
gamedesigninitiative
at cornell university

the

Profiling and
Optimization

Avoid Premature Optimization

� Novice developers rely on ad hoc optimization
� Make private data public
� Force function inlining
� Decrease code modularity

� But this is a very bad idea
� Rarely gives significant performance benefits
� Non-modular code is very hard to maintain

� Write clean code first; optimize later

removes function calls

Debug vs Release

� Debug mode is the default when you run
� All assertion checks are enabled
� No compiler optimizations are performed
� But works well with breakpoints and watches

� Release mode is what to use on deployment
� All assertion checks are disabled
� Compiler optimizations performed (often –Os)
� But breakpoints and watches are unreliable

Debug vs Release

� Debug mode is the default when you run
� All assertion checks are enabled
� No compiler optimizations are performed
� But works well with breakpoints and watches

� Release mode is what to use on deployment
� All assertion checks are disabled
� Compiler optimizations performed (often –Os)
� But breakpoints and watches are unreliable

This is often better than
anything you can do!

Debug vs Release

Performance Tuning

� Code follows an 80/20 rule (or even 90/10)
� 80% of run-time spent in 20% of the code
� Optimizing other 80% provides little benefit
� Do nothing until you know what this 20% is

� Be careful in tuning performance
� Never overtune some inputs at expense of others
� Always focus on the overall algorithm first
� Think hard before making non-modular changes

� CUGL has vectorization
� SSE support for Mac/Win
� NEON support for ARM
� But currently turned off…

� Focused on high value areas
� Vec4 and Mat4 for graphics
� DSP and Filters for audio
� Bespoke and hand tuned

� Was it worth it?
� TestCUGL is test bed
� Results surprising (sort of)

Case Study: Vectorization Support

� SSE on 2019 MBook Pro
� 2.4 GHz 8 core Intel i9
� 32 Gig Ram

� Neon on iPhone XS Max
� 2x2.5 GHz+4x1.6GHz Arm
� 4 GB Ram

� Tests are synthetic
� Unit tests for most ops
� Mix of short & long comps
� Want a standard workload
� Vectorization best on long

No Significant Win for Graphics

SSE Code
Debug Optimized -Os

Naïve Vec Naïve Vec
Vec4 488 μs 525 μs 412 μs 412 μs
Mat4 40595 40104 7271 7159

Neon Code
Debug Optimized -Os

Naïve Vec Naïve Vec
Vec4 126 μs 61 μs 250 μs 60 μs
Mat4 12033 10038 10529 9788

� SSE on 2019 MBook Pro
� 2.4 GHz 8 core Intel i9
� 32 Gig Ram

� Neon on iPhone XS Max
� 2x2.5 GHz+4x1.6GHz Arm
� 4 GB Ram

� Tests are synthetic
� Unit tests for most ops
� Mix of short & long comps
� Want a standard workload
� Vectorization best on long

No Significant Win for Graphics

SSE Code
Debug Optimized -Os

Naïve Vec Naïve Vec
Vec4 488 μs 525 μs 412 μs 412 μs
Mat4 40595 40104 7271 7159

Neon Code
Debug Optimized -Os

Naïve Vec Naïve Vec
Vec4 126 μs 61 μs 250 μs 60 μs
Mat4 12033 10038 10529 9788

Observations
� Naïve ARM >> Naïve Intel

� -Os, Vec Intel > -Os, Vec ARM

� -Os does not do much on iOS

� Audio all long comps
� Adds/mults of long arrays
� Arrays are audio chunks
� DSP: Basic add/mul
� Filters: IIR and FIR

� Why not graphics too?
� Transform large meshes?
� Better to do in shader!
� Easily parallelizable

But Major Win for Audio DSP

SSE Code
Debug Optimized -Os

Naïve Vec Naïve Vec
DSP 27527 11373 7355 1515

Filter 872186 667485 24392 93302

Neon Code
Debug Optimized -Os

Naïve Vec Naïve Vec
DSP 6957 2059 7222 2016

Filter 385377 118638 378013 121061

Time Performance

� What code takes most time

� What is called most often

� How long I/O takes to finish

� Time to switch threads

� Time threads hold locks

� Time threads wait for locks

What Can We Measure?

Memory Performance

� Number of heap allocations

� Location of allocations

� Timing of allocations

� Location of releases

� Timing of releases

� (Location of memory leaks)

Profiling

� Analysis runs with program
� Record behavior of program
� Helps visualize this record

� Advantages
� More data than static anal.
� Can capture user input

� Disadvantages
� Hurts performance a lot
� May alter program behavior

Analysis Methods

Static Analysis

� Analyze without running
� Relies on language features
� Major area of PL research

� Advantages
� Offline; no performance hit
� Can analyze deep properties

� Disadvantages
� Conservative; misses a lot
� Cannot capture user input

Profiling

� Analysis runs with program
� Record behavior of program
� Helps visualize this record

� Advantages
� More data than static anal.
� Can capture user input

� Disadvantages
� Hurts performance a lot
� May alter program behavior

Analysis Methods

Time Profiling

Software

� Code added to program
� Captures start of function

� Captures end of function

� Subtract to get time spent

� Calculate percentage at end

� Not completely accurate
� Changes actual program

� Also, how get the time?

Time Profiling: Methods

Hardware

� Measurements in hardware
� Feature attached to CPU
� Does not change how

the program is run

� Simulate w/ hypervisors
� Virtual machine for Oss
� VM includes profiling

measurement features
� Example: Xen Hypervisor

Time-Sampling

� Count at periodic intervals
� Wakes up from sleep
� Looks at parent function
� Adds that to the count

� Relatively lower overhead
� Doesn’t count everything
� Performance hit acceptable

� May miss small functions

Time Profiling: Methods

Instrumentation

� Count pre-specified places

� Specific function calls

� Hardware interrupts

� Different from sampling

� Still not getting everything

� But exact view of slice

� Used for targeted searches

Issues with Periodic Sampling

Real

Sampled

Issues with Periodic Sampling

Real

Sampled

Modern profilers fix with random sampling

Time Performance

� What code takes most time

� What is called most often

� How long I/O takes to finish

� Time to switch threads

� Time threads hold locks

� Time threads wait for locks

What Can We Measure?

Memory Performance

� Number of heap allocations

� Location of allocations

� Timing of allocations

� Location of releases

� Timing of releases

� (Location of memory leaks)

Time Performance

� What code takes most time

� What is called most often

� How long I/O takes to finish

� Time to switch threads

� Time threads hold locks

� Time threads wait for locks

What Can We Measure?

Memory Performance

� Number of heap allocations

� Location of allocations

� Timing of allocations

� Location of releases

� Timing of releases

� (Location of memory leaks)

Instrument?

� Memory handled by malloc
� Basic C allocation method

� C++ new uses malloc

� Allocates raw bytes

� malloc can be instrumented
� Count number of mallocs

� Track malloc addresses

� Look for frees later on

� Finds memory leaks!

Instrumentation: Memory

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

Instrumentation: Memory

Profiling and Instrumentation Tools

� iOS/X-Code: Profiling Tools (⌘I)
� Supports a wide variety of instrumentation tools

� Visual Studio: Diagnostic Tools
� C++ mostly limited to performance and memory

� Android (Java)
� Dalvik Debug Monitor Server (DDMS) for traces
� TraceView helps visualize the results of DDMS

� Android (C++)
� Android NDK Profiler (3rd party)
� GNU gprof visualizes the results of gmon.out

Android NDK Profiling
// Non-profiled code
monstartup("your_lib.so");
// Profiled code
moncleanup();
// Non-profiled code

captures everything

gmon.outAndroid App gprof

Android Profiling

Timing

� Use the processor’s timer
� Track time used by program

� System dependent function

� C-style clock() function

� Do not use “wall clock”
� Timer for the whole system

� Includes other programs

� CUTimestamp is wall clock

Poor Man’s Sampling

Call Graph

� Create a hashtable
� Keys = pairs (a calls b)

� Values = time (time spent)

� Place code around call
� Code inside outer func. a

� Code before & after call b

� Records start and end time

� Put difference in hashtable

Timing

� Use the processor’s timer
� Track time used by program

� System dependent function

� C-style clock() function

� Do not use “wall clock”
� Timer for the whole system

� Includes other programs

� CUTimestamp is wall clock

Poor Man’s Sampling

Call Graph

� Create a hashtable
� Keys = pairs (a calls b)

� Values = time (time spent)

� Place code around call
� Code inside outer func. a

� Code before & after call b

� Records start and end time

� Put difference in hashtable

Useful in networked setting

clock

#include <ctime>

// Get two timestamps
clock_t start = clock();
clock_t end = clock();

// Compute difference in seconds
float time = (end-start)
time /= CLOCKS_PER_SEC;

Using Timing Code

Timestamp

#include <cugl/util/CUTimestamp>

// Get two timestamps
Timestamp start; // or start.mark();
Timestamp end;

// Compute difference in seconds
Uint64 micros;
micros= end.ellapsedTimeMicros(start);
float time = micros/1000000.0f

Analysis Methods

Static Analysis

� Analyze without running
� Relies on language features
� Major area of PL research

� Advantages
� Offline; no performance hit
� Can analyze deep properties

� Disadvantages
� Conservative; misses a lot
� Cannot capture user input

int sum = 0
boolean done = false;
for(int ii; ii<=5 &&!done;) {

if (j >= 0) {
sum += j;
if (sum > 100) {

done = true;
} else {

i = i+1;
}

}}
print(sum);

Static Analysis: Control Flow

sum = 0

done = F

i <= 5 && !done

j >= 0

sum = sum + j

sum > 100

done = T i = i+1

i = 0

endif

print sum

FT

T

F

F T

p q q may be executed
immediately after p

int sum = 0
boolean done = false;
for(int ii; ii<=5 &&!done;) {

if (j >= 0) {
sum += j;
if (sum > 100) {

done = true;
} else {

i = i+1;
}

}}
print(sum);

Static Analysis: Flow Dependence

sum = 0

done = F

i <= 5 && !done

j >= 0

sum = sum + j

sum > 100

done = T i = i+1

i = 0

endif

print sump q Value assigned at p
is read at command q

Model Checking

� Given a graph, logical formula j
� j expresses properties of graph
� Checker determines if is true

� Often applied to software
� Program as control-flow graph
� j indicates acceptable paths

sum = 0

done = F

i <= 5 && !done

j >= 0

sum = sum + j

sum > 100

done = T i = i+1

i = 0

endif

print sum

FT

T

F

F T

� Pointer analysis
� Look at pointer variables

� Determine possible values
for variable at each place

� Can find memory leaks

� Deadlock detection
� Locks are flow dependency

� Determine possible owners
of lock at each position

� Dead code analysis

Static Analysis: Applications

p

Heap

X

Example: Analyze in X-Code

Summary

� Premature optimization is bad
� Make code unmanageable for little gain
� Best to identify the bottlenecks first

� Profiling can find runtime performance issues
� But changes the program and incurs overhead
� Sampling and instrumentation reduce overhead

� Static analysis is useful in some cases
� Finding memory leaks and other issues
� Deadlock and resource analysis

