementing one or more of the ideas contained
herein. Procurement of appropriate intellectual property rights and licenses is solely the responsibility
of the system implementer. The software referred to in this document is provided under a Software
License Agreement. Refer to the Software License Agreement for complete details governing the use
of the software.

All names, products, and services mentioned herein are the trademarks or registered trademarks of
their respective organizations and are the sole property of their respective owners. DIALOGIC
(including the Dialogic logo), DTI/124, SpringBoard, and Signal Computing System Architecture
(SCSA) are registered trademarks of Dialogic Corporation.

Publication Date: April, 1998
Part Number05-0986-001

Dialogic Corporation
1515 Route 10
Parsippany NJ 07054

Technical Support
Phone: 973-993-1443
Fax: 973-993-8387
BBS: 973-993-0864
Email: CustEng@dialogic.com

For Sales Officesand other contact information, visit our websitéttp://www.dialogic.com

Table of Contents

O 1 o To [F Tt 1 o] o I PP PRPRTPTPP 1
1.1. ADOUL thiS GUIE ...eeeiiiiiiiiiiiee et 1
1.2. Documentation CONVENTIONSocurriieeeiiiiiiiee e e e 1
1.3. Key DM3 ArchiteCture CONCEPLS .oevvvrrreiiiieieeeeeee ettt se e e e e e e e e e s 2
1.4. DM3 Direct INterface OVEIVIEWccciirirriiieiiiiriie e 3
1.4.1. DM3 Direct Interface Host Librarycccceeeviiiiiiiiiiiiiiicie e, 4
1.4.2. DM3 DEVICE DIIVEIS.....cciiiiriiiieeiiiiieiee et 5
1.5, DM3B HAIOWAIE....ccceiiiiriiiee ettt ettt e e e e e e e e e e e 5
1.6. DM3 FIFMMWAEIEceiiiiiiiiiieee ettt e et e e e e s e e e s s nnreeeee e s e 6
2. FUNCHON SUMMAIY ...ooiiiiiiiiiaiii ettt bbb e e eeeeeas 7
2.1, NamiNg CONVENTIONScoeiiiiiiiiiieee ittt e et e e e eeneee 7
2.2. Calling Functions ASYNCAIONOUSIYcooiiiiiiiiiiiiiieiiiee e 8
2.2.1. OVERLAPPED SHUCIUIE....ccciiiiiiiiiiitiee ettt 8
2.2.2. Handling Asynchronous Function REtUINSccccceeeviiiieeeiniiine e, 9
2.3. Calling Functions SYNChroNOUSIYcccouiiiiiiiiiiiiiee e 11
2.3.1. Handling Synchronous Function REtUINS...........ccooviiiiiiiiniiceeniiiieeenn 12
2.4, FUNCHON CalEUONMESciiitiiiiie ittt ettt 15
2.4.1. Cluster Management FUNCLIONS.........ccooiiiiiiiieniiiiiiieee e 16
2.4.2. Component Management FUNCLIONS...........oouuieieiiiiieeen e 17
2.4.3. Debug Support FUNCLONSeviiiiiiiiieee st 17
2.4.4. Stream /O FUNCHONSooiiiiie it 18
2.4.5. Message /O FUNCLONSooviiiiiiiiiee it 18
2.4.6. Exit Notification FUNCHONS...........ueiiiiiiiiiiee e 20
3. FUNCHON REFEIENCE......iii it 21
mntAllocateMMB() - allocates and clears a Message BlocK............ccccooiiiinnnee. 22
mntAttachMercStream() - opens a stream and attaches it to a stream handle...... 25
mntClearMMB() - clears the command and reply message areas...............cc.u..... 29
mntClusterActivate() - activates an OUT-port connectionccccuvvvieeeeeenn. 30
mntClusterAllocate() - finds and allocates a Cluster ..., 34
mntClusterByComp() - finds the cluster that owns an instance.............ccccccco...... 37
mntClusterCompByAttr() - finds a component with specific attributes............... 39
mntClusterConfigLock() - locks a specific CIUSLer ..o 42
mntClusterConfigUnlock() - unlocks a previously-locked cluster....................... 44
mntClusterConnect() - interconnects the ports of two instances...............ccceeene 46
mntClusterCreate() - creates a NEW CIUSTENcieiiiiiireiiiie e 50

iii

DM3 Direct Interface Function Reference for Windows NT

mntClusterDeactivate() - deactivates CONNectionsS............ccccuveeiireeeeeeeeiiiiiiieee 53
mntClusterDestroy() - destroys an empty CIUSTEr..........cooviiiiiiiiiiiiieeeie e, 56
mntClusterDisconnect() - breaks an existing connection between ports.............. 58
mntClusterFind() - finds a cluster that has specific attributes..............ccccvveeeee... 61
mntClusterFree() - releases an allocated ClUSter ..o, 63
mntClusterSlotinfo() - finds the time slots assigned to a port..........ccccecvveeennnen. 65
mntClusterTSAssign() - assigns time slots to a cluster's SCbus resource 68
mntClusterTSUnassign() - unassigns a timeslot from an SCbus resource............ 71
mntCompAllocate() - reserves and locks a specific component instance 74
mntCompFind() - findS & COMPONENT......cooiiiiiiiiiie e 77
mntCompFindAll() — returns component addresses with specified attributes...... 81
mntCompFree() - releases an allocated component instance..........ccccceeeveeeinenns 86
mntCompUnuse() - marks component instances as not being in use.................... 88
mntCompUse() - marks component instances as being in Use...........cccccvveeeeen..n. 90
mntCompleteStreamlo() - completes pending stream I/O requests 92
mntCopyMMB() - copies the specified Message BIOCK...........ccccccoevvvvvvinnennnnnn. 93
mntDetachMercStream() - detaches a streamccccvvveeeiieeee e 94
mntEnumMpathDevice() - enumerates existing Mpath devicescccvveeee.... 96
mntEnumStrmDevice() - enumerates existing Stream deviCescccoeveuvvvnnenn. 98
mntFreeMMB() - frees the specified Message BIOCK..........ccccvvvvviieeeeeiiiniicnns 100
mntGetBoardsByAttr() - lists boards with matching attributes.......................... 101
mntGetDrvVersion() - retrieves the driver version String...........ccoeeecvvvveeeneennnn. 105
mntGetLibVersion() - retrieves the Direct Interface library version string 106
mntGetMercStreamID() - returns the stream ID........cccccvvvveeeeevievcciiieeeeeee e 107
mntGetMpathAddr() - returns the message path source address 109
mntGetStreamHeader() - gets the out-of-band stream attributes 111
mntGetStreamInfo() - gets global board-specific stream information 114
mntGetTLSmmb() - retrieves the thread-local storage MMBcccvvveeeeen. 116
mntNotifyRegister() — enables notification of sub-component failure............... 118
mntNotifyUnregister() — disables notification of sub-component failure 121

mntRegisterAsyncMessages() - enables receipt of asynchronous messages...... 123
mntRegisterAsyncStreams() - enables receipt of asynchronous stream data 126

mntSendMessage() - sends the message specified in the MMB 129
mntSendMessageWait() - builds an MMB, sends it, then synchronously waits

fOr 1/0O COMPIELION. ... e e 131
mntSetExitNotify() - enables notification of Mpath device failure.................... 133
mntSetStreamHeader() - sets the out-of-band stream attributes 135
mntSetStreamIOTimeout() - sets the stream 1/O request timeout value 138
mntSetTraceLevel() - enables or disables trace statementscccoeevnvvneee. 139

Table of Contents

mntTerminateStream() - cancels a persistent streamcccccccveveeeeeniicinennee. 141
mntTrace() - sends trace statements to a filecccccveeeeeiiiiiiiiiie, 143
mntTransGen() - generates a message transaction ID..........ccccccccveeeiiiiiiiiiiinneen. 145
gMsgVarFieldGet() — gets typed fields from a message payload...................... 146
gMsgVarFieldPut() — puts typed fields into a message payload...........cccc.c...... 150
4, MACrO REEIENCE ...ocevve e 155
4.1. Multiple Message BIOCK..........c.oovvreiiiiiiiiiii e 155
4.2. MMB Control Header MACIOScuviiiiiiiiiiaeeaiieiiee e 156
4.3. DM3 MESSAJGE MACIOS.....cccvuuiiiiiiiiiieeieiiie e e et e e et e e e e e e e e eaea s 163
4.3.1. DM3 Message Pointer MaCrOScccoevviviviiiiiiiiieei e e eeeeeeeeaevni s 163
4.3.2. DM3 Message Header MacCroScccuuuvuiuiiieiiiieeeeeeeeeeevse e 164
4.4, DM3 Messages With Payloads...........ccccceeiiiiiiiiiiiicceicie e 166
4.4.1. Messages With Fixed Payloadsccccceeeeiiiieeeiiieveeecie e, 166
4.4.2. Messages with Variable Payloads............cccceovviiiiiiiiiiiiiiicie e, 167
5. Data Types, Structures, and Error Codes............ccoooiiiiiiiiiiiiiiiiiicieeeeeen 169
TR B B = = B I3/ 011 PP 169
5.2, DAta SITUCTUIES ... oottt e e e e e e e e e e tat s e e e e eeeaaeaeees 170
5.2.1. MSB Stream Buffer StruCture...........ccccociiiiiiiiiiiieceeeeeee e 170
5.2.2. STRM_HDR Stream Header StruCture...........ccccoovvvveeeeeinniiieee e 171
5.2.3. STRM_INFO Stream Information Structurecccccceeevviiiieeeennnns 172
5.2.4. QBoardAttr Board Attribute Structure...........cccoceeeeeeeieeeeiiiieeeiiinnn, 173
5.2.5. QCompAttr Component Attribute Structure...........ccoeeveevvvvveeeeneeeenn, 173
5.2.6. QCompDesc Component Descriptor Structure...........cccccvvvveeeeereeennn. 175
5.2.7. QValueAttr Board Attribute Specification Structure.............ccccee.e. 177
5.3. Error Code DefiNitioNScoiiuviiiiieiiiiiiiiie e 177
5.3.1. WIindows NT Error COUESuuuviieiiiiiiiiieeeiiiiiieee s eniiieee e e e siireeee e 177
5.3.2. Dialogic Library and Driver Error Codescvvvvieeeeeeeiiiiieiiiiicnnnns 180
a0 = PO PPRPRRUPPRR 183

List of Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.

Direct Interface Host Library Function Categoriesccccccvveveeennnen. 15
Cluster Management FUNCHONSeeieiiiiiiiieiiiiieee et 16
Component Management FUNCHONScoooiiiiiieiiiiiieee e 17
Debug Support FUNCHONSccooiiiiiiiiiiiiiieee e 17
Stream [/O FUNCHONS. ..ottt 18
Message /O FUNCHONSccooiiiiiiiiiiiieece et 19
Exit Notification FUNCHONSccoiiiiiiiiiiiiiiiec e 20
Messages with Fixed Payloads.............ccveeeeiiiiiiiiee e 167
Messages with Variable Payloadscccccvviiiiiiiiiiiees 168
Data Type Definitionscoooiiiiiiiiii e 169
Component Attribute ValUES........ccuviiiiiiiiiiiiie e 174
Windows NT General Error Codesccuuveveeiiiiiieeeiiiiiieee i 178
Windows NT Stream Error COUES.........uvvviiiiiiiieeeiiiiiieee e 179
DialogiC Error COUES.oviiiiiiiiiiie ittt 180

vii

List of Figures

Figure 1. DM3 Direct Interface COMPONENESocuviiiieiiiiiiiiee e 4
Figure 2. Handling Asynchronous Function Returns............cccccovvieieeiniine e 10
Figure 3. Handling Synchronous FUuNnction REtUrNSccoceeiiiiieeiiniiene e 13

Figure 4. General MMB Structure

ix

1. Introduction

The DM3 Direct Interface host library functions, macros, and data structures that
provide access to the DM3 devices under Windows NT are described in this
document. Use the Direct Interface in conjunction with the Win32 API to
produce highly native DM3-based applications.

1.1. About this Guide

This guide, thédM3 Direct Interface Function Reference for Windows NT
contains the following:

Chapter 1 provides a brief overview of the DM3 Direct Interface.

Chapter 2 summarizes the Direct Interface host library functions and describes
their syntax convention.

Chapter 3 provides complete details about all Direct Interface host library
functions, which are listed alphabetically.

Chapter 4 contains descriptions of macros provided with the Direct Interface.

Chapter 5 describes data structures, data types, parameters, and constants used by
the Direct Interface host library functions.

For information on creating applications with the Direct Interface, refer to the
guideUsing the DM3 Direct Interface for Windows NHor details on library
functions, macros, and data structures, refer to this guidBMB3eDirect
Interface Function Reference for Windows. NT

1.2. Documentation Conventions

The following conventions are used throughout this guide:

* New terms are shown italic text.
e Important words or phrases are showbaid text.

DM3 Direct Interface Function Reference for Windows NT

File names are shown in lowercase italic text, suciduefs.h

Function names are shown in boldface with parentheses, such as
mntSendMessage(.)

Data structure field names and function parameter names are shown in
boldface, as itimeout.

1.3. Key DM3 Architecture Concepts

This section offers a brief explanation of the concepts that you must be familiar
with before you begin working with DM3 products. For more information about
these concepts, see th&3 Mediastream Architecture Overview

DM3 is an architecture on which a set of Dialogic products are built. The
DM3 architecture is open, layered, and flexible, encompassing hardware as
well as software components.

A DMS resourceis a conceptual entity implemented in firmware that runs on
DM3 hardware. A resource contains a well defined interface or message set,
which the host application uses when accessing the resource. The message set
for each resource is described iDIsl3 Resource User's Guide

Resource firmware consists of multiple components that run on the DM3 core
platform software. The DM3 GlobalCall resource is an example of such a
resource, providing all of the features and functionality necessary for
handling calls.

A componentis an entity that comprises a DM3 resource. A component runs
on a DM3 control processor or signal processor depending on its function.
Certain components handle configuration and management issues, while
others process stream data.

To access the features of a resource, the host exchanges messages and stream
data with certain components of that resource. During runtime, components
inside a resource communicate (via messages) with other components of that
resource, as well as with components of other resources.

A component instancds a logical entity that represents a single thread of
control for the operations associated with a DM3 component. DM3
components generally support multiple instances so that a single component
on a single processor can be used to process multiple streams or channels.

1. Introduction

Instances are addressable units and DM3 messages may be sent to individual
instances of a component.

e A DM3 messages a formatted block of data exchanged between the host and
component instances, between component instances and the core platform
software, as well as between the DM3 component instances themselves.

The DM3 architecture implements different kinds of messages, based on the
functionality of the message sender and recipient. Messages can initiate
actions, handle configuration, affect operating states, and indicate that events
have occurred.

¢ Aclusteris a collection of DM3 component instances that share specific
timeslots on the network interface or the Time Division Multiplexed (TDM)
bus, and which therefore operate on the same data stream. The cluster concept
in the DM3 architecture corresponds generally to the concept of a “group” in
S.100, or to a “channel” in conventional Dialogic architectural terminology.
Component instances are bound to a particular cluster and its assigned
timeslots in an allocation operation.

e A port is a logical entity that represents the point at which Pulse Code
Modulated (PCM) data can flow between component instances in a cluster.
Ports are classified and designated in terms of data flow direction and the
type of component instance that provides the port.

1.4. DM3 Direct Interface Overview

The DM3 Direct Interface is a low-level interface. By sending and receiving
messages, the Direct Interface provides access to the DM3-based embedded
system, and shields you from device driver specifics. You can use the Direct
Interface as the foundation from which you can build a higher-level API. Win32

file- and resource-management services are available to you when using the Direct
Interface.

The Direct Interface consists of the DM3 Host Library and DM3 Device Drivers
(a Class Driver and a Protocol Driver). Applications communicate with the host
library; the device drivers are not accessed directly.

Figure lillustrates the host and embedded portions of a generic DM3-based
system.

DM3 Direct Interface Function Reference for Windows NT

Win32 Application

A

A

mnti.dll ‘DM3 Host Library ‘

b

| Win32 AP |
f Visible
v v

Invisible
: Mpath & Strm
dlgcmcd.sy$ Class Driver H‘Tﬁ pDevices

A 4

digempd.sys Protocol Driver(s) DDE\zgS)
A S

v Embedded

i
Hardware
Firmware

Component Instances

{E—

Figure 1. DMS3 Direct Interface Components

1.4.1. DMS3 Direct Interface Host Library

The DM3 Direct Interface host librarynfiti.lib) is the lowest-level interface for
accessing DM3 devices. Use the library in conjunction with the Win32 API to
produce native Windows NT applications. The DM3 Direct Interface provides
configuration management, message allocation, messaging, cluster and time slot
management, and data stream services.

All device handles used with the Direct Interface are native Win32 handles and
are passed directly to Win32 event functions. The host library protects shared data
structures from being overwritten when they are used by multiple threads.

An application built with the Direct Interface uses khaltiple Message Block
(MMB) as the primary data structure. The MMB is used to send messages to and
receive messages from the DM3 embedded system.

1. Introduction

1.4.2. DM3 Device Drivers

DM3 device drivers include the Dialogic Class Driver and Dialogic Protocol
Driver. Application developers do not need to access these drivers directly; the
Host Library is used to communicate with these drivers.

The Dialogic Class Driverd{gcmcd.sykis the highest-level driver that interacts
with the Dialogic Protocol Driver. The Class Driver recognizes DM3 device
names Kpathfor messages arfétrmfor streams) and supports all Win32 API I/O
function calls that perform bulk data transfers, includimgateFile(),

ReadFile() andWriteFile().

The Dialogic Protocol Driverdigcmpd.sykis the lowest-level driver that handles

all 1/0 operations between a DM3 embedded system and the host machine. The
Protocol Driver communicates through shared memory (Shared RAM) that is
mapped to the system address space. For PCI devices, this mapping takes place
when the Protocol Driver loads and initializes. (More precisely, the PCI
configuration process is handled by Windows NT at boot time and later, the
Protocol Driver discovers and claims the DM3 boards.) The Protocol Driver
supports both PIO (Programmed Input/Output) and DMA (Direct Memory
Access).

1.5. DM3 Hardware

The hardware used in a DM3 embedded system is a modular and scaleable
implementation of the DM3 architecture. A DM3 product consists of one
baseboard, up to three signal-processing daughterboards, and other hardware
components.

The baseboard hardware is available in the following form factors:
e PCI (Peripheral Component Interconnect)

e CompactPCIl (Compact Peripheral Component Interconnect)
e VME (Versa Module Europa)

A configured hardware assembly is installed in a chassis. For details about
installing a particular board assembly, refer toGheck Install Cardpackaged
with the product.

DM3 Direct Interface Function Reference for Windows NT

1.6. DM3 Firmware

At system startup, binary code is downloaded to the DM3 board assembly. The
firmware on the assembly is the ultimate target of all I/O operations. It includes
components, kernels, and service managers.

For more information about these concepts, se®@& Mediastream
Architecture Overview

2. Function Summary

Direct Interface host library functions are summarized and listed by category in
this chapter. Calling functions asynchronously and synchronously is also
described.

2.1. Naming Conventions

The following naming conventions are used throughout this manual:

Function Namesare shown in bold mixed case type, such as
mntSetTraceLevel() Each function name begins witmht” followed by

one or more words describing that function. Each word within a function
name begins with a capital letter, there are no separator characters, and the
name ends with a set of parentheses.

Macro Namesare shown in one of two ways, depending on the macro type.
Macros used to access DM3 messages and Multiple Message Blocks (MMBs)
are shown in non-bold uppercase type, such as MNT_GET_CMD_QMSG.
Macros used to access DM3 structures are shown in hon-bold mixed case
type, such as QResultError_get.

Data Type Names (typedefare shown in non-bold type, such as char, and
PQBoardAttr. Data type names can be uppercase, lowercase, or mixed case.

Constant Definitions (#define)are shown in non-bold uppercase type, such
as MNTI_STATE_PRE_INIT and MNTI_STATE_INITIALIZED. Each
constant definition begins with “MNTI” followed by one or more words
describing that constant. Underscore separators between words aid
readability. Related constant definitions share the same first word.

Parameter Namesare shown in bold mixed case type, suchEmmeout.

Words within a parameter name begin with a capital letter, such as
nReplyCount. Pointer parameter names begin with either “p” or “Ip,” such as
pAttr or [pMMB . Within each function syntax table @hapter 3. Function
Referencginput parameter names are listed above output parameter names.

DM3 Direct Interface Function Reference for Windows NT

2.2. Calling Functions Asynchronously

All Direct Interface host library functions that acceptlii@verlapped parameter

can operate in either asynchronous or synchronous modelpfiterlapped
parameter is non-NULL, the call is in an asynchronous (overlapped) I/O mode and
the function returns immediately before the actual /O completes.

2.2.1. OVERLAPPED Structure

When calling a function asynchronously, you must selp®serlapped

parameter to a non-NULL value. The OVERLAPPED structure is a Win32 API
asynchronous I/O data structure. An application normally allocates and initializes
this structure, then passes it to the Win32 API functions, suRkadile()and
WriteFile(). An application can specify thdEvent field in the OVERLAPPED
structure to the Win32 API wait-for-object functions, such as
WaitForSingleObject(), to provide notification of asynchronous function
completion.

The application is responsible for managing the OVERLAPPED structure. If
multiple requests are outstanding on the same device, each request must be
associated with a unique OVERLAPPED structure.

If the message path handle, which is specified throughDiegiceparameter, has
been opened with the FILE_FLAG_OVERLAPPED flag set in the
dwFlagsAndAttributes parameter in th€reateFile() function call, the
application can pass a valOverlapped parameter with the request. The calling
thread can use any wait function to wait for the event object, a member of the
OVERLAPPED structure, to be signaled, then callGetOverlappedResult()
function to determine the operation’s results.

If the specified message path handle has been opened without setting the
FILE_FLAG_OVERLAPPED flag, thipOverlapped parameter should be set to
NULL. The function either completes the operation synchronously or times out. If
the function returns TRUE, it has completed successfully. Otherwise, it has failed
or timed out, and the calling thread must call@wLastError() function to

retrieve the error.

2. Function Summary

2.2.2. Handling Asynchronous Function Returns

The operations detailed below and the flow chaRigure 2describe the steps to
follow when a function returns that was called asynchronously.

1.

A Direct Interface function will always return FALSE when called
asynchronously. Call the Win32etLastError() function to retrieve an

error code. The error code may be one of three types: Windows NT (defined
in winerror.h), DM3 Direct Interface (defined idlimnti.h), or DM3 Kernel
(defined ingkernerr.}.

If GetLastError() returns ERROR_IO_PENDING, it indicates the operation
has not completed. Wait for function completion using the Win32 wait-for-
object functiondVaitForSingleObject() or WaitForMultipleObjects()
depending on the number of expected objects.

If GetLastError() returns a different error code, process it as either a
Windows NT error or DM3 Direct Interface error.

Upon function completion, call ti&etOverlappedResult()function.

Call the MNT_GET_REPLY_QMSG() macro to find the reply message.
Use the QMSG_GET_MSGTYPE() macro on the reply message to
determine the reply message type.

If the message type @ResultError call the QResultError_get() macro and
process the kernel error (definedgkernerr.1).

If the message type is M@ResultError the function has completed
successfully and the result message contents may be processed.

DM3 Direct Interface Function Reference for Windows NT

Call
Remote Function
Asynchronously

Return=
FALSE

GetLastError()==
ERROR_ I0_PENDING

Wait for Process MNTI or
Completion WindowsNT error

GetOverlappedResult()

Call
MNT_GET_REPLY_QMSG() Process MNTI or
macro WindowsNT error

QMSG_GET_MSGTYPE()
==QResultError

Call Done; process
QResultError_get() successful result
macro message
Process
Kernel Error

Figure 2. Handling Asynchronous Function Returns

10

2. Function Summary

This code fragment provides a general example of handling a function return
asynchronously.

if (mntSendMessage(DevHandle, IpMMB, &Overlapped) == FALSEX
/I Call GetLastError to get the error code
ErrorCode = GetLastError();
if (ErrorCode == ERROR_IO_PENDING)
/I Now wait for operation to complete
if (WaitForSingleObject(DevHandle, INFINITE)) ==
WAIT_FAILED){
/I perform error handling
return(FALSE);

}

if (GetOverlappedResult(DevHandle, &Overlapped,
&RecvByteCount, FALSE) == FALSEX
/I Call GetLastError to get the error code
ErrorCode = GetLastError();
Il perform error handling
retum(FALSE);

}

}

[* If send message is successful, retrieve results */
MNT_GET_REPLY_QMSG(IpMMB, 1, &pMsg);

f* Check for firmware error */
QMSG_GET_MSGTYPE(pMsg, &ReplyType);

if (ReplyType == QResultError) {
[* Error, print error code */
QResultError_tar;

QResultError_get(pMsg, &gr, Offset);

printf("Error %x\n", gr.errorCode);
goto cleanup;

2.3. Calling Functions Synchronously
Some Direct Interface host library functions, sucimagAllocateMMB() , work

only in synchronous mode. As stated earlier, most functions can operate either
asynchronously or synchronously depending orgBeerlapped parameter.

11

DM3 Direct Interface Function Reference for Windows NT

2.3.1. Handling Synchronous Function Returns

The operations detailed below and the flow chaRigure 3describe the steps to
follow when a function returns that was called synchronously.

If the function return value is TRUE, it indicates that the driver successfully
processed the arguments. Any expected function outputs will have valid contents.
For example, if thenntCompFind() function is called in synchronous mode and

valid arguments are sent and returned, when the TRUE return message is received,
the variable pointed to by thginstance argument will contain the returned

component descriptor.

If the function return value is FALSE, the function call has failed. Perform the

following steps to process the failure:

1. Call the Win3%5etLastError() function to retrieve an error code. The error
code may be one of three types: Windows NT (definedrierror.h), DM3
Direct Interface (defined idlimnti.h), or DM3 Kernel (defined in
gkernerr.h).

2. Logically AND the mask constant ERROR_MNT_BASE with the value
returned frontGetLastError() to determine if the error is Windows NT or
Direct Interface.

3. If GetLastError() returns ERROR_MNT_MERCURY_KERNEL, it
indicates a DM3 Kernel error has occurred.

If GetLastError() returns a different error code, process it as either a
Windows NT error or DM3 Direct Interface error.

4. Call themntGetTLSmmb() function, which returns a pointer to the reply
message contained in the thread-local-storage MMB.

5. Usethe QMSG_GET_MSGTYPE() macro on the reply message to
determine the reply message type.

6. If the message type @ResultError call the QResultError_get() macro and
process the kernel error (definedgikernerr.1).

7. If the message type is M@ResultError the error is undefined.

12

2. Function Summary

Return=
FALSE

Return=
TRUE

Call MNTI Function
Synchronously

Arguments are valid

ErrorCode=
GetLastError()

Done

ErrorCode==
ERROR_MNT_MERCURY_KRNL

Yes

No

Call
mntGetTLSmmb()

to get MMB

Process MNTI or
WindowsNT error

QMSG_GET_MSGTYPE()
==QResultError

Call
QResultError_get()
macro

Undefined error

Process Kernel error

Figure 3. Handling Synchronous Function Returns

13

DM3 Direct Interface Function Reference for Windows NT

This code fragment provides a general example of handling a function return
synchronously.

* Issue the command */
if (mMntClusterComplnfo(hMCD,
mntTransGen(),
&clusterAddr,
&count,
compDescs,
DEF_TIMEOUT,
NULL,
NULL) == FALSE){
printf("mntClusterCompinfo failed %d", GetLastError());
[* If send message is successful, retrieve resullts */
mntGetTLSmmb(&pMMB, NULL, &pMsg);

f* Check for firmware error */
QMSG_GET_MSGTYPE(pMsg, &ReplyType);

if (ReplyType == QResultError) {
[* Error, print error code */
QResultError_tqr;
QResultError_get(pMsg, &ar, Offset);
printf("Error %x\n", gr.errorCode);
goto cleanup;
return(1);

¥ Success! comp desc array is filled in by mntClusterComplnfo() */
printf("mntClusterComplinfo successful count = %d\n", count);

14

2. Function Summary

2.4. Function Categories

The following sections divide the function calls in the DM3 Direct Interface for
Windows NT into categories. Categories are listeBable 1 Each function call

in a category is related by the task that the function performs.

Table 1. Direct Interface Host Library Function Categories

[

Cluster management functions e Provide a set of tools to manage cluster
and time slots

Component management ¢ Provide a set of configuration and

functions registration services for control of
firmware components and component
instances

Debug support functions » Provide a set of services that allow the

run-time collection of data for debug
tracing and the background verification pf
application code and data.

Stream 1/O functions ¢ Provide access to bulk data transfers to
and from stream devices

Message I/O functions » Provide a set of services for generating
transferring, and accessing messages
passed between the host and componepnt
instances

Exit Notification functions ¢ Provide on/off switching of exit
notification services

15

DM3 Direct Interface Function Reference for Windows NT

2.4.1. Cluster Management Functions

The Direct Interface host library cluster management functions provide a set of
tools to manage clusters and time slots.

Table 2. Cluster Management Functions

mntClusterActivate() ¢ Activates an OUT-port connection
mntClusterAllocate() ¢ Finds and allocates a cluster
mntClusterByComp() ¢ Finds the cluster that owns an instance
mntClusterCompByAttr() ¢ Finds a component with specific attributes
mntClusterConfigLock() ¢ Locks a specific cluster
mntClusterConfigUnlock() ¢ Unlocks a previously locked cluster
mntClusterConnect() e Interconnects the ports of two instances
mntClusterCreate() ¢ Creates a new cluster
mntClusterDeactivate() ¢ Deactivates connections
mntClusterDestroy() ¢ Destroys an empty cluster
mntClusterDisconnect() ¢ Breaks an existing connection between
ports
mntClusterFind() ¢ Finds a cluster that has specific attributes
mntClusterFree() ¢ Releases an allocated cluster
mntClusterSlotinfo() ¢ Finds time slots assigned to a port
mntClusterTSAssign() ¢ Assigns time slots to a cluster's SCbus
resource
mntClusterTSUnassign() ¢ Unassigns a time slot from a cluster’s
SCbus resource

16

2. Function Summary

2.4.2. Component Management Functions

The Direct Interface host library component management functions provide a set
of configuration and registration services for control of application firmware
components and component instances.

Table 3. Component Management Functions

mntCompAllocate()
mntCompFind()
mntCompFindAlI()

mntCompFree()
mntCompUnuse()
mntCompUse()

» Reserves and locks a specific component insta
¢ Finds a component

» Returns a list of component addresses matchin
specified attributes

¢ Releases an allocated component instance
* Marks component instances as not being in usg

nce

e Marks component instances as being in use

2.4.3. Debug Support Functions

The Direct Interface host library debug support functions provide a set of services
that allow the run-time collection of data for debug tracing and the background
verification of application code and data.

Table 4. Debug Support Functions

mntGetDrvVersion()
mntGetLibVersion()

mntSetTracelLevel()
mntTrace()
mntTransGen()

¢ Retrieves the driver version string from the Cla
Driver (DLGCMCD)

 Retrieves the host library version string from th
Class Driver (DLGCMCD)

e Enables or disables trace statements
e Sends trace statements to a file

BS

11%

e Generates a message transaction ID

17

DM3 Direct Interface Function Reference for Windows NT

2.4.4. Stream |/O Functions

The Direct Interface host library stream I/O functions provide access to bulk data
transfers to and from stream devices.

Table 5. Stream I/O Functions

mntAttachMercStream()

mntCompleteStreamlo()
mntCheckStreamOrphans()
mntDetachMercStream()
mntGetMercStreamID()
mntGetStreamHeader()
mntGetStreamInfo()

mntRegisterAsyncStreams()

mntSetStreamHeader()
mntSetStreamlOTimeout()

mntTerminateStream()

¢ Opens a stream and attaches the stre
ID to a stream handle.

e Completes pending stream 1/O reques
e Checks for orphan bytes

¢ Deallocates a reference to a stream Il
¢ Retrieves a stream ID

e Gets the out-of-band stream attributes

¢ Gets global board-specific stream
information

¢ Registers a number of stream buffers
for receipt of asynchronous stream d3

e Sets the out-of-band stream attributes

e Sets the stream read or write request
timeout value

ta

e Cancels a persistent stream

2.4.5. Message I/O Functions

The Direct Interface host library message I/O functions provide a set of services
for generating, transferring, and accessing messages passed between the host and

component instances.

18

2. Function Summary

Table 6. Message /O Functions

mntAllocateMMB()
mntClearMMB()
mntCopyMMB()

mntEnumMpathDevice()
mntEnumStrmDevice()
mntFreeMMB()

mntGetBoardsByAttr()

mntGetMpathAddr()
mntGetTLSmmb()
mntRegisterAsyncMessages()

mntSendMessage()

mntSendMessageWait()

gMsgVarFieldGet()

gMsgVarFieldPut()

e Allocates and clears an MMB (multipls
message block)

¢ Clears the command and reply mess3
areas

e Copies the specified MMB (multiple
message block)

e Enumerates existing Mpath devices
e Enumerates existing Stream devices

¢ Frees the specified MMB (multiple
message block)

e Lists boards that match a list of caller
supplied attributes

¢ Gets the message path source addres
¢ Gets the thread-local storage MMB

¢ Registers a number of buffers for
receipt of asynchronous messages

¢ Asynchronously sends the message
specified in the MMB (multiple
message block)

¢ Builds and sends a message then
synchronously waits for the 1/0O
completion.

e Gets a number of typed fields from a
message payload

¢ Puts a number of typed fields into a

17

ge

bS

message payload

19

DM3 Direct Interface Function Reference for Windows NT

2.4.6. Exit Notification Functions

The Direct Interface host library exit notification functions allow messages to be
sent to registered addresses whenever an unexpected termination occurs. Two
types of exit notification are possible: messages sent to an application upon sub-
component failure and messages sent to the platform upon Mpath failure. The
functions listed inrable 7provide on/off switching of exit notification.

Table 7. Exit Notification Functions

mntNotifyRegister() ¢ Enables sub-component exit notification to
application

mntNotifyUnregister() ¢ Disables sub-component exit notification to
application

mntSetExitNotify() e Enables/disables Mpath exit notification to
board

20

3. Function Reference

This chapter describes the Direct Interface functions and lists them alphabetically.

The following conventions are used throughout this chapter:

e New terms are shown italic text.

¢ Important words or phrases are showbaid text.

¢ Function names are shown in boldface with parentheses, such as
mntSendMessage(.)

e Data structure field names and function parameter names are shown in
boldface, as itimeout.

e Messages are shown in italic text, sucl@&esultComplete

NOTE: In this manual, the termidercMpathandMpath are used
interchangeably. Similarly, thdercStrmandStrmdevice names are also
used interchangeably.

21

mntAllocateMMB()

allocates and clears a Message Block

Name:
Inputs:
Outputs:
Returns:
Includes:

Category:
Mode:

LPMMB mntAllocateMMB(nCommandSize, nReplyCount,
nReplyMaxSize)

ULONG nCommandSize e bytes required

ULONG nReplyCount e expected replies

ULONG nReplyMaxSize e size of replies

None

LPMMB a pointer to an MMB

NULL when specified MMB could not be allocated
ghostlib.h

message |/O function

synchronous

B Description

ThemntAllocateMMB() function allocates and clears a Message Block, then
returns its pointer. All specified byte sizes are rounded up to the next word

boundary.

This function automatically sets the endian and version flags in the command
QMsg header and sets the default MATCH_ON_SRC_ADDR flag in the MMB
control block. This function also sets the command message payload size.

Parameter

Description

nCommandSize

nReplyCount

22

number of bytes required for the command message. This
number is normally equal to the command message header
size plus the command message payload size. Maximum
value for this parameter is

MNT_MAX_COMMAND_SIZE. If set to zero, an empty
message with no command to send is indicated. In this
casenReplyCount must be non-zero to receive
asynchronous event messages. Note that the actual size
recorded in the MMB is the command message payload
size minus the QMsg size.

expected number of replies from the DM3 platform.
Maximum value for this parameter is
MNT_MAX_REPLY_COUNT.

allocates and clears a Message Block mntAllocateMMB()

Parameter Description

nReplyMaxSize = maximum size in bytes of all replies that might be
received by the host. Each reply size is equal to the QMsg
size plus the reply message (payload) size. For example, if
you expect two replies with sizes MSG_REPLYSIZE_1
and MSG_REPLYSIZE_2, set this parameter to the sum
of the two reply sizes. Maximum value for this parameter
plus thenCommandSizevalue is
MNT_MAX_CMD_PAYLOADSIZE.

Use the following macro to get the command QMsg message pointer:
MNT_GET_CMD_QMSG (LPMMB IpMMB, QMsgRef *pMsg)

Use the following macro to get the reply QMsg message pointer:

MNT_GET_REPLY_QMSG (LPMMB IpMMB, ULONG ReplyNumber,
QMsgRef *pMsg)

To access the first reply message, the macro requires the command QMsg payload
size to be defined.

To access reply messages other than the first reply me$s&agigCount > 1),
the macro requires that the previous reply message “message size” or “payload
size” be defined.

To create an MMB for an asynchronous event message, sebtm@andSize
parameter equal to zero. ThmtAllocateMMB() function allocates an MMB
consisting of a command QMsg with no payload and a reply section determined
by nReplyMaxSize An empty message is indicated by using the macro
MNT_SET_MMB_EMPTY_MSG(IpMMB).

M Cautions

None.

M Errors

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

23

mntAllocateMMB() allocates and clears a Message Block

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

None.
Bl See Also

e mntClearMMB()
e mntFreeMMB()

24

opens a stream and attaches it to a stream handle mntAttachMercStream()

Name: BOOL mntAttachMercStream(hDevice, nBoardNumber,
nModeFlags, IpMercStreamID, IpStreamSize, nTimeout,

IpOverlapped)
Inputs: HANDLE hDevice e device handle

ULONG nBoardNumber e board number
USHORT nModeFlags * mode flags
PULONG IpMercStreamID e stream ID
PULONG IpStreamSize e stream size
USHORT nTimeout e time to wait
LPOVERLAPPED IpOverlapped e overlapped pointer

Outputs: PULONG IpMercStreamID e stream ID
PULONG IpStreamSize e stream size

Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: stream I/O function
Mode: asynchronous or synchronous

B Description

ThemntAttachMercStream() function opens a stream and attaches it to a
stream handle. If this function passes a valid, non-zero stream ID, it will be
specified in the open-stream message to the DM3 board and that stream will be
attached to the specified stream handle. MedeFlagsandIpStreamSize
parameters specify the stream characteristicaBodrdNumber specifies the

DM3 board on which the stream will be opened. When called synchronously, the
locations pointed to bipMercStreamID andlpStreamSizeare filled in with the
stream ID of the opened stream and the actual size of the stream, respectively.

Set thenModeFlagsparameter by logically ORing the flags. Set only one flag in
each of the following pairs:

e MNT_STREAM_FLAG_READor MNT_STREAM_FLAG_WRITE
e MNT_STREAM_FLAG_NO_FLUSHr MNT_STREAM_FLAG_FLUSH

ThelpStreamSizeparameter requests the size of the stream buffer used by the
stream device to transfer data. Available stream sizes are configured when the
board is initialized. Therefore, the buffer size that the board allocates and actually
uses for this stream might not be the same as what was requested; however, the
actual size will always be greater than or equal to the requested size. Call the

25

mntAttachMercStream() opens a stream and attaches it to a stream handle

mntGetStreamHeader()function to obtain the actual stream buffer size (stored
in theactualSizefield of the PSTRM_HDR structure).

Parameter Description

hDevice stream device handle
nBoardNumber board number

nModeFlags stream attributes for this stream:

IpMercStreamID

IpStreamSize

nTimeout
IpOverlapped

B Cautions

MNT_STREAM_FLAG_READ: read stream
MNT_STREAM_FLAG_WRITE: write stream
MNT_STREAM_FLAG_NO_FLUSH: use existing data
in the read stream

MNT_STREAM_FLAG_FLUSH: flush the stream

MNT_STREAM_FLAG_IGNORE_HEADER: requests
that a DM3 GStream is opened. (GStreams contain no
header information.)

MNT_STREAM_FLAG_PERSISTENT: marks the
stream for persistent mode operation

points to an existing stream ID, or to zero if a new
stream is to be opened. Returns the open stream ID if the
call is synchronous.

pointer to the stream size requested.

(Default = MNT_STREAMSIZE_NORMAL)

For the synchronous call, the actual size allocated is
returned.

timeout (in seconds) to wait for a response
pointer to an OVERLAPPED structure

1. The flush options, MNT_STREAM_FLAG_NO_FLUSH and
MNT_STREAM_FLAG_FLUSH, apply to the action taken on the board, not
by the host-side driver.

2. The application is responsible for managing the OVERLAPPED structure.
Refer t02.2. Calling Functions Asynchronoudtr more details.

26

opens a stream and attaches it to a stream handle mntAttachMercStream()

M Errors
ERROR_ADAP_HDW_ERROR

ERROR_INVALID_FUNCTION
ERROR_INVALID_HANDLE
ERROR_INVALID_PARAMETER
ERROR_MNT_ALREADY_OPEN
ERROR_MNT_BAD_STREAM_ID

ERROR_PIPE_BUSY

B Result Messages

None.

B See Also

e mntGetStreamHeader()
e mntGetStreamInfo()
¢ mntCheckStreamOrphans()

» Board is not available to be
initialized.

¢ The stream handle specified is
of the wrong type.

¢ An invalid handle was
specified in the argument list.

¢ An invalid parameter was
specified in the argument list.

» The specified stream has been
opened already.

¢ An invalid stream ID was
specified in the argument list.

» A stream is already attached
to the specified handle OR the
specified stream is already
open.

27

mntCheckStreamOrphans() checks for orphan bytes

Name: BOOL mntCheckStreamOrphans(hDevice, IpOrphanBytes)
Inputs: HANDLE hDevice e device handle
Outputs: PULONG IpOrphanBytes e pointer
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: stream I/O function
Mode: synchronous

B Description

ThemntCheckStreamOrphans()function checks for orphan bytes associated
with the specified Stream device. Upon successful return, the location pointed to
by IpOrphanBytes is filled in with the actual byte count of any orphan bytes. If it
finds no orphan bytefpOrphanBytes will be zero.

During application development, you can use this function to clear the read stream
before read calls are made. GaltCheckStreamOrphans()in a loop until it
returns a zero itpOrphanBytes to empty the read stream buffers.

Parameter Description

hDevice handle to a Stream device
IpOrphanBytes orphan byte count

M Cautions

None.

M Errors

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

B Result Messages - None.

Bl See Also
None.

28

clears the command and reply message areas mntClearMMB()

Name:

Inputs:
Outputs:
Returns:

Includes:
Category:

Mode:

BOOL mntClearMMB(IpMMB)

LPMMB lpMMB e pointer to MMB to cleared
None

TRUE if successful, FALSE if error

ghostlib.h

message /O function

synchronous

B Description

ThemntClearMMB() function clears the command and reply message areas in
the specified Message Block, but leaves some of the MMB header fields intact.
This function should be called before the MMB s filled with command messages.

This function sets the endian and version flags in the command QMsg. This
function sets the MATCH_ON_SRC_ADDR flag in the MMB control block. This
function also sets the command payload size in the command QMsg.

Parameter Description
IpPMMB pointer to the MMB to be cleared
B Cautions
None.
B Errors
ERROR_INVALID_PARAMETER ¢ An invalid parameter was

specified in the argument list.

B Result Messages

None.

B See Also

e mntAllocateMMB()
e mntFreeMMB()

29

mntClusterActivate() activates an OUT-port connection

Name: BOOL mntClusterActivate(hDevice, nTranslID,
ClusterDesc, SCDesc, SCPortID, ClientDesc, nOptions,
nTimeout, IpPMMB, IpOverlapped)

Inputs: HANDLE hDevice « device handle
QTrans nTransID e transaction ID
QCompDesc ClusterDesc e cluster instance
QCompDesc SCDesc e SCbus resource
QPortDef SCPortID o flow direction
QCompDesc ClientDesc e client
UCHAR nOptions e behavior
USHORT nTimeout o time to wait
LPMMB IpMMB e MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
mercdefs.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

The mntClusterActivate() function activates an OUT-port connection in a

cluster. The main use of this function, from the host, is to activate an SCbus OUT-
port in the SChus resource. This allows data to flow from the TDM bus into any
IN-port in the cluster that is connected to the SCbus OUT-port. If you call this
function synchronously and it finds a standard error message with a QResultError
type, it returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

This function’s parameters define a cluster’s address, an SChus resource address,
and a default behavior for Simple Talker protocol. The combination of cluster
address, SCbus resource address, and port ID, uniquely identify the SCbus port.

This function allows the host to provide for the full Talker Protocol. Support for
this protocol allows IN-ports inside the cluster to switch between the SCbus OUT-
ports and the OUT-ports within the cluster. TlentDescparameter specifies

the address to which to send any connection management messages. The
ClientDescparameter also models a component. The primary purpose of this
parameter is to provide an address for the Talker Protocol messages needed to

30

activates an OUT-port connection mntClusterActivate()

manage the connection. If the client cannot support the Talker Protocol, you must
set theClientDescparameter to NULL.

When theClientDescparameter is NULL, theOptions parameter supports a
simple Talker Protocol for the connection. If the QCLUST_AutoReject option is
set, and another OUT-port within the cluster requests to interrupt the SCbus’s
OUT-port connection to an IN-port within the cluster, the request is rejected. If
the QCLUST_AutoAccept option is set and another cluster OUT-port requests to
interrupt the connection, the connection is broken and the interrupting port is
activated. When the interrupting cluster port ends the interruption, the client’s
connection is reactivated.

If the activation fails (such as when another connection to the port is already
active and cannot be interrupted) and the QCLUST _AutoReject option is set, the
connection is not activated, and the operation fails with an
ERROR_MNT_CLUSTER_BUSY error code.

ThemntClusterActivate() function integrates the DM3 cluster switching model
with non-DM3 switching systems.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

ClusterDesc cluster instance that owns the SCbus resource to activate

SCDesc address of the SChus resource that has the OUT-port

SCPortID SCbus resource port specifications. Use this to specify

port direction:
QPORT_DIR_IN: data transmitteéd the TDM bus
QPORT_DIR_OUT: data receivébm the TDM bus

ClientDesc address of the client that owns and manages the time slots
to be connected. This is the address to which all Talker
protocol messages are sent. Specify as NULL if you use
the Option parameter to determine connection behavior
relative to the Talker Protocol.

31

mntClusterActivate()

activates an OUT-port connection

Parameter Description

nOptions connection behavior for the Talker Protocol. Specify
either of the following:
QCLUST_AutoReject: automatically reject suspend
requests. The connection cannot be interrupted by another
resource.
QCLUST_AutoAccept: never reject suspend requests.
The connection can be interrupted by another resource.

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure

ThemntClusterActivate() function causes th@ClusterActivatkernel message
(defined inmercdefs.ito be sent. Th@ClusterActivatanessage size is defined
as QClusterActivate_Size.

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC_FAILED e The MMB could not be

32

allocated.

activates an OUT-port connection mntClusterActivate()

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

Bl See Also

o mntClusterDeactivate()

33

mntClusterAllocate() finds and allocates a cluster

Name: BOOL mntClusterAllocate(hDevice, nTransID,
IpClusterDesc, IpAttr, nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice « device handle
QTrans nTransID e transaction ID
PQCompDesc IpClusterDesce cluster pointer
PQCompAttr IpAttr e attributes list
USHORT nTimeout e time to wait
LPMMB lpMMB ¢ MMB pointer
LPOVERLAPPED IpOverlapped e overlapped pointer

Outputs: PQCompDesc IpClusterDesce cluster pointer

Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

ThemntClusterAllocate() function finds and allocates a cluster that has specific
attributes. This function searches for a cluster that is partially specified by
IpClusterDescparameter and matches the attributes specified ilpAte list
parameter. When the function returns (synchronously), the location pointed to by
IpClusterDescis filled in with the identifier of the cluster that was just allocated.

If you call this function synchronously and it finds a standard error message with a
QResultError type, it returns FALSE with an ERROR_MNT_MERCURY_KRNL
error code.

ThelpClusterDescandIpAttrs parameters together provide the information
needed by the Resource Manager for allocating the desired cluster.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

IpClusterDesc on input, partial cluster descriptor (must contain the

destination board address);
on output, cluster allocated.

IpAttrs an array of attributes, a key/value set.
nTimeout time (in seconds) to wait for a response

34

finds and allocates a cluster mntClusterAllocate()

Parameter Description

IpMMB pointer to an MMB structure
IpOverlapped pointer to an OVERLAPPED structure

ThemntClusterAllocate() function causes th@ClusterAllocatekernel message

(defined inmercdefs.ito be sent. Th@ClusterAllocatanessage size is defined
as QClusterAllocate_Size.

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QClusterResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QClusterResult_get() macro:
thelnstance(type QCompDesc): descriptor of the allocated cluster

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:

35

mntClusterAllocate() finds and allocates a cluster

errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also

o mntClusterFree()

36

finds the cluster that owns an instance mntClusterByComp()

Name:

Inputs:

Outputs:
Returns:
Includes:
Category:
Mode:

BOOL mntClusterByComp(hDevice, nTransID, CompDesc,
IpClusterDesc, nTimeout, IpMMB, IpOverlapped)

HANDLE hDevice e device handle
QTrans nTransID e transaction ID
QCompDesc CompDesc e instance in cluster
PQCompDesc IpClusterDesc e cluster pointer
USHORT nTimeout e time to wait
LPMMB lpMMB ¢ MMB pointer
LPOVERLAPPED IpOverlapped e overlapped pointer
PQCompDesc IpClusterDesc e cluster pointer
TRUE if successful, FALSE if error

ghostlib.h

cluster management function
asynchronous or synchronous

B Description

The mntClusterByComp() function finds the cluster that owns an instance. This
function finds which cluster is bound with the instance specified i€tmepDesc
parameter. If you call this function synchronously, upon successful return it fills in
the location pointed to bipClusterDescwith the address of the bound cluster.
However, if this function finds a standard error message with a QResultError type,
it returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

CompDesc instance in a cluster

IpClusterDesc pointer to the cluster found

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure

ThemntClusterByComp() function causes th@ClusterByComjxernel message
(defined inmercdefs.hto be sent. Th@®ClusterByComnessage size is defined
as QClusterByComp_Size.

37

mntClusterByComp() finds the cluster that owns an instance

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QClusterResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QClusterResult_get() macro:
thelnstance(type QCompDesc): descriptor of the allocated cluster

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also
o mntClusterFind()

38

finds a component with specific attributes mntClusterCompByAttr()

Name: BOOL mntClusterCompByAttr(hDevice, nTranslID,
ClusterDesc, IpAttr, IpCompDesc, nTimeout, IpMMB,

IpOverlapped)
Inputs: HANDLE hDevice « device handle

QTrans nTransID e transaction ID
QCompDesc ClusterDesc e cluster to search
PQCompAttr IpAttr e attributes list
PQCompDesc IpCompDesc e component instance ptr
USHORT nTimeout e time to wait
LPMMB IpMMB e MMB pointer
LPOVERLAPPED IpOverlapped e overlapped pointer

Outputs: PQCompDesc IpCompDesc e component instance ptr

Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

ThemntClusterCompByAttr() function finds a component with specific
attributes. This function searches the cluster specified i€ltreterDesc

parameter for a component that matches the attributes specifiedpAtine
parameter. If you call this function synchronously, upon successful return it fills in
the location pointed to bpCompDescwith the descriptor of the component
instance that matches the specified attributes. However, if this function finds a
standard error message with a QResultError type, it returns FALSE with an
ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

ClusterDesc cluster that owns the component instance

IpAttr an array of attributes, a key/value set. If you specify only

the Std_ComponentTypeattribute in thdpAttr
parameter, this function finds a specific type of
component instance in a cluster.

IpCompDesc pointer to the component instance that matgh&tr

39

mntClusterCompByAttr() finds a component with specific attributes

Parameter Description
nTimeout time (in seconds) to wait for a response
IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure
The mntClusterCompByAttr() function causes th@ClusterCompByAttkernel

message (defined mercdefs.pto be sent. Th@®ClusterCompByAttmessage
size is defined as QClusterCompByAttr_Size.

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QComponentResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QComponentResult_get() macro:
thelnstance(type QCompDesc): the fully qualified address of the
component instance that has the specified attributes

40

finds a component with specific attributes mntClusterCompByAttr()

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also
e mntClusterByComp()

41

mntClusterConfigLock() locks a specific cluster

Name: BOOL mntClusterConfigLock(hDevice, nTransID,
ClusterDesc, nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice e device handle
QTrans nTransiD e transaction ID
QCompDesc ClusterDesc e target cluster
USHORT nTimeout e time to wait
LPMMB IpMMB MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

ThemntClusterConfigLock() function locks a specific cluster to disable the
automatic deallocation of its components in case the host address, such as the
source address of the Mpath device, goes away. If you call this function
synchronously and it finds a standard error message with a QResultError type, it
returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

ClusterDesc cluster to lock

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure that is large enough for the

required command message
IpOverlapped pointer to an OVERLAPPED structure

ThemntClusterConfigLock() function causes th@ClusterLockkernel message

(defined inmercdefs.hto be sent. Th@ClusterLok message size is defined as
QClusterLock_Size.

42

locks a specific cluster mntClusterConfigLock()

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronougty more details.

M Errors

None.

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also
e mntClusterConfigUnlock()

43

mntClusterConfigUnlock() unlocks a previously-locked cluster

Name: BOOL mntClusterConfigUnlock(hDevice, nTransID,
ClusterDesc, nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice e device handle
QTrans nTransiD e transaction ID
QCompDesc ClusterDesc e target cluster
USHORT nTimeout e time to wait
LPMMB IpMMB MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

ThemntClusterConfigUnlock() function unlocks a previously-locked cluster to
re-enable the automatic deallocation of its components in case the host address,
such as the source address of the Mpath device, goes away. If you call this
function synchronously and it finds a standard error message with a QResultError
type, it returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

ClusterDesc cluster to unlock

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure that is large enough for the
required command message

IpOverlapped pointer to an OVERLAPPED structure

The mntClusterConfigUnlock() function causes th@ClusterUnlockkernel
message (defined mercdefs.ito be sent. Th®ClusterUnlockmessage size is
defined as QClusterUnlock_Size.

44

unlocks a previously-locked cluster mntClusterConfigUnlock()

M Cautions

1. If you call this function synchronously, you must retrieve the passed
parameters via a call antGetTLSmmb().

2. The application is responsible for managing the OVERLAPPED structure.
Refer to2.2. Calling Functions Asynchronoudtr more details.

M Errors

None.

B Result Messages

QClusterUnlockCmplt
Successful completion. The reply message payload contains two data
fields which may be retrieved via the QClusterUnlockCmplt_get()
macro:
clusterUnlocked (type UInt8): flag indicating cluster was unlocked
count (type UInt8): the number of instances unlocked

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also
o mntClusterConfigLock()

45

mntClusterConnect()

interconnects the ports of two instances

Name:

Inputs:

Outputs:
Returns:
Includes:
Category:
Mode:

BOOL mntClusterConnect(hDevice, nTransID, ClusterDesc,
InstDescl, PortID1, InstDesc2, PortID2, nTimeout, IpMMB,

IpOverlapped)

HANDLE hDevice
QTrans nTransID
QCompDesc ClusterDesc
QCompDesc InstDescl
QPortDef PortiD1
QCompDesc InstDesc2
QPortDef PortID2
USHORT nTimeout
LPMMB IpMMB
LPOVERLAPPED IpOverlapped
None.

TRUE if successful, FALSE if error
ghostlib.h

cluster management function
asynchronous or synchronous

» device handle

e transaction ID

e cluster instance

e component instance
e type and port

e component instance
e type and port

e time to wait

e MMB pointer

e overlapped pointer

B Description

ThemntClusterConnect() function interconnects the ports of two instances. The
primary purpose of this function is to allow the reconfiguration of a cluster.

This function connects the ports bound with the instance specified in the
InstDesclparameter to the ports bound with the instance specified in the
InstDesc2parameterlf no types are specified, the port of each instance is
connected as follows:

e If each instance has a primary IN- and OUT- port, the OUT-port of each
instance is connected with the IN-port of the other, forming a full-duplex

connection.

o If an instance has only one primary port, it is connected to the primary port of
the other instance to create a half-duplex connection. Half-duplex connections
are always OUT-port to IN-port.

You can use thBortID1 andPortID2 parameters to specify the type of
connection to make. This is necessary if you need to make the connection between
non-primary ports. The type parameter can specify any or all of the following port

attributes:

46

interconnects the ports of two instances mntClusterConnect()

e Port type:

QPORT_TYPE_ECHO
QPORT_TYPE_RESOURCE
QPORT_TYPE_NETWORK
QPORT_TYPE_SCBUS
QPORT_TYPE_PRIMARY (default)

e Port direction:
e QPORT_DIR_IN
e QPORT_DIR_OUT (Specifying both IN and OUT results in full-duplex
connection.)

e Portinstance. Use if there are multiple instances of ports that have the same
type and the same direction. The instance is a number in the range, 1 through
255.

NOTE: If the type parameter resolves to more than one port, as many
connections as possible are made. For example this function makes a
full-duplex connection iPortID1 is a resourcdnstDesclhas both IN-
and OUT-port resources, ahtstDesc2has a pair of IN- and OUT-
ports.

For the host, this function can be used to interconnect:

e Ports in the same cluster
e Ports in separate clusters on the same board
e Ports in separate clusters on separate boards (future use)

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

ClusterDesc cluster instance thdéistDescloccupies

InstDescl component instance connectedristDesc2

PortID1 type of port(s) to connect instDesc1 This can be
NULL for simple default connections.

InstDesc2 component instance connectedristDescl

PortID2 type of port(s) to connect instDesc2 This can be
NULL for simple default connections.

nTimeout time (in seconds) to wait for a response

47

mntClusterConnect() interconnects the ports of two instances

Parameter Description

IpPMMB pointer to an MMB structure
IpOverlapped pointer to an OVERLAPPED structure

The mntClusterConnect() function causes th@ClusterConnecdkernel message
(defined inmercdefs.to be sent. Th@®ClusterConneainessage size is defined
as QClusterConnect_Size.

M Cautions

1. The application is responsible for managing the OVERLAPPED structure.
Refer to2.2. Calling Functions Asynchronoustr more details.

2. There are restrictions on how this function interconnects ports if used from
the host.

Ports in the same cluster No restrictions.

Ports in separate clustersMight fail if internal routing is not available.
same board and board is not configured to use a Timeslot
Broker to request external connections.

Ports in separate clustersFails if system is not configured to use a
separate boards Timeslot Broker.

The connections parametétertiD1 andPortID2 can be specified as
NULL. This results in the default connection between the primary ports of
each instance.

B Errors

ERROR_ADAP_HDW_ERROR » Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL e See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

48

interconnects the ports of two instances mntClusterConnect()

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

Bl See Also

o mntClusterDisconnect()

49

mntClusterCreate() creates a new cluster

Name: BOOL mntClusterCreate(hDevice, nTransID, BrdAddr,
IpAttr, IpClusterDesc, nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice e device handle
QTrans nTransID e transaction ID
QCompDesc BrdAddr e board address
PQCompAttr IpAttr e cluster attributes
PQCompDesc IpClusterDesc e ID of cluster created
USHORT nTimeout e time to wait
LPMMB IpMMB MMB pointer
LPOVERLAPPED IpOverlapped e overlapped pointer

Outputs: PQCompDesc IpClusterDesc e ID of cluster created

Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

ThemntClusterCreate() function creates a new cluster and returns the cluster
identifier. The null-terminated list of attributes specified inlg#ttrs parameter
associates the attributes with the cluster. If you call this function synchronously,
upon successful return it fills in the location pointed tdp@iusterDescwith the
descriptor of the newly created cluster. However, if this function finds a standard
error message with a QResultError type, it returns FALSE with an
ERROR_MNT_MERCURY_KRNL error code.

The cluster is created on the board specified ifbtzed field of the component
descriptor defined in thBrdAddr parameter.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

BrdAddr component descriptor address of board on which to create
this cluster

IpAttr null-terminated list of attributes to assign to the new
cluster

50

creates a new cluster mntClusterCreate()

Parameter Description

IpClusterDesc upon return, pointer to the cluster instance that has been
created

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure
The mntClusterCreate() function causes th@ClusterCreatekernel message

(defined inmercdefs.ito be sent. Th@ClusterCreatanessage size is defined as
QClusterCreate_Size.

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QClusterResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QClusterResult_get() macro:
thelnstance(type QCompDesc): descriptor of the created cluster

51

mntClusterCreate() creates a new cluster

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also

¢ mntClusterDestroy()

52

deactivates connections mntClusterDeactivate()

Name: BOOL mntClusterDeactivate(hDevice, nTransID,
ClusterDesc, SCDesc, SCPortID, nTimeout, IpMMB,

IpOverlapped)

Inputs: HANDLE hDevice e« device handle
QTrans nTransID e transaction ID
QCompDesc ClusterDesc e cluster instance
QCompDesc SCDesc e SChus component
QPortDef SCPortID « ID of resource port
USHORT nTimeout e time to wait
LPMMB IpMMB e MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

The mntClusterDeactivate()function deactivates connections that have

specified OUT-ports. The main use of this function from the host is to disable data
flowing from an SCbus OUT-port to IN-ports inside a cluster. This function
informs the kernel that the TDM data flowing out of the SCbus OUT-port has
stopped, and that the Talker protocol should be disabled for this port.

This function’s parameters define a cluster address and an SCbus resource
address. This function disables any Simple Talker protocol default behavior that
had been previously enabled throughrirgClusterActivate() function. The
SChus port is uniquely identified by the combination of cluster address, SChus
resource address, and SCbus resource port.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransiD transaction 1D

ClusterDesc cluster instance that owns the SCbus resource to
deactivate

SCDesc address of the SCbus resource in the cluster

53

mntClusterDeactivate() deactivates connections

Parameter Description

SCPortID specific SChus resource port (type and direction)
nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure
The mntClusterDeactivate()function causes th@ClusterDeactivaté&ernel

message (defined mercdefs.pto be sent. Th@ClusterDeactivatenessage size
is defined as QClusterDeactivate_Size.

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

54

deactivates connections mntClusterDeactivate()

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also

o mntClusterActivate()

55

mntClusterDestroy() destroys an empty cluster

Name: BOOL mntClusterDestroy(hDevice, nTransID, ClusterDesc,
nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice e device handle
QTrans nTransID e transaction ID
QCompDesc ClusterDesc e cluster to delete
USHORT nTimeout e time to wait
LPMMB IpMMB e MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

The mntClusterDestroy() function destroys an empty cluster.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

ClusterDesc address of the cluster to delete

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure

ThemntClusterDestroy() function causes th@ClusterDestrokernel message
(defined inmercdefs.hto be sent. Th@ClusterDestroymessage size is defined
as QClusterDestroy_Size.

B Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronoudty more details.

56

destroys an empty cluster mntClusterDestroy()

B Errors

ERROR_ADAP_HDW_ERROR » Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL ¢ See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

Bl See Also

o mntClusterCreate()

57

mntClusterDisconnect() breaks an existing connection between ports

Name: BOOL mntClusterDisconnect(hDevice, nTransID,
ClusterDesc, InstDescl, PortID1, InstDesc2, PortID2,
nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice « device handle
QTrans nTransID e transaction ID
QCompDesc ClusterDesc e cluster instance
QCompDesc InstDescl e component instance
QPortDef PortiD1 e type and port
QCompDesc InstDesc2 e component instance
QPortDef PortID2 e type and port
USHORT nTimeout o time to wait
LPMMB IpMMB e MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

ThemntClusterDisconnect()function breaks an existing connection between
ports that are bound with the instances specified ilngt®esclandinstDesc2
parameters. If no types are specified, each primary port that is connected to the
instance specified in tHastDesc2parameter is disconnected.

You can use thPortID1 andPortID2 parameters to specify the types of
connections to break. ThHRortID1 parameter specifies the type of ports defined
in thelnstDesclparameter. ThBortID2 parameter specifies the type of ports
defined inInstDesc2parameter. You should set both of these to NULL.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

ClusterDesc cluster instance to which to send the disconnect message

InstDescl component instance to disconnect frometDesc2

58

breaks an existing connection between ports mntClusterDisconnect()

Parameter Description

PortiD1 type of port(s) to disconnect instDescl This should be
NULL.

InstDesc2 component instance to disconnect frometDescl

PortID2 type of port(s) to disconnect instDesc2 This should be
NULL.

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure

ThemntClusterDisconnect()function causes th@ClusterDisconnedternel
message (defined mercdefs.ito be sent. Th®ClusterDisconneanessage
size is defined as QClusterDisconnect_Size.

B Cautions
1. You should specify theortID1 andPortlID2 parameters as NULL.

2. The application is responsible for managing the OVERLAPPED structure.
Refer to2.2. Calling Functions Asynchronoustr more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

59

mntClusterDisconnect() breaks an existing connection between ports

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

Bl See Also

e mntClusterConnect()

60

finds a cluster that has specific attributes mntClusterFind()

Name: BOOL mntClusterFind(hDevice, nTransID, IpClusterDesc,
IpAttr, nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice e device handle
QTrans nTransiD e transaction ID
PQCompDesc IpClusterDesc e cluster pointer
PQCompAttr IpAttr e attributes list
USHORT nTimeout e time to wait
LPMMB IpMMB ¢ MMB pointer
LPOVERLAPPED IpOverlapped e overlapped pointer

Outputs: PQCompDesc IpClusterDesc e cluster pointer

Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

ThemntClusterFind() function finds a cluster that has specific attributes. If you
call this function synchronously, upon successful return it fills in the location
pointed to byipClusterDescwith the descriptor of the cluster that matches the
specified attributes.If you call this function synchronously and it finds a standard
error message with a QResultError type, it returns FALSE with an
ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

IpClusterDesc on input, cluster descriptor through which to search (must

contain the destination board address);
on output, descriptor of the found cluster.

IpAttrs an array of attributes, a key or value set
nTimeout time (in seconds) to wait for a response
IpPMMB pointer to an MMB structure that is large enough for the

required command message
IpOverlapped pointer to an OVERLAPPED structure

61

mntClusterFind() finds a cluster that has specific attributes

ThemntClusterFind() function causes th@ClusterFindkernel message
(defined inmercdefs.hto be sent. Th@ClusterFindmessage size is defined as
QClusterFind_Size.

B Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronoudtyr more details.

M Errors

None.

B Result Messages

QClusterResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QClusterResult_get() macro:
thelnstance(type QCompDesc): descriptor of the allocated cluster

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

Bl See Also
e mntClusterByComp()

62

releases an allocated cluster mntClusterFree()

Name: BOOL mntClusterFree(hDevice, nTransID, ClusterDesc,
nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice e device handle
QTrans nTransiD e transaction ID
QCompDesc ClusterDesc e cluster to free
USHORT nTimeout e time to wait
LPMMB IpMMB MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

The mntClusterFree() function releases an allocated cluster. If you call this
function synchronously and it finds a standard error message with a QResultError
type, it returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

ClusterDesc cluster to be freed

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure

ThemntClusterFree() function causes th@ClusterFreekernel message
(defined inmercdefs.hto be sent. Th@®ClusterFreemessage size is defined as
QClusterFree_Size.

B Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronoudty more details.

63

mntClusterFree() releases an allocated cluster

M Errors

None.

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also

o mntClusterAllocate()

64

finds the time slots assigned to a port mntClusterSlotinfo()

Name: BOOL mntClusterSlotinfo(hDevice, nTransID, ClusterDesc,
SCDesc, SCPortID, IpClusterinfo, nSlots, IpSlots, nTimeout,
IPMMB, IpOverlapped)

Inputs: HANDLE hDevice « device handle
QTrans nTransID e transaction ID
QCompDesc ClusterDesc e cluster instance
QCompDesc SCDesc e SCbus resource
QPortDef SCPortID e port type

QClusterSlotinfoResult_t
*IpClusterinfo e cluster data

BYTE nSlots e time slots number
PUSHORT IpSlots e time slots array
USHORT nTimeout e time to wait
LPMMB IpMMB o MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

ThemntClusterSlotinfo() function finds the time slots assigned to a port. The
SCDescandSCPortID parameters define the port. If you call this function
synchronously and it finds a standard error message with a QResultError type, it
returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

ClusterDesc cluster instance that owns the port to which the time slots
have been assigned

SCDesc SCbus resource that owns the SCbus ports

SCPortID SCbus resource port type and direction:

QSCBUS_PORT_IN
QSCBUS_PORT_OUT

65

mntClusterSlotinfo() finds the time slots assigned to a port

Parameter Description

IpClusterinfo returned cluster information returned (by a synchronous
call only). The structure includes the width that indicates
the actual number of time slots allocated to this resource.

nSlots number of time slots allocated in the array specified by
thelpSlots parameter

IpSlots array of time slots allocated to the SCbus resource (by a
synchronous call only)

nTimeout time (in seconds) to wait for a response

IpMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure

ThemntClusterSlotinfo() function causes th@ClusterSlotinfdkernel message
(defined inmercdefs.hto be sent. Th@ClusterSlotinfanessage size is defined
as QClusterSlotinfo_Size.

B Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronoudty more details.

B Errors

ERROR_ADAP_HDW_ERROR » Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL e See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

66

finds the time slots assigned to a port mntClusterSlotinfo()

B Result Messages

QClusterSlotinfoResult
Successful completion. The body of this message contains a variable-size
payload which includes five fixed data fields followed by a
variable-length list of data items. The QClusterSlotinfoResult_get()
macro is used to extract the fixed fields into a data structure of type
QClusterSlotinfoResult, which contains the following elements:

instDesc(type QCompDesc): descriptor of the cluster

portld (type Uint24): port ID the information pertains to

width (type UInt8): number of timeslots used; this value also indicates
the number oSlotld fields in the variable-length list.

encoding(type UInt8): type of encoding used on this port

idlePattern (type UInt8): type of idle pattern used on this port

The remainder of the message body contains a variable-length list of data
fields withwidth members. UsgMsgVarFieldGet() with an initial
offset of QClusterSlotinfoResult_Size to retrieve these values.

Slotld (type Uint16): an SCbus timeslot number

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

Bl See Also

o mntClusterTSAssign()
e mntClusterTSUnassign()

67

mntClusterTSAssign() assigns time slots to a cluster’s SCbus resource

Name: BOOL mntClusterTSAssign(hDevice, nTransID,
ClusterDesc, SCDesc, SCPortID, nWidth, nEncoding, nidle,
IpSlotld, nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice « device handle
QTrans nTransID e transaction ID
QCompDesc ClusterDesc e cluster instance
QCompDesc SCDesc e SCbus resource
QPortDef SCPortID e port type
UCHAR nWidth e time slots number
UCHAR nEncoding e PCM encoding
UCHAR nidle e PCM idle pattern
PUSHORT IpSlotld e timeslot list pointer
USHORT nTimeout e time to wait
LPMMB IpPMMB e MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

ThemntClusterTSAssign()function assigns time slots to a cluster's SChus
resource. This function allows Resource and Network OUT-ports to transmit
TDM data to the SChus, and it allows Resource and Network IN-ports to receive
data from the TDM bus. This function finds which cluster is bound with the
instance specified in thelusterDescparameter.

This function’s parameters define a cluster, an SCbus resource, and a set time
slots. This function establishes a logical link between the logical SCbus IN or
OUT-ports and a set of TDM time slots. Ports in the cluster that are transmitting
data to the SCbus IN-port have data transmitted to the SChbus after this function
has been called. (The connections are activated within the cluster through Talker
Protocol.). Ports in the cluster that are connected to the SChus OUT-port receive
data from that port after thmntClusterActivate() function has been called to
activate the connection. The SCbus OUT-ports need the host to control Talker
Protocol for the port.

68

assigns time slots to a cluster’'s SCbus resource mntClusterTSAssign()

You can use thmntClusterTSUnassign()function to unassign a time slot and
stop transmission to and reception from the TDM bus.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID

ClusterDesc

SCDesc
SCPortID

nWidth

nEncoding

nidle

IpSlotid

nTimeout
IpPMMB

cluster instance that owns the port to which to connect the
time slots

SChus resource that owns the SChus ports

SChus resource port type and direction
QSCBUS_PORT_IN: data transmittedthe TDM bus
QSCBUS_PORT_OUT: data receiviedm the TDM bus

number of time slots with which to link. This must match the
width of the SCbus resource width attribute.

PCM encoding used for data on the time slots:
QSCBUS_ENCODING_ALAW: sets A-Law encoding
QSCBUS_ENCODING_MULAW: setg-Law encoding
idle pattern used on the time slots:
QSCBUS_IDLE_ALAW: sets A-Law idle pattern
QSCBUS_IDLE_MULAW: setgi-Law idle pattern

list of time slots numbers that identify the time slots to be
connected. Use th@Nidth parameter to specify the number
of time slots.

time (in seconds) to wait for a response
pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure

ThemntClusterTSAssign()function causes th@ClusterSlotAssigkernel
message (defined mercdefs.hto be sent. Th@ClusterSlotAssigmessage size
is defined as QClusterSlotAssign_Size.

69

mntClusterTSAssign() assigns time slots to a cluster’s SCbus resource

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also

o mntClusterTSUnassign()

70

unassigns a timeslot from an SCbus resource mntClusterTSUnassign()

Name: BOOL mntClusterTSUnassign(hDevice, nTransID,
ClusterDesc, SCDesc, SCPortID, nTimeout, IpMMB,

IpOverlapped)

Inputs: HANDLE hDevice e« device handle
QTrans nTransID e transaction ID
QCompDesc ClusterDesc e cluster instance
QCompDesc SCDesc e SCbus resource
QPortDef SCPortID e port type
USHORT nTimeout e time to wait
LPMMB IpMMB e MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: cluster management function
Mode: asynchronous or synchronous

B Description

ThemntClusterTSUnassign()function unassigns a timeslot from an SCbus
resource. This removes the ability of a resource to transmit to or receive from the
TDM bus.

This function’s parameters define a cluster and an SChus resource. The function
removes the link between the logical SCbus In or OUT ports and a set of physical
TDM bus time slots. Ports in the cluster that are transmitting data to the SChus
IN-port no longer have data transmitted to the TDM bus after this function is
called. Ports in the cluster that are connected to the SCbus OUT-port no longer
receive data from that port. Unassigning the SCbus OUT-port has the effect of
calling themntClusterDeactivate()function before the unassignment takes

place.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

ClusterDesc cluster instance that owns the port from which to
disconnect the time slots

SCDesc SCbus resource that owns the SCbus ports

71

mntClusterTSUnassign() unassigns a timeslot from an SCbus resource

Parameter Description

SCPortID SCbus resource port specifications. Use this to specify
port direction:

QPORT_DIR_IN: data transmittéd the TDM bus
QPORT_DIR_OUT: data receivéamm the TDM bus
nTimeout time (in seconds) to wait for a response
IpPMMB pointer to an MMB structure
IpOverlapped pointer to an OVERLAPPED structure

The mntClusterTSUnassign()function causes th@ClusterSlotUnassigkernel

message (defined mercdefs.ito be sent. Th®ClusterSlotUnassigmessage
size is defined as QClusterSlotUnassign_Size.

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR ¢ Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

72

unassigns a timeslot from an SCbus resource mntClusterTSUnassign()

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also
o mntClusterTSAssign()

73

mntCompAllocate() reserves and locks a specific component instance

Name: BOOL mntCompAllocate(hDevice, nTransID, Iplnstance,
pAttrs, ClusterDesc, nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice « device handle
QTrans nTransID e transaction ID
PQCompDesc IpInstance e component instance
PQCompAttr pAttrs e attributes array
QCompDesc ClusterDesc e cluster to allocate into
USHORT nTimeout e time to wait
LPMMB IpMMB e MMB pointer
LPOVERLAPPED IpOverlapped e overlapped pointer

Outputs: QCompDesc Ipinstance e component instance

Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: component management function
Mode: asynchronous or synchronous

B Description

ThemntCompAllocate() function reserves and locks a specific component
instance. This function allocates a component instance that matches the
requirements specified in th@nstance andIpAttrs parameters.

If you call this function asynchronously, the fully qualified and allocated
component instance is returned in the MMB reply message.

If you call this function synchronously, upon successful return it fills in the
location pointed to bipinstance with the descriptor of the allocated component
instance. However, if this function receives a standard error message with a
QResultError type, it returns FALSE with the
ERROR_MNT_MERCURY_KRNL error code.

Thelplnstance andlpAttrs parameters together provide the information needed
for the Resource Manager to select an instance of the desired component.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

74

reserves and locks a specific component instance mntCompAllocate()

Parameter Description

Ipinstance on input, desired component instance to reserve and lock;
on output, descriptor of the allocated component instance.

pAttrs an array of component attributes, a key/value set.

ClusterDesc cluster in which to allocate the component

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure
ThemntCompAllocate() function causes th@ComplnstAllocat&ernel message

(defined inmercdefs.ito be sent. Th®ComplnstAllocatenessage size is
defined as QComplnstAllocate_Size.

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronou$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR ¢ Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

75

mntCompAllocate() reserves and locks a specific component instance

B Result Messages

If you call this function synchronously, it first examines the reply message to
check for successful component allocation. If it returns TRUE, it then returns the
component address in th@Enstance parameter.

If you call this function asynchronously, and it returns FALSE, the
GetLastError() function should retrieve the ERROR_IO_PENDING code. In
this case, you need to call one of the Win32 API wait functions, such as
WaitForMultipleObjects() . After the wait function returns, call the
GetOverlappedResult()function to get the results of the operation.

QComponentResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QComponentResult_get() macro:
thelnstance (type QCompDesc): the fully qualified address of the
component instance that has the specified attributes

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also

e mntCompFree()

76

finds a component mntCompFind()

Name: BOOL mntCompFind(hDevice, nTransID, Iplnstance, pAttrs,
nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice e device handle
QTrans nTransID e transaction ID
PQCompDesc IpInstance e instance pointer
PQCompAttr pAttrs e attributes array
USHORT nTimeout e time to wait
LPMMB lpMMB ¢ MMB pointer
LPOVERLAPPED IpOverlapped e overlapped pointer

Outputs: PQCompDesc Ipinstance e instance pointer

Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: component management function
Mode: asynchronous or synchronous

B Description

ThemntCompFind(') function finds a component. The function returns a
component address that matches the requirements specifiedgmtitence and
pAttrs parameters.

If you call this function asynchronously, you need to examine the reply message
contained in the MMB. If no qualified component is found, an error is indicated in
the message.

If you call this function synchronously, upon successful return it fills in the
location pointed to bipinstance with the descriptor of the component instance
that matches the specified attributes. However, if this function finds a standard
error message with a QResultError type, it returns FALSE with an
ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

pAttrs an array of component attributes, a key/value set.

Ipinstance on input, desired component instance

on output, component instance that was found.

77

mntCompFind() finds a component

Parameter Description

nTimeout time (in seconds) to wait for a response
IpPMMB pointer to an MMB structure
IpOverlapped pointer to an OVERLAPPED structure

ThemntCompFind() function causes th@CompFindkernel message (defined
in mercdefs.hito be sent. Th®CompFindmessage size is defined as
QCompFind_Size.

A component instance descriptor has the following format:

typedef struct
{

Uintlé node; /*reserved for node address Not currently used*/
UInt8 board; /*board ID within host */
UInt8 processor; /* processor identifier */
UInt8 component; /* component identifier */
Ulnt8instance; /*instance number (or task id) */
} QCompDesc;

A fully specified component instance contains non-nil values ipribeessor
component andinstancefields. Thenode andboard fields are always ignored.
IpInstance should contain only a partially specified address with at least the
processorand possibly theomponentspecified.

IpInstance should be partially specified so timstancefield is set to

QCOMP_I_NIL; ifitis not set to nil, it is ignored. Tkemponentfield is

normally set to QCOMP_C_NIL if the request is intended to find a component
matching the specified attributes, but it can contain a component identifier. If the
componentfield is non-nil, the function completes successfully if the specified
component has the attributes specified; otherwise, an error is returned. The
processorfield also can be set to its nil value (QCOMP_P_NIL)lplifistance is

not specified, the selection is based completely on the attribute defipAttris.

ThepAttrs argument references an array of QCompAttr structures. Attributes are
used to identify the capabilities available in components. They can be used to
differentiate components that perform the same type of function, such as audio
coders which support different coding algorithms.

78

finds a component mntCompFind()

A value of type QCompAittr is a structure of the format:

typedef struct
{
UInt32 key; * A key defining the type of attribute */
Int32 value; * the value of this attribute */
}QCompatr;

The list of attributes returned is terminated by an entry with a null key,
QATTR_NULL. The use of attributes to select among components is
accomplished by providing a list of attributes. A component instance qualifies if
its component is registered with attributes that match the attributes supplied in the
pAttrs array. A match is indicated if the specified attribute and the registered
attribute have the sankey andvalue. If the attribute is specified in thgttrs

array with thevalue QATTR_ANY, it matches any occurrence of any registered
attribute with the samieey.

If the pAttrs array is a simple list of attributes, a component instance qualifies for
selection if it matcheall of the attributes listed, as well as the non-wild card
fields of thelpInstance argument.

This selection mechanism can be modified by the use of two special keys:
QATTR_OR and QATTR_NOT. These are not actual attributes, but act as
operators in theAttrs attribute list. The presence of a QATTR_OR attribute (the
value is ignored) has the effect of logically ORing the match results of the two
attributes following QATTR_OR attribute. For example, the list (A, B,
QATTR_OR, C, D) qualifies a component that has the attributes which match A
and B and (C or D).

The QATTR_NOT operator attribute key inverts the match of the attribute
following it in the list. For example, the list (A, B, QATTR_NOT, C) qualifies a
component that has the attributes which match A and B and does not have an
attribute which matches C.

Note that attribute matching follows the order of the elements ipAltes array

and makes a single pass without any backtracking. A component fails to qualify
for allocation as soon as the first non-matching attribute is found.

79

mntCompFind() finds a component

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QComponentResult
Successful completion. The body of this message contains a single data
field which may be retrieved via the QComponentResult_get() macro:
thelnstance(type QCompDesc): the fully qualified address of the
component instance that has the specified attributes

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also
o mntCompFindAll()

80

returns component addresses with specified attributes — mntCompFindAll()

Name: BOOL mntCompFindAll (hDevice, nTransID, startMask,
endMask, IpAttr, nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice e device handle
QTrans nTransID e transaction ID
QCompDesc startMask e starting address
QCompDesc endMask ¢ ending address
PQCompAttr IpAttr e attribute list
USHORT nTimeout e time to wait
LPMMB IpMMB e MMB pointer
LPOVERLAPPED IpOverlapped ¢ overlapped pointer

Outputs: None
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: Component Management
Mode: Asynchronous

B Description

ThemntCompFindAll() function returns component addresses with specified
attributes.

This function returns a list of addresses and associated attributes for components
on the board specified startMask that match the requirements specified in the
IpAttr array. The component addresses and attributes are returned in the body of
aQCompMultipleResulinessage. If no qualified components are found, a
QResultErrormessage is returned. The search begins with the processor and
component specified istartMask and continues sequentially through all
components up to the processor and component specifiediMask.

This function may find more matching components than can be returned in a
single result message, in which case the address of the next matching component
is returned in theextComponentfield of theQCompMultipleResulnessage.

To retrieve the addresses and attributes of the additional matching components,
call mntCompFindAll() again withstartMask set tonextComponent This

process can be repeated ungktComponentis NIL, which indicates that the

result message contains all valid results for the specified search.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

81

mntCompFindAll() returns component addresses with specified attributes

Parameter Description

nTransID transaction identifier to be used for all messages
generated by this function

startMask component descriptor that specifies the starting point
for the search; this descriptaust specify the board,
but may use NIL values for the processor and
component to start at the first component on the board.

endMask component descriptor that specifies the processor and
component at which to stop the search; setting these
descriptor fields to NIL values searches to the last
component on the board.

IpAttr array containing a null-terminated list of attributes that
the components must match

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure

A component instance descriptor has the following format:

typedef struct

{
Uintl6é node; /*reserved for node address Not currently used*/
UInt8 board; /*board ID within host */
UInt8 processor; /* processor identifier */
UInt8 component; /* component identifier */
Ulnt8instance; /*instance number (or task id) */
} QCompDesc;

This function ignores theode andinstancefields in thestartMask and

endMask arguments (thaodefield is currently always ignored). Theard

field in thestartMask descriptor must specify the board to be searched. The
processorandcomponentfields in thestartMask andendMask descriptors may
be specified in order to limit the search to a specific range. Setting
startMask.processorto the nil value, QCOMP_P_NIL, starts the search with the
first processor on the board; settempMask.processorto the nil value ends the
search on the last processor on the board. SetindMask.componentto the

nil value, QCOMP_C_NIL, starts the search with the first component on the
specified starting processor; setting a nil valueefatMask.componentends the
search on the last component on the specified ending processor.

82

returns component addresses with specified attributes — mntCompFindAll()

ThelpAttr argument references an array of QCompAittr structures which have the
format:

typedef struct
UInt32 key; * A key defining the type of attribute */
Int32 value; [the value of this attribute */

} QCompaAttr;

The list of attributes in thipAttr array is terminated by an entry with a ridly,
QATTR_NULL (thevalueis ignored). A component qualifies if it is registered
with attributes which match the attribute(s) supplied inpl#¢tr array. A match

is indicated if the specified attribute and the registered attribute have th&epame
andvalue. An attribute that is specified in th@Attr array with thevalue
QATTR_ANY matches any occurrence of any registered attribute with the
specifiedkey.

If the IpAttr array is a simple list of attributes, a component qualifies for selection
if it matchesall of the attributes listed. This selection mechanism may be
modified by the use of two special attribute keys: QATTR_OR and QATTR_NOT
(the attribute value is ignored for these special keys). These are not actual
attributes but act as operators in the attribute list.

The presence of a QATTR_OR attribute has the effect of OR’ing the match results
of the two attributes following QATTR_OR attribute. For example, the list (A, B,
QATTR_OR, C, D) qualifies a component that has attributes that match A and B
and (C or D).

The QATTR_NOT operator attribute key inverts the match of the attribute
following it in the list. For example, the list (A, B, QATTR_NOT, C) qualifies a
component which has attributes that match A and B and which does not have an
attribute that matches C.

Note that the matching of attributes follows the order of the elements lipAtie
array and makes a single pass without any backtracking. A component fails to
qualify for allocation as soon as the first non-matching attribute is found.

ThemntCompFindAll() function causes th@CompFindAllkernel message

(defined inmercdefs.hto be sent. Th®@CompFindAllmessage size is defined as
QCompFindAll_Size.

83

mntCompFindAll() returns component addresses with specified attributes

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC_FAILED e The MMB could not be

allocated.

B Result Messages

QCompMultipleResult

84

Successful completion. The body of this message contains a variable-
size payload which includes two fixed data fields followed by a variable-
length list of data items. The QCompMultipleResult_get() macro is used
to extract the fixed fields into a data structure of type
QCompMultipleResult_twhich contains the following elements:

count (type UInt8): value representing the number of component
descriptors in the variable part of the message body.
NextComponent(type QCompDesc): if the search specification yielded
more results than can fit in this result message, this field contains the
component descriptor of the next matching component; if the body of this
result message contains all of the results for the specified search, this
field is set to NIL.

The remainder of the message body contains a variable-length list of data
fields withcount members. Each component descriptor is followed by a
variable number of attributes associated with the component in a null-

returns component addresses with specified attributes — mntCompFindAll()

terminated list. UsgMsgVarFieldGet() with an initial offset of
QCompMultipleResult_Size to retrieve these values.

theComponent(type QCompDesc): the component instance descriptor
of a component that satisfies the search criteria. The message may
contain one or more component addresses, as indicatalihy each of
which is followed by a variable-length attribute list.

IpAttr (type QCompAttr): associated with the preceding component
descriptor; the number of attributes is variable, and the end of the
attribute list is indicated by a null attribute.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also
o mntCompFind()

85

mntCompFree() releases an allocated component instance

Name: BOOL mntCompFree(hDevice, nTranslD, thelnstance,
nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice « device handle
QTrans nTransID e transaction ID
QCompDesc thelnstance e instance to be freed
USHORT nTimeout e time to wait
LPMMB IpMMB MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: component management function
Mode: asynchronous or synchronous

B Description

ThemntCompFree() function releases an allocated component instance back
into a pool of available component instances. If you call this function
synchronously and it finds a standard error message with a QResultError type, it
returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

thelnstance specifies the desired component instance to be freed

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure

ThemntCompFree() function causes th@ComplinstFre&kernel message
(defined inmercdefs.hto be sent. Th@ComplinstFreenessage size is defined
as QComplnstFree_Size.

86

releases an allocated component instance mntCompFree()

M Cautions

The application is responsible for managing the OVERLAPPED structure Refer to
2.2. Calling Functions Asynchronoudty more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also

o mntCompAllocate()

87

mntCompUnuse() marks component instances as not being in use

Name:

Inputs:

Outputs:
Returns:
Includes:
Category:
Mode:

BOOL mntCompUnuse(hDevice, nTransID, nCount,
IpCompList, nTimeout, IpMMB, IpOverlapped)

HANDLE hDevice e device handle
QTrans nTransID e transaction ID
ULONG nCount e instances count
PQCompDesc IpComplList e instances array
USHORT nTimeout e time to wait
LPMMB lpMMB ¢ MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
None.

TRUE if successful, FALSE if error

ghostlib.h

component management function

asynchronous or synchronous

B Description

ThemntCompUnuse()function marks component instances as not being in use
by the source address assigned to the device handle. This applies only to

component instances that have previously been marked, through the

mntCompUse()function, as being in use by the source address. If you call the
mntCompUnuse()function synchronously and it finds a standard error message

with a QResultError type, it returns FALSE with an
ERROR_MNT_MERCURY_KRNL error code.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

nCount number of instances in an array

IpCompList array of component instances to mark as not in use

nTimeout time (in seconds) to wait for a response

IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure

ThemntCompUnuse()function causes th@CompUnusé&ernel message

(defined inmercdefs.to be sent. Th®CompUnusenessage size is defined as

QCompUnuse_Size.

88

marks component instances as not being in use mntCompUnuse()

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronougty more details.

B Errors

ERROR_ADAP_HDW_ERROR e Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also

e mntCompUse()

89

mntCompUse() marks component instances as being in use

Name: BOOL mntCompUse(hDevice, nTransID, nCount,
IpComplList, IpPayload, nTimeout, IpMMB, IpOverlapped)

Inputs: HANDLE hDevice « device handle
QTrans nTransID e transaction ID
ULONG nCount e instances count
PQCompDesc IpComplList e instances array
PULONG IpPayload e instance payload
USHORT nTimeout e time to wait
LPMMB IpMMB e MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: component management function
Mode: asynchronous or synchronous

B Description

ThemntCompUse()function marks component instances as being in use by the
source address assigned to the device handle. If you call this function
synchronously and it finds a standard error message with a QResultError type, it
returns FALSE with an ERROR_MNT_MERCURY_KRNL error code.

Each source address is assigned to an Mpath device name. When a device handle
is closed after using component instances, the driver notifies the DM3 board that
the application with this source address has terminated. The DM3 board forwards
this notification to the MercPath’s in-use component instances so they can

perform appropriate cleanup tasks.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction 1D

nCount number of instances in an array

IpCompList an array of component instances to mark as in use

IpPayload An array ofnCount size, representing a payload for the

corresponding component instancép@omplList.
nTimeout time (in seconds) to wait for a response

90

marks component instances as being in use mntCompUse()

Parameter Description
IpPMMB pointer to an MMB structure
IpOverlapped pointer to an OVERLAPPED structure

ThemntCompUnuse()function causes th@CompUseernel message (defined
in mercdefs.ito be sent. Th®CompUsanessage size is defined as
QCompUse_Size.

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR ¢ Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.
ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be

allocated.
B Result Messages
QResultComplete
Successful completion. The message body contains no data fields.
QResultError

Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:

errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

B See Also - mntCompUnuse()

91

mntCompleteStreamlo() completes pending stream I/O requests

Name: BOOL mntCompleteStreamlo(hDevice)
Inputs: HANDLE hDevice e device handle
Outputs: None
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: stream I/O function
Mode: synchronous

B Description

ThemntCompleteStreamlo()function completes pending stream I/O requests
on the stream currently attached to the specified device.

NOTE: While themntCompleteStreamlo()function itself works in the
synchronous mode, the actual reads or writes complete asynchronously.
Therefore, you need to be prepared for these premature I/O completions.
Each premature I/O completion returns as successful with the actual
number of bytes transferred.

Parameter Description

hDevice stream device handle
B Cautions - None.

M Errors

ERROR_BAD COMMAND ¢ The specified handle does not have
an attached stream.

ERROR_INVALID_FUNCTION e The stream handle specified is of the
wrong type.

ERROR_INVALID_HANDLE ¢ An invalid handle was specified in
the argument list.

B Result Messages - None.

B See Also - None.

92

copies the specified Message Block mntCopyMMB()

Name: LPMMB mntCopyMMB(IpMMB)
Inputs: LPMMB lpMMB e pointer to MMB to be copied
Outputs: None
Returns: LPMMB a pointer to a new MMB
NULL when the new MMB could not be allocated
Includes: ghostlib.h
Category: message /O function
Mode: synchronous

B Description

ThemntCopyMMB() function copies the specified Message Block to a newly

created MMB.

Parameter Description
IpPMMB pointer to the MMB from which to copy
B Cautions
None.
B Errors
ERROR_INVALID_PARAMETER e Aninvalid parameter was
specified in the argument
list.

B Result Messages

None.

B See Also

mntAllocateMMB()

93

mntDetachMercStream() detaches a stream

Name: BOOL mntDetachMercStream(hDevice, nTimeout,

IpOverlapped)
Inputs: HANDLE hDevice e device handle
USHORT nTimeout e time to wait for response

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: stream I/O function
Mode: asynchronous or synchronous

B Description

ThemntDetachMercStream()function detaches a stream from the specified
stream device. If all references to a particular stream ID have been detached, the
stream is closed. You can no longer read from or write to that stream.

Parameter Description

hDevice stream device handle

nTimeout time (in seconds) to wait for a response

IpOverlapped pointer to an OVERLAPPED structure
B Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronous$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR ¢ Board is not available to
be initialized.

ERROR_BAD_COMMAND e The specified handle does
not have an attached
stream.

ERROR_INVALID_FUNCTION ¢ The stream handle
specified is of the wrong
type.

94

detaches a stream

mntDetachMercStream()

ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

ERROR_MNT_STRM_ALREADY_CLOSED

ERROR_MNT_STRM_NOT_OPEN

B Result Messages

None.

B See Also

None.

¢ An invalid handle was
specified in the argument
list.

¢ An invalid parameter was
specified in the argument
list.

¢ The specified stream ID
has been closed.

e The specified stream ID is
not open.

95

mntEnumMpathDevice() enumerates existing Mpath devices

Name:

Inputs:
Outputs:

Returns:
Includes:
Category:
Mode:

BOOL mntEnumMpathDevice(Mode, IpDeviceName,
IpDeviceNameSize, IpDevStatus)

ULONG Mode e request mode
LPCSTR IpDeviceName e device name pointer
PULONG IpDeviceNameSize e length of device name
PULONG IpDevStatus e current device status
TRUE if successful, FALSE if error

ghostlib.h

message I/O function

synchronous

B Description

ThemntEnumMpathDevice() function enumerates existing Mpath devices.
Upon successful return, the function fills in the locations pointed to by
IpDeviceName IpDeviceNameSizeandlpDevStatuswith the device name,
device name length, and current device status.

Parameter Description

Mode enumeration method:
MNT_FIRST_AVAILABLE: thelpDeviceName
parameter contains the first unused Mpath device.
MNT_GET_FIRST: function returns the first device
currently defined in the system.
MNT_GET_NEXT: function returns the next device in
the list.

IpDeviceName pointer to the device name

IpDeviceNameSize device name length

96

enumerates existing Mpath devices mntEnumMpathDevice()

Parameter

Description

IpDevStatus

M Cautions

current status of the device returned in the
IpDeviceNameparameter. This status can be any of the
following:

MERC_DEVICE_STATUS_FREE: Device has not

been opened.
MERC_DEVICE_STATUS_INUSE_EXCLUSIVE:
Device has been opened by an application that specified
exclusive access.
MERC_DEVICE_STATUS_INUSE_SHARED:

Device has been opened by an application that specified
shared access (for read, write, or both).

There is no guarantee that any subsequent call ©rdeteFile() function will
succeed. As always, the caller must be prepared to handle an error return.

M Errors

ERROR_MNT_SYSTEM_ERR ¢ Direct Interface system error.

(An internal error occurred
within the MNTI DLL.)

ERROR_INVALID_PARAMETER ¢ An invalid parameter was

specified in the argument list.

ERROR_FILE_NOT_FOUND ¢ No device was found that

B Result Messages

None.

B See Also

matches the specified criteria.

mntEnumStrmDevice()

97

mntEnumStrmDevice() enumerates existing Stream devices

Name:

Inputs:
Outputs:

Returns:
Includes:
Category:
Mode:

BOOL mntEnumStrmDevice(Mode, IpDeviceName,
IpDeviceNameSize, IpDevStatus)

ULONG Mode e request mode
LPCSTR IpDeviceName e device name pointer
PULONG IpDeviceNameSize e length of device name
PULONG IpDevStatus e current device status
TRUE if successful, FALSE if error

ghostlib.h

message I/O function

synchronous

B Description

ThemntEnumStrmDevice() function enumerates existing Stream devices. Upon
successful return, the function fills in the locations pointed tipbgviceName
IpDeviceNameSizeandlpDevStatuswith the device name, device name length,
and current device status.

Parameter Description

Mode enumeration method:
MNT_FIRST_AVAILABLE: thelpDeviceName
parameter contains the first unused Stream device.
MNT_GET_FIRST: function returns the first device
currently defined in the system.
MNT_GET_NEXT: function returns the next device in
the list.

IpDeviceName pointer to the device name

IpDeviceNameSize device name length

98

enumerates existing Stream devices mntEnumStrmDevice()

Parameter

Description

IpDevStatus

M Cautions

current status of the device returned in the
IpDeviceNameparameter. This status can be any of the
following:

MERC_DEVICE_STATUS_FREE: Device has not

been opened.
MERC_DEVICE_STATUS_INUSE_EXCLUSIVE:
Device has been opened by an application that specified
exclusive access.
MERC_DEVICE_STATUS_INUSE_SHARED:

Device has been opened by an application that specified
shared access (for read, write, or both).

There is no guarantee that any subsequent call ©rdeteFile() function will
succeed. As always, the caller must be prepared to handle an error return.

M Errors

ERROR_MNT_SYSTEM_ERR ¢ Direct Interface system error.

(An internal error occurred
within the MNTI DLL.)

ERROR_INVALID_PARAMETER ¢ An invalid parameter was

specified in the argument list.

ERROR_FILE_NOT_FOUND ¢ No device was found that

B Result Messages

None.

B See Also

matches the specified criteria.

mntEnumMpathDevice()

99

mntFreeMMB() frees the specified Message Block

Name: BOOL mntFreeMMB(IpMMB)
Inputs: LPMMB lpMMB e pointer to MMB to be freed
Outputs: None
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: message I/O function
Mode: synchronous

B Description
ThemntFreeMMB(') function frees the specified Message Block.

Parameter Description

IpPMMB pointer that was returned from a successful call to the
mntAllocateMMB() function

M Cautions

None.

M Errors

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

B Result Messages

None.

Bl See Also

mntAllocateMMB()

100

lists boards with matching attributes mntGetBoardsByAttr()

Name: BOOL mntGetBoardsByAttr(pAttr, MaxAttrs, pBoardAttr,
pTotalEntries, pBoardsFound)

Inputs: PQValueAttr pAttr e board attributes list
ULONG MaxAttrs e maximum attributes
PULONG pTotalEntries e number of entries
specified in the attributes
array
Outputs: PQBoardAttr pBoardAttr ¢ matching boards
PULONG pBoardsFound e boards found

Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: message I/O function
Mode: synchronous

B Description

ThemntGetBoardsByAttr() function lists boards with matching attributes. This
function accesses the NT registry and reads the attributes of each board
configured on the system. It then compares the listed attributes against the
attributes provided by the callerpattr . Upon successful return, the function
fills in the locations pointed to lpyBoardAttr andpBoardsFoundwith an array

of board attributes matching the specifigittr values and the number of boards
with matching attributes.

Parameter Description

pAttr array of Registry value attributes to be matched

MaxAttrs maximum number of attributes that can be stored in the
array pointed to by theBoardAttr parameter

pBoardAttr array of board attributes that matched the specifications in
pAttr

pTotalEntries number of entries ipBoardAttr used for input and output
pBoardsFound number of boards found

ThepAttr argument references an array of QValueAttr structures. These
attributes identify available board capabilities. A value of type QValueAttr is a

structure of the format:
typedef struct

char ValueName[MNT_MAX_VALUE_NAME_SIZE];

101

mntGetBoardsByAttr() lists boards with matching attributes

ULONG ValueType;
BYTE ValueFlag;
char Value[MNT_MAX_VALUE_SIZE];

}
Where:

ValueName: contains a NULL terminated string specifying the name of
the value to find or the wild card “*” can be used to
indicate a match on any value name.

ValueType: is one of the Win32 registry types; REG_DWORD,
REG_SZ, or REG_MULTISZ.

ValueFlag: may be NULL to indicate a match on the value specified
in Value or MNT_MATCH_ANY_VALUE to match on
any value.

Value: is the value to match.

The list of attributes returned is terminated by the entry with a null key,
QATTR_NULL. A match is indicated if the specified attribute and the registered
attribute have the same name and value.

ThepBoardAttr parameter references an array of QBoardAttr structures. These
attributes identify available board capabilities. A value of type QBoardAttr is a

structure of the format:
typedef struct

charValueName[MNT_MAX_VALUE_NAME_SIZE];
ULONG ValueType;

char Value[MNT_MAX_VALUE_SIZE];

ULONG BoardNo;

}

Where:

ValueName: contains a NULL terminated string specifying the name of
the value which matched.

ValueType: is one of the Win32 registry types; REG_DWORD,
REG_SZ, or REG_MULTISZ.

102

lists boards with matching attributes mntGetBoardsByAttr()

Value: is the current value of the value named/alueName

BoardNo: contains the logical board ID of the board which
contained the matching attribute.

ThemntGetBoardsByAttr() function lists each board and the attribute that the
board matched in the attribute list. Multiple listings of one board are possible if
the board matches various attributes provided irptitr parameter.

The attributes list is terminated by the entry with a null key, QATTR_NULL, if
there is enough space in the attribute list to list all the boards and the null key. If
the null key is absent, thentGetBoardsByAttr() function did not completely

list all the boards matching the attributes. A match is indicated if the specified
attribute and the registered attribute have the same name and value.

B Cautions

None.

B Errors

ERROR_CANTOPEN e Cannot open registry key.

ERROR_CANTREAD e Cannot read registry key.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_CANTCLOSE e Cannot close registry key.

ERROR_MNT_INVALID_VALUE_TYPE e An invalid value type was
specified in the attribute list.

ERROR_MNT_NO_BOARDS_BY_ATTR e No boards match the specified
criteria.

ERROR_MNT_NO_MEM e The attribute list does not have
enough space to list any
matches.

103

mntGetBoardsByAttr() lists boards with matching attributes

B Result Messages

None.

B See Also

None.

104

retrieves the driver version string mntGetDrvVersion()

Name: BOOL mntGetDrvVersion(lpVersion)
Inputs: None
Outputs: LPCSTR IpVersion e driver version string
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: debug support function
Mode: synchronous

B Description

ThemntGetDrvVersion() function retrieves the driver version string from the
Class Driver (DLGCMCD). Upon successful return, the function fills in the
location pointed to bipVersion with the driver version string.

Parameter Description
IpVersion driver version
B Cautions

ThelpVersion version string must be the same size as
MNT_VERSION_STRING_SIZE.

M Errors

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_INSUFFICIENT_BUFFER e The version string buffer is
too small.

B Result Messages

None.

B See Also
o mntGetLibVersion()

105

mntGetLibVersion() retrieves the Direct Interface library version string

Name: BOOL mntGetLibVersion(lpVersion)
Inputs: None
Outputs: LPCSTR IpVersion e Direct Interface host library
version
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: debug support function
Mode: synchronous

B Description

ThemntGetLibVersion() function retrieves the Direct Interface library version
string from the Class Driver (DLGCMCD). Upon successful return, the function
fills in the location pointed to bipVersion with the Direct Interface library
version string.

Parameter Description
IpVersion Direct Interface library version string
B Cautions

ThelpVersion version string must be the same size as
MNT_VERSION_STRING_SIZE.

M Errors

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

B Result Messages

None.

B See Also

e mntGetDrvVersion()

106

returns the stream ID

mntGetMercStreamID()

Name: BOOL mntGetMercStreamID(hDevice, IpMercStreamiD,

IpBoardNumber)
Inputs: HANDLE hDevice » device handle
Outputs: PULONG IpMercStreamID e pointer to stream ID
PULONG IpBoardNumber e pointer to board number
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: stream I/O function

Mode: synchronous

B Description

ThemntGetMercStreamID() function returns the stream ID currently associated
with the specified Stream device handle. Upon successful return, the function fills

in the locations pointed to BgMercStreamID andlpBoardNumber with the

stream identifier and the board number.

Parameter Description
hDevice Stream device handle
IpMercStreamID on return, contains the stream 1D
IpBoardNumber on return, contains the board number
B Cautions -
None.
B Errors

ERROR_BAD_COMMAND
ERROR_INVALID_FUNCTION
ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

» The specified handle does not
have an attached stream.

¢ The stream handle specified is of
the wrong type.

» An invalid handle was specified in
the argument list.

¢ An invalid parameter was
specified in the argument list.

107

mntGetMercStreamID() returns the stream ID

B Result Messages

None.

B See Also

None.

108

returns the message path source address mntGetMpathAdadr()

Name:

Inputs:
Outputs:

Returns:
Includes:

Category:
Mode:

BOOL mntGetMpathAddr(hDevice, IpSrcAddr, IpDestAddr)

HANDLE hDevice e device handle
PQCompDesc IpSrcAddr e source pointer
PQCompDesc IpDestAddr e destination pointer
TRUE if successful, FALSE if error

ghostlib.h

Message /O function

synchronous

B Description

ThemntGetMpathAddr() function returns the message path source address
bound to the specified device. Upon successful return, the function fills in the
locations pointed to bpSrcAddr andlpDestAddr with the source address
assigned to the specified Mpath device and the destination address used in the

most recent I/O request, if any.

Parameter ~ Description
hDevice Mpath device handle
IpSrcAddr pointer to the source address assigned to the specified Mpath
device
IpDestAddr pointer to the destination address used in the most recent I/O
request
B Cautions
None.
B Errors
ERROR_INVALID_HANDLE ¢ An invalid handle was specified in
the argument list.
ERROR_INVALID_PARAMETER ¢ An invalid parameter was

specified in the argument list.

109

mntGetMpathAdadr() returns the message path source address

B Result Messages

None.

B See Also

None.

110

gets the out-of-band stream attributes mntGetStreamHeader()

Name: BOOL mntGetStreamHeader(hDevice, IpHeader)
Inputs: HANDLE hDevice e device handle
PSTRM_HDR IpHeader e pointer to local memory area

Outputs: PSTRM_HDR IpHeader e pointer to stream header info
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: stream 1/O function

Mode: synchronous

B Description

The mntGetStreamHeader()function gets the out-of-band stream attributes that
are defined by the structure pointed to bylgtéeader parameter. Upon
successful return, the function fills in the location pointed ttpbigader with
stream header information.

Parameter Description
hDevice Stream device handle
IpHeader pointer to a local memory area containing out-of-band

stream attributes

The underlying bulk data stream is passed in blocks between the host and the
DM3 platform. These blocks carry attribute data that can control data transfer and
provide out-of-band data associated with the stream and the blocks.

ThelpHeader structure is as follows:

typedef struct {

ULONG sequence;

UCHAR bufFlags; / MNT_EOD - End of Data = 0x01
/I MNT_EOT - End of Transmission = 0x02
/IMNT_EOF - End of File = 0x04 (equivalent to EOS)
/IMNT_USERL - User specified flag = 0x08
/IMNT_USER? - User specified flag = 0x10
/IMNT_USERS - User specified flag = 0x20
/IMNT_USERA4 - User specified flag = 0x40
JIMNT_USERS - User specified flag = 0x80

UCHAR encoding;

UCHAR padi, Il reserved for future use

UCHAR sysFlags; Il read-only

/I STREAM_CLOSED = 0x01

/I STREAM_BROKEN = 0x02
ULONG canTakeLimit; // read-only
ULONG initialCanTake; // read-only

111

mntGetStreamHeader() gets the out-of-band stream attributes

ULONG currentCanTake; // read-only

ULONG requestedSize; // read-only

ULONG actualSize; // read-only
}STRM_HDR, *PSTRM_HDR,;

Thesequencsdield is used as an incrementing counter as blocks are written. This
field is automatically filled by the lower level stream data block transport code.
ThebufFlags field indicates the out-of-band stream attributes as defined below:

o TheMNT_EOD flag indicates the end of a valid grouping of data blocks. It
terminates an operation, such as a data transfer, without closing the stream.

e TheMNT_EOT flag indicates the end of a collection of groupings that have
been delineated KYNT_EOD flags. Without closing the stream, it marks
such operations as a forced termination of a grouping of operations in which
the data transfer groupings were buffered onto a stream, but were not yet
processed at the time of termination.

e TheMNT_EOF flag indicates the end of a stream. It is normally set in the
last block of a stream when the writer closes its end of the stream.

e TheMNT_USERN flags can be used for any application-level purpose.

Theencodingfield indicates the calling processor byte ordering convention (big-
endian or little-endian).
ThesysFlagsare read-only flags as defined below:

e TheSTREAM_CLOSED flag is set whefEOS is detected on an incoming
data node.

e TheSTREAM_BROKEN flag is set when the stream device has been
closed. All write requests fail with a broken stream error.

M Cautions

None.

M Errors

ERROR_BAD_COMMAND » The specified handle does not
have an attached stream.

112

gets the out-of-band stream attributes

mntGetStreamHeader()

ERROR_INVALID_FUNCTION
ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

B Result Messages

None.

Bl See Also

o mntGetStreaminfo()
e mntSetStreamHeader()

¢ The stream handle specified is of
the wrong type.

» An invalid handle was specified in
the argument list.

¢ An invalid parameter was
specified in the argument list.

113

mntGetStreaminfo() gets global board-specific stream information

Name: BOOL mntGetStreaminfo(BoardNumber, IpStrminfos)
Inputs: ULONG BoardNumber e board number
PSTRM_INFO IpStrminfos ¢ STRM_INFOpointer
Outputs: PSTRM_INFO IpStrminfos e pointer to stream info
Returns: TRUE if successful, FALSE if error
Includes: gstream.h
Category: stream I/O function
Mode: synchronous

B Description

ThemntGetStreaminfo() function gets global board-specific stream
information, such as the available stream sizes gstream.hinclude file

contains the STRM_INFO structure. Upon successful return, the function fills in
the location pointed to bipStreaminfos with global board-specific stream
information.

Parameter Description
BoardNumber DM3 board number
IpStrminfos pointer to an array that contains stream information

The STRM_INFO structure is defineddstream.has follows:

typedef struct {

int NumStrmGroups;

int DataBlockSize;

STRM_GROUP_CFG StrmGroups[MNT_STREAM_MAX_NUM_GROUPS];
}ISTRM_INFO, *PSTRM_INFO;

TheNumStrmGroups field defines the number of stream groups available. A
stream group is used for defining a number of streams with different stream size.
(Maximum value is 20.)

TheDataBlockSizefield defines the default data block size, currently set at 4032
bytes.

B Cautions

None.

114

gets global board-specific stream information mntGetStreaminfo()

B Errors

ERROR_GEN_FAILURE » Direct Interface internal error has
occurred.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was

specified in the argument list.

B Result Messages

None.

Bl See Also

o mntGetStreamHeader()

115

mntGetTLSmmb() retrieves the thread-local storage MMB

Name: BOOL mntGetTLSmmb(lppMMB, cmdMsg, replyMsg)
Inputs: None.

Outputs: LPMMB *ppMMB e TLS MMB pointer
QMsgRef *cmdMsg e command pointer
QMsgRef *replyMsg e reply pointer

Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: Message I/O function
Mode: synchronous

B Description

ThemntGetTLSmmb() function retrieves the thread-local storage MMB
maintained by the Direct Interface host library. Thread-local storage enables data
to be associated with a specific program thread. You will typically use this
function if a synchronous function call has failed, and you need to examine the
firmware reply message. Upon successful return, this function fills in the locations
pointed to byyppMMB , cmdMsg, andreplyMsg.

Parameter Description

IppMMB pointer to the thread-local storage MMB

cmdMsg pointer to the command message within the MMB

replyMsg pointer to the reply message, if any, within the MMB
B Cautions

Check for NULLs before using these pointers.

B Errors

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_NO_MEM » No thread-local storage MMB was
found.

116

retrieves the thread-local storage MMB

mntGetTLSmmb()

B Result Messages

None.

B See Also

None.

117

mntNotifyRegister() enables notification of sub-component failure

Name: BOOL mntNotifyRegister (hDevice, nTransID, compDesc,
nTimeout, IpPMMB, IpOverlapped)

Inputs: HANDLE hDevice e device handle
QTrans nTransiD ¢ transaction ID
QCompDesc compDesc e partially specified component
address
USHORT nTimeout e time to wait
LPMMB IpMMB e MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: exit notification services
Mode: asynchronous

B Description

The mntNotifyRegister() function enables natification of sub-component failure.
Once completed, the caller will receive notification once any sub-components
have terminated unexpectedly.

This function registers the address of tessage path device to be notified when

a sub-component on an SP on the DM3 board specifiediopDescerminates

due to a catastrophic failure. After this function has been cal@&adureNotify
message is sent to the registered address whenever an unexpected termination of
any SP sub-component occurs. The registration performed by this function
remains in effect until the target board is restarted or until the registration is
cancelled with a call tointNotifyUnregister(). While the registration is in

effect, any number dFailureNotifymessages (including none) may be sent to

the registered address.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID to be used in all messages generated by this
function

compDesc partially specified component address. The board address

in this descriptor indicates the location of the SP sub-
component that has terminated.

118

enables notification of sub-component failure mntNotifyRegister()

Parameter Description
nTimeout time (in seconds) to wait for a response
IpPMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure
ThemntNotifyRegister() function causes th@RegisterNotifi)kernel message

(defined inmercdefs.ito be sent. Th@RegisterNotifynessage size is defined
as QRegisterNotify_Size.

M Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronou$ty more details.

B Errors

ERROR_ADAP_HDW_ERROR ¢ Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL » See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QResultComplete
Successful registration. The message body contains no data fields.

QFailureNotify

Sub-component failure notification message. This message is only sent
in the event that an SP sub-component on the specified board terminates

119

mntNotifyRegister() enables notification of sub-component failure

unexpectedly. Any number of these messages may be sent following a
single call tomntNotifyRegister().

The body of th&FailureNotifymessage contains a variable-size payload
which includes a single fixed data field followed by a variable-length list
of data items. Use the QFailureNotify_get() macro to extract the fixed
field into a data structure of tyggFailureNotify_t which contains the
following element:

count (type Uint8): the number of component descriptors contained in
the variable part of the message body.

The remainder of the message body contains a variable-length list of data
fields withcount members. Each component descriptor is followed by a
variable number of attributes associated with the component in a null-
terminated list. UsgMsgVarFieldGet() with an initial offset of
QFailureNotify_Size to retrieve these values.

component(type QCompDesc): the component address of an SP
component that terminated. The message may contain one or more of
these failed component addresses, as indicatedunyt, each of which

is followed by a variable-length attribute list.

attr (type QCompAttr): an attribute associated with the preceding
component The number of such attributes is variable and the end of the
list is indicated by a null attribute.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

Bl See Also

¢ mntNotifyUnregister()
e mntSetExitNotify()

120

disables notification of sub-component failure mntNotifyUnregister()

Name:

Inputs:

Returns:
Includes:
Category:
Mode:

BOOL mntNotifyUnregister (hDevice, nTransID, compDesc,
nTimeout, IpPMMB, IpOverlapped)

HANDLE hDevice e device handle

QTrans nTransiD ¢ transaction ID

QCompDesc compDesc e partially specified component
address

USHORT nTimeout e time to wait

LPMMB IpMMB e MMB pointer

LPOVERLAPPED IpOverlapped e overlapped pointer
TRUE if successful, FALSE if error

ghostlib.h

exit notification services

asynchronous

B Description

ThemntNotifyUnregister() function disables notification of sub-component

failure.

This function cancels the exit notification registration of the addrdsSéwice
After this function has been called, the specified device no longer receives a
notification message when an unexpected termination of any SP sub-component

occurs.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nTransID transaction ID to be used in all messages generated by this
function

compDesc partially specified component address. The board address
in this descriptor indicates the location of the SP sub-
component that has terminated.

nTimeout time (in seconds) to wait for a response

IpMMB pointer to an MMB structure

IpOverlapped pointer to an OVERLAPPED structure

121

mntNotifyUnregister() disables notification of sub-component failure

ThemntNotifyUnregister() function causes th@UnregisterNotifykernel
message (defined mercdefs.hto be sent. Th@®UnregisterNotifymessage size
is defined as QUnregisterNotify_Size.

B Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronoudtyr more details.

B Errors

ERROR_ADAP_HDW_ERROR » Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was
specified in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_MERCURY_KRNL ¢ See result message

QResultErrorfor details.

ERROR_MNT_MMB_ALLOC FAILED e The MMB could not be
allocated.

B Result Messages

QResultComplete
Successful completion. The message body contains no data fields.

QResultError
Unsuccessful. The body of this message contains a single data field
which may be retrieved via the QResultError_get() macro:
errorCode (type Uint32): an unsigned integer that indicates the specific
cause of the failure.

Bl See Also

e mntNotifyRegister()
e mntSetExitNotify()

122

enables receipt of asynchronous messages mntRegisterAsyncMessages()

Name: BOOL mntRegisterAsyncMessages(hDevice, nCount,
IpEvents, IpMMBS)

Inputs: HANDLE hDevice e device handle
ULONG nCount e number of array elements
HANDLE *IpEvents e event array pointer
LPMMB *IpMMBs ¢ MMB array pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: message /O function
Mode: synchronous

B Description

The mntRegisterAsyncMessages(function enables receipt of asynchronous
messages through a set of MMB structures and corresponding event object
handles. As with thenntSendMessage(junction, make sure that you prepare the
MMBs properly so that they are ready to be sent to the DM3 board. As each

MMB completes, its associated event is set by the driver and the MMB is already
filled with the reply message. The calling application must reset the event as soon
as the MMB is free for reuse. Until the event is reset, the driver cannot use the
associated MMB to repost the I/O request. This also means that the event must be
a manual-reset type.

For each low-latency asynchronous message, you should specify two or more
MMBs and associated events to ensure that no events will be missed. Otherwise,
the driver resorts to a coarse one-second-resolution timer in checking whether the
MMB is ready for reuse as indicated by its event object being in the non-signaled
state.

Unlike the MMBs that you use with tmentSendMessage(junction, you can set
an infinite time out through th@ntRegisterAsyncMessages(function. Use the
defined constant MNT_NO_TIMEOUT to wait indefinitely. You can use an
infinite timeout, for instance, if a network alarm is expected. Otherwise, if an
MMB times out, the event is signaled, and you must examine the
actualReplyCountfield in the MMB structure before you process any reply
messages.

123

mntRegisterAsyncMessages() enables receipt of asynchronous messages

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nCount number of entries in either tiygEvents or IpMMBs

parameter. If set to zero, any previous registration is
nullified. Arrays specified in both thpEvents and
IPMMBs parameters must have at least the number of
entries specified in theCount parameter. Maximum
value for this parameter is MNT_MAX_ASYNC_MSGS.

IpEvents pointer to the event handle array. Each event in this array
is associated sequentially with the corresponding MMB in
the array specifed in tHpMMBs parameter. All events
must be the manual-reset type.

IpPMMBs pointer to the LPMMB array. Each element in this array
must point an MMB that has been properly initialized and
set up just as if it were to be passed to the
mntSendMessage(junction.

M Cautions

EachmntRegisterAsyncMessages(function call cancels and overrides any
previous registration. Specifying a zero in ti@ount parameter effectively

cancels all notifications. Furthermore, you must not free any buffers described in
the MMBs until after you specifically un-register by calling the routine with an
nCount of 0. Use this function judiciously and only as necessary because it results
in additional resources and workload in the driver space. Before exiting the
process or thread, remember to deregister by calling this function wi@atmt
parameter set to zero.

Please note that the MMB'’s that you submit to this call must be all empty

messages; that is, you cannot send any command messages. They can only be used
to receive messages.

124

enables receipt of asynchronous messages mntRegisterAsyncMessages()

M Errors
ERROR_BAD_COMMAND

ERROR_INVALID_HANDLE
ERROR_INVALID_PARAMETER

ERROR_NOACCESS

ERROR_NOT_ENOUGH_MEMORY

B Result Messages

None.

B See Also

mntSendMessage()

» The specified handle does not
have an attached stream.

¢ An invalid handle was specified in
the argument list.

¢ An invalid parameter was
specified in the argument list.

¢ A bad (non-NULL) pointer was
passed OR unable to lock down
memory.

» The driver cannot allocate the
required memory for this function.

125

mntRegisterAsyncStreams() enables receipt of asynchronous stream data

Name: BOOL mntRegisterAsyncStreams (hDevice, nCount,
IpEvents, IpBuffers, IpMSBS)

Inputs: HANDLE hDevice e device handle
ULONG nCount e number of array elements
HANDLE *IpEvents e event array pointer
PVOID *|pBuffers e buffer array pointer
LPMSB *IpMSBs e MSB array pointer

Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: stream I/O function
Mode: synchronous

B Description

ThemntRegisterAsyncStreams(function enables receipt of asynchronous

stream data through a set of Stream Buffer (MSB) structures and corresponding
event object handles. As a stream read operation completes, its associated event is
set by the driver and the buffer is already filled with the stream data. The calling
application must reset the event as soon as the buffer is free for reuse. Until the
event is reset, the driver cannot use the associated buffer and MMB to repost the
I/0 request. This also means that the event must be a manual-reset type.

For each low-latency asynchronous read operation, you should specify two or
more MSBs and associated events to ensure that no data will be missed.
Otherwise, the driver resorts to a coarse one-second-resolution timer in checking
whether the MSB and buffer are ready for reuse as indicated by its event object
being in the non-signaled state.

To cancel natification, specify zero (0) in th€ount parameter.

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

126

enables receipt of asynchronous stream data mntRegisterAsyncStreams()

Parameter Description

nCount number of entries in either thgEvents, IpBuffers, or
IpPMSBs parameter. If set to zero, any previous registration
is nullified. Arrays specified in thipEvents, IpBuffers, or
IpPMSBs parameters must have at least the number of entries
specified in thexCount parameter. Maximum value for this
parameter is MNT_MAX_ASYNC_STRMS.

IpEvents pointer to the event handle array. Each event in this array is
associated sequentially with the corresponding MSB in the
array specifed in thppMSBs parameter. All events must be
the manual-reset type.

IpBuffers pointer to the buffer array. Each element in this array will
hold the data associated with read from the stream.
IpPMSBs pointer to the LPMSB array. Each element in this array must

point to an MSB that has been properly initialized with a
timeout and transfer length.

The Stream Buffer (MSB) structure is defined as follows:

typedef struct {
STRM_HDR strmHdr;
ULONG readCompletionMask;
USHORT timeout;
ULONG xferLen;
ULONG xferDone;
} MSB, *PMSB, *LPMSB;

Where:
strmHdr stream header returned frormtGetStreamHeader()

ReadCompletionMask mask set imntSetStreamHeader()

Timeout same value as setinmntSetlOTimeout()
xferLen size of the buffer corresponding to this MSB
xferDone returned size from the read

127

mntRegisterAsyncStreams() enables receipt of asynchronous stream data

M Cautions

EachmntRegisterAsyncStreams(Yunction call cancels and overrides any
previous registration. Specifying a zero in ti@ount parameter effectively

cancels all notifications. Furthermore, you must not free any buffers or MSBs until
after you specifically un-register by calling the routine witm&ount of 0. Use

this function judiciously and only as necessary because it results in additional
resources and workload in the driver space. Before exiting the process or thread,
remember to deregister by calling this function witmiount parameter set to

Zero.

Please note that the MMB'’s that you submit to this call must be all empty

messages; that is, you cannot send any command messages. They can only be used

to receive messages.

M Errors
ERROR_BAD_COMMAND

ERROR_INVALID_FUNCTION
ERROR_INVALID_HANDLE
ERROR_INVALID_PARAMETER

ERROR_NOACCESS

ERROR_NOT_ENOUGH_MEMORY

B Result Messages

None.

B See Also

mntRegisterAsyncMessages()

128

¢ The specified handle does not
have an attached stream.

» The stream handle specified is of
the wrong type.

¢ An invalid handle was specified in
the argument list.

¢ An invalid parameter was
specified in the argument list.

¢ A bad (non-NULL) pointer was
passed OR unable to lock down
memory.

» The driver cannot allocate the
required memory for this function.

sends the message specified in the MMB mntSendMessage()

Name: BOOL mntSendMessage(hDevice, IpMMB, IpOverlapped)
Inputs: HANDLE hDevice e device handle
LPMMB IpMMB o MMB pointer
LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: message /O function
Mode: synchronous or asynchronous

B Description

ThemntSendMessage(junction sends the message specified in the MMB.
Whether or not the call blocks depends on howhibevice parameter was
created. If the FILE_FLAG_OVERLAPPED flag was specified in the
CreateFile() function call, this call blocks immediately, but returns with FALSE.
If the user then calls tHgetLastError() function and it returns
ERROR_IO_PENDINGhe message has been sent successfully, but it will
complete at a later time when a reply is received.

If this function is called synchronously, it will not return until all operations are
completed. For example, if two reply messages are expected and one is received
immediately, the function blocks until the second reply message is received.

Parameter Description
hDevice handle to a message path device returned from the
CreateFile() function
IpPMMB pointer that was returned from a successful call to the
mntAllocateMMB() function
IpOverlapped pointer to an OVERLAPPED structure
B Cautions

The application is responsible for managing the OVERLAPPED structure. Refer
to 2.2. Calling Functions Asynchronoug$ty more details.

129

mntSendMessage() sends the message specified in the MMB

M Errors
ERROR_ADAP_HDW_ERROR

ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

ERROR_MNT_MMB_INVALID_CMDSIZE

B Result Messages

None.

B See Also
e mntAllocateMMB()
e mntFreeMMB()

130

e Board is not available to be
initialized.
¢ An invalid handle was

specified in the argument
list.

¢ An invalid parameter was
specified in the argument
list.

e Command size is too large.

builds an MMB, sends it, then synchronously waits for I/O completion.mntSendMessageWait()

Name:

Inputs:

Outputs:

Returns:
Includes:
Category:
Mode:

BOOL mntSendMessageWait(hDevice, nMsgType,
bEmptyMsg, nPayloadSize, IpPayload, nReplyCount,
IpDestAddr, IpReplyType, IppReply)

HANDLE hDevice e device handle
ULONG nMsgType ¢ type of message to send
BOOL bEmptyMsg e empty message flag
ULONG nPayloadSize e message payload size
PVOID IpPayload e payload pointer
ULONG nReplyCount e replies expected
PQCompDesc IpDestAddr e destination address
PULONG IpReplyType ¢ reply message type
QMsgRef *IppReply e reply message pointer
TRUE if successful, FALSE if error

ghostlib.h

message /O function

synchronous

B Description

ThemntSendMessageWait(function builds an MMB, sends it, then
synchronously waits for I/O completion. Upon successful return, the function fills
in the locations pointed to BgReplyType andlppReply.

ThemntSendMessageWait(Junction is provided as a convenience; it allocates
the required MMB, fills in the MMB and command message header information,
sends the message to its destination, and waits for reply message(s). You can
achieve the same results by callingtAllocateMMB(), using the message
macros described i@hapter 4. Macro Referente fill in the message header
fields, and then callingantSendMessage(.)

Parameter Description

hDevice handle to a message path device returned from the
CreateFile() function

nMsgType type of message. Typically defined in a header file, such
asstddefs.h

bEmptyMsg if TRUE, indicates an empty message, which is expected

nPayloadSize

rather than sent.
message payload size

131

mntSendMessageWait()builds an MMB, sends it, then synchronously waits for I/O completion.

Parameter Description
IpPayload pointer to the message payload structure
nReplyCount number of replies expected. The call completes only if the

destination address of the reply messages matches the host
source address assigned to the device specified in the

hDeviceparameter.
IpDestAddr pointer to the destination component instance address
IpReplyType pointer to the reply message type
*IppReply pointer to a reply message. Upon return, the caller can

examine and access the reply message as needed.

B Cautions - None.

B Errors

ERROR_ADAP_HDW_ERROR ¢ Board is not available to be
initialized.

ERROR_INVALID_HANDLE ¢ An invalid handle was specified
in the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_NO_MEM ¢ Not enough memory is available
for the MMB.

ERROR_MNT_MERCURY_STD_MSG e The message reply type is
StdMsgError. Check the reply
message payload for details.

B Result Messages

None.

Bl See Also

None.

132

enables notification of Mpath device failure mntSetExitNotify()

Name:

Inputs:

Outputs:
Returns:
Includes:

Category:
Mode:

BOOL mntSetExitNotify (hDevice, board, enable)

HANDLE hDevice e device handle

ULONG board e board to be notified of failure
BOOL enable ¢ on/off mechanism

None

TRUE if successful, FALSE if error

ghostlib.h

exit notification services

synchronous

B Description

The mntSetExitNotify() function enables notification of Mpath device failure.
This function enables the driver to send exit notification to the DM3 board upon
failure of the specified Mpath device. To avoid an extraneous notification, you
must disable this capability by callimgntSetExitNotify() and settingenableto
FALSE. Otherwise, these notifications can affect system performance and

behavior.
Parameter Description
hDevice handle to a message path device returned from the
CreateFile() function
board identifies the DM3 board to which the exit notification
should be sent
enable on/off toggle for exit notification. Set to TRUE to enable
exit notification; set to FALSE to disable exit notification.
B Cautions
None.
B Errors
ERROR_BAD_COMMAND » The specified handle does not have an
attached stream.
ERROR_INVALID_HANDLE ¢ An invalid handle was specified in

the argument list.

133

mntSetExitNotify() enables notification of Mpath device failure

ERROR_INVALID_PARAMETER e An invalid parameter was
specified in the argument, such as
an invalid board number.

B Result Messages

None.
Bl See Also

¢ mntNotifyRegister()
o mntNotifyUnregister()

134

sets the out-of-band stream attributes mntSetStreamHeader()

Name:

Inputs:

Outputs:
Returns:
Includes:
Category:
Mode:

BOOL mntSetStreamHeader(hDevice, pHeader,

ReadCompletionMask)

HANDLE hDevice e device handle
PSTRM_HDR pHeader e header pointer
ULONG ReadCompletionMask e mask

None

TRUE if successful, FALSE if error

ghostlib.h

stream 1/O function

synchronous

B Description

ThemntSetStreamHeader()function sets the out-of-band stream attributes that
are defined by the structure pointed to byghkeader parameter. The underlying

bulk data stream is passed in blocks between the host and the DM3 platform.
These blocks carry attribute data that can control data transfer and provide out-of-
band data associated with the stream blocks.

Parameter Description

hDevice Stream device handle

pHeader pointer to the stream header
ReadCompletionMask an optional mask that determines when the read

is completed. The user selects when the read is
completed by setting the flags defined below:

COMPLETE_ON_EOD: 0x01
COMPLETE_ON_EOT: 0x02
COMPLETE_ON_EOF: 0x04
COMPLETE_ON_USR1: 0x08
COMPLETE_ON_USR2: 0x10
COMPLETE_ON_USRS: 0x20
COMPLETE_ON_USR4: 0x40
COMPLETE_ON_USRS: 0x80

The ReadCompletionMaskas defined below, specifies the out-of-band stream
attributes expected after a call to tReadFile()function:

135

mntSetStreamHeader() sets the out-of-band stream attributes

e TheCOMPLETE_ON_EOD flag indicates the end of a valid grouping of
data blocks. It terminates an operation, such as a data transfer, without closing
the stream.

e TheCOMPLETE_ON_EOT flag indicates the end of a collection of
groupings that have been delineatedC@MPLETE_ON_EOT flags.
Without closing the stream, it marks such operations as a forced termination
of a grouping of operations in which the data transfer groupings were
buffered onto a stream, but were not yet processed at the time of termination.

e TheCOMPLETE_ON_EOF flag indicates the end of a file or stream. It is
normally set in the last block of a stream when the writer closes the end of
that stream.

e TheCOMPLETE_ON_USERN flags can be used for any application-level
purpose.

ThepHeader structure is defined as follows:

typedef struct {

ULONG sequence;

UCHAR bufFlags; / MNT_EOD - End of Data = 0x01
//MNT_EOT - End of Transmission = 0x02
/IMNT_EOF - End of File = 0x04 (equivalent to EOS)
/IMNT_USERL - User specified flag = 0x08
/IMNT_USER? - User specified flag = 0x10
/I MNT_USERS - User specified flag = 0x20
/IMNT_USERA4 - User specified flag = 0x40
/IMNT_USERS - User specified flag = 0x80

UCHAR encoding;

UCHAR padi, Il reserved for future use

UCHAR sysFlags; Il read-only

/I STREAM_CLOSED = 0x01
/I STREAM_BROKEN = 0x02

ULONG canTakeLimit; // read-only

ULONG initialCanTake; // read-only

ULONG currentCanTake; // read-only

ULONG requestedSize; // read-only

ULONG actualSize; // read-only

}STRM_HDR, *PSTRM_HDR;

Thesequencdield is used as an incrementing counter as blocks are written. This
field is automatically filled by the lower level stream data block transport code.

ThebufFlags field indicates the out-of-band stream attributes as defined below:

e TheMNT_EOD flag indicates the end of a valid grouping of data blocks. It
terminates an operation, such as a data transfer, without closing the stream.

136

sets the out-of-band stream attributes mntSetStreamHeader()

e TheMNT_EOT flag indicates the end of a collection of groupings that have
been delineated KYNT_EOD flags. Without closing the stream, it marks
such operations as a forced termination of a grouping of operations in which
the data transfer groupings were buffered onto a stream, but were not yet
processed at the time of termination.

e TheMNT_EOF flag indicates the end of a file or stream. It is normally set in
the last block of a stream when the writer closes its end of the stream.

e TheMNT_USERN flags can be used for any application-level purpose.

Theencodingfield is set to the calling processor byte ordering convention (big-
endian or little-endian).

B Cautions

None.

B Errors

ERROR_BAD_COMMAND » The specified handle does not
have an attached stream.

ERROR_INVALID_FUNCTION ¢ The stream handle specified is of
the wrong type.

ERROR_INVALID_HANDLE » An invalid handle was specified in
the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was

specified in the argument list.

B Result Messages

None.

Bl See Also

e mntGetStreamHeader()

137

mntSetStreamlOTimeout() sets the stream I/O request timeout value

Name: BOOL mntSetStreamlOTimeout(hDevice, nTimeout)
Inputs: HANDLE hDevice e device handle
USHORT nTimeout e timeout

Outputs: None

Returns: TRUE if successful, FALSE if error

Includes: ghostlib.h

Category: stream I/O function

Mode: synchronous

B Description

ThemntSetStreamlOTimeout() function sets the stream I/O request timeout
value (in seconds). If you set tiieneout parameter to 0, the driver uses a default
timeout of 30 seconds.

Parameter Description
hDevice Stream device handle
nTimeout timeout value (in seconds) of each stream read or

write request

B Cautions - None.

B Errors

ERROR_BAD_COMMAND » The specified handle does not
have an attached stream.

ERROR_INVALID_HANDLE ¢ An invalid handle was specified in
the argument list.

ERROR_INVALID_PARAMETER ¢ An invalid parameter was

specified in the argument list.

B Result Messages - None.

B See Also - None.

138

enables or disables trace statements mntSetTracelLevel()

Name: BOOL mntSetTracelLevel(TraceLevel,

IpTraceDeviceName)
Inputs: ULONG TraceLevel e frace status
LPSTR IpTraceDeviceName e trace device name

Outputs: None
Returns: None
Includes: ghostlib.h
Category: debug support function
Mode: synchronous

B Description

ThemntSetTracelLevel()function enables or disables trace statements. Once this
function returns, calnntTrace() to send trace statements to a file. Trace
information gathered via this function is for program debugging only; use the
board-level trace utility for board debugging.

Parameter Description

dwTracelLevel trace level. This can be either of the following:
MNTI_TRACE_LEVELO: Level 0 disables tracing
MNTI_TRACE_LEVEL1: Level 1 enables tracing

IpTraceDeviceName device name to which tracing information is sent.
This can be a file, printer, or serial port. Can be set
to NULL if tracing is being disabled.

Because thenntSetTracelLevel()function internally calls the Windows
CreateFile(), WriteFile(), andCloseHandle() functions, the trace output can

go to any native Win32 API I/O device. If you are disabling tracing by setting the
dwTracelLevel parameter to MNTI_TRACE_LEVELO, you can set the
IpTraceDeviceNameparameter to NULL.

The Direct Interface uses the critical section and lock file commands to serialize
writing trace statements to the file. Therefore, the trace statements do not interfere
with each other in the trace file for multi-threaded and multi-process applications.
The DLL creates and initializes a critical section for the trace control block shown
below. By default, the DLL initializes the trace level to MNTI_TRACE_LEVELO.

139

mntSetTracelLevel() enables or disables trace statements

If the dwTraceLevel parameter is set to MNTI_TRACE_LEVELO and the
current level is MNTI_TRACE_LEVEL1, tracing is disabled.

If the dwTraceLevel parameter is set to MNTI_TRACE_LEVEL1, tracing varies
according to the current trace level:

e If the current trace level is MNTI_TRACE_LEVELO (trace disabled), the
mntSetTraceLevel()function opens a new trace device by calling the
CreateFile() function with the name specified in tHe/TraceDeviceName
parameter.

o |If the current trace level is MNTI_TRACE_LEVELL1 (trace enabled), the
mntSetTraceLevel()function first closes the current trace device, then
opens a new trace device by calling @reateFile() function with the name
specified in thalwTraceDeviceNameparameter.

When viewing the debug file, use Write or Wordpad for best results.

B Cautions
None.

M Errors

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

ERROR_MNT_NO_TRACE_HANDLE e The specified trace device could
not be opened.

B Result Messages

None.

Bl See Also

e mntSetTrace()

140

cancels a persistent stream mntTerminateStream()

Name: mntTerminateStream (hDevice, nBoardNumber,
nModeFlags, nMercStreamID, nTimeout, IpOverlapped)

Inputs: HANDLE hDevice e device handle
ULONG nBoardNumber e board number
USHORT nModeFlags e mode flags
ULONG nMercStreamID e stream ID
USHORT nTimeout e timeout value

LPOVERLAPPED IpOverlapped e overlapped pointer
Outputs: None.
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: stream I/O function
Mode: synchronous or asynchronous

B Description

ThemntTerminateStream() function cancels a persistent stream identified by
nMercStreamID. The specified stream must have been opened using
mntAttachMercStream() with nModeFlagsset to
MNT_STREAM_FLAG_PERSISTENT. Before you call the
mntTerminateStream() function, you should close the stream by calling
mntDetachStream()

Parameter Description

hDevice stream device handle
nBoardNumber board number

nModeFlags stream attributes for this stream:

MNT_STREAM_FLAG_READ read stream
MNT_STREAM_FLAG_WRITE write stream

nMercStreamID identifies an existing stream
nTimeout time (in seconds) to wait for a response
IpOverlapped pointer to an OVERLAPPED structure

B Cautions - None.

141

mntTerminateStream()

cancels a persistent stream

M Errors
ERROR_ADAP_HDW_ERROR

ERROR_INVALID_FUNCTION
ERROR_INVALID_HANDLE
ERROR_INVALID_PARAMETER
B See Also

s mntAttachMercStream()
e mntDetachMercStream()

142

» Board is not available to be
initialized.

¢ The stream handle specified is of the
wrong type.

» An invalid handle was specified in the
argument list.

¢ An invalid parameter was specified in
the argument list.

sends trace statements to a file mntTrace()

Name: VOID mntTrace (pszFmt, ... /* args */)
Inputs: char pszFmt o format string
int /* args */ o format string arguments
Outputs: None
Returns: None
Includes: ghostlib.h
Category: debug support function
Mode: synchronous

B Description

ThemntTrace() function sends trace statements to a file, following printf()
conventions. You must first call tmentSetTracelLevel()function to enable

tracing and specify the trace output type. Trace information gathered via this
function is for program debugging only; use the board-level trace utility for board
debugging.

Because each trace statement is prefixed with process and thread IDs, the user can
identify the invoking thread in a multi-threaded program. The Direct Interface

uses the critical section and lock file commands to serialize writing trace

statements to the file. Therefore, the trace statements do not interfere with each
other in the trace file for multi-threaded and multi-process applications.

Each trace statement should include the function from which it is invoked and
other information that can help the user debug the problem. Once the format string
size is expanded (filled in), it should be less than than 200 characters.

Parameter Description

pszFmt format string. Expanded string size should be less than 200
characters.

/* args */ arguments to be embedded into the format string

B Cautions

None.

143

mntTrace() sends trace statements to a file

M Errors

None.

B Result Messages

None.

Bl See Also

e mntSetTracelLevel()

144

generates a message transaction 1D mntTransGen()

Name: QTrans mntTransGen(void)
Inputs: None
Outputs: None
Returns: QTrans TransactionID e transaction identifier
Includes: ghostlib.h
Category: debug support function
Mode: synchronous

B Description

ThemntTransGen() function generates a message transaction ID. This function
returns a pseudo-unique transaction identifier for use in messages. This ID is
unique within the QTrans type range until thetTransGen() function has
generated all IDs, at which time they begin to be repeated.

Parameter Description

TransactionID message transaction identifier

M Cautions

None.

M Errors

None.

B Result Messages

None.

B See Also

None.

145

gMsgVarFieldGet() gets typed fields from a message payload
Name: BOOL gMsgVarFieldGet (msg, count, pOffset, fieldDef,
pTarget, ...)
Inputs: QMsgRef msg « referenced message
Uint32 count e number of fields to get
UInt32 *pOffset « offset
QMsgField fieldDef ¢ data element
Outputs: void *pTarget e referenced variable
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: message I/O function
Mode: synchronous

B Description

ThegMsgVarFieldGet() function gets typed fields from a message payload.

This function performs a structured copy of the contents of the number of fields
specified bycount from the message referencedrbgginto locally defined

variables.

Parameter Description

msg reference to a message that contains fields to be copied

count number of fields to copy from the message; must match the
number of fieldDef, pTarget) pairs specified in the
function call

pOffset pointer to a variable that contains the offset of a field within
the message body. When the function is called, the variable
specifies the offset of the first data field to copy; if zero,
fields are copied according to the offsets contained in the
field definitions. When the function completes, the variable
is updated to reference the next field that has not been
copied.

fieldDef field definition of a data field to copy; always paired with a

146

pTarget. Field definitions contain the data type, size, and
offset within the buffer of the field. If the variable

referenced byOffset is non-zero, the offset is ignored and
the function copies successive fields starting at the specified
offset.

gets typed fields from a message payload gMsgVarFieldGet()

Parameter Description

pTarget pointer to the variable where the copied contents of a field is
placed; always paired withfeeldDef which defines the data
type of the result.

Thecount argument specifies the number fiéldDef, pTarget) argument pairs

that follow thepOffset argument. For each pair, the data element in the message
data defined by thiéeldDef is copied into the variable referenced by the
associateghTarget. The data being copied is interpreted as a particular data type
defined byfieldDef. The message data is converted from a standard message
format into the native format of the specified data type of the executing processor.

After all fields have been copied, the variable referenced byGlftset argument
is updated to reference the next uncopied field in the message.

If the variable referenced by tip©ffset argument is non-zero when
gMsgVarFieldGet() is called, the list offieldDef, pTarget) pairs is interpreted

as containing only generic field definitions. A field definition normally contains
the data type, number of elements, and offset within the buffer of the field. A
generic field definition contains only the data type and number of elements. If a
non-zero offset is specified, the copy from the buffer begins at the offset and
proceeds using the list of field definitions to perform the copies and translations.

If the variable referenced by tp®ffset argument is zero when
gMsgVarFieldGet() is called, all fieldDef, pTarget) pairs containing absolute
field definitions must precede any generic definitions because the first generic
definition is interpreted as a field immediately following the last absolute
definition.

Field definitions are message-specific values which encode the data type, number
of elements, and offset within a message. They are normally created by an off-line
tool (the MMDL translator) which generates a header file containing the field
definitions for a message or group of messages.

This function provides a mechanism that can read an entire message data structure
from the message into a local structure and also provides support for variable-
length message data. The MMDL tool which generates the message field
definitions also generates local structure definitions and data access macros that
call this library function to copy the entire body of the message.

147

gMsgVarFieldGet()

gets typed fields from a message payload

The following types can be encoded within field definitions:

QDataType Description (typedef)

QT _INT8 8-bit signed integer (Int8)

QT _INT16 16-bit signed integer (Int16)

QT _INT24 24-bit signed integer (Int24)

QT _INT32 32-bit signed integer (Int32)

QT_UINTS8 8-bit unsigned integer (UInt8)

QT _UINT16 16-bit unsigned integer (UInt16)

QT_UINT24 24-bit unsigned integer (UInt24)

QT _UINT32 32-bit unsigned integer (UInt32)

QT CHAR® Character in native format (Char)

QT_MEMREF Reference to allocated global memory (QMemR¢f)

QT_STREAMREF Processor independent open stream reference
(QStreamRef)

QT _ATTR Reference to component attribute (QAttr)

QT_PARM Reference to parameter (QParm)

QT_COMPDESC Reference to component descriptor (QCompDegc)

QT BUFREF Reference to a buffer (QBufRef)

1
Native format character strings are converted one character per addressable location; packed strings
are converted with the characters packed within a word in the order supported by the processor.

NOTE: If an integer or unsigned integer type is conveftech a wider format
(for example, QT_INT16 on a 24-bit word processor), the high-order bits
beyond the width of the target type are ignored, which can cause
unexpected results if the value is out of the range of the target type. If the
conversion igo a wider format, the value is sign-extended if it is an
integer type or zero-extended if it is an unsigned integer type.

B Cautions

gMsgVarFieldGet() performs conversions from a DM3 standard representation
of a data type into a processor-specific version of the type. If the type cannot be
converted to a valid representation—for example, a 32-bit integer type on a 24-bit
processor—the results are undefined.

148

gets typed fields from a message payload gMsgVarFieldGet()

B Errors

ERROR_INVALID_PARAMETER * An invalid parameter was
specified in the argument list.

B See Also

e gMsgVarFieldPut()

149

gMsgVarFieldPut() puts typed fields into a message payload
Name: BOOL gMsgVarFieldPut (msg, count, pOffset, fieldDef,
pSource,...)
Inputs: QMsgRef msg » referenced message
Uint32 count e number of fields
UInt32 *pOffset o offset
QMsgField fieldDef ¢ data element
void *pSource e referenced variable
Outputs: None
Returns: TRUE if successful, FALSE if error
Includes: ghostlib.h
Category: Messaging Services
Mode: Synchronous

B Description

ThegMsgVarFieldPut() function puts typed fields into a message payload.

This function performs a structured copy of the contents of the number of fields
specified bycount into the message referencedrbygfrom locally defined

variables.

Parameter Description

msg reference to a message that contains fields to be filled

count number of fields to fill in the message; must match the
number of fieldDef, pSource pairs specified in the
function call

pOffset pointer to a variable that contains the offset of a field within
the message body. When the function is called, the variable
specifies the offset of the first data field to fill; if zero, fields
are filled according to the offsets contained in the field
definitions. When the function completes, the variable is
updated to reference the next field that has not been filled.

fieldDef field definition of a message data field to fill; always paired

150

with apSource Field definitions contain the data type, size,
and offset within the buffer of the field. If the variable
referenced byOffsetis non-zero, the offset is ignored and
the function fills successive fields starting at the specified
offset.

puts typed fields into a message payload gMsgVarFieldPut()

Parameter Description

pSource pointer to the variable that contains the data to be copied
into a field; always paired withfeeldDef which defines the
size and type of the source data.

Thecount argument specifies the number fiéldDef, pSource argument pairs

that follow thepOffset argument. For each pair, the data element in the message
defined by thdieldDef is copied from the variable referenced by the associated
pSourceinto the message. The data being copied is interpreted as a particular
data type defined bfjeldDef. The message data is converted into a standard
message format from the native format of the specified data type of the executing
processor. After all fields have been copied, the variable referenced by the
pOffset argument is updated to reference the next uncopied field in the message.

If the variable referenced by tip©ffset argument is non-zero when
gMsgVarFieldPut() is called, the list offieldDef, pSourcé pairs are

interpreted as containing only generic field definitions. A field definition normally
contains the data type, number of elements, and offset with buffer of the field. A
generic field definition contains only the data type and number of elements. If a
non-zero offset is specified, the copy into the buffer begins at the offset and
proceeds using the list of field definitions to perform the copies and translations.

If the variable referenced by tp®ffset argument is zero when
gMsgVarFieldPut() is called, all fieldDef, pSourcé pairs containing absolute
field definitions must precede any generic definitions because the first generic
definition is interpreted as a field immediately following the last absolute
definition.

Field definitions are message-specific values which encode the data type, number
of elements, and offset within a message for a field of the message data area. They
are normally created by an off-line tool (the MMDL translator) which generates a
header file containing the field definitions for a message or group of messages.

This function provides a mechanism that can write an entire message data
structure to the message from a local structure and also provides support for
variable-length message data. The MMDL tool which generates the message data
field definitions also generates local structure definitions and data access macros
that call this library function to copy the entire message data area.

The following types can be encoded within field definitions:

151

gMsgVarFieldPut() puts typed fields into a message payload

QDataType Description (typedef)

QT _INT8 8-bit signed integer (Int8)

QT _INT16 16-bit signed integer (Int16)

QT _INT24 24-bit signed integer (Int24)

QT _INT32 32-bit signed integer (Int32)

QT_UINTS8 8-bit unsigned integer (UInt8)

QT _UINT16 16-bit unsigned integer (UInt16)

QT_UINT24 24-bit unsigned integer (UInt24)

QT _UINT32 32-bit unsigned integer (UInt32)

QT CHAR® Character in native format (Char)

QT_MEMREF Reference to allocated global memory (QMemR¢f)

QT_STREAMREF Processor independent open stream reference
(QStreamRef)

QT _ATTR Reference to component attribute (QAttr)

QT_PARM Reference to parameter (QParm)

QT_COMPDESC Reference to component descriptor (QCompDegc)

QT BUFREF Reference to a buffer (QBufRef)

1
Native format character strings are converted one character per addressable location; packed strings
are converted with the characters packed within a word in the order supported by the processor.

NOTE: If an integer or unsigned integer type is conveftech a wider format
(for example, QT_INT16 on a 24-bit word processor), the high-order bits
beyond the width of the target type are ignored, which can cause
unexpected results if the value is out of the range of the target type. If the
conversion igo a wider format, the value is sign-extended if it is an
integer type or zero-extended if it is an unsigned integer type.

B Cautions

gMsgVarFieldPut() performs conversions to a DM3 standard representation of a
data type from a processor-specific version of the type. Conversions to data types
which are not supported by the processor may have unexpected results.

M Errors

ERROR_INVALID_PARAMETER ¢ An invalid parameter was
specified in the argument list.

152

puts typed fields into a message payload gMsgVarFieldPut()

B See Also
e gMsgVarFieldGet()

153

4. Macro Reference

The DM3 Direct Interface includes macros which allow you to easily set and
retrieve message fields. This chapter contains a brief description of DM3
messages, Multiple Message Block (MMB) contents, and information on the
message-related macros in the DM3 Direct Interface.

A DM3 message has a fixed-format header and may optionally have a body that
contains additional data in typed fields. A DM3 message body is also called a
message payload\ll DM3 messages that are sent and received are carried or
contained in an MMB “wrapper” structure.

The following types of macros are part of the DM3 Direct Interface:
e MMB control header macros

e DM3 message pointer macros

¢ DM3 message header macros

e DMS3 message payload macros

4.1. Multiple Message Block

All DM3 messages that are sent and received are carried or contained in a
multiple message block (MMB) “wrapper” structure, which is acquired by calling
themntAllocateMMB() function. As shown irigure 4 an MMB structure

consists of two or three sections in sequence: MMB control header, command
message header and command message payload (optional). An MMB can also
contain one or more reply messages, each of which is a complete structure of type
QMsg with a possible payload attached.

The header and payload information in an MMB is in processor-specific format,
based on the processor’'s endian-type. Although the MMB structure is defined in
an include file, it should be treated opaquely. Use the Direct Interface macros to
resolve the endian-type issues; do not access the MMB structure directly.

155

DM3 Direct Interface Function Reference for Windows NT

MMB Header

Command
QMsg

Payload for Command Msg

First Reply QMsg

Command Msg Size flags
Reply Max Size Exp Reply CntAct Reply Cntj
Timeout Current Reply Offset
flags transaction
type
srcNode srcBoard | srcProcessor
destNode destBoard| destProcessor
srcinstance | srcCompongntestinstance] destComponen

payload size

First Reply Payload

Second Reply QMsg

Second Reply Payload

nth Reply QMsg

nth Reply Payload

Figure 4. General MMB Structure

4.2. MMB Control Header Macros

This section contains an alphabetical listing of the multiple message block (MMB)
control header macros defineddimnti.h. These macros allow you to get and set
the control header fields in an MMB.

156

4. Macro Reference

MNT_GET_MMB_ACTUAL_REPLY_COUNT(IpMMB, UCHAR
*ActualReplyCount)

This macro retrieves the actual reply messages contained in the specified MMB.
(The number of actual reply messages may be different from the number of
expected reply messages.)

IPMMB is a pointer to the desired multiple message block (MMB).

*ActualReplyCount is the number of reply messages.

MNT_GET_MMB_CMD_SIZE(IpMMB, USHORT *CmdSize)

This macro retrieves the command message size contained in the specified MMB.
IPMMB is a pointer to the desired multiple message block (MMB).

*CmdSize s the size of the command message.

MNT_GET_MMB_CMD_TIMEOUT(IpMMB, USHORT *Timeout)
This macro retrieves the timeout that was set for the command message in the
specified MMB.

IPMMB is a pointer to the desired multiple message block (MMB).

*Timeout is the timeout value (in seconds).

MNT_GET_MMB_CURRENT_REPLY_OFFSET(IpMMB, USHORT
*ReplyOffset)

This macro retrieves the offset for the first reply message in the specified MMB.

IPMMB is a pointer to the desired multiple message block (MMB).

157

DM3 Direct Interface Function Reference for Windows NT

*ReplyOffset is the offset location of the first reply message.

MNT_GET_MMB_EMPTY_MSG (IpMMB, *value)

This macro retrieves a particular 1/O completion flag setting in the specified
message block. EMPTY_MSG is an optional flag setting used to ident#gnaty
messag&MMB.

IPMMB is a pointer to the desired multiple message block (MMB).

*value is the completion flag setting, where 1 indicates the flag is set and 0
indicates the flag is not set.

MNT_GET_MMB_EXPECTED_REPLY_COUNT(IpMMB, UCHAR
*ExpectedReplyCount)

This macro retrieves the number of expected reply messages in the specified
MMB. (The number of actual reply messages may be different from the number of
expected reply messages.)

IPMMB is a pointer to the desired multiple message block (MMB).

*ExpectedReplyCountis the number of reply messages that were expected.

MNT_GET_MMB_MATCH_ON_DEST_ADDR(IpMMB, *value)

This macro retrieves a particular 1/O completion flag setting in the specified
message block. MATCH_ON_DEST_ADDR is an optional flag setting that
enables you to receive reply messages only from the same component instance
specified in the command message of the MMB.

IPMMB is a pointer to the desired multiple message block (MMB).

*value is the completion flag setting, where 1 indicates the flag is set and 0
indicates the flag is not set.

158

4. Macro Reference

MNT_GET_MMB_MATCH_ON_MSGTYPE (IpMMB, *value)

This macro retrieves a particular I/0O completion flag setting in the specified
message block. MATCH_ON_MSGTYPE is an optional flag setting that enables
you to receive reply messages returned with the same message type as in the
message sent.

IPMMB is a pointer to the desired multiple message block (MMB).

*value is the completion flag setting, where 1 indicates the flag is set and O
indicates the flag is not set.

MNT_GET_MMB_MATCH_ON_SRC_ADDR (IpMMB, *value)

This macro retrieves a particular I/0O completion flag setting in the specified
message block. MATCH_ON_SRC_ADDR is a required flag that is set by
default. When this flag is set, messages will not complete unless the destination
address of the incoming message matches the source address of the command
message in the message block.

IPMMB is a pointer to the desired multiple message block (MMB).

*value is the completion flag setting, where 1 indicates the flag is set and O
indicates the flag is not set.

MNT_GET_MMB_MATCH_ON_TRANS_ID (IpMMB, *value)

This macro retrieves a particular I/0O completion flag setting in the specified
message block. MATCH_ON_TRANSACTION_ID is an optional flag setting

that enables you to receive reply messages returned with the same transaction 1D
as in the message sent.

IPMMB is a pointer to the desired multiple message block (MMB).

*value is the completion flag setting, where 1 indicates the flag is set and O
indicates the flag is not set.

159

DM3 Direct Interface Function Reference for Windows NT

MNT_GET_MMB_REPLY_MAX_SIZE(IpMMB, USHORT *ReplySize)

This macro retrieves the reply message size allocation for the specified message
block.
IPMMB is a pointer to the desired multiple message block (MMB).

*ReplySizeis the size allocated for reply messages.

MNT_SET_MMB_CMD_SIZE(IpMMB, USHORT CmdSize)

This macro sets the command message size contained in the specified MMB.
IPMMB is a pointer to the desired multiple message block (MMB).

CmdSizeis the size of the command message.

MNT_SET_MMB_CMD_TIMEOUT(IpMMB, USHORT Timeout)
This macro sets the length of time to wait before indicating failure for the
command message in the specified MMB.

IPMMB is a pointer to the desired multiple message block (MMB).

Timeout is the timeout value (in seconds).

MNT_SET_MMB_EMPTY_MSG (IpMMB)

This macro sets a particular I/O completion flag in the specified message block.
EMPTY_MSG is an optional flag setting that identifieseampty messagedMB

that has no command message but has room for a specified number of reply
messages. Empty message MMBs are used in conjunction with the optional

160

4. Macro Reference

MATCH_ON_MSG_TYPE flag to receive asynchronous messages such as alarms
or events.

IPMMB is a pointer to the desired multiple message block (MMB).

MNT_SET_MMB_EXPECTED_REPLY_COUNT(IpMMB, UCHAR
ExpectedReplyCount)

This macro sets the number of expected reply messages in the specified MMB and
is typically used for empty message MMBs. (The number of actual reply messages
may be different from the number of expected reply messages.)

IPMMB is a pointer to the desired multiple message block (MMB).

ExpectedReplyCountis the number of reply messages that were expected.

MNT_SET_MMB_MATCH_ON_DEST_ADDR (IpMMB)

This macro sets a particular I/O completion flag in the specified message block.
MATCH_ON_DEST_ADDR is an optional flag setting that enables you to

receive reply messages only from the same component instance specified in the
command message of the MMB. When this flag is set, messages will not complete
unless the source address of the incoming message matches the destination
address of the command message in the message block.

IPMMB is a pointer to the desired multiple message block (MMB).

MNT_SET_MMB_MATCH_ON_MSGTYPE (IpMMB)

This macro sets a particular I/O completion flag in the specified message block.
MATCH_ON_MSGTYPE is an optional flag setting that enables you to receive

reply messages returned with the same message type as in the message sent. When
this flag is set, messages will not complete unless the message type of the

incoming message matches the message type of the command message in the

161

DM3 Direct Interface Function Reference for Windows NT

message block. Use this flag in conjunction with an empty message to receive
asynchronous messages such as alarms or events.

IPMMB is a pointer to the desired multiple message block (MMB).

MNT_SET_MMB_MATCH_ON_SRC_ADDR (IpMMB)

This macro sets a particular I/O completion flag in the specified message block.
MATCH_ON_SRC_ADDR is a required flag that is set by default. When this flag
is set, messages will not complete unless the destination address of the incoming
message matches the source address of the command message in the message
block.

IPMMB is a pointer to the desired multiple message block (MMB).

MNT_SET_MMB_MATCH_ON_TRANS_ID (IpMMB)

This macro sets a particular I/O completion flag in the specified message block.
MATCH_ON_TRANSACTION_ID is an optional flag setting that enables you to
receive reply messages returned with the same transaction ID as in the message
sent. When this flag is set, messages will not complete unless the transaction ID of
the incoming message matches the transaction ID of the command message in the
message block.

IPMMB is a pointer to the desired multiple message block (MMB).

MNT_SET_MMB_REPLY_MAX_SIZE(IpMMB, USHORT ReplySize)

This macro sets the reply message size allocation contained in the specified
message block.
IPMMB is a pointer to the desired multiple message block (MMB).

ReplySizeis the size allocated for reply messages in the MMB.

162

4. Macro Reference

4.3. DM3 Message Macros

An MMB consists of two or three sections in sequence: MMB control header,
command message header, and command message payload (optional). An MMB
can also contain one or more reply messages, each of which is a complete
structure of type QMsg with a possible payload attached. The macros in the
following sections are used to find, set, and retrieve the message headers of both
command and reply messages from within the MMB structure.

4.3.1. DM3 Message Pointer Macros

This section contains an alphabetical listing of the DM3 message pointer macros
defined indlimnti.h. Use the following macros on a specified multiple message
block (MMB) to get the pointer to the command or reply QMsg structures that it
contains. After you have the pointer to the QMsg structure, use the information
described iM.3.2. DM3 Message Header Macrasd4.4. DM3 Messages with
Payloads to access the message header and payload data.

MNT_GET_CMD_QMSG(LPMMB IpMMB, QMsgRef *pMsg)
This macro retrieves a pointer to the command message contained in the specified
MMB.

IPMMB is a pointer to the desired multiple message block (MMB).

*pPMsg identifies the location of the command message in the specified
MMB.

MNT_GET_REPLY_QMSG(LPMMB IpMMB, ULONG ReplyNumber,
QMsgRef *pMsg)

This macro retrieves a pointer to a designated reply message contained in the
specified MMB. (Use the MNT_GET_MMB_REPLY_MAX_SIZE macro first to
determine the number of reply messages in the MMB.)

IPMMB is a pointer to the desired multiple message block (MMB).

163

DM3 Direct Interface Function Reference for Windows NT

ReplyNumber identifies the reply message for which a pointer is desired.

*pMsg identifies the location of the reply message in the specified MMB.

4.3.2. DM3 Message Header Macros

This section contains an alphabetical listing of the DM3 message header macros
defined ingmsg.h Use the macros to set and retrieve header information from
command and reply messages contained in an MMB wrapper.

QMSG_GET_DESTADDR (QMsgRef pMsg, QCompDesc *pDestAddress)

This macro retrieves the destination address of the specified message.
pMsg is a pointer to the desired message.

*pDestAddressis the message destination’s address.

QMSG_GET_MSGSIZE (QMsgRef pMsg, ULONG *MsgSize)

This macro retrieves the size of the specified message.
pMsg is a pointer to the desired message.

*MsgSizeis the size of the specified message (in bytes).

QMSG_GET_MSGTYPE (QMsgRef pMsg, ULONG *MessageType)

This macro retrieves the type of the specified message.
pMsg is a pointer to the desired message.

*MessageTypeis the message type.

164

4. Macro Reference

QMSG_GET_SRCADDR (QMsgRef pMsg, QCompDesc *pSourceAddress)

This macro retrieves the source address of the specified message.
pMsg is a pointer to the desired message.

*pSourceAddressis the message originator’s address.

QMSG_GET_TRANS (QMsgRef pMsg, QTrans *TransactionID)

This macro retrieves the transaction identifier of the specified message.
pMsg is a pointer to the desired message.

*TransactionID is the message’s transaction identifier.

QMSG_SET_DESTADDR (QMsgRef pMsg, QCompDesc pDestAddress)

This macro sets the destination address of the specified message.
pMsg is a pointer to the desired message.

pDestAddressis the message destination’s address.

QMSG_SET_MSGSIZE (QMsgRef pMsg, ULONG MsgSize)

This macro sets the size of the specified message.
pMsg is a pointer to the desired message.

MsgSizeis the size of the specified message (in bytes).

165

DM3 Direct Interface Function Reference for Windows NT

QMSG_SET_MSGTYPE (QMsgRef pMsg, ULONG MessageType)

This macro sets the type of the specified message.
pMsg is a pointer to the desired message.

MessageTypds the message type.

QMSG_SET_SRCADDR (QMsgRef pMsg, QCompDesc pSourceAddress)

This macro sets the source address of the specified message.
pMsg is a pointer to the desired message.

pSourceAddressis the message originator’s address.

QMSG_SET_TRANS (QMsgRef pMsg, QTrans TransactionID)

This macro sets the transaction identifier of the specified message.
pMsg is a pointer to the desired message.
TransactionID is the message’s transaction identifier.
4.4. DM3 Messages with Payloads
This section contains tables listing DM3 messages that require the use of payload

macros defined igmsg.h Use the macros to set and retrieve payload information
from command and reply messages contained within an MMB structure.

4.4.1. Messages With Fixed Payloads

DM3 messages may have a body with a known, predefined size, ctiked a
payload Table 8lists messages containing fixed payload information and maps

166

4. Macro Reference

them to the Direct Interface functions that can receive these messages. Refer to the
specific function description for details on extracting the payload contents.

Table 8. Messages with Fixed Payloads

Message Name Received hy:

QClusterResult mntClusterAllocate(), mntClusterByComp(),
mntClusterCreate(), mntClusterFind()

QClusterUnlockCmpilt mntClusterConfigUnlock()

QComponentResult mntClusterCompByAttr(), mntCompAllocate(),
mntCompFind()
QResultError mntClusterActivate(), mntClusterAllocate(),

mntClusterByComp(),

mntClusterCompByAttr(),
mntClusterConfigLock(), mntClusterConnect(),
mntClusterCreate(), mntClusterDeactivate(),
mntClusterDestroy(), mntClusterDisconnect(),
mntClusterFind(), mntClusterFree(),
mntClusterSlotinfo(), mntClusterTSAssign(),
mntClusterTSUnassign(), mntCompAllocate(),
mntCompFind(), mntCompFindAll(),
mntCompFree(), mntCompUnuse(),
mntCompUse(), mntNotifyRegister(),
mntNotifyUnregister()

4.4.2. Messages with Variable Payloads

A variable payloads the body of a DM3 message that includes one or more
variable fields. ThgMsgVarFieldGet() andgMsgVarFieldPut() functions

must be used to access the variable portion of a message pagbkd9lists
messages containing variable payloads and maps them to the Direct Interface
functions that can receive these messages. Refer to the specific function
description for details on extracting the variable payload contents.

167

DM3 Direct Interface Function Reference for Windows NT

Table 9. Messages with Variable Payloads

Message Name Received by:

QClusterSlotinfoResult mntClusterSlotinfo()

QComponentMultipleResult | mntCompFindAlI()

QFailureNotify mntNotifyRegister()

168

5. Data Types, Structures, and Error

Codes

This chapter contains information on:

e Data types
e Data structures

e Error code definitions

5.1. Data Types

The Direct Interface host library is distributed with a number of include files. For
DM3 Kernel-related data types, consmiércdefs.hFor standard DM3 messages
and parameters, consattddefs.hnComponent-related structures are defined in

gcomplib.h Some of the most common data types are listed in the following table.

Table 10. Data Type Definitions

Data Type

Definition

struct QCompAttr

Structure that contains a component attribute
identifier (the key) and a specific attribute value
associated with that key.

struct QCompDesc

Structure that defines a component instance. It is §
record that contains board, processor, and compo
type identifiers; and the instance number. It is the
component instance address for all messages.

hent

struct QMsg

Local representation of the standard DM3 messag
structure. You should access this structure only
through the access macros describe@hapter

4. Macro Reference.

169

DM3 Direct Interface Function Reference for Windows NT

Data Type Definition

UInt24 QTrans Transaction identifier that is a standard element of|a
DM3 message. Use it as a parameter in a function| call

that returns an asynchronous message as a result| The
transaction ID is returned in the reply message.
Transaction identifiers should be unique within eagh
process.

5.2. Data Structures

This section alphabetically lists the data structures used by the Direct Interface
functions and discusses the fields they contain.

5.2.1. MSB Stream Buffer Structure

This data structure is used by thatRegisterAsyncStreams(Yunction and is
defined inmmb.h

typedef struct {
STRM_HDR strmHdr;
ULONG readCompletionMask;
USHORT timeout;
ULONG xferLen;
ULONG xferDone;
} MSB, *PMSB, *LPMSB;

strmHdr stream header returned franntGetStreamHeader()

readCompletionMask mask set imntSetStreamHeader()

timeout same timeout value as senmtSetlOTimeout()
xferLen size of the buffer corresponding to the MSB
xferDone returned size from the read

170

5. Data Types, Structures, and Error Codes

5.2.2. STRM_HDR Stream Header Structure

This data structure is definedrimmb.h

typedef struct {

ULONG sequence;

UCHAR bufFlags; // MNT_EOD - End of Data = 0x01
/IMNT_EQT - End of Transmission = 0x02
/I MNT_EOF - EndofFile=0x04(equivalent to EOS)
/IMNT_USERL - User specified flag = 0x08
/I MNT_USER?2 - User specified flag = 0x10
/I MNT_USERS - User specified flag = 0x20
/I MNT_USER4 - User specified flag = 0x40
/I MNT_USERS - User specified flag = 0x80

UCHAR encoding;

UCHAR pad1; /I reserved for future use

UCHAR sysFlags; /I read-only

/I STREAM_CLOSED = 0x01
/I STREAM_BROKEN = 0x02

ULONG canTakeLimit; // read-only

ULONG initialCanTake; // read-only

ULONG currentCanTake; // read-only

ULONG requestedSize; // read-only

ULONG actualSize; // read-only

} STRM_HDR, *PSTRM_HDR;

sequence used as an incrementing counter as blocks are written. This field is
automatically filled by the lower level stream data block transport
code.

171

DM3 Direct Interface Function Reference for Windows NT

bufFlags indicates the out-of-band stream attributes as defined below:

e The MNT_EOD flag indicates the end of a valid grouping of
data blocks. It terminates an operation, such as a data transfer,
without closing the stream.

e TheMNT_EOT flag indicates the end of a collection of
groupings that have been delineatedbyT_EOD flags.
Without closing the stream, it marks such operations as a forced
termination of a grouping of operations in which the data
transfer groupings were buffered onto a stream, but were not yet
processed at the time of termination.

e The MNT_EOF flag indicates the end of a file or stream. It is
normally set in the last block of a stream when the writer closes
its end of the stream.

e The MNT_USERN flags can be used for any application-level
purpose.

encoding set to the calling processor byte ordering convention (big-endian
or little-endian)

5.2.3. STRM_INFO Stream Information Structure

This data structure is defineddstream.h

typedef struct {

int NumStrmGroups;

int DataBlockSize;

STRM_GROUP_CFG StrmGroups[MNT_STREAM_MAX_NUM_GROUPS];
} STRM_INFO, *PSTRM_INFO;

typedef struct {
Uint32 GrouplD;
Uint32 NumStreams;
UInt32 StreamSize;
}STRM_GROUP_CFG;

NumStrmGroups defines the number of stream groups available. A stream
group is used for defining a number of streams with
different stream size. (Maximum value is 20.)

172

5. Data Types, Structures, and Error Codes

DataBlockSize defines the default data block size, currently set at 4032
bytes.

5.2.4. QBoardAttr Board Attribute Structure

This data structure is used by thetGetBoardsByAttr() function and is
defined ingmsg.h

typedef struct {

char ValueName[MNT_MAX_VALUE_NAME_SIZE];
ULONG ValueType;

char Value[MNT_MAX_VALUE_SIZE];

ULONG BoardNo;

} QBoardAttr, *PQBoardAttr;

ValueName contains a NULL terminated string specifying the name of the
value which matched.

ValueType one of the Win32 registry types; REG_DWORD, REG_SZ, or
REG_MULTISZ.

Value current value of the value namedvialueName

BoardNo contains the logical board ID of the board which contained the
matching attribute.

5.2.5. QCompAttr Component Attribute Structure

A value of type QCompAttr (defined ocomplib.h is a structure of the format:

typedef struct {

ULONG key;

LONG value;
1QCompAttr, *PQCompAttr;

The key / value pairs described below always occur in arrays. The end of the array
is marked with special null values.

173

DM3 Direct Interface Function Reference for Windows NT

key

value

Uniquely identifies component attribute type. Each identifier key
is defined as eithamique(only one QCompAttr structure and
hence only one value associated with keygt@red(multiple
QCompAittr structures with different values may be associated
with key). Two standard keys are defined which identify
attributes that should be defined for every component. These
required attribute keys are:

SysAttrCompType Generic component type attribute
SysAttrCompld Unique component ID attribute

Additionally, there are four special values defined forkiine
field which function as operators in a list of QCompAttr
structures:

QATTR_NOT Used to effect a non-match in selection by
attribute

QATTR_OR Used to logically OR two attributes in selection
by attribute

QATTR_AND Used to logically AND two attributes in
selection by attribute

QATTR_NULL Null key

Encoded value of attribute. If no specific value is to be specified
for the attribute, the canonical value QATTR_ANY should be set
in thevalue field; this value is equal to the most negative 32-bit
integer, which is unavailable as an attribute value. RefEalte

11 for a list of possible key / value pairs.

Table 11. Component Attribute Values

Attribute Key Value Description

SysAttrCompType| StdPlayer A standard player component
SysAttrCompType| StdRecorder A standard recorder component
SysAttrCompType| StdCoder A standard coder component

174

5. Data Types, Structures, and Error Codes

Attribute Key Value Description

SysAttrCompType| SysComponent A standard DM3 system service

SysAttrCompld MercConfigMgr The configuration manager

SysAttrCompld MercHostDriver The host interface driver

SysAttrCompld MerclPCDriver The CP-SP interface driver

SysAttrCompld MercResourceMgr The resource manager
SysAttrCompld MercSlotMgr The timeslot manager
SysAttrCompld MercStreamMgr The global memory stream manaper
Any Key QATTR_ANY Matches any value

5.2.6. QCompDesc Component Descriptor Structure

The data type QCompDesc is a structure which is the local representation of a
DM3 component descriptor. This data structure is definggamplib.h.A
component descriptor has the following format:

typedef struct{

USHORT node;

UCHAR board;

UCHAR padi;

UCHAR processor;
UCHAR component;
UCHAR instance;
UCHAR pad2;
}QCompDesc, *PQCompDesc;

node Currently unused

board Identifies a specific board within the system. The following
standard identifiers are currently defined:
QCOMP_B_SELF
QCOMP_B_HOST
QCOMP_B_NIL

175

DM3 Direct Interface Function Reference for Windows NT

processor Identifies the processor where an instance resides. The following
standard identifiers are currently defined:
QCOMP_P_HOST
QCOMP_P_CP
QCOMP_P_SP
QCOMP_P_SELF
QCOMP_P_NIL

component Identifies the type of component being addressed. The following
standard identifiers are currently defined:
QCOMP_C_SYS_SERVICE
QCOMP_C_TASK
QCOMP_C_STREAM
QCOMP_C_INVALID
QCOMP_C_NIL

instance Identifies the type of instance being addressed. The following
standard identifiers are currently defined:

QCOMP_I_COMPONENT
QCOMP_|_HMSGDRIVER
QCOMP_|_HSTREAMDRYV
QCOMP_|_IPCDRIVER
QCOMP_|_CONFIGMGR
QCOMP_I_RESOURCEMGR
QCOMP_|_SMP
QCOMP_|_BSTREAM_TSK
QCOMP_|_CLUSTERMGR
QCOMP_|_SRAM
QCOMP_|_IDLE_TSK
QCOMP_|_FTIMER
QCOMP_I_QAGENT
QCOMP_I_NIL

To partially specify a component instance, ittstancefield must be set to

QCOMP_I_NIL. Theprocessorandcomponentfields may also optionally be set
to their null values (QCOMP_P_NIL and QCOMP_C_NIL) as wild card values.

176

5. Data Types, Structures, and Error Codes

5.2.7. QValueAttr Board Attribute Specification Structure

The QValueAttr data structure is used by tnetGetBoardsByAttr() function
and is defined immsg.h

typedef struct {

char ValueName[MNT_MAX_VALUE_NAME_SIZE];
ULONG ValueType;

BYTE ValueFlag;

char Value[MNT_MAX_VALUE_SIZE];

} QValueAttr, *PQValueAttr;

ValueName a NULL terminated string specifying the name of the value to find
or the wild card “*” which can be used to indicate a match on any
value name.

ValueType one of the Win32 registry types; REG_DWORD, REG_SZ, or
REG_MULTISZ.

ValueFlag may be NULL to indicate a match on the value specified in Value
or MNT_MATCH_ANY_VALUE to match on any value.

Value the value to match.

5.3. Error Code Definitions

If any Direct Interface host library function returns FALSE, you should call the
GetLastError() function to retrieve the error. This is a Win32 API convention
that the Direct Interface host library observes. There are two error-code classes:
Dialogic and Windows NT. To determine if it's a Direct Interface host library
error, use the ERROR_MNT_BASE as a mask.

5.3.1. Windows NT Error Codes
Window NT provides error codes that can occur during general Win32 API

function calls and during stream 1/O operatioresble 12lists some of the
possible Windows NT general error codes. Refeviterror.hfor detalils.

177

DM3 Direct Interface Function Reference for Windows NT

Table 12. Windows NT General Error Codes

all is

pN.

Error Name Description

Code

2 ERROR_FILE_NOT_FOUND System cannot find specified file].

6 ERROR_INVALID_HANDLE Handle is incorrect.

8 ERROR_NOT_ENOUGH_MEMORY Not enough storage available to
process this command.

31 ERROR_GEN_FAILURE Device attached to the system ig
not functioning.

87 ERROR_INVALID_PARAMETER Parameter is incorrect.

122 ERROR_INSUFFICIENT_BUFFER Data area passed to a system g
too small.

997 ERROR_IO_PENDING Overlapped I/O operation is in
progress

998 ERROR_NOACCESS Invalid access to memory locati

1011 ERROR_CANTOPEN Configuration registry could not
opened.

1012 ERROR_CANTREAD Configuration registry key could

not be read.

If a stream I/O operation fails, the Class Driver (DLGCMCD) and Protocol Driver
(DLGCMPD) can return a Windows NT stream error cAdeble 13lists some of
the possible Windows NT stream error codes.

178

5. Data Types, Structures, and Error Codes

Table 13. Windows NT Stream Error Codes

—

Error Name Stream | Description
Code Type
0 NO_ERROR Read Three possible cases:
or e Stream header matches use
specified completion mask,
ERROR_SUCCESS and request completes with
current transfer count.
e Sender has closed stream. All
pending reads completed.
¢ Requested bytes have been
read.
1 ERROR_INVALID_FUNCTION Read or| Handle passed does not belong
Write to the Stream device, or the
requested action is inconsister
such as a write request for a
read stream.
21 ERROR_NOT_READY Read orl The board is not in a ready
Write state.
22 ERROR_BAD_COMMAND Read or| There is no open or attached
Write stream on the device handle
passed.
57 ERROR_ADAP_HDW_ERR Read of There is a hardware error on the
Write board.
71 ERROR_REQ_NOT_ACCEP Read gr The board has rejected the
Write close- or open-stream request
made by the host driver.
109 ERROR_BROKEN_PIPE Write The reader has closed the

stream. Your application should
properly close the stream.

179

DM3 Direct Interface Function Reference for Windows NT

14

Error Name Stream | Description
Code Type
121 ERROR_SEM_TIMEOUT Read of The I/O request has timed out|
Write If the timeout value is set
through through the
mntSetStreamIOTimeout()
function, a 30-second default i
used.
170 ERROR_BUSY Read orl The stream cannot be closed
Write due to its non-zero reference
count.
231 ERROR_PIPE_BUSY Read of The stream cannot be closed
Write due to outstanding 1/O request
997 ERROR_IO_PENDING Read of The I/O request has been
Write accepted and is pending.
Normal in asynchronous I/O.
1117 ERROR_IO_DEVICE Read Stream’s orphan buffer has

overrun. The application is not
reading quickly enough. Can b
due to heavy system load.

5.3.2. Dialogic Library and Driver Error Codes

If error checking in either the host library or driver layer detects a problem, error
checking returns a Dialogic error cod@able 14lists some of the possible
Dialogic error codes. Please refedttmnti.h for details.

Table 14. Dialogic Error Codes

Error Code Name

Description

0xE0000000

ERROR_MNT_MMB_ALLOC_FAILED

Unable to allocate
MMB

0xE0000001

ERROR_MNT_INVALID_VALUE_TYPE

Invalid Registry valu
type encountered

D

180

5. Data Types, Structures, and Error Codes

is

Error Code Name Description
0xE0000002 ERROR_MNT_NO_MCD_VERSION_ID Unable to retrieve
DLGCMCD version
ID
0xE0000003 ERROR_MNT_NO_TRACE_HANDLE Unable to open trag
handle
0xE0000004 ERROR_MNT_CANTCLOSE Unable to close
registry key
0xE0000005 ERROR_MNT_INVALID_ATTR_KEY Invalid attribute key
0xE0000006 ERROR_MNT_NO_BOARDS_BY_ATTR Unable to get boar
by attributes
0xE0000007 ERROR_MNT_NO_MEM Unable to allocate
memory for thread-
local-storage MMB.
0xE0000008 ERROR_MNT_SYSTEM_ERR Direct Interface
system error
O0xE0000009 ERROR_MNT_MERCURY_STD_MSG Standard error
message received
OXEOO00000A ERROR_MNT_MERCURY_KRNL DM3 Kernel error
message received
0xE000000B ERROR_MNT_HEAP_FREE_FAILED Not used
0xE000000C ERROR_MNT_HEAP_ALLOC_FAILED Not used
0xE000000D ERROR_MNT_INVALID_CMDSIZE Invalid command siZ

specified

181

Index

A

Architecture, DM3
definition, 2

asynchronous function calls, 8
asynchronous function returns, 9

asynchronous functions
OVERLAPPED structure, 8

C

calling functions
asynchronously, 8
synchronously, 11

Class Driver, 5

cluster management functions, 16
mntClusterActivate(), 30
mntClusterAllocate(), 34
mntClusterByComp(), 37
mntClusterCompByAttr(), 39
mntClusterConfigLock(), 42
mntClusterConfigUnlock(), 44
mntClusterConnect(), 46
mntClusterCreate(), 50
mntClusterDeactivate(), 53
mntClusterDestroy(), 56
mntClusterDisconnect(), 58
mntClusterFind(), 61
mntClusterFree(), 63
mntClusterSlotinfo(), 65
mntClusterTSAssign(), 68
mntClusterTSUnassign(), 71

CompactPCl, 5

Component
definition, 2

component management functions, 17

mntCompAllocate(), 74
mntCompFind(), 77
mntCompFree(), 86
mntCompUnuse(), 88
mntCompUse(), 90

CreateFile(), 5

data structures

Direct Interface, 170
MSB, 170
QBoardAttr, 173
QCompAttr, 173
QCompDesc, 175
QValueAttr, 177
STRM_HDR, 171
STRM_INFO, 172

data types

Direct Interface, 169

debug support functions, 17

mntGetDrvVersion(), 105
mntGetLibVersion(), 106
mntSetTraceLevel(), 139
mntTrace(), 143
mntTransGen(), 145

Dialogic Class Driver, 5
Dialogic error codes, 180
Dialogic Protocol Driver, 5

Direct Interface

cluster management functions, 16

component management functions,
17

data structures, 170

data types, 169

debug support functions, 17

error codes, 177

183

DM3 Direct Interface Function Reference for Windows NT

exit notification functions, 20
message /O functions, 18
stream 1/O functions, 18

DLGCMCD, 5
DLGCMPD, 5

DM3 architecture
key concepts, 2

DM3 Direct Interface host library, 4
DM3 Direct Interface Overview, 3
DM3 embedded system, 5

DMS3 firmware, 6

DM3 Hardware, 5

DM3 host library, 4

DM3 message header macros, 164
QMSG_GET_DESTADDR, 164
QMSG_GET_MSGSIZE, 164
QMSG_GET_MSGTYPE, 164
QMSG_GET_SRCADDR, 165
QMSG_GET_TRANS, 165
QMSG_SET DESTADDR, 165
QMSG_SET _MSGSIZE, 165
QMSG_SET _MSGTYPE, 166
QMSG_SET_SRCADDR, 166
QMSG_SET _TRANS, 166

DM3 message pointer macros, 163
MNT_MNT_GET_CMD_QMSG,
163
MNT_MNT_GET_REPLY_QMSG,
163

DM3 messages with payloads, 166
DMA, 5

E

error codes
definitions, 177
Dialogic, 180

184

Windows NT, 177

error handling
asynchronous, 9
asynchronous code example, 11
synchronous, 12
synchronous code example, 14

exit notification functions, 20

F

functions

asynchronous, 8

cluster mangement
mntClusterActivate(), 30
mntClusterAllocate(), 34
mntClusterByComp(), 37
mntClusterCompByAttr(), 39
mntClusterConfigLock(), 42
mntClusterConfigUnlock(), 44
mntClusterConnect(), 46
mntClusterCreate(), 50
mntClusterDeactivate(), 53
mntClusterDestroy(), 56
mntClusterDisconnect(), 58
mntClusterFind(), 61
mntClusterFree(), 63
mntClusterSlotinfo(), 65
mntClusterTSAssign(), 68
mntClusterTSUnassign(), 71

component mangement
mntCompAllocate(), 74
mntCompFind(), 77
mntCompFree(), 86
mntCompUnuse(), 88
mntCompUse(), 90

debug support
mntGetDrvVersion(), 105
mntGetLibVersion(), 106
mntSetTraceLevel(), 139
mntTrace(), 143
mntTransGen(), 145

message /0
mntAllocateMMB(), 22

H

mntCheckStreamOrphans(), 28
mntClearMMB(), 29
mntCopyMMB(), 93
mntEnumMpathDevice(), 96
mntEnumStrmDevice(), 98
mntFreeMMB(), 100
mntGetBoardsByAttr(), 101
mntGetMpathAddr(), 109
mntGetTLSmmb(), 116
mntRegisterAsyncMessages(),
123
mntRegisterAsyncStreams(),
126
mntSendMessage(), 129
mntSendMessageWait(), 131
gMsgVarFieldGet(), 146
gMsgVarFieldPut(), 150
stream 1/O
mntAttachMercStream(), 25
mntCompleteStreamlo(), 92
mntDetachMercStream(), 94
mntGetMercStreamID(), 107
mntGetStreamHeader(), 111
mntGetStreaminfo(), 114
mntSetStreamHeader(), 135
mntSetStreamIOTimeout(), 138
synchronous, 11

Hardware, 5

Introduction to DM3 architecture

M

definition, 2

macros

DM3 message header, 164

DM3 message pointer, 163

DM3 messages with payloads, 166
MMB control header, 156

Message

Index

definition, 3

message /O functions, 18

mntAllocateMMB(), 22
mntCheckStreamOrphans(), 28
mntClearMMB(), 29
mntCopyMMB(), 93
mntEnumMpathDevice(), 96
mntEnumStrmDevice(), 98
mntFreeMMB(), 100
mntGetBoardsByAttr(), 101
mntGetMpathAddr(), 109
mntGetTLSmmb(), 116
mntRegisterAsyncMessages(), 123
mntRegisterAsyncStreams(), 126
mntSendMessage(), 129
mntSendMessageWait(), 131
gMsgVarFieldGet(), 146
gMsgVarFieldPut(), 150

MMB, 155

MMB control header macros, 156

MNT_GET_MMB_ACTUAL_REP
LY_COUNT, 157
MNT_GET_MMB_CMD_SIZE,
157
MNT_GET_MMB_CMD_TIMEO
UT, 157
MNT_GET_MMB_CURRENT_RE
PLY_OFFSET, 157
MNT_GET_MMB_EMPTY_MSG,
158
MNT_GET_MMB_EXPECTED_R
EPLY_COUNT, 158
MNT_GET_MMB_MATCH_ON_
DEST_ADDR, 158
MNT_GET_MMB_MATCH_ON_
MSGTYPE, 159
MNT_GET_MMB_MATCH_ON_S
RC_ADDR, 159
MNT_GET_MMB_MATCH_ON_
TRANS_ID, 159
MNT_GET_MMB_REPLY_MAX_
SIZE, 160

185

DM3 Direct Interface Function Reference for Windows NT

MNT_SET_MMB_CMD_SIZE,
160
MNT_SET_MMB_CMD_TIMEOU
T, 160
MNT_SET_MMB_EMPTY_MSG,
160
MNT_SET_MMB_EXPECTED_R
EPLY_COUNT, 161
MNT_SET_MMB_MATCH_ON_D
EST_ADDR, 161
MNT_SET_MMB_MATCH_ON_
MSGTYPE, 161
MNT_SET_MMB_MATCH_ON_S
RC_ADDR, 162
MNT_SET_MMB_MATCH_ON_T
RANS_ID, 162
MNT_SET_MMB_REPLY_MAX_
SIZE, 162

MMB structure, 156
MNT_GET_CMD_QMSG, 163

MNT_GET_MMB_ACTUAL_REPLY_
COUNT, 157

MNT_GET_MMB_CMD_SIZE, 157

MNT_GET_MMB_CMD_TIMEOUT,
157

MNT_GET_MMB_CURRENT_REPL
Y_OFFSET, 157

MNT_GET_MMB_EMPTY_MSG, 158

MNT_GET_MMB_EXPECTED_REPL
Y_COUNT, 158

MNT_GET_MMB_MATCH_ON_DES
T_ADDR, 158

MNT_GET_MMB_MATCH_ON_MSG
TYPE, 159

MNT_GET_MMB_MATCH_ON_SRC
_ADDR, 159

186

MNT_GET_MMB_MATCH_ON_TRA
NS_ID, 159

MNT_GET_MMB_REPLY_MAX_SIZ
E, 160

MNT_GET_REPLY_QMSG, 163
MNT_SET_MMB_CMD_SIZE, 160

MNT_SET_MMB_CMD_TIMEOUT,
160

MNT_SET_MMB_EMPTY_MSG, 160

MNT_SET_MMB_EXPECTED_REPL
Y_COUNT, 161

MNT_SET_MMB_MATCH_ON_DES
T_ADDR, 161

MNT_SET_MMB_MATCH_ON_MSG
TYPE, 161

MNT_SET_MMB_MATCH_ON_SRC
_ADDR, 162

MNT_SET_MMB_MATCH_ON_TRA
NS_ID, 162

MNT_SET_MMB_REPLY_MAX_SIZ
E, 162

mntAllocateMMB(), 22
mntAttachMercStream(), 25
mntCheckStreamOrphans(), 28
mntClearMMB(), 29
mntClusterActivate(), 30
mntClusterAllocate(), 34
mntClusterByComp(), 37
mntClusterCompByAttr(), 39
mntClusterConfigLock(), 42
mntClusterConfigUnlock(), 44

mntClusterConnect(), 46
mntClusterCreate(), 50
mntClusterDeactivate(), 53
mntClusterDestroy(), 56
mntClusterDisconnect(), 58
mntClusterFind(), 61
mntClusterFree(), 63
mntClusterSlotinfo(), 65
mntClusterTSAssign(), 68
mntClusterTSUnassign(), 71
mntCompAllocate(), 74
mntCompFind(), 77
mntCompFree(), 86
mntCompleteStreamlo(), 92
mntCompUnuse(), 88
mntCompUse(), 90
mntCopyMMB(), 93
mntDetachMercStream(), 94
mntEnumMpathDevice(), 96
mntEnumStrmDevice(), 98
mntFreeMMB(), 100
mntGetBoardsByAttr(), 101
mntGetDrvVersion(), 105
mntGetLibVersion(), 106
mntGetMercStreamID(), 107
mntGetMpathAddr(), 109
mntGetStreamHeader(), 111
mntGetStreaminfo(), 114

Index

mntGetTLSmmb(), 116

mntRegisterAsyncMessages(), 123

mntRegisterAsyncStreams(), 126

mntSendMessage(), 129
mntSendMessageWait(), 131
mntSetStreamHeader(), 135

mntSetStreamIOTimeout(), 138

mntSetTraceLevel(), 139
mntTerminateStream(), 141
mntTrace(), 143
mntTransGen(), 145

MSB, 170

multiple message block, 155
P

PCI, 5

PI1O, 5

Protocol Driver, 5

Q

QBoardAttr, 173

QClusterResult message, 35, 38, 51, 62

QClusterSlotinfoResult message, 67

QClusterUnlockCmplt message, 45

QCompAttr, 173
QCompDesc, 175

QCompMultipleResult message, 84

QComponentResult message, 40, 76, 80

QFailureNotify message, 119
QMSG_GET_DESTADDR, 164

187

DM3 Direct Interface Function Reference for Windows NT

QMSG_GET_MSGSIZE, 164 mntDetachMercStream(), 94
mntGetMercStreamID(), 107

QMSG_GET_MSGTYPE, 164 mntGetStreamHeader(), 111

QMSG_GET_SRCADDR, 165 mntGetStreaminfo(), 114
mntSetStreamHeader(), 135

QMSG_GET_TRANS, 165 mntSetStreamIOTimeout(), 138

QMSG_SET DESTADDR, 165 mntTerminateStream(), 141

QMSG_SET_MSGSIZE, 165 STRM_HDR, 171

QMSG_SET_MSGTYPE, 166 STRM_INFO, 172

QMSG_SET_SRCADDR, 166 synchronous function calls, 11

QMSG_SET_TRANS, 166 synchronous function returns, 12

gMsgVarFieldGet(), 146 \Y

gMsgVarFieldPut(), 150 VME, 5

QResultComplete message, 33, 43, 49, Wi

54, 57, 60, 64, 70, 72, 87, 89,
91, 119, 122 Windows NT

QualueAttr, 177 error codes, 177

R WriteFile(), 5

ReadFile(), 5

Resource

definition, 2

Result messages
QClusterResult, 35, 38, 51, 62
QClusterSlotinfoResult, 67
QClusterUnlockCmplt, 45
QCompMultipleResult, 84
QComponentResult, 40, 76, 80
QFailureNotify, 119
QResultComplete, 33, 43, 49, 54,
57, 60, 64, 70, 72, 87, 89,
91, 119, 122

S

stream 1/O functions, 18
mntAttachMercStream(), 25
mntCompleteStreamlo(), 92

188

NOTES

NOTES

NOTES

